JP4013875B2 - Freezer refrigerator - Google Patents

Freezer refrigerator Download PDF

Info

Publication number
JP4013875B2
JP4013875B2 JP2003340257A JP2003340257A JP4013875B2 JP 4013875 B2 JP4013875 B2 JP 4013875B2 JP 2003340257 A JP2003340257 A JP 2003340257A JP 2003340257 A JP2003340257 A JP 2003340257A JP 4013875 B2 JP4013875 B2 JP 4013875B2
Authority
JP
Japan
Prior art keywords
refrigerator
freezer
temperature
flow path
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003340257A
Other languages
Japanese (ja)
Other versions
JP2005106373A (en
Inventor
悟 平國
誠 岡部
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003340257A priority Critical patent/JP4013875B2/en
Publication of JP2005106373A publication Critical patent/JP2005106373A/en
Application granted granted Critical
Publication of JP4013875B2 publication Critical patent/JP4013875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、2段圧縮の圧縮機を用いて2つの冷却器に冷媒を送る冷凍サイクルを有する冷凍冷蔵庫に関するものである。   The present invention relates to a refrigerator-freezer having a refrigeration cycle that sends refrigerant to two coolers using a two-stage compressor.

従来の冷蔵庫は、圧縮機、凝縮器、キャピラチューブ、冷蔵用蒸発器、冷凍用蒸発器を直列接続して、冷蔵用蒸発器と冷凍用蒸発器の間に冷媒流量可変装置を設けて冷蔵用と冷凍用蒸発器の蒸発温度を可変制御するのものであり、単段圧縮サイクルを適用し、冷凍室のみ冷却したい場合でも、冷蔵室に設置された冷却器を介して冷媒を通過させ冷凍室の冷却を行っている(例えば、特許文献1参照。)。   A conventional refrigerator has a compressor, condenser, capilla tube, refrigeration evaporator, and refrigeration evaporator connected in series, and a refrigerant flow rate variable device is provided between the refrigeration evaporator and the refrigeration evaporator for refrigeration. The refrigeration evaporator is variably controlled in the evaporating temperature, and even if it is desired to cool only the freezer compartment by applying a single-stage compression cycle, the refrigerant is allowed to pass through the cooler installed in the refrigerator compartment. (For example, refer to Patent Document 1).

また、従来の冷蔵庫は、圧縮機と凝縮器と流路制御手段と第一の減圧手段と第一の蒸発器とで閉ループを形成するとともに、第一の減圧手段と第一の蒸発器に並列となるように第二の減圧手段と第二の蒸発器とを接続し、流路制御手段を第一と第二の減圧手段の入口側に配設して、二つの蒸発器を交互に切り替えて冷凍室と冷蔵室を交互に冷却するように制御している(例えば、特許文献2参照。)。   The conventional refrigerator forms a closed loop with the compressor, the condenser, the flow path control means, the first pressure reducing means, and the first evaporator, and is parallel to the first pressure reducing means and the first evaporator. The second decompression means and the second evaporator are connected so that the two evaporators are switched alternately by arranging the flow path control means on the inlet side of the first and second decompression means. Thus, the freezer compartment and the refrigerator compartment are controlled to be alternately cooled (see, for example, Patent Document 2).

また、従来の冷蔵庫は、冷凍室冷却器と冷蔵用冷却器と二つの圧縮室をもつ圧縮機と凝縮器と冷凍室および冷却室冷却器からの冷媒管との夫々が二つの圧縮室に連通された夫々の吸入通路と接続され、冷凍室冷却器と冷蔵室冷却器を同時に稼動する運転と、冷凍室冷却器を単独で稼動する運転とを切り替える手段を備えるものがある。そして、このように2段圧縮機を用いた冷凍冷蔵庫で、冷蔵室温度検知手段と冷凍室温度検知手段を用いて、冷凍冷蔵庫を制御している(例えば、特許文献3参照。)。   In the conventional refrigerator, a freezer cooler, a refrigerator for cooling, a compressor having two compression chambers, a condenser, and a refrigerant pipe from the freezer chamber and the cooler cooler communicate with the two compression chambers. Some of them are connected to each of the suction passages, and have means for switching between an operation of operating the freezer cooler and the refrigerator cooler at the same time and an operation of operating the freezer cooler alone. And in such a refrigerator-freezer using a two-stage compressor, the refrigerator-freezer is controlled using the refrigerator compartment temperature detection means and the refrigerator compartment temperature detection means (for example, refer patent document 3).

特開2001−133112号公報(第3−5頁、第1−2図)JP 2001-133112 A (page 3-5, FIG. 1-2) 特開2003−207247号公報(第4−5頁、第1−2図)JP 2003-207247 A (page 4-5, FIG. 1-2) 特開2001−263901号公報(第3−5頁、第1−3図)Japanese Patent Laid-Open No. 2001-263901 (page 3-5, Fig. 1-3)

上述のように従来の家庭用冷蔵庫に2段圧縮機を搭載し、冷蔵温度帯用冷却器と冷凍温度帯用冷却器を備えた場合、冷蔵庫の冷却負荷に合わせた運転制御の課題がある。例えば、冷却負荷が冷凍室のみに発生した場合に、冷蔵室に設置した冷却器は冷却運転を行わない、そのための制御方法などの課題がある。   As described above, when a two-stage compressor is mounted on a conventional household refrigerator and includes a refrigerator for a refrigeration temperature zone and a cooler for a refrigeration temperature zone, there is a problem of operation control in accordance with the cooling load of the refrigerator. For example, when the cooling load is generated only in the freezer compartment, the cooler installed in the refrigerator compartment does not perform the cooling operation, and there is a problem such as a control method therefor.

また、従来の冷蔵庫では、冷蔵室温度検知手段と冷凍室温度検知手段を用いた制御を実施しているが、制御フロー上、検知温度を同時に判断していないため、制御に遅れが発生するなどの課題がある。   Moreover, in the conventional refrigerator, although control using the refrigerator compartment temperature detection means and freezer compartment temperature detection means is implemented, since the detection temperature is not judged simultaneously on the control flow, a delay occurs in the control, etc. There is a problem.

本発明はこれらの課題を解決するためになされたもので、冷蔵庫の冷凍サイクル効率を高め、低消費電力量の冷蔵庫を得ることを目的としている。さらに、地球温暖化に非常に影響が小さい可燃性冷媒などを用いた冷蔵庫などにおいて、冷媒量を削減し、安全性を大幅に向上した冷蔵庫を得ることを目的としている。   The present invention has been made to solve these problems, and aims to increase the refrigeration cycle efficiency of a refrigerator and to obtain a refrigerator with low power consumption. Furthermore, it aims at obtaining the refrigerator which reduced the refrigerant | coolant amount and improved safety | security significantly in the refrigerator etc. which used the combustible refrigerant | coolant etc. which have very little influence on global warming.

この発明に係る冷凍冷蔵庫は、密閉容器内に電動機と、この電動機にて駆動される圧縮要素が設けられ、この圧縮要素が低段側圧縮部と高段側圧縮部により構成された圧縮機と当該圧縮機の低段側圧縮部および高段側圧縮部、凝縮器、流路切換手段、前記流路切換手段に接続され冷蔵室用冷却器へ冷媒を流す第一の膨張手段、前記流路切換手段に接続され冷凍室用冷却器へ冷媒を流すように並列に設けられた低冷却負荷用の第二の膨張手段および高冷却負荷用の第三の膨張手段とから構成された冷凍サイクルと、冷蔵庫内温度検知手段、冷凍庫内温度検知手段、周囲温度検知手段、冷蔵室用庫内ファンおよび冷凍室用庫内ファンとを備え、前記冷蔵庫内温度検知手段および冷凍庫内温度検知手段がそれぞれ予め設定された設定温度より高い温度を検知した場合は、前記流路切換手段により前記第一の膨張手段と前記第二の膨張手段の両方を連通し、前記冷蔵庫内温度検知手段により検知された温度が設定温度より小さく、かつ前記冷凍庫内温度検知手段により検知された温度が設定温度より大きい場合は、前記流路切換手段により前記第三の膨張手段のみ連通し、前記冷蔵庫内温度検知手段により検知された温度が設定温度より大きく、かつ前記冷凍庫内温度検知手段により検知された温度が設定温度より小さくて、冷蔵室のみ冷却が必要と判断した場合に、前記流路切換手段により前記第一の膨張手段と前記第二の膨張手段の両方を連通して、冷蔵室および冷凍室を同時に冷却するように制御されたものである。 The refrigerator-freezer according to the present invention is provided with an electric motor and a compression element driven by the electric motor in a sealed container, and the compression element includes a low-stage compression section and a high-stage compression section. A low-stage compression section and a high-stage compression section of the compressor, a condenser, a flow path switching means, a first expansion means connected to the flow path switching means and flowing a refrigerant to a refrigerator for a refrigerator compartment, and the flow path A refrigeration cycle comprising a second expansion means for a low cooling load and a third expansion means for a high cooling load, which are connected to the switching means and provided in parallel so as to flow a refrigerant to the cooler for the freezer compartment; , Refrigerator temperature detection means, freezer temperature detection means, ambient temperature detection means, refrigerator internal refrigerator fan and freezer compartment fan, the refrigerator temperature detection means and freezer temperature detection means respectively Temperature higher than the set temperature When the flow path switching unit communicates both the first expansion unit and the second expansion unit, the temperature detected by the refrigerator temperature detection unit is lower than a set temperature, and When the temperature detected by the freezer temperature detection means is higher than the set temperature, only the third expansion means communicates with the flow path switching means , and the temperature detected by the refrigerator temperature detection means is higher than the set temperature. When the temperature detected by the freezer temperature detection means is lower than a set temperature and it is determined that only the refrigerator compartment needs to be cooled, the flow path switching means causes the first expansion means and the second expansion to be Both of the means are communicated to control the refrigerator compartment and the freezer compartment at the same time .

