JP2006023028A - Refrigerant cooling circuit - Google Patents

Refrigerant cooling circuit Download PDF

Info

Publication number
JP2006023028A
JP2006023028A JP2004201655A JP2004201655A JP2006023028A JP 2006023028 A JP2006023028 A JP 2006023028A JP 2004201655 A JP2004201655 A JP 2004201655A JP 2004201655 A JP2004201655 A JP 2004201655A JP 2006023028 A JP2006023028 A JP 2006023028A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
throttle
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004201655A
Other languages
Japanese (ja)
Other versions
JP4289237B2 (en
Inventor
Yuichi Takahashi
裕一 高橋
Kidaiki Fumino
喜代輝 文野
Koji Takiguchi
浩司 滝口
Kimimichi Kuboyama
久保山  公道
Toshiaki Tsuchiya
敏章 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2004201655A priority Critical patent/JP4289237B2/en
Publication of JP2006023028A publication Critical patent/JP2006023028A/en
Application granted granted Critical
Publication of JP4289237B2 publication Critical patent/JP4289237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerant cooling circuit capable of optimally maintaining freezing efficiency based upon the pressure. <P>SOLUTION: A pressure of a high pressure side of a refrigerant circulation path is varied by controlling opening adjustment of a solenoid expansion valve 3, varying of a rotational frequency of a fan 21 in a gas cooler, varying of a rotational frequency of a fan 41 in an evaporator, varying of compression capacities of compressors 1 (1a and 1b), or opening and closing of solenoid valves 12a, 12b and 12c by a pressure control part 100 in response to a pressure detected by a pressure detecting means 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば断熱筐体の庫内の冷却を行うための冷媒循環経路を形成する冷媒冷却回路に関するものである。   The present invention relates to a refrigerant cooling circuit that forms a refrigerant circulation path for cooling, for example, an interior of a heat insulating housing.

従来、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどの断熱筐体の冷却庫内を冷却するための冷媒冷却回路が知られている。冷媒冷却回路は、主に圧縮機、放熱器、絞り部、蒸発器を経て冷媒を循環する冷媒循環経路を形成してある。そして、冷媒冷却回路を循環する冷媒としては、地球環境に対する影響の少ない冷媒が使用してある。例えば、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ないなどの点で、二酸化炭素を冷媒として使用してある。   2. Description of the Related Art Conventionally, for example, a refrigerant cooling circuit for cooling the inside of a refrigerator of a heat insulating housing such as a vending machine, a refrigerator, a freezer showcase / refrigerated showcase, or a beverage dispenser is known. The refrigerant cooling circuit forms a refrigerant circulation path for circulating the refrigerant mainly through the compressor, the radiator, the throttle unit, and the evaporator. As the refrigerant circulating in the refrigerant cooling circuit, a refrigerant having little influence on the global environment is used. For example, carbon dioxide is used as a refrigerant in that it has nonflammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

ところで、冷媒冷却回路の冷媒として二酸化炭素を使用すると、当該二酸化炭素の臨界温度が約31℃と低いことから、従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに圧力が高くなる。また、圧力は、外気温に応じて最適な冷媒量が変動するために変化する。例えば、外気温が低いときには圧力が低くなり、外気温が高いときには圧力が高くなりすぎる。このため、高低温時には、圧力が変化して冷凍効率が著しく低下することになる。そこで従来では、温度センサによって冷媒循環経路の所定位置の温度を検出することによって冷媒冷却回路の制御を行っている(例えば、特許文献1参照)。   By the way, when carbon dioxide is used as the refrigerant in the refrigerant cooling circuit, the critical temperature of the carbon dioxide is as low as about 31 ° C., so that it is far more than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. Pressure increases. Further, the pressure changes because the optimum amount of refrigerant fluctuates according to the outside air temperature. For example, the pressure is low when the outside temperature is low, and the pressure is too high when the outside temperature is high. For this reason, at high and low temperatures, the pressure changes and the refrigeration efficiency decreases significantly. Therefore, conventionally, the refrigerant cooling circuit is controlled by detecting the temperature at a predetermined position in the refrigerant circulation path using a temperature sensor (see, for example, Patent Document 1).

特開2004−54424号公報JP 2004-54424 A

しかし、温度変化に応じた制御では、圧力の高すぎあるいは低すぎを抑えることはできるが、所望とする圧力を維持するには、誤差が生じてしまうことになり、圧力に起因する冷凍効率を最適に維持することが難しい。   However, the control according to the temperature change can suppress the pressure too high or too low, but an error occurs to maintain the desired pressure, and the refrigeration efficiency due to the pressure is reduced. Difficult to maintain optimal.

本発明は、上記実情に鑑みて、圧力に起因する冷凍効率を最適に維持することができる冷媒冷却回路を提供することを目的とする。   An object of this invention is to provide the refrigerant cooling circuit which can maintain the refrigerating efficiency resulting from a pressure optimally in view of the said situation.

上記の目的を達成するために、本発明の請求項1に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記絞り部で冷媒の流量を可変することを特徴とする。   In order to achieve the above object, a refrigerant cooling circuit according to claim 1 of the present invention includes a compressor that compresses a refrigerant, a radiator that dissipates heat supplied from the compressor, and is supplied from the radiator. In the refrigerant cooling circuit having a refrigerant circulation path having a throttle part for adjusting the flow rate of the refrigerant and an evaporator for evaporating the refrigerant supplied from the throttle part and returning it to the compressor, the refrigerant circulation path The pressure detecting means for detecting the pressure of the refrigerant is provided on the high pressure side of the gas, and the flow rate of the refrigerant is varied by the throttle in accordance with the pressure detected by the pressure detecting means.

本発明の請求項2に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記放熱器に送風する送風機あるいは前記蒸発器に送風する送風機の風量を可変することを特徴とする。   A refrigerant cooling circuit according to a second aspect of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and a throttle that adjusts the flow rate of the refrigerant supplied from the radiator. And a refrigerant cooling circuit having a refrigerant circulation path having an evaporator for evaporating the refrigerant supplied from the throttle and returning the refrigerant to the compressor, the pressure of the refrigerant is detected on the high pressure side of the refrigerant circulation path The pressure detection means is provided, and the air volume of the blower that blows air to the radiator or the blower that blows to the evaporator is varied according to the pressure detected by the pressure detection means.

本発明の請求項3に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記圧縮機での冷媒の圧縮能力を可変することを特徴とする。   A refrigerant cooling circuit according to a third aspect of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and a throttle that adjusts the flow rate of the refrigerant supplied from the radiator. And a refrigerant cooling circuit having a refrigerant circulation path having an evaporator for evaporating the refrigerant supplied from the throttle and returning the refrigerant to the compressor, the pressure of the refrigerant is detected on the high pressure side of the refrigerant circulation path The pressure detection means is provided, and the compression capacity of the refrigerant in the compressor is varied according to the pressure detected by the pressure detection means.

本発明の請求項4に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて、前記絞り部で冷媒の流量の可変、前記放熱器に送風する送風機あるいは前記蒸発器に送風する送風機の風量の可変、もしくは前記圧縮機での冷媒の圧縮能力の可変を選択的に組み合わせて行うことを特徴とする。   A refrigerant cooling circuit according to a fourth aspect of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and a throttle that adjusts the flow rate of the refrigerant supplied from the radiator. And a refrigerant cooling circuit having a refrigerant circulation path having an evaporator for evaporating the refrigerant supplied from the throttle and returning the refrigerant to the compressor, the pressure of the refrigerant is detected on the high pressure side of the refrigerant circulation path The pressure detecting means is provided, and according to the pressure detected by the pressure detecting means, the flow rate of the refrigerant is variable at the throttle portion, the air volume of the blower that blows air to the radiator or the air blower that blows to the evaporator, or It is characterized by selectively combining variable refrigerant compression capacities in the compressor.

本発明の請求項5に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有し、前記蒸発器を複数設けて前記圧縮機、前記放熱器および前記絞り部を共通とした複数の冷媒循環経路を形成して、前記絞り部と前記各蒸発器との間の経路に前記各冷媒循環経路を開閉する電磁弁をそれぞれ設けた冷媒冷却回路において、前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記各電磁弁の開閉を行うことを特徴とする。   A refrigerant cooling circuit according to a fifth aspect of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and a throttle that adjusts the flow rate of the refrigerant supplied from the radiator. And an evaporator for evaporating the refrigerant supplied from the throttle unit and returning it to the compressor, and a plurality of the evaporators are provided to share the compressor, the radiator and the throttle unit. In the refrigerant cooling circuit in which an electromagnetic valve for opening and closing each refrigerant circulation path is provided in a path between the throttle unit and each evaporator, the refrigerant circulation path is provided on the high pressure side of the refrigerant circulation path. Pressure detecting means for detecting the pressure of the refrigerant is provided, and the electromagnetic valves are opened and closed according to the pressure detected by the pressure detecting means.