また、前記周囲温度検知手段より検知された信号を元に圧縮機回転数を決定するように制御されたものである。   The compressor is controlled so as to determine the rotational speed of the compressor based on the signal detected by the ambient temperature detecting means.

また、前記周囲温度検知手段より検知された周囲温度が予め設定された設定温度より低く冷却負荷が小さい場合は、前記流路切換手段にて冷凍室冷却用の膨張手段として前記第二の膨張手段を選定し、前記周囲温度が設定温度より高く冷却負荷が大きい場合は、前記流路切換手段にて前記第三の膨張手段を選択するものである。 When the ambient temperature detected by the ambient temperature detecting means is lower than a preset temperature and the cooling load is small, the second expansion means is used as the expansion means for cooling the freezer in the flow path switching means. When the ambient temperature is higher than the set temperature and the cooling load is large, the third expansion means is selected by the flow path switching means.

この発明に係る冷凍冷蔵庫によれば、密閉容器内に電動機と、この電動機にて駆動される圧縮要素が設けられ、この圧縮要素が低段側圧縮部と高段側圧縮部により構成された圧縮機と当該圧縮機の低段側圧縮部および高段側圧縮部、凝縮器、流路切換手段、前記流路切換手段に接続され冷蔵室用冷却器へ冷媒を流す第一の膨張手段、前記流路切換手段に接続され冷凍室用冷却器へ冷媒を流すように並列に設けられた低冷却負荷用の第二の膨張手段および高冷却負荷用の第三の膨張手段とから構成された冷凍サイクルと、冷蔵庫内温度検知手段、冷凍庫内温度検知手段、周囲温度検知手段、冷蔵室用庫内ファンおよび冷凍室用庫内ファンとを備え、前記冷蔵庫内温度検知手段および冷凍庫内温度検知手段がそれぞれ予め設定された設定温度より高い温度を検知した場合は、前記流路切換手段により前記第一の膨張手段と前記第二の膨張手段の両方を連通し、前記冷蔵庫内温度検知手段により検知された温度が設定温度より小さく、かつ前記冷凍庫内温度検知手段により検知された温度が設定温度より大きい場合は、前記流路切換手段により前記第三の膨張手段のみ連通し、前記冷蔵庫内温度検知手段により検知された温度が設定温度より大きく、かつ前記冷凍庫内温度検知手段により検知された温度が設定温度より小さくて、冷蔵室のみ冷却が必要と判断した場合に、前記流路切換手段により前記第一の膨張手段と前記第二の膨張手段の両方を連通して、冷蔵室および冷凍室を同時に冷却するように制御されたので、冷却負荷に応じた能力の調整ができ、冷却信頼性の高い冷凍冷蔵庫を提供することが可能となる。 According to the refrigerator-freezer according to the present invention, an electric motor and a compression element driven by the electric motor are provided in the sealed container, and the compression element is composed of a low-stage compression section and a high-stage compression section. A first stage expansion means that is connected to the flow path switching means and flows the refrigerant to the refrigerator for the refrigerating chamber, the compressor and the lower stage compression section and the higher stage compression section of the compressor, the condenser, the flow path switching means, A refrigeration system comprising a second expansion means for a low cooling load and a third expansion means for a high cooling load, which are connected to the flow path switching means and provided in parallel so as to flow the refrigerant to the freezer cooler. A refrigerator, a refrigerator internal temperature detection means, a freezer internal temperature detection means, an ambient temperature detection means, a refrigerator compartment internal fan and a freezer compartment internal fan, the refrigerator internal temperature detection means and the freezer internal temperature detection means From preset temperature set in advance When the temperature is detected, the flow switching means communicates both the first expansion means and the second expansion means, and the temperature detected by the refrigerator temperature detection means is smaller than a set temperature, When the temperature detected by the freezer temperature detecting means is higher than the set temperature, only the third expansion means is communicated by the flow path switching means , and the temperature detected by the refrigerator temperature detecting means is the set temperature. If the temperature detected by the freezer temperature detection means is lower than the set temperature and it is determined that only the refrigerator compartment needs to be cooled, the flow path switching means and the first expansion means and the second communicating both inflation means, so controlled to cool the refrigerator compartment and the freezer compartment at the same time, it can be adjusted capacity in accordance with the cooling load, high cooling reliability refrigerator It is possible to provide.

実施の形態1.
図1はこの発明の実施の形態の一例を示す冷凍冷蔵庫の冷媒回路図、図2は冷凍冷蔵庫の側面断面図である。この冷凍冷蔵庫の冷凍サイクルの冷媒には地球温暖化に非常に影響が小さい炭化水素系冷媒R600a(イソブタン)を用いている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigerator-freezer showing an example of the embodiment of the present invention, and FIG. 2 is a side sectional view of the refrigerator-freezer. A hydrocarbon refrigerant R600a (isobutane) that has a very small influence on global warming is used as a refrigerant in the refrigeration cycle of the refrigerator-freezer.

図において、1は圧縮機、2は高段側圧縮部、3は低段側圧縮部、4は圧縮機1の高段側圧縮部3の吐出側に接続され吐出冷媒が流れ込む凝縮器、5は凝縮器4出口部から配管接続された流路切換手段である電動流路切換弁であり外部からの電気信号により流路を連通または閉止することができる。6は電動流路切換弁5の流出側に接続された冷蔵室冷却用の第一の膨張手段である冷蔵用毛細管、7は冷蔵用毛細管6と冷蔵用冷却器8から圧縮機1の高段側圧縮部2へ冷媒を導く高段側吸入配管9を接触させ半田付けなどにより固定させた冷蔵用熱回収熱交換器、15はこの高段側吸入配管9の途中に設けたアキュムレータである。10は電動流路切換弁5の流出側に接続された冷凍室用の第二の膨張手段である冷凍用の低冷却負荷用毛細管、11は電動流路切換弁5の流出側に接続され、第二の膨張手段である低冷却負荷用毛細管10と並列に配設されて冷凍用冷却器13に流通するように接続された冷凍室用の第三の膨張手段である冷凍用の高冷却負荷用毛細管、12は低冷却負荷用毛細管10および高冷却負荷用低温毛細管11と冷凍用冷却器13出口部から接続された吸入配管とを接触させ半田付けなどにより固定させた冷凍用熱回収熱交換器、14は冷凍用冷却器13出口部から接続され圧縮機1の低段側圧縮部3へ流通した低段側吸入配管であり、これらは順次配管で接続され冷凍サイクルを形成している。   In the figure, 1 is a compressor, 2 is a high-stage compression unit, 3 is a low-stage compression unit, 4 is a condenser connected to the discharge side of the high-stage compression unit 3 of the compressor 1 and into which discharge refrigerant flows, 5 Is an electric flow path switching valve that is a flow path switching means piped from the outlet of the condenser 4 and can communicate or close the flow path by an electrical signal from the outside. Reference numeral 6 denotes a refrigeration capillary connected to the outflow side of the electric flow path switching valve 5 and serves as a first expansion means for cooling the refrigeration chamber. Reference numeral 7 denotes a high stage of the compressor 1 from the refrigeration capillary 6 and the refrigeration cooler 8. A refrigeration heat recovery heat exchanger 15, which is in contact with the high-stage suction pipe 9 that guides the refrigerant to the side compression unit 2 and fixed by soldering or the like, 15 is an accumulator provided in the middle of the high-stage suction pipe 9. 10 is a low cooling load capillary for freezing, which is a second expansion means for the freezer connected to the outflow side of the electric flow path switching valve 5, and 11 is connected to the outflow side of the electric flow path switching valve 5. High cooling load for refrigeration, which is the third expansion means for the freezing chamber, which is arranged in parallel with the capillary 10 for low cooling load, which is the second expansion means, and is connected to the refrigeration cooler 13. Capillary tube 12 is a heat-recovery heat exchange for refrigeration in which capillary tube 10 for low cooling load and low-temperature capillary tube 11 for high cooling load are brought into contact with a suction pipe connected from the outlet of refrigeration cooler 13 and fixed by soldering or the like. , 14 is a low-stage suction pipe connected from the outlet of the refrigeration cooler 13 and circulated to the low-stage compression section 3 of the compressor 1, and these are sequentially connected by pipes to form a refrigeration cycle.