本発明の請求項6に係る冷媒冷却回路は、冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有し、前記蒸発器を複数設けて前記圧縮機、前記放熱器および前記絞り部を共通とした複数の冷媒循環経路を形成して、前記絞り部と前記各蒸発器との間の経路に前記各冷媒循環経路を開閉する電磁弁をそれぞれ設けた冷媒冷却回路において、前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて、前記絞り部で冷媒の流量の可変、前記放熱器に送風する送風機あるいは前記蒸発器に送風する送風機の風量の可変、前記圧縮機での冷媒の圧縮能力の可変、もしくは前記各電磁弁の開閉を選択的に組み合わせて行うことを特徴とする。   A refrigerant cooling circuit according to a sixth aspect of the present invention includes a compressor that compresses the refrigerant, a radiator that dissipates the refrigerant supplied from the compressor, and a throttle that adjusts the flow rate of the refrigerant supplied from the radiator. And an evaporator for evaporating the refrigerant supplied from the throttle unit and returning it to the compressor, and a plurality of the evaporators are provided to share the compressor, the radiator and the throttle unit. In the refrigerant cooling circuit in which an electromagnetic valve for opening and closing each refrigerant circulation path is provided in a path between the throttle unit and each evaporator, the refrigerant circulation path is provided on the high pressure side of the refrigerant circulation path. Pressure detecting means for detecting the pressure of the refrigerant is provided, and the flow rate of the refrigerant is variable at the throttle portion according to the pressure detected by the pressure detecting means, the blower that blows air to the radiator or the blower that blows air to the evaporator Air volume is acceptable , And performs the variable compression capability of the refrigerant in the compressor, or selectively combined opening and closing of the respective solenoid valves.

本発明の請求項7に係る冷媒冷却回路は、上記請求項1〜6のいずれか一つにおいて、前記冷媒が二酸化炭素であることを特徴とする。   A refrigerant cooling circuit according to a seventh aspect of the present invention is characterized in that, in any one of the first to sixth aspects, the refrigerant is carbon dioxide.

本発明に係る冷媒冷却回路は、圧力検出手段によって検出した圧力に応じて絞り部での冷媒の流量を可変する。例えば、検出した圧力が所望の圧力と比較して低い場合には、絞り部での冷媒の流量を減らして圧力を高くする。一方、検出した圧力が所望の圧力と比較して高い場合には、絞り部での冷媒の流量を増して圧力を低くする。この結果、圧力に起因する冷凍効率を最適に維持することができる。   The refrigerant cooling circuit according to the present invention varies the flow rate of the refrigerant in the throttle portion according to the pressure detected by the pressure detecting means. For example, when the detected pressure is lower than the desired pressure, the pressure is increased by reducing the flow rate of the refrigerant at the throttle. On the other hand, when the detected pressure is higher than the desired pressure, the flow rate of the refrigerant at the throttle is increased to lower the pressure. As a result, the refrigeration efficiency resulting from the pressure can be optimally maintained.

また、本発明に係る冷媒冷却回路は、圧力検出手段によって検出した圧力に応じて放熱器に送風する送風機あるいは蒸発器に送風する送風機の風量を可変する。例えば、検出した圧力が所望の圧力と比較して低い場合には、放熱器に送風する送風機あるいは蒸発器に送風する送風機の風量を減らして圧力を高くする。一方、検出した圧力が所望の圧力と比較して高い場合には、放熱器に送風する送風機あるいは蒸発器に送風する送風機の風量を増して圧力を低くする。この結果、圧力に起因する冷凍効率を最適に維持することができる。   The refrigerant cooling circuit according to the present invention varies the air volume of the blower that blows air to the radiator or the blower that blows to the evaporator according to the pressure detected by the pressure detection means. For example, when the detected pressure is lower than the desired pressure, the air volume of the blower that blows air to the radiator or the blower that blows air to the evaporator is reduced to increase the pressure. On the other hand, when the detected pressure is higher than the desired pressure, the air volume of the blower that blows air to the radiator or the blower that blows to the evaporator is increased to lower the pressure. As a result, the refrigeration efficiency resulting from the pressure can be optimally maintained.

また、本発明に係る冷媒冷却回路は、圧力検出手段によって検出した圧力に応じて圧縮機での冷媒の圧縮能力を可変する。例えば、検出した圧力が所望の圧力と比較して低い場合には、圧縮機の圧縮能力を上げて圧力を高くする。一方、検出した圧力が所望の圧力と比較して高い場合には、圧縮機の圧縮能力を下げて圧力を低くする。この結果、圧力に起因する冷凍効率を最適に維持することができる。   The refrigerant cooling circuit according to the present invention varies the compression capacity of the refrigerant in the compressor according to the pressure detected by the pressure detection means. For example, when the detected pressure is lower than the desired pressure, the compression capacity of the compressor is increased to increase the pressure. On the other hand, when the detected pressure is higher than the desired pressure, the compression capacity of the compressor is lowered to lower the pressure. As a result, the refrigeration efficiency resulting from the pressure can be optimally maintained.

また、本発明に係る冷媒冷却回路は、絞り部と複数の蒸発器との間の経路に各冷媒循環経路を開閉する電磁弁をそれぞれ設けた冷媒冷却回路において、圧力検出手段によって検出した圧力に応じて各電磁弁の開閉を行う。例えば、検出した圧力が所望の圧力と比較して低い場合には、開放状態にある電磁弁を減らして圧力を高くする。一方、検出した圧力が所望の圧力と比較して高い場合には、開放状態にある電磁弁を増して圧力を低くする。この結果、圧力に起因する冷凍効率を最適に維持することができる。   The refrigerant cooling circuit according to the present invention is a refrigerant cooling circuit in which an electromagnetic valve that opens and closes each refrigerant circulation path is provided in a path between the throttle unit and the plurality of evaporators. Open and close each solenoid valve accordingly. For example, when the detected pressure is lower than the desired pressure, the number of open solenoid valves is decreased to increase the pressure. On the other hand, when the detected pressure is higher than the desired pressure, the number of open solenoid valves is increased to lower the pressure. As a result, the refrigeration efficiency resulting from the pressure can be optimally maintained.

また、本発明に係る冷媒冷却回路は、圧力検出手段によって検出した圧力に応じて、絞り部で冷媒の流量の可変、放熱器に送風する送風機あるいは蒸発器に送風する送風機の風量の可変、圧縮機での冷媒の圧縮能力の可変、もしくは各電磁弁の開閉を選択的に組み合わせて行う。この結果、圧力に起因する冷凍効率をより最適に維持することができる。   In addition, the refrigerant cooling circuit according to the present invention can change the flow rate of the refrigerant at the throttle, the air volume of the blower that blows to the radiator or the air blower that blows to the evaporator, and the compression according to the pressure detected by the pressure detecting means. This is done by changing the compression capacity of the refrigerant in the machine or selectively opening and closing each solenoid valve. As a result, the refrigeration efficiency resulting from the pressure can be more optimally maintained.

特に、本発明の蒸発手段は、冷媒として二酸化炭素を用いて冷媒循環経路が比較的高圧状態になる冷媒冷却回路に有用である。   In particular, the evaporation means of the present invention is useful for a refrigerant cooling circuit in which the refrigerant circulation path is in a relatively high pressure state using carbon dioxide as the refrigerant.

以下に添付図面を参照して、本発明に係る冷媒冷却回路の好適な実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Exemplary embodiments of a refrigerant cooling circuit according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

図1は本発明に係る冷媒冷却回路の一実施例を示す概略図である。図1に示すように、本実施例における冷媒冷却回路は、主に、圧縮機1、ガスクーラー(放熱器)2、電子膨張弁(絞り部)3、蒸発器4を接続して、冷媒を循環可能な冷媒循環経路を形成したものである。また、冷媒は、本実施例では、例えば二酸化炭素を使用してある。二酸化炭素は、不燃性、安全性、不腐食性を有し、さらにオゾン層への影響が少ない冷媒である。   FIG. 1 is a schematic view showing an embodiment of a refrigerant cooling circuit according to the present invention. As shown in FIG. 1, the refrigerant cooling circuit in this embodiment mainly includes a compressor 1, a gas cooler (heat radiator) 2, an electronic expansion valve (throttle portion) 3, and an evaporator 4 to connect refrigerant. A circulating refrigerant circulation path is formed. In the present embodiment, for example, carbon dioxide is used as the refrigerant. Carbon dioxide is a refrigerant that has non-flammability, safety, and non-corrosion properties, and has little influence on the ozone layer.