また、図3は電動切替弁の概略図、図4は図3の断面X−Xにおける拡大断面図を示す。図において、17は弁座19と弁体20からなり、流入流出配管が接続される切換弁本体、18は弁体20を回転駆動させる駆動モータ、例えばステッピングモータである。弁座19には冷蔵用毛細管6への流出部(ア)、低冷却負荷用毛細管10への流出部(イ)、高冷却負荷用毛細管11への流出部(ウ)の3つの流出部を有し、一方弁体20には2つの連通穴を設けている。この電動流路切換弁5は凝縮器4出口部からの配管と冷蔵用毛細管6および低冷却負荷用毛細管10,高冷却負荷用毛細管11の入口側とを接続し、内部に弁体回転中心に軸支され設置している弁体の動作により、凝縮器側から冷蔵用毛細管6および冷凍用の低冷却負荷用毛細管10を同時に連通する場合(d)、凝縮器側から冷蔵用毛細管6と冷凍用の高冷却負荷用毛細管11を連通する場合(e)、凝縮器側から冷凍用の高冷却負荷用毛細管11のみを連通する場合(f)および凝縮器側から冷蔵用毛細管および冷凍用毛細管全て閉止(c)することが可能である。また、冷凍室用の第二の膨張手段である低冷却負荷用毛細管10と冷凍室用の第三の膨張手段である高冷却負荷用毛細管11は冷却負荷に応じて、使い分けるように電動流路切換弁5で切り替える。   FIG. 3 is a schematic view of the electric switching valve, and FIG. 4 is an enlarged cross-sectional view taken along a section XX in FIG. In the figure, 17 is a switching valve body comprising a valve seat 19 and a valve body 20 to which an inflow / outflow pipe is connected, and 18 is a drive motor for rotating the valve body 20 such as a stepping motor. The valve seat 19 has three outflow portions: an outflow portion to the refrigeration capillary 6 (A), an outflow portion to the low cooling load capillary 10 (A), and an outflow portion (C) to the high cooling load capillary 11. On the other hand, the valve body 20 is provided with two communication holes. This electric flow path switching valve 5 connects the piping from the outlet of the condenser 4 to the inlet side of the refrigeration capillary 6 and the low cooling load capillary 10 and the high cooling load capillary 11, with the valve body rotating center inside. When the refrigeration capillary 6 and the refrigeration capillary 10 for refrigeration are simultaneously communicated from the condenser side by the operation of the valve body supported by the shaft (d), the refrigeration capillary 6 and the refrigeration from the condenser side. When the high cooling load capillary 11 is connected (e), when only the high cooling load capillary 11 is connected from the condenser side (f), and all the refrigeration capillaries and freezing capillaries are connected from the condenser side It is possible to close (c). In addition, the low-cooling-load capillary 10 that is the second expansion means for the freezer and the high-cooling-load capillary 11 that is the third expansion means for the freezer are used in accordance with the cooling load. Switching is performed with the switching valve 5.

図1および図2において、21は冷蔵室26内に配置された冷蔵室用温度検知手段である冷蔵サーミスタ、22は冷凍室27内に配置された冷凍室用温度検知手段である冷凍サーミスタ、29は庫外の外郭部に配設され冷凍冷蔵庫の周囲温度を検知する周囲温度検知手段、23はこれらの各サーミスタにより検知した温度の情報を受信して冷凍冷蔵庫の圧縮機や送風機などの各アクチュエータを作動制御するコントローラ、24は冷蔵用冷却器8に空気を送り込み冷気を冷蔵室内へ循環させる冷蔵室用送風機、25は冷凍用冷却器13に空気を送り込み冷気を冷凍室内へ循環させる冷凍室用送風機、28は冷蔵室26に風路を介して連通した野菜室である。   1 and 2, reference numeral 21 denotes a refrigeration thermistor which is a refrigeration chamber temperature detection means disposed in the refrigeration chamber 26, 22 is a refrigeration thermistor which is a refrigeration chamber temperature detection means disposed in the freezer compartment 27, 29 Is an ambient temperature detecting means which is disposed in the outer part of the refrigerator and detects the ambient temperature of the refrigerator-freezer, and 23 is an actuator such as a compressor or a blower of the refrigerator-freezer which receives the temperature information detected by each of these thermistors. A controller 24 for controlling the operation of the refrigerator, 24 for the refrigerator compartment for sending air to the refrigerator 8 for refrigeration and circulating the cold air into the refrigerator compartment, 25 for the refrigerator compartment for circulating air to the refrigerator compartment 13 by sending air to the refrigerator 13 for freezer A blower 28 is a vegetable room that communicates with the refrigerator compartment 26 via an air passage.

次に冷蔵庫運転制御について、図5を用いて説明する。図5は冷凍冷蔵庫の運転制御フロー図であり、図中のtCOMPは圧縮機の運転積算運転時間、tsetCOMPは圧縮機の設定運転積算時間であり、圧縮機の設定運転積算時間は除霜運転を行うタイミングを決定する値である。この冷凍冷蔵庫の運転制御の開始は、冷凍冷蔵庫の電源を投入してから開始される(S10)。まず、周囲温度を検知手段29にて検知する。検知した値によって、冷蔵庫の制御定数、例えば、冷凍室設定温度の上限値と下限値、冷蔵室設定温度の上限値と下限値、圧縮機1の回転数、冷蔵室用送風機24と冷凍室用送風機25の回転数、および除霜運転を行う圧縮機積算時間の初期値等を決定する(S11)。   Next, refrigerator operation control is demonstrated using FIG. FIG. 5 is a flowchart of operation control of the refrigerator-freezer. In the figure, tCOMP is the compressor operation integrated operation time, tsetCOMP is the compressor set operation integration time, and the compressor set operation integration time is the defrost operation. It is a value that determines the timing to perform. The start of the operation control of the refrigerator-freezer is started after the refrigerator-freezer is turned on (S10). First, the ambient temperature is detected by the detection means 29. Depending on the detected value, the control constant of the refrigerator, for example, the upper limit value and the lower limit value of the freezer compartment set temperature, the upper limit value and the lower limit value of the refrigerator compartment set temperature, the rotation speed of the compressor 1, the refrigerator 24 for the refrigerator compartment and the freezer compartment The rotation speed of the blower 25, the initial value of the compressor integration time for performing the defrosting operation, and the like are determined (S11).

その後、圧縮機1の運転積算時間tCOMPと設定運転積算時間tsetCOMPを比較し(S12)、周囲温度によって決定した圧縮機の運転積算時間の設定値tsetCOMPより実際の運転積算時間tCOMPが小さい場合(判定A)は冷却運転を実行し(S13)、大きい場合(判定Bまたは判定C)は除霜運転を実行する(S15またはS17)。冷却運転中は常に圧縮機の運転積算時間を監視し、設定値tsetCOMPより大きくなると直ちに除霜運転を実行する。また、圧縮機の運転積算時間tCOMPが設定値より大きくなると除霜運転を実行し、その除霜運転が終了すると、冷却運転を継続するように制御する。   Thereafter, the accumulated operation time tCOMP of the compressor 1 is compared with the set accumulated operation time tsetCOMP (S12). When the actual accumulated operation time tCOMP is smaller than the set value tsetCOMP of the accumulated operation time of the compressor determined by the ambient temperature (determination) A) performs a cooling operation (S13), and when it is large (determination B or determination C), performs a defrosting operation (S15 or S17). During the cooling operation, the accumulated operation time of the compressor is always monitored, and the defrosting operation is performed immediately when the compressor integration time becomes larger than the set value tsetCOMP. Further, when the accumulated operation time tCOMP of the compressor becomes larger than the set value, the defrosting operation is executed, and when the defrosting operation is finished, the cooling operation is controlled to be continued.

次に上述した冷却運転について、図6を用いて説明する。図6は冷凍冷蔵庫の冷却運転制御フロー図であり、図中に示すRthは冷蔵室温度検知手段である冷蔵サーミスタ21が検知した値、Fthは冷凍室温度検知手段である冷凍サーミスタが検知した値、TsetRは予めコントローラ23に記憶された冷蔵室の設定温度、TsetFは予めコントローラ23に記憶され冷凍室の設定温度である。   Next, the cooling operation described above will be described with reference to FIG. FIG. 6 is a flowchart for controlling the cooling operation of the refrigerator-freezer. Rth shown in the figure is a value detected by the refrigerated thermistor 21 serving as the refrigerator temperature detecting means, and Fth is a value detected by the refrigerator thermistor serving as the refrigerator temperature detecting means. , TsetR is a preset temperature of the refrigerator compartment stored in the controller 23 in advance, and TsetF is a preset temperature of the freezer compartment stored in the controller 23 in advance.

まず、周囲温度検知手段29で検知した値が小さく冷却負荷が小さい場合について説明する。圧縮機1の回転数、冷蔵室用送風機24および冷凍室用送風機25の回転数を小さく風量を少なくなるように設定する。さらに、冷凍室冷却用の毛細管を低冷却負荷用として配設された第二の膨張手段である冷凍用の低冷却負荷用毛細管10を選定するように電動流路切換弁5が制御される。   First, the case where the value detected by the ambient temperature detection means 29 is small and the cooling load is small will be described. The number of revolutions of the compressor 1 and the number of revolutions of the refrigerator compartment fan 24 and the freezer compartment fan 25 are set to be small and the air volume is reduced. Furthermore, the electric flow path switching valve 5 is controlled so as to select the refrigeration low cooling load capillary 10 which is the second expansion means provided with the freezer compartment cooling capillary tube for low cooling load.

そして、冷凍室および冷蔵室の温度検知手段である冷凍サーミスタ22,冷蔵サーミスタ21がそれぞれ予め設定されている設定温度TsetFおよびTsetRより高い温度を検知した場合は(S102)、電動流路切換弁5を冷蔵用毛細管6と周囲温度により選定した冷却負荷が小さい場合に用いる冷凍用の低冷却負荷用毛細管10の両方を連通する状態とし、圧縮機1、冷蔵室用送風機22および冷凍室用送風機24を運転し(S104)、冷凍室27と冷蔵室26を同時に冷却する運転動作を行う。   When the freezing thermistor 22 and the refrigerating thermistor 21 serving as temperature detecting means for the freezer compartment and the refrigerating compartment detect temperatures higher than the preset temperatures TsetF and TsetR, respectively (S102), the electric flow path switching valve 5 Is connected to the refrigeration capillary 6 and the low cooling load capillary 10 used when the cooling load selected by the ambient temperature is small, and the compressor 1, the refrigerating room blower 22 and the freezing room blower 24 are connected. (S104) and the operation of cooling the freezer compartment 27 and the refrigerator compartment 26 at the same time is performed.