圧縮機1は、蒸発器4から帰還される二酸化炭素を圧縮して高温高圧の状態とするものである。圧縮機1は、本実施例では、中間熱交換器10を使用して2段階の圧縮動作を実行する。具体的に、圧縮機1は、2段階の圧縮動作において、1段階目の圧縮動作を行う第1圧縮機1aと、2段階目の圧縮動作を行う第2圧縮機1bとの間に中間熱交換器10を設けてある。そして、中間熱交換器10は、第1圧縮機1aによる1段階目の圧縮動作の後に、第1圧縮機1aが圧縮した状態の二酸化炭素を冷却して第2圧縮機1bに戻す。このように、圧縮機1は、中間熱交換器10を介して2段階の圧縮動作を実行することで、低消費電力で高圧縮効率を得て二酸化炭素を所望とする高温高圧の状態に圧縮することが可能になる。なお、本実施例では、第1圧縮機1aでの1段階目の圧縮によって二酸化炭素を約6MPaに圧縮し、第2圧縮機1bでの2段階目の圧縮によって二酸化炭素を約9MPa(7Mpa以上)に圧縮する。   The compressor 1 compresses the carbon dioxide returned from the evaporator 4 to bring it into a high temperature and high pressure state. In the present embodiment, the compressor 1 uses the intermediate heat exchanger 10 to perform a two-stage compression operation. Specifically, in the two-stage compression operation, the compressor 1 has an intermediate heat between the first compressor 1a that performs the first-stage compression operation and the second compressor 1b that performs the second-stage compression operation. An exchanger 10 is provided. Then, after the first stage compression operation by the first compressor 1a, the intermediate heat exchanger 10 cools the carbon dioxide compressed by the first compressor 1a and returns it to the second compressor 1b. In this way, the compressor 1 performs a two-stage compression operation via the intermediate heat exchanger 10, thereby obtaining high compression efficiency with low power consumption and compressing carbon dioxide to a desired high temperature and high pressure state. It becomes possible to do. In this embodiment, carbon dioxide is compressed to about 6 MPa by the first stage compression by the first compressor 1a, and carbon dioxide is about 9 MPa (7 MPa or more by the second stage compression by the second compressor 1b. ).

また、圧縮機1には、オイルセパレータ11が接続してある。オイルセパレータ11は、圧縮機1から吐出した冷凍機油を冷媒循環経路の高圧側から低圧側に戻すためのものである。冷媒循環経路の高圧側とは、圧縮機1の出口側からガスクーラー2を経て電子膨張弁3の入口側までの間である。また、冷媒循環経路の低圧側とは、電子膨張弁3の出口側から蒸発器4を経て圧縮機1の入口側までの間である。冷凍機油は、圧縮機1の内部における摩擦、冷媒漏れなどを防止するが、この冷凍機油を圧縮機1の内部で完全に封止することが困難である。特に、上記のごとく圧縮機1によって二酸化炭素を高圧に圧縮しており、この圧力が従前の冷媒(例えばHFC冷媒(ハイドロフルオロカーボン))を使用したときと比較してはるかに高圧であるので、圧縮機1からの冷凍機油の吐出量は多くなる。そこで、本実施例では、圧縮機1において、第2圧縮機1bの出口側と、第1圧縮機1aの入口側との間にオイルセパレータ11を接続しており、第2圧縮機1bから吐出した冷凍機油を第1圧縮機1aに戻している。また、本実施例では、二酸化炭素の圧力が高圧であるため、圧縮機1の内部における摩擦、冷媒漏れなどを極力防ぐ目的で粘度指数が略100(40℃,0Wt%)の冷凍機油を採用してある。   An oil separator 11 is connected to the compressor 1. The oil separator 11 is for returning the refrigeration oil discharged from the compressor 1 from the high pressure side to the low pressure side of the refrigerant circulation path. The high pressure side of the refrigerant circulation path is from the outlet side of the compressor 1 to the inlet side of the electronic expansion valve 3 through the gas cooler 2. The low pressure side of the refrigerant circulation path is from the outlet side of the electronic expansion valve 3 to the inlet side of the compressor 1 through the evaporator 4. The refrigerating machine oil prevents friction and refrigerant leakage in the compressor 1, but it is difficult to completely seal the refrigerating machine oil inside the compressor 1. In particular, the compressor 1 compresses carbon dioxide to a high pressure as described above, and this pressure is much higher than when a conventional refrigerant (for example, HFC refrigerant (hydrofluorocarbon)) is used. The amount of refrigeration oil discharged from the machine 1 increases. Therefore, in the present embodiment, in the compressor 1, the oil separator 11 is connected between the outlet side of the second compressor 1b and the inlet side of the first compressor 1a, and discharged from the second compressor 1b. The refrigerating machine oil thus returned is returned to the first compressor 1a. In this embodiment, since the pressure of carbon dioxide is high, a refrigerating machine oil having a viscosity index of approximately 100 (40 ° C., 0 Wt%) is employed for the purpose of preventing friction and refrigerant leakage inside the compressor 1 as much as possible. It is.

なお、圧縮機1としては、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機、或いは、これらの圧縮能力を調整可能なインバータ圧縮機などがある。そして、冷媒冷却回路を配設する対象、環境、あるいは、冷媒冷却回路のコストなどに見合う圧縮機を適宜適用すればよい。   The compressor 1 includes a reciprocating compressor, a rotary compressor, a scroll compressor, or an inverter compressor that can adjust the compression capacity thereof. And what is necessary is just to apply suitably the compressor corresponding to the object which arrange | positions a refrigerant | coolant cooling circuit, an environment, or the cost of a refrigerant | coolant cooling circuit.

ガスクーラー2は、圧縮機1から供給される高温高圧の二酸化炭素を、放熱させて二酸化炭素を液化するためのものである。本実施例におけるガスクーラー2は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。このガスクーラー2には、ファン(送風機)21が設けてある。ファン21は、ガスクーラー2を送風するためのものであり、ファンモータ22によって駆動される。   The gas cooler 2 is for liquefying carbon dioxide by releasing heat from high-temperature and high-pressure carbon dioxide supplied from the compressor 1. The gas cooler 2 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The gas cooler 2 is provided with a fan (blower) 21. The fan 21 is for blowing the gas cooler 2 and is driven by a fan motor 22.

電子膨張弁3は、ガスクーラー2から供給される二酸化炭素を減圧し、蒸発温度および流量を制御するためのものである。電子膨張弁3は、二酸化炭素の圧力を調節する弁を有している。この電子膨張弁3は、弁の開度を小さくすることにより二酸化炭素が通過する抵抗を大きくして圧力を高くする一方、弁の開度を大きくすることにより二酸化炭素が通過する抵抗を小さくして圧力を低くする。弁の開度を調節する構成としては、本実施例では、無段階調節が可能なモータ駆動による。   The electronic expansion valve 3 is for reducing the pressure of carbon dioxide supplied from the gas cooler 2 and controlling the evaporation temperature and flow rate. The electronic expansion valve 3 has a valve for adjusting the pressure of carbon dioxide. The electronic expansion valve 3 increases the resistance through which carbon dioxide passes by increasing the opening of the valve to increase the pressure, while reducing the resistance through which carbon dioxide passes by increasing the opening of the valve. Lower the pressure. As a configuration for adjusting the opening degree of the valve, in this embodiment, it is based on a motor drive capable of stepless adjustment.

蒸発器4は、電子膨張弁3から供給される液体の二酸化炭素が蒸発したとき、周囲の熱を吸収することによって周囲温度を冷却するためのものである。本実施例における蒸発器4は、例えば銅管とアルミフィンとで構成したフィンチューブタイプのものを使用してある。この蒸発器4には、ファン(送風機)41が設けてある。ファン41は、蒸発器4を送風するためのものであり、ファンモータ42によって駆動される。   The evaporator 4 is for cooling the ambient temperature by absorbing ambient heat when the liquid carbon dioxide supplied from the electronic expansion valve 3 evaporates. The evaporator 4 in the present embodiment uses a fin tube type composed of, for example, a copper tube and an aluminum fin. The evaporator 4 is provided with a fan (blower) 41. The fan 41 is for blowing the evaporator 4 and is driven by a fan motor 42.

蒸発器4は、例えば自動販売機、冷蔵庫、冷凍ショーケース・冷蔵ショーケース、あるいは飲料ディスペンサなどにおける断熱筐体の冷却庫の内部に配置してある。特に、本実施例では、例えば自動販売機において、複数(実施例では3室)の冷却庫(商品収納庫)をそれぞれ独立して冷却するために、各冷却庫内に蒸発器4(4a,4b,4c)をそれぞれ配置してある。すなわち、蒸発器4a,4b,4cは、電子膨張弁3から3方に分岐したそれぞれの経路に接続してある。また、前記各経路において各蒸発器4a,4b,4cの入口側には、各電磁弁12a,12b,12cがそれぞれ設けてある。そして、各電磁弁12a,12b,12cを選択的に開放することで、各蒸発器4a,4b,4cに電子膨張弁3からの二酸化炭素が供給される。また、各蒸発器4a,4b,4cの出口側の経路は、互いに集合して圧縮機1の第1圧縮機1aに接続してある。なお、本実施例における電磁弁12a,12b,12cは、その入口側と出口側との圧力差(例えば入口側が高圧で出力側が低圧)、およびバネ弾性力を利用することによって弁体を弁座に当接させるよう助勢して閉鎖状態になり、この状態から電磁コイル部に通電されると弁体が弁座から離間されて開放状態になる構成のものが採用してある。   The evaporator 4 is arrange | positioned inside the refrigerator of the heat insulation housing | casing in a vending machine, a refrigerator, a freezer showcase, a refrigerated showcase, or a drink dispenser etc., for example. In particular, in this embodiment, for example, in an automatic vending machine, in order to cool a plurality of (three rooms in the embodiment) refrigerators (product storage units) independently, the evaporators 4 (4a, 4a, 4b, 4c) are arranged respectively. That is, the evaporators 4a, 4b, and 4c are connected to respective paths branched from the electronic expansion valve 3 in three directions. Further, electromagnetic valves 12a, 12b, and 12c are provided on the inlet sides of the evaporators 4a, 4b, and 4c in the respective paths. And carbon dioxide from the electronic expansion valve 3 is supplied to each evaporator 4a, 4b, 4c by selectively open | releasing each solenoid valve 12a, 12b, 12c. Further, the outlet-side paths of the evaporators 4a, 4b, and 4c are gathered together and connected to the first compressor 1a of the compressor 1. The solenoid valves 12a, 12b, and 12c in the present embodiment are configured so that the valve body is seated by utilizing a pressure difference between the inlet side and the outlet side (for example, the inlet side is high pressure and the output side is low pressure) and spring elastic force. A configuration is adopted in which the valve body is separated from the valve seat and opened when the electromagnetic coil portion is energized from this state.

また、電子膨張弁3から各蒸発器4a,4b,4cに至る各経路であって、各電磁弁12a,12b,12cと各蒸発器4a,4b,4cとの間には、それぞれ減圧手段13a,13b,13cが設けてある。減圧手段13a,13b,13cは、電磁弁12a,12b,12cと蒸発器4a,4b,4cとの間の経路中に圧力抵抗を付与する絞りとして作用する。本実施例における減圧手段13a,13b,13cは、前記各経路中に設けたオリフィスとして形成してある。なお、減圧手段13a,13b,13cは、経路中に圧力抵抗を付与する絞りとして作用するものであればオリフィスに限定されない。   The decompression means 13a is connected to each of the evaporators 4a, 4b, and 4c from the electronic expansion valve 3 and between each of the solenoid valves 12a, 12b, and 12c and each of the evaporators 4a, 4b, and 4c. , 13b, 13c are provided. The decompression means 13a, 13b, and 13c act as throttles that provide pressure resistance in the path between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c. The decompression means 13a, 13b, and 13c in the present embodiment are formed as orifices provided in the respective paths. The decompression means 13a, 13b, and 13c are not limited to orifices as long as they function as a throttle that provides pressure resistance in the path.

なお、蒸発器4の周辺部の温度は、蒸発器4が周辺部の熱を吸収することによって低下する。冷凍サイクルとしては、蒸発器4で吸収した蒸発熱を捨てる必要があるが、蒸発器4を設けた断熱筐体の庫内は、外部の気温よりかなり低い温度になっており、低温部から奪った熱を高温の外部へ直接捨てることができない。そこで、圧縮機1は、蒸発器4の蒸発熱を外部の気温より高い温度にして捨てるため、蒸発器4から供給される二酸化炭素を高温高圧の蒸気に変換する役目を担っている。   Note that the temperature at the periphery of the evaporator 4 decreases as the evaporator 4 absorbs the heat at the periphery. As the refrigeration cycle, it is necessary to throw away the heat of evaporation absorbed by the evaporator 4, but the inside of the heat-insulating housing provided with the evaporator 4 is considerably lower than the outside temperature, and is taken away from the low temperature part. Heat cannot be thrown away directly to the hot outside. Therefore, the compressor 1 plays the role of converting carbon dioxide supplied from the evaporator 4 into high-temperature and high-pressure steam in order to discard the evaporation heat of the evaporator 4 at a temperature higher than the outside air temperature.

また、二酸化炭素を冷媒として使用したとき、外気温が高温となる夏場などでは、ガスクーラー2の温度が二酸化炭素の臨界温度(約31℃)を越える場合がある。この場合、ガスクーラー2において二酸化炭素が気化したままで液化しなくなる超臨界圧力の状態となる。一方、蒸発器4を通過した二酸化炭素は、全て気化していることが望ましい。蒸発器4を通過した二酸化炭素が一部液化したままで圧縮機1に供給されると、圧縮機1は液圧縮を起こしてシリンダーを破損してしまうおそれがある。   Further, when carbon dioxide is used as a refrigerant, the temperature of the gas cooler 2 may exceed the critical temperature of carbon dioxide (about 31 ° C.) in summer when the outside air temperature becomes high. In this case, the gas cooler 2 is in a supercritical pressure state in which carbon dioxide is not vaporized while being vaporized. On the other hand, it is desirable that all the carbon dioxide that has passed through the evaporator 4 is vaporized. If the carbon dioxide that has passed through the evaporator 4 is supplied to the compressor 1 while being partially liquefied, the compressor 1 may cause liquid compression and damage the cylinder.

そこで、ガスクーラー2と電子膨張弁3との間、蒸発器4と圧縮機1(第1圧縮機1a)との間に内部熱交換器14を設けてある。図には明示しないが、内部熱交換器14の内部では、ガスクーラー2と電子膨張弁3との間の冷媒管路と、蒸発器4と圧縮機1との間の冷媒管路とが、互いに熱交換可能な距離を有して非接触向流するように配設してある。これにより、ガスクーラー2から得られる二酸化炭素は、液化しやすくなる。一方、圧縮機1には、蒸発器4から気化した二酸化炭素が供給される。   Therefore, an internal heat exchanger 14 is provided between the gas cooler 2 and the electronic expansion valve 3 and between the evaporator 4 and the compressor 1 (first compressor 1a). Although not clearly shown in the figure, inside the internal heat exchanger 14, a refrigerant line between the gas cooler 2 and the electronic expansion valve 3 and a refrigerant line between the evaporator 4 and the compressor 1 are They are arranged so as to have non-contact countercurrent with a distance allowing heat exchange with each other. Thereby, the carbon dioxide obtained from the gas cooler 2 becomes easy to liquefy. On the other hand, the carbon dioxide vaporized from the evaporator 4 is supplied to the compressor 1.