冷蔵室温度検知手段21により検知された値Rthが予め設定された値TsetRより小さく、かつ冷凍室温度検知手段22で検知した値Fthが予め設定された値TsetFより大きい場合(S102)は、冷蔵室用送風機24を停止し、電動流路切換弁5を冷凍用の高冷却負荷用毛細管11にのみ連通する状態とし、冷凍室冷却器13のみに冷媒が流れるようにして冷凍室27のみ冷却運転を行う(S103)。   When the value Rth detected by the refrigerator temperature detecting means 21 is smaller than the preset value TsetR and the value Fth detected by the freezer compartment temperature detecting means 22 is larger than the preset value TsetF (S102), the refrigerator is stored. The room blower 24 is stopped, the electric flow path switching valve 5 is brought into a state of communicating only with the high cooling load capillary 11 for freezing, and only the freezing room 27 is cooled so that the refrigerant flows only into the freezing room cooler 13. (S103).

冷蔵室温度検知手段21により検知された値Rthが予め設定された値TsetRより大きく、かつ冷凍室温度検知手段22で検知した値Fthが予め設定された値TsetFより小さい場合はこれまでの冷蔵室26と冷凍室27の同時冷却運転を継続する。   When the value Rth detected by the refrigerator temperature detecting means 21 is larger than the preset value TsetR and the value Fth detected by the freezer compartment temperature detecting means 22 is smaller than the preset value TsetF, the previous refrigerator compartment The simultaneous cooling operation of 26 and the freezer compartment 27 is continued.

また、冷蔵室温度検知手段21により検知された値Rthが予め設定された値TsetRより小さく、かつ冷凍室温度検知手段22で検知した値Fthが予め設定された値TsetFより小さくなった場合(S107)は、冷凍室用送風機25、冷蔵室用送風機24を停止し、圧縮機1も停止する(S108)。これにより冷却運転は終了となる(S14)。   Further, when the value Rth detected by the refrigerating room temperature detecting means 21 is smaller than the preset value TsetR and the value Fth detected by the freezer compartment temperature detecting means 22 is smaller than the preset value TsetF (S107). ) Stops the freezer compartment fan 25 and the refrigerator compartment fan 24, and also stops the compressor 1 (S108). As a result, the cooling operation ends (S14).

次に、冷凍室27と冷蔵室26を同時に冷却する場合の冷凍サイクルの動作について、図1および図7をもとに説明する。図7は冷凍室27と冷蔵室26を同時に冷却する場合のP−h線図であり、横軸にエンタルピ[kJ/kg]、縦軸に圧力[kPa]をとり、図中の記号は図1の冷媒回路上に示した位置と同じ場所を示す。圧縮機1の高段側圧縮部2を吐出した高温高圧の蒸気冷媒(A)は凝縮器4で冷蔵庫の外部へ熱を放出し、凝縮液化する(B)。その後に、電動流路切換弁5で分流し、一方は冷蔵室用毛細管6へ流れ込む。冷蔵用毛細管6で高温高圧の冷媒は中温中圧の気液二相冷媒へ減圧、膨張する(C)。冷蔵用冷却器7では冷蔵室内の空気から熱を奪って蒸発ガス化し、冷蔵室内を冷却する(D)。その後、冷蔵用冷却器7を流出した中圧蒸気冷媒は冷蔵用毛細管6と熱交換を行い、圧縮機に流れ込む(E)。   Next, the operation of the refrigeration cycle when the freezer compartment 27 and the refrigerator compartment 26 are simultaneously cooled will be described with reference to FIGS. FIG. 7 is a Ph diagram in the case where the freezer compartment 27 and the refrigerator compartment 26 are simultaneously cooled. The horizontal axis represents enthalpy [kJ / kg] and the vertical axis represents pressure [kPa]. The same place as the position shown on the refrigerant circuit of 1 is shown. The high-temperature and high-pressure vapor refrigerant (A) discharged from the high-stage compression unit 2 of the compressor 1 releases heat to the outside of the refrigerator by the condenser 4 to be condensed and liquefied (B). Thereafter, the electric flow is switched by the electric flow path switching valve 5, and one flows into the refrigerating room capillary 6. In the refrigeration capillary 6, the high-temperature and high-pressure refrigerant is decompressed and expanded into a medium-temperature and medium-pressure gas-liquid two-phase refrigerant (C). The refrigerating cooler 7 takes heat from the air in the refrigerating chamber to evaporate and cools the refrigerating chamber (D). Thereafter, the medium-pressure vapor refrigerant flowing out of the refrigeration cooler 7 exchanges heat with the refrigeration capillary 6 and flows into the compressor (E).

電動流路切換弁5で分流した残りの一方は冷凍用の低冷却負荷用毛細管10へ流れ込む。この低冷却負荷用毛細管10で、冷凍室出口部に接続された吸入配管14と熱交換しながら低温低圧の気液二相冷媒へ減圧、膨張する(F)。冷凍用冷却器13では冷凍室内の空気から熱を奪って蒸発ガス化し(G)、冷凍室内を冷却する。その後、低圧、蒸気冷媒は低冷却負荷用毛細管10と熱交換し、圧縮機1の低段圧縮部へ接続された吸入配管14を介して圧縮機1の低段側圧縮部3へ流れ込む(H)。   The remaining one divided by the electric flow path switching valve 5 flows into the low cooling load capillary 10 for refrigeration. The low cooling load capillary 10 decompresses and expands to a low-temperature and low-pressure gas-liquid two-phase refrigerant while exchanging heat with the suction pipe 14 connected to the freezer outlet (F). The refrigeration cooler 13 removes heat from the air in the freezer compartment to evaporate and gas (G), and cools the freezer compartment. Thereafter, the low-pressure, vapor refrigerant exchanges heat with the low cooling load capillary 10 and flows into the low-stage compression section 3 of the compressor 1 via the suction pipe 14 connected to the low-stage compression section of the compressor 1 (H ).

冷凍室用冷却器から流出した低圧蒸気冷媒は低段側圧縮部3で中圧蒸気冷媒まで圧縮され吐出する(I)。吐出された中圧冷媒は冷蔵室用冷却器8から流れ込んできた中圧蒸気冷媒と合流し、高段側圧縮部2に吸入される(J)。高段側圧縮部2では中圧蒸気冷媒から高圧、高温冷媒まで圧縮され(A)、再び凝縮器4へと流れ込む。   The low-pressure vapor refrigerant that has flowed out of the freezer cooler is compressed by the low-stage compression unit 3 to the medium-pressure vapor refrigerant and discharged (I). The discharged intermediate pressure refrigerant merges with the intermediate pressure vapor refrigerant that has flowed in from the refrigerator 8 for the refrigerator compartment, and is sucked into the high-stage compression unit 2 (J). In the high stage side compression part 2, it compresses from a medium pressure vapor refrigerant to a high pressure, high temperature refrigerant (A), and flows into the condenser 4 again.

次に、冷凍室のみを冷却する場合の冷凍サイクルの動作について、図1および図8をもとに説明する。図8は冷凍室のみ冷却する場合のP−h線図であり、図中の記号は図1の冷媒回路上に示した位置と同じ場所を示す。   Next, the operation of the refrigeration cycle when only the freezer compartment is cooled will be described with reference to FIGS. FIG. 8 is a Ph diagram when only the freezer compartment is cooled, and the symbols in the figure indicate the same positions as those shown on the refrigerant circuit of FIG.

圧縮機1の高段側圧縮部2を吐出した高温高圧の蒸気冷媒(A)は凝縮器4で冷蔵庫の外部へ熱を放出し、凝縮液化する(B)。その後に、冷媒は電動流路切換弁5で冷凍用の高冷却負荷用毛細管11のみに流れ込む。この高冷却負荷用低温毛細管11で、冷凍室出口部に接続された吸入配管と熱交換しながら低圧、低温の気液二相冷媒へ減圧、膨張する(C)。冷凍用冷却器13では冷凍室内の空気から熱を奪って蒸発ガス化し、冷凍室内を冷却する(D)。その後、低圧、蒸気冷媒は冷凍用の高冷却負荷用毛細管11と熱交換し、圧縮機1の低段側圧縮部3へ接続された吸入配管11を介して圧縮機1の低段圧縮部に流れ込む(E)。   The high-temperature and high-pressure vapor refrigerant (A) discharged from the high-stage compression unit 2 of the compressor 1 releases heat to the outside of the refrigerator by the condenser 4 to be condensed and liquefied (B). Thereafter, the refrigerant flows into only the high cooling load capillary 11 for freezing by the electric flow path switching valve 5. This high-cooling load low-temperature capillary 11 decompresses and expands into a low-pressure, low-temperature gas-liquid two-phase refrigerant while exchanging heat with the suction pipe connected to the freezer compartment outlet (C). The refrigerating cooler 13 takes heat from the air in the freezing chamber to evaporate and cools the freezing chamber (D). Thereafter, the low-pressure, vapor refrigerant exchanges heat with the refrigeration high-cooling load capillary tube 11, and passes through the suction pipe 11 connected to the low-stage compression unit 3 of the compressor 1 to the low-stage compression unit of the compressor 1. Flow in (E).