また、断熱筐体の冷却庫の内部に設けた蒸発器4に関し、冷媒循環経路への冷媒の循環運転時に伴って結露水などが排水として発生する。そして、排水は、冷却庫の外部であって圧縮機1およびガスクーラー2などを配した部位にある蒸発手段15に導かれる。この蒸発手段15は、圧縮機1(第2圧縮機1b)とガスクーラー2との間であって、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に設けてある。図には明示しないが、蒸発手段15は、排水を導かれる蒸発皿と、当該蒸発皿の内方に配置した蒸発パイプと、当該蒸発パイプに関わる吸水性の蒸発シートとを有している。蒸発パイプは、オイルセパレータ11の出口側からガスクーラー2の入口側の間の経路に接続してあって、圧縮機1から吐出した高温高圧の二酸化炭素が通過する。すなわち、蒸発皿に導かれた排水は、高温高圧の二酸化炭素が通過する蒸発パイプによって加熱され、蒸発シートに吸収されて蒸発する。このとき、排水によって蒸発パイプに通過する二酸化炭素を予冷する。   Further, with respect to the evaporator 4 provided inside the cooler of the heat insulating housing, dew condensation water or the like is generated as drainage during the refrigerant circulation operation to the refrigerant circulation path. Then, the waste water is led to the evaporation means 15 located outside the cooler and provided with the compressor 1, the gas cooler 2, and the like. The evaporation means 15 is provided between the compressor 1 (second compressor 1 b) and the gas cooler 2 and in a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2. Although not clearly shown in the figure, the evaporating means 15 includes an evaporating dish into which drainage is guided, an evaporating pipe disposed inside the evaporating dish, and a water-absorbing evaporating sheet related to the evaporating pipe. The evaporation pipe is connected to a path between the outlet side of the oil separator 11 and the inlet side of the gas cooler 2, and high-temperature and high-pressure carbon dioxide discharged from the compressor 1 passes therethrough. That is, the waste water led to the evaporating dish is heated by the evaporating pipe through which high-temperature and high-pressure carbon dioxide passes, and is absorbed by the evaporating sheet and evaporates. At this time, carbon dioxide passing through the evaporation pipe is pre-cooled by drainage.

また、上記冷媒循環経路の高圧側には、圧力検出手段16が設けてある。圧力検出手段16は、冷媒循環経路の高圧側の圧力を検出するものである。本実施例における圧力検出手段16は、オイルセパレータ11の部位に設けてある。また、圧力検出手段16には、例えば、プルドン管式、ベローズ式あるいは半導体式などがある。   Further, pressure detection means 16 is provided on the high pressure side of the refrigerant circulation path. The pressure detection means 16 detects the pressure on the high pressure side of the refrigerant circulation path. The pressure detection means 16 in the present embodiment is provided at the site of the oil separator 11. The pressure detection means 16 includes, for example, a Purdon tube type, a bellows type, or a semiconductor type.

以下、二酸化炭素を冷媒として使用する本発明の冷媒冷却回路の動作について説明する。なお、冷媒冷却回路の以下の動作において、電磁弁12aのみが開放状態で、他の電磁弁12b,12cが閉塞状態であることとする。   Hereinafter, the operation of the refrigerant cooling circuit of the present invention using carbon dioxide as the refrigerant will be described. In the following operation of the refrigerant cooling circuit, only the electromagnetic valve 12a is open, and the other electromagnetic valves 12b and 12c are closed.

冷却庫にある蒸発器4aから帰還された二酸化炭素は、内部熱交換器14を介して第1圧縮機1aに吸引されて低圧圧縮(約6MPaに圧縮)される。第1圧縮機1aから吐出された二酸化炭素は、中間熱交換器10を経て冷却された後に第2圧縮機1bに吸引されて高圧圧縮(約9MPaに圧縮)される。このとき、第2圧縮機1bから二酸化炭素と共に吐出された冷凍機油は、オイルセパレータ11によって第1圧縮機1aの入口側に戻される。   The carbon dioxide returned from the evaporator 4a in the refrigerator is sucked into the first compressor 1a via the internal heat exchanger 14 and compressed at a low pressure (compressed to about 6 MPa). The carbon dioxide discharged from the first compressor 1a is cooled through the intermediate heat exchanger 10, and then sucked into the second compressor 1b and compressed at a high pressure (compressed to about 9 MPa). At this time, the refrigerating machine oil discharged together with carbon dioxide from the second compressor 1b is returned to the inlet side of the first compressor 1a by the oil separator 11.

次いで、第2圧縮機1bから吐出された二酸化炭素は、蒸発手段15で予冷されて、ガスクーラー2に送られる。ガスクーラー2に送られた二酸化炭素は、放熱されて液化して、内部熱交換器14を介して電子膨張弁3に至る。   Next, the carbon dioxide discharged from the second compressor 1 b is pre-cooled by the evaporation means 15 and sent to the gas cooler 2. The carbon dioxide sent to the gas cooler 2 is radiated and liquefied, and reaches the electronic expansion valve 3 via the internal heat exchanger 14.

次いで、電子膨張弁3において、二酸化炭素は、減圧されて蒸発温度および流量を制御される。その後、二酸化炭素は、開放状態にある電磁弁12aを経て、減圧手段13aを介して蒸発器4aに至る。   Next, in the electronic expansion valve 3, the carbon dioxide is depressurized and the evaporation temperature and flow rate are controlled. Thereafter, the carbon dioxide passes through the electromagnetic valve 12a in the open state and reaches the evaporator 4a through the decompression means 13a.

最後に、蒸発器4aに供給された二酸化炭素は、吸熱して加熱蒸気として気化される。二酸化炭素の吸熱によって蒸発器4aを設けた冷却庫の内部が独立して冷却されることになる。そして、二酸化炭素は、蒸発器4aから内部熱交換器14を介して第1圧縮機1aに吸引されて帰還して循環運転が行われる。   Finally, the carbon dioxide supplied to the evaporator 4a absorbs heat and is vaporized as heated steam. The inside of the refrigerator provided with the evaporator 4a is cooled independently by the absorption of carbon dioxide. The carbon dioxide is sucked from the evaporator 4a through the internal heat exchanger 14 to the first compressor 1a and returned to be circulated.

なお、上記二酸化炭素の循環運転において、閉鎖状態にしてある電磁弁12b,12cを有した経路に設けた蒸発器4b,4cは、上記循環運転が実行されている冷媒循環経路の蒸発器4aと出口側が集合してある。このため、従前では電磁弁12aのみが開放状態である場合に、閉塞状態の電磁弁12b,12cの入口側と出口側との圧力差がほぼ等しくなる。しかし、本実施例では、各電磁弁12a,12b,12cと、各蒸発器4a,4b,4cとの間の経路に減圧手段13a,13b,13cがそれぞれ設けてある。このため、閉鎖状態の電磁弁12b,12cを有した経路では、減圧手段13b,13cが経路中に圧力抵抗を付与する絞りとして作用するため、閉鎖状態の電磁弁12b,12cの出口側が低圧になり入口側が高圧になる。これにより、閉鎖状態にある電磁弁12b,12cの入口側と出口側との間に圧力差が生じ、入口側と出口側との圧力差によって電磁弁12b,12cの閉塞状態が助勢されるので、当該電磁弁12b,12cの閉鎖状態が維持される。   Note that, in the carbon dioxide circulation operation, the evaporators 4b and 4c provided in the path having the solenoid valves 12b and 12c in the closed state are the same as the evaporator 4a in the refrigerant circulation path in which the circulation operation is performed. The exit side is gathered. For this reason, conventionally, when only the solenoid valve 12a is in an open state, the pressure difference between the inlet side and the outlet side of the solenoid valves 12b and 12c in the closed state becomes substantially equal. However, in this embodiment, decompression means 13a, 13b, and 13c are provided in the paths between the electromagnetic valves 12a, 12b, and 12c and the evaporators 4a, 4b, and 4c, respectively. For this reason, in the path having the closed solenoid valves 12b and 12c, the decompression means 13b and 13c act as a throttle for applying pressure resistance in the path, so that the outlet side of the closed solenoid valves 12b and 12c has a low pressure. The inlet side becomes high pressure. Accordingly, a pressure difference is generated between the inlet side and the outlet side of the electromagnetic valves 12b and 12c in the closed state, and the closed state of the electromagnetic valves 12b and 12c is assisted by the pressure difference between the inlet side and the outlet side. The closed state of the electromagnetic valves 12b and 12c is maintained.

図2は図1に示した冷媒冷却回路における圧力の制御系を示したものである。図2に示すように冷媒冷却回路は、圧力制御部100を備えている。圧力制御部100は、上記冷媒冷却回路の動作時において、圧力検出手段16からの検出信号を受け、予めメモリ101に格納したプログラムやデータに従って、高圧側が所望の圧力(例えば略7MPa)となるように電子膨張弁3、ファン21,41、圧縮機1(1a,1b)および電磁弁12a,12b,12cの制御を行うためのものである。   FIG. 2 shows a pressure control system in the refrigerant cooling circuit shown in FIG. As shown in FIG. 2, the refrigerant cooling circuit includes a pressure control unit 100. The pressure control unit 100 receives a detection signal from the pressure detection means 16 during operation of the refrigerant cooling circuit, and causes the high pressure side to have a desired pressure (for example, approximately 7 MPa) according to a program and data stored in the memory 101 in advance. The electronic expansion valve 3, the fans 21, 41, the compressor 1 (1a, 1b) and the electromagnetic valves 12a, 12b, 12c are controlled.

上記二酸化炭素の循環運転において、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して低い場合、圧力制御部100は、電子膨張弁3の弁の開度を小さくして二酸化炭素の流量を減らす。これにより高圧側の圧力が高くなる。一方、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して高い場合、圧力制御部100は、電子膨張弁3の弁の開度を大きくして二酸化炭素の流量を増す。これにより高圧側の圧力が低くなる。なお、検出した高圧側の圧力に応じて可変する電子膨張弁3の開度のデータは、予めメモリ101に記憶してある。   In the carbon dioxide circulation operation, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is lower than the desired pressure, the pressure control unit 100 reduces the opening of the electronic expansion valve 3. And reduce the flow rate of carbon dioxide. This increases the pressure on the high pressure side. On the other hand, when the high pressure side pressure is received from the pressure detection means 16 and the pressure is higher than the desired pressure, the pressure control unit 100 increases the opening of the electronic expansion valve 3 to increase the flow rate of carbon dioxide. Increase. This lowers the pressure on the high pressure side. Note that the opening degree data of the electronic expansion valve 3 that varies according to the detected pressure on the high pressure side is stored in the memory 101 in advance.

また、上記二酸化炭素の循環運転において、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して低い場合、圧力制御部100は、ガスクーラー2におけるファン21のファンモータ22の回転数を下げて風量を減らす。これによりガスクーラー2の温度が上昇して高圧側の圧力が高くなる。一方、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して高い場合、圧力制御部100は、ガスクーラー2におけるファン21のファンモータ22の回転数を上げて風量を増す。これによりガスクーラー2の温度が下降して高圧側の圧力が低くなる。なお、検出した高圧側の圧力に応じて可変するファンモータ22の回転数のデータは、予めメモリ101に記憶してある。   In the carbon dioxide circulation operation, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is lower than the desired pressure, the pressure control unit 100 sets the fan motor of the fan 21 in the gas cooler 2. Decrease the speed of 22 to reduce the air volume. Thereby, the temperature of the gas cooler 2 rises and the pressure on the high pressure side increases. On the other hand, when the high pressure side pressure is received from the pressure detection means 16 and the pressure is higher than the desired pressure, the pressure control unit 100 increases the rotational speed of the fan motor 22 of the fan 21 in the gas cooler 2 to increase the air volume. Increase. As a result, the temperature of the gas cooler 2 is lowered and the pressure on the high pressure side is lowered. Note that the rotational speed data of the fan motor 22 that varies according to the detected pressure on the high pressure side is stored in the memory 101 in advance.

また、上記二酸化炭素の循環運転において、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して低い場合、圧力制御部100は、蒸発器4におけるファン41のファンモータ42の回転数を上げて風量を増す。これにより蒸発器4の温度が下降して高圧側の圧力が高くなる。一方、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して高い場合、圧力制御部100は、蒸発器4におけるファン41のファンモータ42の回転数を下げて風量を減らす。これにより蒸発器4の温度が上昇して高圧側の圧力が低くなる。なお、検出した高圧側の圧力に応じて可変するファンモータ42の回転数のデータは、予めメモリ101に記憶してある。   In the carbon dioxide circulation operation, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is lower than the desired pressure, the pressure control unit 100 performs the fan motor of the fan 41 in the evaporator 4. Increasing the number of revolutions 42 increases the air volume. As a result, the temperature of the evaporator 4 is lowered and the pressure on the high pressure side is increased. On the other hand, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is higher than the desired pressure, the pressure control unit 100 reduces the rotational speed of the fan motor 42 of the fan 41 in the evaporator 4 to reduce the air volume. Reduce. As a result, the temperature of the evaporator 4 increases and the pressure on the high pressure side decreases. Note that the data of the rotational speed of the fan motor 42 that varies according to the detected pressure on the high pressure side is stored in the memory 101 in advance.

また、上記二酸化炭素の循環運転において、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して低い場合、圧力制御部100は、圧縮機1(1a,1b)におけるインバータの周波数を上げる。これにより圧縮機1(1a,1b)の圧縮能力が上がって高圧側の圧力が高くなる。一方、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して高い場合、圧力制御部100は、圧縮機1(1a,1b)におけるインバータの周波数を下げる。これにより圧縮機1(1a,1b)の圧縮能力が下がって高圧側の圧力が低くなる。なお、検出した高圧側の圧力に応じて可変するインバータの周波数のデータは、予めメモリ101に記憶してある。   In the carbon dioxide circulation operation, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is lower than the desired pressure, the pressure control unit 100 in the compressor 1 (1a, 1b) Increase the inverter frequency. Thereby, the compression capacity of the compressor 1 (1a, 1b) is increased, and the pressure on the high pressure side is increased. On the other hand, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is higher than the desired pressure, the pressure control unit 100 reduces the frequency of the inverter in the compressor 1 (1a, 1b). As a result, the compression capacity of the compressor 1 (1a, 1b) is lowered and the pressure on the high pressure side is lowered. Note that inverter frequency data that varies according to the detected pressure on the high-pressure side is stored in the memory 101 in advance.

また、上記二酸化炭素の循環運転において、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して低い場合、圧力制御部100は、電磁弁12a,12b,12cの開放状態にある数を減らす。これにより二酸化炭素が通過する抵抗が小さくなって高圧側の圧力が高くなる。一方、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して高い場合、圧力制御部100は、電磁弁12a,12b,12cの開放状態にある数を増やす。これにより二酸化炭素が通過する抵抗が大きくなって高圧側の圧力が低くなる。なお、検出した高圧側の圧力に応じて開閉する電磁弁12a,12b,12cのデータは、予めメモリ101に記憶してある。   In the carbon dioxide circulation operation, when the high pressure side pressure is received from the pressure detecting means 16 and the pressure is lower than the desired pressure, the pressure control unit 100 opens the electromagnetic valves 12a, 12b, and 12c. Reduce the number in the state. This reduces the resistance through which carbon dioxide passes and increases the pressure on the high pressure side. On the other hand, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is higher than the desired pressure, the pressure control unit 100 increases the number of the electromagnetic valves 12a, 12b, and 12c in the open state. This increases the resistance through which carbon dioxide passes and reduces the pressure on the high pressure side. Note that data of the solenoid valves 12a, 12b, and 12c that open and close according to the detected pressure on the high pressure side is stored in the memory 101 in advance.

なお、上記二酸化炭素の循環運転において、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して低い場合、圧力制御部100は、電子膨張弁3、ガスクーラー2におけるファン21、蒸発器4におけるファン41、圧縮機1(1a,1b)もしくは電磁弁12a,12b,12cの圧力が高くなる上記制御を選択的に組み合わせて行うことも可能である。一方、圧力検出手段16から高圧側の圧力を受け、当該圧力が所望の圧力と比較して高い場合、圧力制御部100は、電子膨張弁3、ガスクーラー2におけるファン21、蒸発器4におけるファン41、圧縮機1(1a,1b)もしくは電磁弁12a,12b,12cの圧力が低くなる上記制御を選択的に組み合わせて行うことも可能である。   In the carbon dioxide circulation operation, when the pressure on the high pressure side is received from the pressure detection means 16 and the pressure is lower than the desired pressure, the pressure control unit 100 is connected to the electronic expansion valve 3 and the gas cooler 2. It is also possible to selectively combine the above-described controls for increasing the pressure of the fan 21, the fan 41 in the evaporator 4, the compressor 1 (1a, 1b) or the electromagnetic valves 12a, 12b, 12c. On the other hand, when the pressure on the high-pressure side is received from the pressure detection means 16 and the pressure is higher than the desired pressure, the pressure control unit 100 includes the electronic expansion valve 3, the fan 21 in the gas cooler 2, and the fan in the evaporator 4. 41. It is also possible to selectively combine the above-described controls for reducing the pressure of the compressor 1 (1a, 1b) or the solenoid valves 12a, 12b, 12c.