冷凍室用冷却器から流出した低圧蒸気冷媒は低段圧縮部3で中圧蒸気冷媒まで圧縮され吐出する(I)。吐出された中圧冷媒は冷蔵室用冷却器からの中圧蒸気冷媒を一部吸い込みながら高段側圧縮部2に吸入される。高段側圧縮部では中圧蒸気冷媒から高圧、高温冷媒まで圧縮され(A)、再び凝縮器4へと流れ込む。   The low-pressure vapor refrigerant that has flowed out of the freezer cooler is compressed to the medium-pressure vapor refrigerant by the low-stage compression unit 3 and discharged (I). The discharged intermediate pressure refrigerant is sucked into the high-stage compression unit 2 while partially sucking the medium pressure vapor refrigerant from the refrigerator for the refrigerator compartment. In the high stage side compression section, the medium pressure vapor refrigerant is compressed to high pressure and high temperature refrigerant (A) and flows into the condenser 4 again.

また、冷凍室の温度検知手段14が予め設定されている設定温度より小さく、冷蔵室の温度検知手段13が予め設定されている設定温度より大きい場合は、先ず、冷蔵室用送風機を運転し、冷蔵室用冷却器に付着している霜の融解熱により庫内を冷却する。予め設定された時間が経過、もしくは冷蔵用冷却器8に配設した冷蔵冷却器温度検知手段により検知した値が予め設定された値より大きくなった場合に、電動流路切替弁6を冷蔵室用毛細管6に連通させるように制御して圧縮機1を運転し、冷蔵室を冷却する運転動作を行う。   If the temperature detection means 14 in the freezer compartment is lower than the preset temperature and the temperature detection means 13 in the refrigerator compartment is larger than the preset temperature, first, the refrigerator for the refrigerator compartment is operated, The inside of the refrigerator is cooled by the melting heat of frost adhering to the refrigerator for the refrigerator compartment. When the preset time has elapsed, or when the value detected by the refrigeration cooler temperature detection means disposed in the refrigeration cooler 8 is greater than a preset value, the electric flow path switching valve 6 is set in the refrigerator compartment. The compressor 1 is operated under control so as to communicate with the capillary tube 6 and the operation of cooling the refrigerator compartment is performed.

次に、周囲温度検知手段29で検知した値が大きく、冷却負荷が大きい場合は、圧縮機1の回転数、冷蔵室用送風機24および冷凍室用送風機25の回転数を大きく設定する。さらに冷凍室冷却用の毛細管を高冷却負荷用選定する。   Next, when the value detected by the ambient temperature detection means 29 is large and the cooling load is large, the rotational speed of the compressor 1 and the rotational speeds of the refrigerator compartment fan 24 and the freezer compartment fan 25 are set large. In addition, capillaries for freezer cooling are selected for high cooling loads.

そして、冷凍室および冷蔵室の温度検知手段である冷凍サーミスタ22,冷蔵サーミスタ21がそれぞれ予め設定されている設定温度TsetFおよびTsetRより高い温度を検知した場合は、電動流路切替弁5を冷蔵用毛細管6と周囲温度により選定した冷却負荷が大きい場合に用いる冷凍用の高冷却負荷用毛細管11の両方を連通する状態とし、圧縮機1、冷蔵室用送風機22および冷凍室用送風機24を運転し、冷凍室27と冷蔵室26を同時に冷却する運転動作を行う。   When the freezing thermistor 22 and the refrigeration thermistor 21 serving as temperature detection means for the freezer compartment and the refrigerator compartment detect temperatures higher than the preset temperatures TsetF and TsetR, respectively, the electric flow path switching valve 5 is used for refrigeration. Both the capillary 6 and the high cooling load capillary 11 used when the cooling load selected according to the ambient temperature is large are in communication with each other, and the compressor 1, the refrigerator compartment fan 22 and the freezer compartment fan 24 are operated. The operation of cooling the freezer compartment 27 and the refrigerator compartment 26 at the same time is performed.

冷凍サイクルの動作については、前述した冷却負荷が小さい場合の冷凍室と冷蔵室の同時運転であるため説明は省略する。圧縮機の回転数は冷却負荷が小さい場合より、大きくなっているために、冷媒の循環量が大きくなる。従って、冷却負荷が小さい時用に選定した抵抗が大きい毛細管では、冷却負荷が大きい場合に回転数が大きくなると冷凍冷却器を有効に用いた効率良い運転ができない。そこで、高負荷用毛細管として圧縮機の回転数に合わせた、抵抗が小さい(冷媒を多く流すことができる)毛細管を選定している。   The operation of the refrigeration cycle is a simultaneous operation of the freezing room and the refrigerating room when the cooling load described above is small, and thus description thereof is omitted. Since the rotation speed of the compressor is larger than when the cooling load is small, the circulation amount of the refrigerant is large. Therefore, in a capillary with a large resistance selected for when the cooling load is small, an efficient operation using the refrigeration cooler effectively cannot be performed if the number of rotations increases when the cooling load is large. Therefore, a capillary having a low resistance (which allows a large amount of refrigerant to flow) is selected as a high-load capillary according to the rotational speed of the compressor.

このように制御された冷凍冷蔵庫の2段圧縮サイクルにおいて、圧縮機の運転停止を行う場合があるが、圧縮機停止時に冷蔵用冷却器8や冷凍用冷却器13に冷媒が溜まっており、圧縮機起動時に液冷媒が圧縮機に流れ込む場合がる。本実施の形態では、圧縮機1の内部を低圧に保持するタイプのもので説明したが、このようなタイプでは冷凍用冷却器の出口が接続された配管から圧縮機1の低段側圧縮部3には一旦、圧縮機シェルを介して接続されているために、直接液冷媒が圧縮部に流れ込むことはない。しかし、冷蔵用冷却器8出口配管が接続される圧縮機1の高段側圧縮部の吸入部分へは配管が直接接続されているために、起動時液冷媒が流れ込む恐れがる。そこで、本実施の形態では冷蔵用冷却器8の出口側配管の途中に、アキュムレータ15を設置して、起動時の高段側圧縮部2への液冷媒流れ込みを抑制している。   In the two-stage compression cycle of the refrigerator-freezer controlled in this way, the compressor may be stopped. However, when the compressor is stopped, the refrigerant is accumulated in the refrigeration cooler 8 and the refrigeration cooler 13, and the compressor is compressed. Liquid refrigerant may flow into the compressor when the machine is started. In the present embodiment, a description has been given of a type in which the inside of the compressor 1 is held at a low pressure. However, in such a type, a low-stage compression unit of the compressor 1 is connected to a pipe to which an outlet of the refrigeration cooler is connected. Since 3 is once connected via the compressor shell, the liquid refrigerant does not flow directly into the compression section. However, since the piping is directly connected to the suction portion of the high-stage compression portion of the compressor 1 to which the refrigeration cooler 8 outlet piping is connected, there is a possibility that the liquid refrigerant flows at the time of startup. Therefore, in the present embodiment, an accumulator 15 is installed in the middle of the outlet-side piping of the refrigeration cooler 8 to suppress the liquid refrigerant flowing into the high-stage compression unit 2 at the time of activation.

なお、本実施例では圧縮機1を低圧シェルタイプで説明したがこのタイプに限ることはなく、例えば、圧縮機内部を中間圧に保持したタイプの圧縮機であれば、図11の圧縮機吸入側における要部冷媒回路図に示すように冷凍用冷却器の出口側配管の途中にアキュムレータ15を設置すればよい。さらに、圧縮機1を高圧シェルタイプとしたのであれば、図12の要部冷媒回路図に示すように、冷蔵用冷却器および冷凍用冷却器の出口側配管の途中それぞれにアキュムレータ15a,15bを設置すればよい。   In the present embodiment, the compressor 1 has been described as a low pressure shell type. However, the present invention is not limited to this type. For example, if the compressor is of a type in which the inside of the compressor is held at an intermediate pressure, the compressor suction shown in FIG. The accumulator 15 may be installed in the middle of the outlet side piping of the refrigeration cooler as shown in the main part refrigerant circuit diagram on the side. Furthermore, if the compressor 1 is a high-pressure shell type, as shown in the refrigerant circuit diagram of the main part of FIG. 12, accumulators 15a and 15b are provided in the middle of the outlet side piping of the refrigeration cooler and the refrigeration cooler, respectively. Install it.

次に上述の除霜運転について、図5、図9および図10を用いて説明する。図中に示すTevaRthは冷蔵室冷却器温度検知手段であるサーミスタが検知した値、TevaFthは冷凍室冷却器温度検知手段であるサーミスタが検知した値、Tset−evaRは予めコントローラ23に記憶された冷蔵室冷却器の霜取り終了設定温度、Tset−evaFは予めコントローラ23に記憶された、冷凍室冷却器の霜取り終了設定温度である。   Next, the above-described defrosting operation will be described with reference to FIGS. 5, 9 and 10. TevaRth shown in the figure is a value detected by a thermistor as a refrigerator temperature detector, TevaFth is a value detected by a thermistor as a refrigerator temperature detector, and Tset-evaR is a refrigerator stored in the controller 23 in advance. The defrosting end set temperature of the room cooler, Tset-evaF, is the defrosting end set temperature of the freezer cooler, which is stored in the controller 23 in advance.

圧縮機の積算時間tCOMPと冷凍室のみ電気ヒータ除霜運転設定積算時間tsetCOMP1と冷蔵室および冷凍室の同時電気ヒータ除霜運転設定積算時間tsetCOMP2、を比較し、周囲温度によって決定した積算時間の設定値tsetCOMP1よりtCOMPが大きい場合は冷凍室のみ除霜運転を、tsetCOMP2より大きい場合は冷蔵室および冷凍室の同時電気ヒータ除霜運転を実行する。   Comparing the compressor integrated time tCOMP and the freezer only electric heater defrosting operation setting integrated time tsetCOMP1 and the simultaneous electric heater defrosting operation setting integrated time tsetCOMP2 for the refrigerator and freezer compartments, and setting the integrated time determined by the ambient temperature When tCOMP is greater than the value tsetCOMP1, the defrosting operation is performed only in the freezer compartment, and when it is greater than tsetCOMP2, the simultaneous electric heater defrosting operation is performed in the refrigerator compartment and the freezer compartment.

図9は、冷蔵室および冷凍室同時電気ヒータ除霜運転を行う場合の冷蔵冷凍同時除霜運転制御フローである。先ず、圧縮機1、冷蔵室用ファン、冷凍室用ファンを停止し、その後に冷蔵室用除霜ヒータおよび冷凍室用除霜ヒータに通電を行う(S21)。   FIG. 9 is a control flow for refrigerating / freezing simultaneous defrosting operation when the refrigerating room and freezing room simultaneous electric heater defrosting operation is performed. First, the compressor 1, the refrigerating room fan, and the freezing room fan are stopped, and then the refrigerating room defrosting heater and the freezing room defrosting heater are energized (S21).

冷蔵室冷却器温度検知手段であるサーミスタが検知した値TevaRthと予めコントローラ23に記憶された冷蔵室冷却器の霜取り終了設定温度Tset−evaRを比較し(S22)、設定温度より検知温度が高くなった場合は、冷蔵室用除霜ヒータへの通電を終了する(S23)。低い場合は、通電を継続する。   The value TevaRth detected by the thermistor, which is the refrigerator temperature detector, is compared with the set temperature Tset-evaR of the refrigerator defroster stored in the controller 23 in advance (S22), and the detected temperature becomes higher than the set temperature. If this happens, energization of the refrigerator defrost heater is terminated (S23). If low, continue energization.

次に、冷凍室冷却器温度検知手段であるサーミスタが検知した値TevaFthと予めコントローラ23に記憶された冷凍室冷却器の霜取り終了設定温度Tset−evaFを比較し(S24)、設定温度より検知温度が高くなった場合は、冷凍室用除霜ヒータへの通電を終了する(S25)。低い場合は、通電を継続し、再び冷蔵室用除霜ヒータの運転終了判断を繰り返す。   Next, the value TevaFth detected by the thermistor as the freezer cooler temperature detecting means is compared with the defrosting end set temperature Tset-evaF of the freezer cooler previously stored in the controller 23 (S24), and the detected temperature is determined from the set temperature. When becomes high, the energization to the freezing room defrosting heater is terminated (S25). When it is low, energization is continued and the operation completion determination of the refrigerating room defrost heater is repeated again.

冷凍室霜取り終了設定値よりも検知温度が低い場合は、冷蔵室除霜運転が終了しているか、していないかの判定を行う(S26)。冷蔵室除霜運転が終了していない場合は、冷蔵室除霜運転判定を繰り返して実施する。冷蔵室除霜運転が終了している場合は、冷凍冷蔵庫全体として、除霜運転を終了し(S18)、冷却運転を実施する(S13)。   If the detected temperature is lower than the freezer defrosting end set value, it is determined whether or not the refrigerating room defrosting operation has been completed (S26). When the refrigerating room defrosting operation is not completed, the refrigerating room defrosting operation determination is repeated. When the refrigerating room defrosting operation is completed, the defrosting operation is terminated as the entire refrigerator-freezer (S18), and the cooling operation is performed (S13).

次に冷凍室のみ電気ヒータ除霜運転について説明する。図10に冷凍室のみ除霜運転制御フローを示す。   Next, the electric heater defrosting operation only in the freezer compartment will be described. FIG. 10 shows the defrosting operation control flow only in the freezer compartment.

先ず、冷凍室用ファンの運転を停止し、冷凍室用除霜ヒータに通電を行う(S31)。次に、冷蔵室温度検知手段である冷蔵サーミスタ21が検知した値Rthと予めコントローラに記憶された設定値Tset−Rを比較し(S32)、設定値より検知した値が大きい場合は、電動流路切換弁5を冷蔵用毛細管6に連通するように制御し、冷蔵室用ファン、圧縮機1の運転を継続し、冷蔵室のみ冷却運転を実施する(S33)。設定値より検知した値が小さい場合は、冷蔵室用ファンおよび圧縮機の運転を停止する。   First, the operation of the freezer compartment fan is stopped, and the freezer compartment defrost heater is energized (S31). Next, the value Rth detected by the refrigeration thermistor 21 serving as the refrigeration room temperature detection means is compared with the set value Tset-R stored in the controller in advance (S32). The path switching valve 5 is controlled to communicate with the refrigeration capillary 6 and the operation of the refrigeration room fan and the compressor 1 is continued, and only the refrigeration room is cooled (S33). When the detected value is smaller than the set value, the operation of the refrigerator compartment fan and the compressor is stopped.

次に、冷凍室冷却器温度検知手段であるサーミスタが検知した値TevaFthと予めコントローラ23に記憶された冷凍室冷却器の霜取り終了設定温度Tset−evaFを比較し(S34)、設定温度より検知温度が高くなった場合は、冷凍室用除霜ヒータへの通電を終了し(S16)、通常の冷却運転制御を実施する(S13)。低い場合は、通電を継続し、再び冷蔵室の温度検知を行う処理を繰り返す。   Next, the value TevaFth detected by the thermistor as the freezer cooler temperature detection means is compared with the defrosting end set temperature Tset-evaF of the freezer cooler previously stored in the controller 23 (S34), and the detected temperature is determined from the set temperature. When becomes higher, energization to the freezing room defrosting heater is terminated (S16), and normal cooling operation control is performed (S13). If the temperature is low, energization is continued, and the process of detecting the temperature of the refrigerator again is repeated.

本実施の形態では冷蔵用毛細管が1本、冷凍用の低冷却負荷用毛細管と高冷却負荷用毛細管が2本、計3本の毛細管を用いた場合について説明したが、図13の他の冷凍冷蔵庫の冷媒回路図に示すように、低負荷用冷蔵用毛細管6、高負荷用冷蔵毛細管40、低冷却負荷冷凍用毛細管10、高冷却負荷用冷凍毛細管11、計4本の毛細管を用いても良い。図において、40は低負荷対応の冷蔵用毛細管6と並列に電動流路切換弁5と冷蔵用冷却器8の間に配設された冷蔵室冷却用の第四の膨張手段である高負荷用冷蔵毛細管であり、図1と同一または相当部分には同じ符号を付し、その説明を省略する。   In the present embodiment, a case has been described in which one capillary for refrigeration is used, two capillaries for low cooling load for freezing and two capillaries for high cooling load are used, but a total of three capillaries are used. As shown in the refrigerant circuit diagram of the refrigerator, a low load refrigeration capillary 6, a high load refrigeration capillary 40, a low cooling load refrigeration capillary 10, a high cooling load refrigeration capillary 11, a total of four capillaries may be used. good. In the figure, reference numeral 40 denotes a high load load which is a fourth expansion means for cooling the refrigerator compartment disposed between the electric flow switching valve 5 and the refrigerator cooler 8 in parallel with the capillary tube 6 for low load. This is a refrigerated capillary, and the same or corresponding parts as in FIG.

図14に毛細管を4本用いる場合の流路切換弁5の断面構造図を示す。この弁は、低冷却負荷冷蔵用毛細管と2種類の冷凍室用毛細管どちらか一方と接続(d)(f)が可能であり、高冷却負荷冷蔵用毛細管と2種類の冷凍室用毛細管どちらか一方とも接続(e)(g)が可能である。さらに、高負荷用冷凍室毛細管のみとも接続(h)でき、また全閉も可能である(c)。   FIG. 14 shows a cross-sectional structure diagram of the flow path switching valve 5 when four capillaries are used. This valve can be connected to either a low-cooling load refrigeration capillary or two types of freezer capillaries (d) or (f), either a high-cooling load refrigeration capillary or two types of freezer capillaries. Both can be connected (e) (g). Furthermore, it can be connected (h) only to the high-load freezer compartment capillary, and can be fully closed (c).

また、従来用いられている三方流路切換弁を用いて、負荷用冷蔵用毛細管、高負荷用冷蔵毛細管、低冷却負荷冷凍用毛細管、高冷却負荷用冷凍毛細管、計4本の毛細管を用いた冷媒回路を図15に示す。流路切替弁の一方に、低冷却負荷用の冷蔵毛細管と冷凍毛細管を組み合わせた接続し、残りの一方に低冷却負荷用の冷蔵毛細管と冷凍毛細管を組み合わせて接続したものである。   In addition, using a conventionally used three-way flow switching valve, a load refrigeration capillary, a high load refrigeration capillary, a low cooling load refrigeration capillary, a high cooling load refrigeration capillary, a total of four capillaries were used. A refrigerant circuit is shown in FIG. One of the flow path switching valves is connected by combining a refrigerated capillary tube for low cooling load and a frozen capillary tube, and the other one is connected by combining a refrigerated capillary tube for low cooling load and a frozen capillary tube.

また、本実施の形態では凝縮器出口から冷凍室用毛細管と冷蔵室用毛細管を個別に設けたが、図16に示すように、冷蔵用毛細管の出口に三方流路切替弁を設置し、一方に低冷却負荷冷凍室用毛細管を残りの一方に高負荷用冷凍毛細管を接続し、低負荷用冷凍毛細管を接続している配管の途中から冷蔵冷却器接続配管を接続して構成しても良い。   Further, in the present embodiment, the freezer capillary and the refrigerating chamber capillary are individually provided from the outlet of the condenser. However, as shown in FIG. 16, a three-way flow switching valve is installed at the outlet of the refrigerating capillary. A low-cooling load freezing chamber capillary tube may be connected to a high-load freezing capillary tube on the other side, and a refrigerating cooler connection pipe may be connected from the middle of the pipe connecting the low-load freezing capillary tube. .

このように本実施の形態では、冷凍冷蔵庫に2段圧縮サイクルを応用し、絞り量を毛細管を切り替えて調整しているため、冷凍室と冷蔵室を同時に冷却する場合において、冷却負荷に応じた運転が可能となり、冷凍サイクルの効率が常に高い状態で運転できるため圧縮機入力を大幅に低減でき、消費電力量も大幅に低減することが可能となる。   As described above, in this embodiment, the two-stage compression cycle is applied to the refrigerator-freezer, and the amount of squeezing is adjusted by switching the capillaries. Therefore, when cooling the freezer compartment and the refrigerator compartment at the same time, according to the cooling load. The operation becomes possible and the refrigeration cycle can always be operated with high efficiency, so that the compressor input can be greatly reduced, and the power consumption can be greatly reduced.

さらに、流路切換手段を設置し、冷凍室用毛細管を複数設置し、冷凍室のみ冷却できるようにしたので、冷蔵庫への冷却負荷が大きい場合でも、冷凍室を効率良く冷却することができる。   Furthermore, since the flow path switching means is installed and a plurality of capillaries for the freezer compartment are installed so that only the freezer compartment can be cooled, the freezer compartment can be efficiently cooled even when the cooling load on the refrigerator is large.

さらに、毛細管の上流に流路切換手段を配置したため、その圧力損失分を考慮し毛細管を設定することにより、圧縮機吸入圧力を適切に制御でき、サイクル効率を上昇させることが可能である。   Furthermore, since the flow path switching means is arranged upstream of the capillary tube, the compressor suction pressure can be appropriately controlled and cycle efficiency can be increased by setting the capillary tube in consideration of the pressure loss.

さらに、冷蔵室温度検知手段、冷凍室温度検知手段および周囲温度検知手段を用いて冷凍冷蔵庫の運転を制御するため、効率良い運転を実現できる。   Furthermore, since the operation of the refrigerator-freezer is controlled using the refrigerator compartment temperature detection means, the freezer compartment temperature detection means, and the ambient temperature detection means, an efficient operation can be realized.

四方電動流路切替弁を設けたので、冷凍室に被冷却物が大量に投入されるような急激な負荷増加時に冷凍室のみ冷却することができ、冷蔵室を必要以上に冷却することがなく省エネ性に優れると同時に冷蔵室の温度管理上の品質を向上させることが可能となる。   Because the four-way electric flow path switching valve is provided, only the freezer compartment can be cooled when the load increases suddenly so that a large amount of objects to be cooled is put into the freezer compartment, and the refrigerator compartment is not cooled more than necessary. It is possible to improve the temperature control quality of the refrigerator compartment as well as energy saving.

また、サイクル効率が従来の冷蔵庫より大幅に良いため、従来の冷蔵庫と同等の性能を保ちながら冷凍室冷却器と冷蔵室冷却器を小型化することが可能となるため、可燃性冷媒であるR600aを用いても冷媒充填量が従来に比べ削減することが可能となり、安全性がより一層向上する。   In addition, since the cycle efficiency is significantly better than the conventional refrigerator, the freezer cooler and the refrigerator cooler can be downsized while maintaining the same performance as the conventional refrigerator. Even if is used, the refrigerant charging amount can be reduced as compared with the conventional case, and the safety is further improved.

また、本実施の形態では冷媒として炭化水素冷媒R600a(イソブタン)を用いた場合について説明したがこれに限ることなく、R600(ブタン)やR290(プロパン)などの炭化水素冷媒やアンモニアおよび二酸化炭素などの自然冷媒、あるいはこれらの混合冷媒であってもよい。また、R134a、R32やR152aなどの地球温暖化係数の小さなHFC系フロン冷媒、あるいはそれらの混合冷媒であってもよい。   In the present embodiment, the case where the hydrocarbon refrigerant R600a (isobutane) is used as the refrigerant has been described. However, the present invention is not limited thereto, and hydrocarbon refrigerants such as R600 (butane) and R290 (propane), ammonia, carbon dioxide, and the like. Natural refrigerant, or a mixed refrigerant thereof. Moreover, HFC type | system | group fluorocarbon refrigerant | coolants with small global warming coefficients, such as R134a, R32, and R152a, or those mixed refrigerants may be sufficient.

さらに、実施の形態で用いられる冷凍機油について特に明示していないが、鉱油やアルキルベンゼン、エステル油、エーテル油、PAG油などの合成油であってもよい。   Furthermore, although it does not specify clearly about the refrigerating machine oil used by embodiment, synthetic oils, such as mineral oil, alkylbenzene, ester oil, ether oil, and PAG oil, may be sufficient.

さらに、実施の形態で用いられている圧縮機について特に明示していないが、レシプロ式、ロータリー式、スクロール式などで、圧縮部が2ヶ所以上あれば良く、圧縮機内の圧力を高圧に保持した高圧シェルタイプ、圧縮機内の圧力を低圧に保持した低圧シェルタイプもしくは圧縮機内の圧力を中圧に保持した中圧シェルタイプのいずれのタイプでも良い。   Furthermore, the compressor used in the embodiment is not particularly specified, but the reciprocating type, rotary type, scroll type, etc., it is sufficient if there are two or more compression parts, and the pressure in the compressor is maintained at a high pressure. Any of a high-pressure shell type, a low-pressure shell type in which the pressure in the compressor is held at a low pressure, or a medium pressure shell type in which the pressure in the compressor is held at a medium pressure may be used.

さらに、実施の形態で用いられている凝縮器について特に明示していないが、冷蔵庫の側壁に埋め込まれた銅配管と外板が接触した自然対流式や送風手段を用いた強制対流式のいずれのタイプでも良い。   Furthermore, although it is not specified in particular about the condenser used in the embodiment, either the natural convection type in which the copper pipe embedded in the side wall of the refrigerator and the outer plate are in contact or the forced convection type using a blowing means is used. Type may be used.

本発明の実施の形態1に係わる冷凍冷蔵庫の冷媒回路図である。It is a refrigerant circuit figure of the refrigerator-freezer concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる冷凍冷蔵庫の側面断面図である。It is side surface sectional drawing of the refrigerator-freezer concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる流路切換弁の側面図である。It is a side view of the flow-path switching valve concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる流路切換弁の断面図である。It is sectional drawing of the flow-path switching valve concerning Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫の運転制御フロー図である。It is a driving | operation control flowchart of the refrigerator-freezer by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫の運転制御フロー図である。It is a driving | operation control flowchart of the refrigerator-freezer by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫のP−h線図である。It is a Ph diagram of a refrigerator-freezer according to Embodiment 1 of the present invention. 本発明の実施の形態1による冷凍冷蔵庫のP−h線図である。It is a Ph diagram of a refrigerator-freezer according to Embodiment 1 of the present invention. 本発明の実施の形態1による冷凍冷蔵庫の運転制御フロー図である。It is a driving | operation control flowchart of the refrigerator-freezer by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫の運転制御フロー図である。It is a driving | operation control flowchart of the refrigerator-freezer by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫のその他の冷媒回路図である。It is another refrigerant circuit diagram of the refrigerator-freezer according to Embodiment 1 of the present invention. 本発明の実施の形態1による冷凍冷蔵庫のその他の冷媒回路図である。It is another refrigerant circuit diagram of the refrigerator-freezer according to Embodiment 1 of the present invention. 本発明の実施の形態1による冷凍冷蔵庫のその他の冷媒回路図である。It is another refrigerant circuit diagram of the refrigerator-freezer according to Embodiment 1 of the present invention. 本発明の実施の形態1に係わるその他の流路切換弁の側面図である。It is a side view of the other flow-path switching valve concerning Embodiment 1 of this invention. 本発明の実施の形態1による冷凍冷蔵庫のその他の冷媒回路図である。It is another refrigerant circuit diagram of the refrigerator-freezer according to Embodiment 1 of the present invention. 本発明の実施の形態1による冷凍冷蔵庫のその他の冷媒回路図である。It is another refrigerant circuit diagram of the refrigerator-freezer according to Embodiment 1 of the present invention.

符号の説明Explanation of symbols

1 圧縮機、2 高段側圧縮部、3 低段側圧縮部、4 凝縮器、5 電動流路切換弁、6 冷蔵用毛細管(第一の膨張手段)、7 冷蔵用熱回収熱交換器、8 冷蔵室用冷却器、9 高段側吸入配管、10 冷凍用毛細管(第二の膨張手段)、11 冷凍用低温毛細管(第三の膨張手段)、12 冷凍用熱回収熱交換器、13 冷凍室用冷却器、14 低段側吸入配管、15 アキュムレータ、17 切換弁本体、18 駆動モータ、19 弁座、20 弁体、21 冷蔵サーミスタ(冷蔵室用温度検知手段)、22 冷凍サーミスタ(冷凍室用温度検知手段)、23 コントローラ、24 冷蔵室用送風手段、25 冷凍室用送風手段、26 冷蔵室、27 冷凍室、28 野菜室、29 周囲温度検知手段、30 冷蔵室用除霜ヒータ、31 冷凍室用除霜ヒータ、40 高負荷用冷蔵毛細管(第四の膨張手段)である毛細管。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 High stage side compression part, 3 Low stage side compression part, 4 Condenser, 5 Electric flow-path switching valve, 6 Capillary for refrigeration (1st expansion means), 7 Heat recovery heat exchanger for refrigeration, 8 Refrigerating room cooler, 9 High-stage suction pipe, 10 Freezing capillary (second expansion means), 11 Freezing cryogenic capillary (third expansion means), 12 Freezing heat recovery heat exchanger, 13 Freezing Cooler for room, 14 Lower stage suction pipe, 15 Accumulator, 17 Switching valve body, 18 Drive motor, 19 Valve seat, 20 Valve body, 21 Refrigerated thermistor (temperature detection means for refrigerated room), 22 Refrigerated thermistor (freezer room) Temperature detecting means), 23 controller, 24 refrigerator room air blowing means, 25 freezer room air blowing means, 26 refrigerator room, 27 freezing room, 28 vegetable room, 29 ambient temperature detecting means, 30 refrigerator room defrost heater, 31 Defrost for refrigeration room 40, a capillary tube which is a refrigerated capillary tube (fourth expansion means) for high load.

Claims (3)

密閉容器内に電動機と、この電動機にて駆動される圧縮要素が設けられ、この圧縮要素が低段側圧縮部と高段側圧縮部により構成された圧縮機と当該圧縮機の低段側圧縮部および高段側圧縮部、凝縮器、流路切換手段、前記流路切換手段に接続され冷蔵室用冷却器へ冷媒を流す第一の膨張手段、前記流路切換手段に接続され冷凍室用冷却器へ冷媒を流すように並列に設けられた低冷却負荷用の第二の膨張手段および高冷却負荷用の第三の膨張手段とから構成された冷凍サイクルと、冷蔵庫内温度検知手段、冷凍庫内温度検知手段、周囲温度検知手段、冷蔵室用庫内ファンおよび冷凍室用庫内ファンとを備え、前記冷蔵庫内温度検知手段および冷凍庫内温度検知手段がそれぞれ予め設定された設定温度より高い温度を検知した場合は、前記流路切換手段により前記第一の膨張手段と前記第二の膨張手段の両方を連通し、前記冷蔵庫内温度検知手段により検知された温度が設定温度より小さく、かつ前記冷凍庫内温度検知手段により検知された温度が設定温度より大きい場合は、前記流路切換手段により前記第三の膨張手段のみ連通し、前記冷蔵庫内温度検知手段により検知された温度が設定温度より大きく、かつ前記冷凍庫内温度検知手段により検知された温度が設定温度より小さくて、冷蔵室のみ冷却が必要と判断した場合に、前記流路切換手段により前記第一の膨張手段と前記第二の膨張手段の両方を連通して、冷蔵室および冷凍室を同時に冷却するように制御されたことを特徴とする冷凍冷蔵庫。 An electric motor and a compression element driven by the electric motor are provided in the hermetic container, and the compression element includes a low-stage compression unit and a high-stage compression unit, and a low-stage compression of the compressor. And a high-stage compression section, a condenser, a flow path switching means, a first expansion means connected to the flow path switching means and flowing the refrigerant to the refrigerator for the refrigerator compartment, and connected to the flow path switching means for the freezer compartment A refrigeration cycle comprising a second expansion means for a low cooling load and a third expansion means for a high cooling load, which are provided in parallel so as to allow the refrigerant to flow to the cooler, a refrigerator temperature detection means, and a freezer An internal temperature detection means, an ambient temperature detection means, a refrigerator compartment internal fan and a freezer compartment internal fan, wherein the refrigerator internal temperature detection means and the freezer internal temperature detection means are each higher than a preset set temperature. Is detected, the flow path The replacement means communicates both the first expansion means and the second expansion means, and the temperature detected by the refrigerator temperature detection means is lower than a set temperature and is detected by the freezer temperature detection means. When the temperature is higher than the set temperature, only the third expansion means communicates with the flow path switching means , the temperature detected by the refrigerator temperature detection means is greater than the set temperature, and the freezer temperature detection means When the detected temperature is lower than the set temperature and it is determined that only the refrigerating room needs to be cooled, the flow path switching unit causes both the first expansion unit and the second expansion unit to communicate with each other, thereby refrigeration. A refrigerator-freezer controlled to cool a room and a freezer simultaneously . 前記周囲温度検知手段より検知された信号を元に圧縮機回転数を決定するように制御されたことを特徴とする請求項記載の冷凍冷蔵庫。 2. The refrigerator-freezer according to claim 1 , wherein the refrigerator is controlled so as to determine a compressor speed based on a signal detected by the ambient temperature detecting means. 前記周囲温度検知手段より検知された周囲温度が予め設定された設定温度より低く冷却負荷が小さい場合は、前記流路切換手段にて冷凍室冷却用の膨張手段として前記第二の膨張手段を選定し、前記周囲温度が設定温度より高く冷却負荷が大きい場合は、前記流路切換手段にて前記第三の膨張手段を選択することを特徴とする請求項または請求項に記載の冷凍冷蔵庫。 When the ambient temperature detected by the ambient temperature detection means is lower than a preset temperature, and the cooling load is small, the second expansion means is selected as the expansion means for cooling the freezer in the flow path switching means. and, if the ambient temperature is high is higher cooling load than the set temperature, the freezing refrigerator according to claim 1 or claim 2, wherein selecting said third expansion means in said flow path switching unit .
JP2003340257A 2003-09-30 2003-09-30 Freezer refrigerator Expired - Lifetime JP4013875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003340257A JP4013875B2 (en) 2003-09-30 2003-09-30 Freezer refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003340257A JP4013875B2 (en) 2003-09-30 2003-09-30 Freezer refrigerator

Publications (2)

Publication Number Publication Date
JP2005106373A JP2005106373A (en) 2005-04-21
JP4013875B2 true JP4013875B2 (en) 2007-11-28

Family

ID=34535204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340257A Expired - Lifetime JP4013875B2 (en) 2003-09-30 2003-09-30 Freezer refrigerator

Country Status (1)

Country Link
JP (1) JP4013875B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000042A1 (en) * 2005-06-27 2007-01-04 Fleming Mark A Refrigerator or freezer with enhanced efficiency
NO327832B1 (en) * 2007-06-29 2009-10-05 Sinvent As Steam circuit compression dress system with closed circuit as well as method for operating the system.
DE102011082062A1 (en) 2011-09-02 2013-03-07 BSH Bosch und Siemens Hausgeräte GmbH Valve device, in particular for a refrigerating machine
EP2868997B1 (en) * 2013-11-04 2020-09-30 LG Electronics Inc. Refrigerator
BR102015023711A2 (en) * 2015-09-15 2017-03-21 Whirlpool Sa multiple evaporation cooling system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108364A (en) * 1981-12-22 1983-06-28 三菱電機株式会社 Cooling device
JP2002031459A (en) * 2000-07-14 2002-01-31 Toshiba Corp Refrigerator
JP3975664B2 (en) * 2000-09-29 2007-09-12 三菱電機株式会社 Refrigerating refrigerator, operation method of freezing refrigerator
JP4028688B2 (en) * 2001-03-21 2007-12-26 株式会社東芝 refrigerator
JP2003014357A (en) * 2001-06-27 2003-01-15 Mitsubishi Electric Corp Refrigerator
JP2003035481A (en) * 2001-07-23 2003-02-07 Hitachi Ltd Refrigerator

Also Published As

Publication number Publication date
JP2005106373A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4459776B2 (en) Heat pump device and outdoor unit of heat pump device
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
JP4906894B2 (en) Heat pump device and outdoor unit of heat pump device
US20090031738A1 (en) Refrigerating machine
KR100691587B1 (en) Refrigerator
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP2007218460A (en) Refrigerating cycle device and cool box
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP3906637B2 (en) Freezer refrigerator
JP4123257B2 (en) Refrigeration equipment
JP4289237B2 (en) Refrigerant cooling circuit
JP4013875B2 (en) Freezer refrigerator
JP4608790B2 (en) refrigerator
JP3966262B2 (en) Freezer refrigerator
US20140284024A1 (en) Method for controlling refrigerator
JP4169080B2 (en) Freezer refrigerator
JP2012007781A (en) Refrigerator/freezer and cooling device
KR102494567B1 (en) A refrigerator and a control method the same
KR20120003224A (en) Refrigerant circulation system for refrigerating apparatus
US20140284025A1 (en) Refrigerator
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP6071540B2 (en) Heat pump cold / hot water system
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
WO2022097680A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
WO2024095339A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4013875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term