このように、上述した冷媒冷却回路では、圧力検出手段16によって検出された圧力に応じて、電子膨張弁3の開度調節、ガスクーラーにおけるファン21の回転数の可変、蒸発器におけるファン41の回転数の可変、圧縮機1(1a,1b)の圧縮能力の可変もしくは電磁弁12a,12b,12cの開閉を圧力制御部100で制御して冷媒循環経路の高圧側の圧力を可変する。このため、冷媒冷却回路において圧力に起因する冷凍効率を最適に維持することが可能になる。例えば、図3のT−S線図に示すように冷媒循環経路の高圧側の圧力が臨界圧力以下である場合に、この圧力を圧力検出手段16で検出して圧力制御部100によって上記の圧力を高くする制御を行い、高圧側の圧力を臨界圧力以上に可変する。この結果、高圧側の圧力が臨界圧力以下のときの冷凍効率Q1よりも、臨界圧力以上のときの冷凍効率Q2が上回り、冷凍効率が向上する。   As described above, in the refrigerant cooling circuit described above, the opening degree of the electronic expansion valve 3 is adjusted according to the pressure detected by the pressure detection means 16, the rotation speed of the fan 21 in the gas cooler is variable, and the fan 41 in the evaporator is adjusted. The pressure on the high pressure side of the refrigerant circulation path is varied by varying the number of revolutions, varying the compression capacity of the compressor 1 (1a, 1b), or controlling the opening and closing of the electromagnetic valves 12a, 12b, 12c by the pressure control unit 100. For this reason, it is possible to optimally maintain the refrigeration efficiency due to the pressure in the refrigerant cooling circuit. For example, as shown in the TS diagram of FIG. 3, when the pressure on the high pressure side of the refrigerant circulation path is equal to or lower than the critical pressure, this pressure is detected by the pressure detecting means 16 and the pressure control unit 100 detects the pressure. The pressure on the high-pressure side is changed to a critical pressure or higher. As a result, the refrigeration efficiency Q2 when the pressure on the high pressure side is equal to or higher than the critical pressure is higher than the refrigeration efficiency Q2 when the pressure on the high pressure side is lower than the critical pressure, and the refrigeration efficiency is improved.

冷媒冷却回路の運転状況は、周囲温度によって大きく変動する。この変動を吸収して最適に運転するため、従前の冷媒冷却回路では、温度センサや電流値の値によって制御していた。しかし、温度センサには熱容量があるため、即座に変動状況に追随しない。また、電流値には変動とばらつきがある。このため、変動の激しい運転状況では、最適に制御されないことがある。一方、本発明における圧力検出手段16は、冷媒冷却回路の変動を直接、即座にあらわすことができる。このため、圧力が高くなって過負荷になったときには、電子膨張弁3の開度を大きくして冷媒を多く流し高圧側から定圧側に冷媒を移動させて過荷状況を解除できる。他に、圧縮機1(1a,1b)におけるインバータの周波数を下げる、蒸発器4(4a,4b,4c)におけるファン41の回転数を下げるなどによっても冷媒を高圧側から低圧側に移動させて過負荷状況を解除できる。また、周囲温度が低くなった場合には、高圧側の圧力が低くなり冷媒の流れが減少する。この場合には、電子膨張弁3の開度を小さくする、圧縮機1(1a,1b)におけるインバータの周波数を上げる、ガスクーラー2におけるファン21の回転数を下げるなどによって高圧側の圧力を高くして冷媒の循環量を増加させることができる。このように、圧力検出手段16の検出に応じて制御することにより、冷媒冷却回路を適正圧力状態で運転することが可能になる。   The operating condition of the refrigerant cooling circuit varies greatly depending on the ambient temperature. In order to absorb this fluctuation and to operate optimally, the conventional refrigerant cooling circuit is controlled by a temperature sensor or a current value. However, since the temperature sensor has a heat capacity, it does not immediately follow the fluctuation state. In addition, the current value varies and varies. For this reason, it may not be optimally controlled in a driving situation where fluctuations are severe. On the other hand, the pressure detecting means 16 in the present invention can directly and immediately express the fluctuation of the refrigerant cooling circuit. For this reason, when the pressure increases and an overload occurs, the opening degree of the electronic expansion valve 3 is increased, a large amount of refrigerant is flowed, and the refrigerant is moved from the high pressure side to the constant pressure side, thereby releasing the overload situation. In addition, the refrigerant is moved from the high pressure side to the low pressure side by lowering the frequency of the inverter in the compressor 1 (1a, 1b) or lowering the rotational speed of the fan 41 in the evaporator 4 (4a, 4b, 4c). Overload status can be canceled. Further, when the ambient temperature becomes low, the pressure on the high pressure side becomes low and the flow of the refrigerant decreases. In this case, the pressure on the high pressure side is increased by decreasing the opening degree of the electronic expansion valve 3, increasing the frequency of the inverter in the compressor 1 (1a, 1b), or decreasing the rotational speed of the fan 21 in the gas cooler 2. Thus, the circulation amount of the refrigerant can be increased. Thus, by controlling according to the detection of the pressure detection means 16, it becomes possible to operate the refrigerant cooling circuit in an appropriate pressure state.

本発明に係る冷媒冷却回路の一実施例を示す概略図である。It is the schematic which shows one Example of the refrigerant cooling circuit which concerns on this invention. 図1に示した冷媒冷却回路における圧力の制御系を示すブロック図である。It is a block diagram which shows the control system of the pressure in the refrigerant | coolant cooling circuit shown in FIG. 図1に示した冷媒冷却回路の特性を示すT−S線図である。It is a TS diagram which shows the characteristic of the refrigerant cooling circuit shown in FIG.

符号の説明Explanation of symbols

1 圧縮機
1a 第1圧縮機
1b 第2圧縮機
2 ガスクーラー(放熱器)
21 ファン(送風機)
22 ファンモータ
3 電子膨張弁(絞り部)
4(4a,4b,4c) 蒸発器
41 ファン(送風機)
42 ファンモータ
10 中間熱交換器
11 オイルセパレータ
12a,12b,12c 電磁弁
13a,13b,13c 減圧手段
14 内部熱交換器
15 蒸発手段
16 圧力検出手段
100 圧力制御部
101 メモリ
DESCRIPTION OF SYMBOLS 1 Compressor 1a 1st compressor 1b 2nd compressor 2 Gas cooler (heat radiator)
21 Fan (blower)
22 Fan motor 3 Electronic expansion valve (throttle part)
4 (4a, 4b, 4c) Evaporator 41 Fan (blower)
42 Fan motor 10 Intermediate heat exchanger 11 Oil separator 12a, 12b, 12c Solenoid valve 13a, 13b, 13c Pressure reducing means 14 Internal heat exchanger 15 Evaporating means 16 Pressure detecting means 100 Pressure control part 101 Memory

Claims (7)

冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、
前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記絞り部での冷媒の流量を可変することを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle In a refrigerant cooling circuit that forms a refrigerant circulation path with an evaporator to be returned to the compressor,
A refrigerant cooling circuit comprising pressure detecting means for detecting the pressure of the refrigerant on the high pressure side of the refrigerant circulation path, and varying the flow rate of the refrigerant in the throttle portion according to the pressure detected by the pressure detecting means. .
冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、
前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記放熱器に送風する送風機あるいは前記蒸発器に送風する送風機の風量を可変することを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle In a refrigerant cooling circuit that forms a refrigerant circulation path with an evaporator to be returned to the compressor,
Pressure detection means for detecting the pressure of the refrigerant is provided on the high pressure side of the refrigerant circulation path, and the air volume of the blower that blows air to the radiator or the evaporator is variable according to the pressure detected by the pressure detection means. A refrigerant cooling circuit.
冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、
前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記圧縮機での冷媒の圧縮能力を可変することを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle In a refrigerant cooling circuit that forms a refrigerant circulation path with an evaporator to be returned to the compressor,
Refrigerant cooling characterized in that pressure detection means for detecting the pressure of the refrigerant is provided on the high pressure side of the refrigerant circulation path, and the compression capacity of the refrigerant in the compressor is varied according to the pressure detected by the pressure detection means. circuit.
冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有した冷媒循環経路を形成した冷媒冷却回路において、
前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて、前記絞り部で冷媒の流量の可変、前記放熱器に送風する送風機あるいは前記蒸発器に送風する送風機の風量の可変、もしくは前記圧縮機での冷媒の圧縮能力の可変を選択的に組み合わせて行うことを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle In a refrigerant cooling circuit that forms a refrigerant circulation path with an evaporator to be returned to the compressor,
Pressure detecting means for detecting the pressure of the refrigerant is provided on the high pressure side of the refrigerant circulation path, and the flow rate of the refrigerant is variable at the throttle portion according to the pressure detected by the pressure detecting means, A refrigerant cooling circuit characterized by selectively combining variable air volume of an air blower that blows to the evaporator or variable refrigerant compression capacity in the compressor.
冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有し、前記蒸発器を複数設けて前記圧縮機、前記放熱器および前記絞り部を共通とした複数の冷媒循環経路を形成して、前記絞り部と前記各蒸発器との間の経路に前記各冷媒循環経路を開閉する電磁弁をそれぞれ設けた冷媒冷却回路において、
前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて前記各電磁弁の開閉を行うことを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle An evaporator for returning to the compressor, and a plurality of the evaporators are provided to form a plurality of refrigerant circulation paths that share the compressor, the radiator and the throttle, and the throttle In the refrigerant cooling circuit provided with a solenoid valve for opening and closing each refrigerant circulation path in a path between each evaporator,
A refrigerant cooling circuit comprising pressure detecting means for detecting the pressure of the refrigerant on the high pressure side of the refrigerant circulation path, and opening and closing each electromagnetic valve according to the pressure detected by the pressure detecting means.
冷媒を圧縮する圧縮機と、前記圧縮機から供給される冷媒を放熱させる放熱器と、前記放熱器から供給される冷媒の流量を調節する絞り部と、前記絞り部から供給される冷媒を蒸発させて前記圧縮機に帰還させる蒸発器と有し、前記蒸発器を複数設けて前記圧縮機、前記放熱器および前記絞り部を共通とした複数の冷媒循環経路を形成して、前記絞り部と前記各蒸発器との間の経路に前記各冷媒循環経路を開閉する電磁弁をそれぞれ設けた冷媒冷却回路において、
前記冷媒循環経路の高圧側に冷媒の圧力を検出する圧力検出手段を設け、当該圧力検出手段によって検出した圧力に応じて、前記絞り部で冷媒の流量の可変、前記放熱器に送風する送風機あるいは前記蒸発器に送風する送風機の風量の可変、前記圧縮機での冷媒の圧縮能力の可変、もしくは前記各電磁弁の開閉を選択的に組み合わせて行うことを特徴とする冷媒冷却回路。
A compressor that compresses the refrigerant; a radiator that dissipates the refrigerant supplied from the compressor; a throttle that adjusts a flow rate of the refrigerant supplied from the radiator; and a refrigerant supplied from the throttle An evaporator for returning to the compressor, and a plurality of the evaporators are provided to form a plurality of refrigerant circulation paths that share the compressor, the radiator and the throttle, and the throttle In the refrigerant cooling circuit provided with a solenoid valve for opening and closing each refrigerant circulation path in a path between each evaporator,
Pressure detecting means for detecting the pressure of the refrigerant is provided on the high pressure side of the refrigerant circulation path, and the flow rate of the refrigerant is variable at the throttle portion according to the pressure detected by the pressure detecting means, the blower for blowing air to the radiator, or A refrigerant cooling circuit, wherein the air volume of a blower blown to the evaporator is varied, the refrigerant compression capacity of the compressor is varied, or the electromagnetic valves are selectively opened and closed.
前記冷媒が二酸化炭素であることを特徴とする請求項1〜6のいずれか1つに記載の冷媒冷却回路。   The refrigerant cooling circuit according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide.
JP2004201655A 2004-07-08 2004-07-08 Refrigerant cooling circuit Expired - Fee Related JP4289237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201655A JP4289237B2 (en) 2004-07-08 2004-07-08 Refrigerant cooling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201655A JP4289237B2 (en) 2004-07-08 2004-07-08 Refrigerant cooling circuit

Publications (2)

Publication Number Publication Date
JP2006023028A true JP2006023028A (en) 2006-01-26
JP4289237B2 JP4289237B2 (en) 2009-07-01

Family

ID=35796419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201655A Expired - Fee Related JP4289237B2 (en) 2004-07-08 2004-07-08 Refrigerant cooling circuit

Country Status (1)

Country Link
JP (1) JP4289237B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842703A1 (en) * 2006-04-06 2007-10-10 GM Global Technology Operations, Inc. Vehicle air conditioner
JP2008138989A (en) * 2006-12-05 2008-06-19 Sanyo Electric Co Ltd Refrigerating device
JP2008196808A (en) * 2007-02-14 2008-08-28 Mitsubishi Electric Corp Refrigerating air conditioner and refrigerant purity calculation method
JP2009014335A (en) * 2007-06-29 2009-01-22 Hamilton Sundstrand Corp Method for controlling evaporative heat exchanger assembly, and evaporative heat exchanger assembly
FR2943769A1 (en) * 2009-03-26 2010-10-01 Valeo Systemes Thermiques Air-conditioning installation for motor vehicle, has control module generating control signal to control group, where signal increases with measured pressure at level of cooler when reference pressure is greater than initial pressure
JP2010236712A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Refrigerating device
JP2013204967A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Control device for heat pump, heat pump, and control method for heat pump
JP2014508266A (en) * 2011-03-31 2014-04-03 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Method and optimization controller for controlling operation of a vapor compression system
EP2339266A3 (en) * 2009-12-25 2015-06-24 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP2016200360A (en) * 2015-04-13 2016-12-01 ダイキン工業株式会社 Refrigeration device
JP2020190421A (en) * 2019-05-20 2020-11-26 有限会社シャルム Mobile body evaluation apparatus, mobile body evaluation method, and program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842703A1 (en) * 2006-04-06 2007-10-10 GM Global Technology Operations, Inc. Vehicle air conditioner
JP2008138989A (en) * 2006-12-05 2008-06-19 Sanyo Electric Co Ltd Refrigerating device
JP2008196808A (en) * 2007-02-14 2008-08-28 Mitsubishi Electric Corp Refrigerating air conditioner and refrigerant purity calculation method
JP2009014335A (en) * 2007-06-29 2009-01-22 Hamilton Sundstrand Corp Method for controlling evaporative heat exchanger assembly, and evaporative heat exchanger assembly
EP2009384A3 (en) * 2007-06-29 2012-07-04 Hamilton Sundstrand Corporation Control scheme for an evaporator operating at conditions approaching thermodynamic limits
FR2943769A1 (en) * 2009-03-26 2010-10-01 Valeo Systemes Thermiques Air-conditioning installation for motor vehicle, has control module generating control signal to control group, where signal increases with measured pressure at level of cooler when reference pressure is greater than initial pressure
JP2010236712A (en) * 2009-03-30 2010-10-21 Daikin Ind Ltd Refrigerating device
EP2339266A3 (en) * 2009-12-25 2015-06-24 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP2014508266A (en) * 2011-03-31 2014-04-03 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド Method and optimization controller for controlling operation of a vapor compression system
JP2013204967A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Control device for heat pump, heat pump, and control method for heat pump
JP2016200360A (en) * 2015-04-13 2016-12-01 ダイキン工業株式会社 Refrigeration device
JP2020190421A (en) * 2019-05-20 2020-11-26 有限会社シャルム Mobile body evaluation apparatus, mobile body evaluation method, and program

Also Published As

Publication number Publication date
JP4289237B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP5349686B2 (en) Refrigeration cycle equipment
JP2005337700A (en) Refrigerant cooling circuit
JP2005326138A (en) Cooling device and vending machine with it
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP2015148406A (en) Refrigeration device
JP4289237B2 (en) Refrigerant cooling circuit
JP2007218460A (en) Refrigerating cycle device and cool box
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP6388260B2 (en) Refrigeration equipment
JP7189423B2 (en) refrigeration cycle equipment
JP2007093112A (en) Cooling storage
JP3906637B2 (en) Freezer refrigerator
JP2007309585A (en) Refrigerating device
JP2010060181A (en) Refrigeration system
JP2008096072A (en) Refrigerating cycle device
WO2019189838A1 (en) Refrigeration device
JP2021055917A (en) Heat source unit and refrigeration unit
JP4169080B2 (en) Freezer refrigerator
JP2010249444A (en) Freezer-refrigerator
JP3966262B2 (en) Freezer refrigerator
JP2006125843A (en) Cooling cycle and refrigerator
KR20140115838A (en) Method for controlling refrigerator
JP2012007781A (en) Refrigerator/freezer and cooling device
JP4013875B2 (en) Freezer refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4289237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees