JP2014119153A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014119153A
JP2014119153A JP2012273184A JP2012273184A JP2014119153A JP 2014119153 A JP2014119153 A JP 2014119153A JP 2012273184 A JP2012273184 A JP 2012273184A JP 2012273184 A JP2012273184 A JP 2012273184A JP 2014119153 A JP2014119153 A JP 2014119153A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
pressure side
air conditioner
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012273184A
Other languages
Japanese (ja)
Other versions
JP6068121B2 (en
Inventor
Shinichi Tanaka
慎一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012273184A priority Critical patent/JP6068121B2/en
Publication of JP2014119153A publication Critical patent/JP2014119153A/en
Application granted granted Critical
Publication of JP6068121B2 publication Critical patent/JP6068121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which can vary the amount of a refrigerant circulating in a refrigerant circuit so as to increase operation efficiency and has high reliability even if a power failure suddenly occurs during the operation of the air conditioner to cause the air conditioner to stop operating.SOLUTION: There is provided an air conditioner which is provided with a refrigerant amount control part 10 controlling the amount of a refrigerant flowing in a refrigerant circuit, the refrigerant amount control part 10 including a receiver 13 reserving the refrigerant, connection pipes 14, 15 connecting the receiver 13 to pipes 11, 12 constituting the refrigerant circuit, and flow control devices 16, 17 controlling the flow rate of the refrigerant. The air conditioner is further provided with an electric power storage device which stores electric power during electric power supply and supplies the stored electric power to a control device 20 and the flow control devices 16, 17 when the external power supply is interrupted, and the control device 20 opens the flow control devices 16, 17 with the electric power supplied from the electric power storage device when it is determined that the external power supply is interrupted.

Description

本発明は、冷媒回路を循環する冷媒量を調整可能な空気調和機に関する。   The present invention relates to an air conditioner capable of adjusting the amount of refrigerant circulating in a refrigerant circuit.

現在の空気調和機のほとんどは、冷房と暖房が切り替えられるように冷媒回路が構成されている。また、冷媒回路に必要な冷媒量は、凝縮器の大きさによって大きく変化するところ、一般的な空気調和機においては、冷媒回路を構成する室内熱交換器と室外熱交換器とで冷媒流路の容積が異なる。したがって、冷房運転時と暖房運転時とで、冷媒回路に必要とされる冷媒量が大きく変化する。また、同じ運転モードであっても、圧縮機の回転数が高い場合と低い場合とで冷媒回路に必要とされる冷媒量は変化する。   Most current air conditioners have a refrigerant circuit configured to switch between cooling and heating. Also, the amount of refrigerant required for the refrigerant circuit varies greatly depending on the size of the condenser. In a general air conditioner, the refrigerant flow path between the indoor heat exchanger and the outdoor heat exchanger that constitute the refrigerant circuit The volume of is different. Therefore, the amount of refrigerant required for the refrigerant circuit varies greatly between the cooling operation and the heating operation. Even in the same operation mode, the amount of refrigerant required for the refrigerant circuit varies depending on whether the rotation speed of the compressor is high or low.

上記課題に対して、特許文献1には、少なくとも1つの冷媒ラインによって冷媒回路と流通連通して接続される冷媒貯蔵装置と、少なくとも1つの冷媒ラインに配された冷媒流制御装置とを備え、冷媒流制御装置は冷媒が冷媒ラインを通流する開位置と、冷媒ラインを通る冷媒の流れを遮断する閉位置とを有する冷媒蒸気圧縮システムが記載されている。   In response to the above problem, Patent Document 1 includes a refrigerant storage device connected in flow communication with the refrigerant circuit by at least one refrigerant line, and a refrigerant flow control device arranged in at least one refrigerant line. The refrigerant flow control device is described as a refrigerant vapor compression system having an open position where the refrigerant flows through the refrigerant line and a closed position where the flow of the refrigerant passing through the refrigerant line is blocked.

特開2011−521194号公報JP 2011-521194 A

しかしながら、特許文献1では、必要冷媒量を調整するときのみ冷媒流制御装置を開位置にする制御を行っていることから、冷房運転や暖房運転などの空気調和機運転中に停電等で空気調和機への電源の供給が途絶える事態が発生したときは、冷媒貯蔵装置に冷媒が密封される可能性がある。したがって、冷媒貯蔵装置に冷媒が満たされた状態で密封され、その状態が炎天下で長時間続いた場合には、冷媒貯蔵装置内の冷媒が膨張(液膨張や液冷媒のガス化)することにより非常に高い圧力がかかることになる。冷媒流制御装置に過負荷がかかって故障したり、レシーバから冷媒回路の外に冷媒が漏れるおそれがあり、空気調和機の信頼性が悪くなる。   However, in Patent Document 1, since the refrigerant flow control device is controlled to be in the open position only when the required refrigerant amount is adjusted, air conditioning is performed due to a power failure or the like during air conditioner operations such as cooling operation or heating operation. When the supply of power to the machine is interrupted, the refrigerant may be sealed in the refrigerant storage device. Therefore, when the refrigerant storage device is sealed in a state where the refrigerant is filled and the state continues for a long time under the hot sun, the refrigerant in the refrigerant storage device expands (liquid expansion or liquid refrigerant gasification). Very high pressure will be applied. There is a possibility that the refrigerant flow control device is overloaded and breaks down, or the refrigerant leaks out of the refrigerant circuit from the receiver, and the reliability of the air conditioner deteriorates.

そこで、本発明においては、上記に鑑み、運転効率を高めるために冷媒回路を循環する冷媒量を変更可能で、空気調和機の運転中に急に停電等が発生して空気調和機へ電源の供給が途絶えることにより空気調和機の運転が停止した場合でも信頼性の高い空気調和機を提供することを目的とする。   Therefore, in the present invention, in view of the above, it is possible to change the amount of refrigerant circulating in the refrigerant circuit in order to improve the operation efficiency, and a power failure or the like suddenly occurs during the operation of the air conditioner, An object of the present invention is to provide a highly reliable air conditioner even when the operation of the air conditioner is stopped due to supply interruption.

上記目的を達成するために、本発明では、圧縮機、凝縮器、絞り装置および蒸発器が配管により順次接続されて冷媒が流れる冷媒回路が構成され、前記冷媒回路を流れる冷媒の量を調整する冷媒量調整部が設けられ、前記冷媒量調整部は、冷媒を溜めるレシーバと、前記レシーバと前記冷媒回路を構成する配管とを連結する連結管と、前記連結管に介装された、冷媒の流量を調整する流量調整装置とを備えた空気調和機であって、通電時に電力を蓄えて、外部からの電源が途絶えたときに貯えた電力を前記制御装置及び流量調整装置に供給する蓄電装置が設けられ、前記制御装置は、外部からの電源が途絶えたと判断したときに、前記蓄電装置から供給された電力によって前記流量調整装置を開くことを特徴とする。   In order to achieve the above object, in the present invention, a compressor, a condenser, a throttling device, and an evaporator are sequentially connected by a pipe to form a refrigerant circuit through which refrigerant flows, and the amount of refrigerant flowing through the refrigerant circuit is adjusted. A refrigerant amount adjusting unit is provided, and the refrigerant amount adjusting unit includes a receiver that stores the refrigerant, a connecting pipe that connects the receiver and a pipe that forms the refrigerant circuit, and a refrigerant that is interposed in the connecting pipe. An air conditioner having a flow rate adjusting device for adjusting a flow rate, storing power when energized, and supplying the stored power to the control device and the flow rate adjusting device when an external power supply is interrupted The control device opens the flow rate adjusting device with the electric power supplied from the power storage device when it is determined that the external power supply is interrupted.

上記構成によれば、外部からの電源が途絶えたときに、蓄電装置に蓄えた電力によって制御装置が流量調整装置を開くようにしたため、レシーバ内に溜まった冷媒は、流量調整装置を通って冷媒回路に戻ることになる。従って、信頼性(安全性)の高い空気調和機を得ることができる。   According to the above configuration, when the power from the outside is interrupted, the control device opens the flow rate adjusting device with the electric power stored in the power storage device, so that the refrigerant accumulated in the receiver passes through the flow rate adjusting device. Return to the circuit. Therefore, an air conditioner with high reliability (safety) can be obtained.

なお、本発明において、外部からの電源が途絶えるとは、停電が発生したり、過負荷や短絡によってブレーカが作動することで空気調和機への電源の供給が遮断されることを意味する。   In the present invention, the interruption of the power supply from the outside means that the power supply to the air conditioner is interrupted by the occurrence of a power failure or the operation of the breaker due to overload or short circuit.

レシーバは、1つの流量調整装置を介して冷媒回路に接続するようにしてもよいし、2つの流量調整装置を介して冷媒回路に接続するようにしてもよい。具体的には、レシーバと冷媒回路(配管)とを連結する1本の連結管を設け、その連結管に1つの流量調整装置を介装してもよい。また、レシーバと冷媒回路(配管)とを連結する2本の連結管を並列に配設して、これら連結管にそれぞれ1つずつ流量調整装置を介装してもよい。   The receiver may be connected to the refrigerant circuit via one flow rate adjustment device, or may be connected to the refrigerant circuit via two flow rate adjustment devices. Specifically, one connecting pipe that connects the receiver and the refrigerant circuit (pipe) may be provided, and one flow rate adjusting device may be interposed in the connecting pipe. Further, two connecting pipes that connect the receiver and the refrigerant circuit (pipe) may be arranged in parallel, and one flow adjusting device may be interposed in each of these connecting pipes.

レシーバと冷媒回路との間に2つの流量調整装置を介装する場合、具体的な構成として、圧縮機、凝縮器、絞り装置および蒸発器が配管により順次接続されて冷媒が流れる冷媒回路が構成され、前記冷媒回路を流れる冷媒の量を調整する冷媒量調整部が前記絞り装置と並列に設けられ、前記冷媒量調整部は、前記絞り装置前後の高圧側配管から低圧側配管に流れる冷媒の圧力を利用して冷媒を溜めるレシーバと、前記レシーバと前記高圧側配管とを連結する高圧側連結管及び前記レシーバと前記低圧側配管とを連結する低圧側連結管と、前記高圧側連結管及び低圧側連結管にそれぞれ介装された高圧側流量調整装置及び低圧側流量調整装置と、前記高圧側流量調整装置及び低圧側流量調整装置の開度を制御する制御装置とを備えた空気調和機であって、通電時に電力を蓄えて、外部からの電源が途絶えたときに貯えた電力を前記制御装置、前記高圧側流量調整装置及び低圧側流量調整装置に供給する蓄電装置が設けられ、前記制御装置は、外部からの電源が途絶えたと判断したときに、前記高圧側流量調整装置及び低圧側流量調整装置の少なくとも一方を開く構成としてもよい。   When two flow control devices are interposed between the receiver and the refrigerant circuit, a specific configuration is a refrigerant circuit in which a compressor, a condenser, a throttling device, and an evaporator are sequentially connected by a pipe and the refrigerant flows. A refrigerant amount adjusting unit that adjusts the amount of refrigerant flowing through the refrigerant circuit is provided in parallel with the expansion device, and the refrigerant amount adjustment unit is configured to adjust the amount of refrigerant flowing from the high-pressure side piping before and after the expansion device to the low-pressure side piping. A receiver that accumulates refrigerant using pressure, a high-pressure side connection pipe that connects the receiver and the high-pressure side pipe, a low-pressure side connection pipe that connects the receiver and the low-pressure side pipe, the high-pressure side connection pipe, An air conditioner provided with a high-pressure side flow rate adjustment device and a low-pressure side flow rate adjustment device respectively interposed in the low-pressure side connection pipe, and a control device for controlling the opening degree of the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device A power storage device is provided that stores power when energized and supplies the stored power to the control device, the high-pressure side flow rate adjustment device, and the low-pressure side flow rate adjustment device when the external power supply is interrupted, and the control The apparatus may be configured to open at least one of the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device when it is determined that the power supply from the outside is interrupted.

上記構成によれば、外部からの電源が途絶えたときに、2つの流量調整装置のうち、少なくとも一方を開くため、たとえ、レシーバ内いっぱいの冷媒が収容されていても、レシーバ内に溜まった冷媒は開かれた流量調整装置を通って冷媒回路に戻ることになる。したがって、安全性の高い空気調和機を得ることができる。   According to the above configuration, when the power supply from the outside is interrupted, at least one of the two flow rate adjusting devices is opened, so that the refrigerant that has accumulated in the receiver is stored even if the refrigerant in the receiver is full. Will return to the refrigerant circuit through the open flow regulator. Therefore, a highly safe air conditioner can be obtained.

制御装置は、外部からの電源が途絶えたと判断したときに、少なくとも低圧側流量調整装置を開くようにしてもよい。これにより、冷媒の圧力差を利用してレシーバに溜まった冷媒をよりスムーズに冷媒回路に戻すことができる。   The control device may open at least the low-pressure side flow rate adjusting device when it is determined that the power supply from the outside is cut off. Thereby, the refrigerant | coolant which accumulated in the receiver using the pressure difference of a refrigerant | coolant can be returned more smoothly to a refrigerant circuit.

本発明における蓄電装置として、具体的には、蓄電池やコンデンサを挙げることができる。ところで、従来より、スイッチング電源より制御装置や流量調整装置に供給される直流電源回路には、平滑コンデンサが設けられている。そのため、この平滑コンデンサの容量を大きくしてやることで、蓄電装置として使用することができる。コンデンサの容量は、予め実験などにより、停電時に流量調整装置を開くことができる容量を求めておき、それ以上の容量のものを使用すればよい。
また、平滑コンデンサとは別に、蓄電装置としてのコンデンサを設置するようにしてもよい。この場合、蓄電装置は、必要に応じて制御装置や流量調整装置ごとに、それぞれに対して並列になるように配する。これにより、停電時において、制御装置や流量調整装置に適した電圧を印加することができる。
Specific examples of the power storage device in the present invention include a storage battery and a capacitor. By the way, conventionally, a smoothing capacitor is provided in a DC power supply circuit supplied from a switching power supply to a control device or a flow rate adjusting device. Therefore, it can be used as a power storage device by increasing the capacity of the smoothing capacitor. As for the capacity of the capacitor, a capacity capable of opening the flow rate adjusting device in the event of a power failure is obtained in advance by experiments or the like, and a capacity larger than that may be used.
In addition to the smoothing capacitor, a capacitor as a power storage device may be installed. In this case, the power storage device is arranged so as to be parallel to each of the control device and the flow rate adjusting device as necessary. Thereby, the voltage suitable for a control apparatus or a flow regulating device can be applied at the time of a power failure.

以上のとおり、本発明の空気調和機は、外部からの電源が途絶えたときに、蓄電装置に蓄えた電力によって制御装置が流量調整装置を開くようにしたため、レシーバ内に溜まった冷媒は、開いた状態の流量調整装置を通って冷媒回路に戻ることになる。従って、信頼性の高い空気調和機を得ることができる。   As described above, in the air conditioner of the present invention, when the power from the outside is interrupted, the control device opens the flow rate adjusting device with the electric power stored in the power storage device. It will return to a refrigerant circuit through the flow control device of the state which was in a state. Therefore, a highly reliable air conditioner can be obtained.

本発明の空気調和機の冷媒回路を示す図The figure which shows the refrigerant circuit of the air conditioner of this invention 本発明の空気調和機の制御ブロック図Control block diagram of the air conditioner of the present invention 本発明の空気調和機の電気回路構成を示すブロック図The block diagram which shows the electric circuit structure of the air conditioner of this invention 外部からの電源が途絶えた時の制御フローチャート図Control flowchart when external power supply is cut off 冷媒調整部の第2の態様を示す模式図The schematic diagram which shows the 2nd aspect of a refrigerant | coolant adjustment part. 冷媒調整部の第3の態様を示す模式図The schematic diagram which shows the 3rd aspect of a refrigerant | coolant adjustment part.

以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明に係る空気調和機の実施形態を示す冷媒回路図である。図示のごとく、本実施形態の空気調和機は、1台の室外機1に1台の室内機2が接続されたシングル型空気調和機であり、室外機1に収容される圧縮機3、室外熱交換器4及び絞り装置5をこの順に冷媒配管で直列に接続し、さらに絞り装置5から二方弁6を介して、室内機2に収容される室内熱交換器7を配管接続し、室内熱交換器7から三方弁8を介して、再び室外の圧縮機3に配管接続して冷媒回路を構成している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing an embodiment of an air conditioner according to the present invention. As illustrated, the air conditioner of the present embodiment is a single-type air conditioner in which one indoor unit 2 is connected to one outdoor unit 1, and includes a compressor 3 housed in the outdoor unit 1, an outdoor unit The heat exchanger 4 and the expansion device 5 are connected in series in this order by refrigerant piping, and further, the indoor heat exchanger 7 accommodated in the indoor unit 2 is connected by piping from the expansion device 5 through the two-way valve 6, The refrigerant circuit is configured by connecting the pipe from the heat exchanger 7 to the outdoor compressor 3 through the three-way valve 8 again.

圧縮機3は、切換弁である四方弁9を介して冷媒回路に接続されており、四方弁9を切り換えることにより、室外熱交換器4側、又は、室内熱交換器7側のいずれの方向へも圧縮した冷媒を送出可能な構成とされている。この四方弁9の切り換えにより、室外熱交換器4と室内熱交換器7とが、凝縮器又は蒸発器として使用される。   The compressor 3 is connected to the refrigerant circuit via a four-way valve 9 that is a switching valve. By switching the four-way valve 9, either direction of the outdoor heat exchanger 4 side or the indoor heat exchanger 7 side is selected. The compressed refrigerant can be sent out. By switching the four-way valve 9, the outdoor heat exchanger 4 and the indoor heat exchanger 7 are used as a condenser or an evaporator.

具体的に、図1では、圧縮機3から吐出される高温の冷媒が、図示する実線矢印方向に流通され、凝縮器としての室外熱交換器4、絞り装置5を経て蒸発器としての室内熱交換器7に流入されることによって冷房運転が実現される。また、圧縮機3から吐出される冷媒が、図示する破線矢印方向に流通され、凝縮器としての室内熱交換器7、絞り装置5を経て蒸発器としての室外熱交換器4に流入されることによって暖房運転が実現される。   Specifically, in FIG. 1, the high-temperature refrigerant discharged from the compressor 3 is circulated in the direction indicated by the solid line in the figure, and passes through the outdoor heat exchanger 4 as a condenser and the expansion device 5 and the indoor heat as an evaporator. Cooling operation is realized by flowing into the exchanger 7. In addition, the refrigerant discharged from the compressor 3 is circulated in the direction of the broken arrow shown in the figure, and flows into the outdoor heat exchanger 4 as an evaporator via the indoor heat exchanger 7 as a condenser and the expansion device 5. By this, heating operation is realized.

本発明では、冷媒回路を流れる冷媒の量を調整する冷媒量調整部10が絞り装置5と並列に接続されている。冷媒量調整部10は、絞り装置5前後の配管11、12に流れる冷媒の圧力を利用して冷媒を溜めるレシーバ13と、レシーバ13と配管11とを連結する第一連結管14及びレシーバ13と配管12とを連結する第二連結管15と、第一連結管14に介装される第一流量調整装置16と、第二連結管15に介装される第二流量調整装置17とを備えている。   In the present invention, the refrigerant amount adjusting unit 10 that adjusts the amount of refrigerant flowing through the refrigerant circuit is connected in parallel with the expansion device 5. The refrigerant amount adjusting unit 10 includes a receiver 13 that accumulates refrigerant using the pressure of the refrigerant flowing through the pipes 11 and 12 before and after the expansion device 5, a first connection pipe 14 that connects the receiver 13 and the pipe 11, and the receiver 13. A second connecting pipe 15 that connects the pipe 12, a first flow rate adjusting device 16 that is interposed in the first connecting pipe 14, and a second flow rate adjusting device 17 that is interposed in the second connecting pipe 15 are provided. ing.

冷媒回路において、絞り装置5の冷媒の流れ方向上流側は高圧となり、絞り装置5の冷媒の流れ方向下流側は低圧となる。すなわち、冷房運転時には、配管11が高圧側配管で配管12が低圧側配管に、第一連結管14が高圧側連結管で第二連結管15が低圧側連結管に、第一流量調整装置16が高圧側流量調整装置で第二流量調整装置17が低圧側流量調整装置になる。一方、暖房運転時は、配管12が高圧側配管で配管11が低圧側配管に、第二連結管15が高圧側連結管で第一連結管14が低圧側連結管に、第二流量調整装置17が高圧側流量調整装置で第一流量調整装置16が低圧側流量調整装置になる。   In the refrigerant circuit, the upstream side in the refrigerant flow direction of the expansion device 5 has a high pressure, and the downstream side in the refrigerant flow direction of the expansion device 5 has a low pressure. That is, during the cooling operation, the pipe 11 is a high-pressure side pipe, the pipe 12 is a low-pressure side pipe, the first connection pipe 14 is a high-pressure side connection pipe, the second connection pipe 15 is a low-pressure side connection pipe, and the first flow rate adjustment device 16. Is the high pressure side flow control device, and the second flow control device 17 is the low pressure side flow control device. On the other hand, during the heating operation, the pipe 12 is the high pressure side pipe, the pipe 11 is the low pressure side pipe, the second connecting pipe 15 is the high pressure side connecting pipe, the first connecting pipe 14 is the low pressure side connecting pipe, and the second flow rate adjusting device. Reference numeral 17 denotes a high-pressure side flow control device, and the first flow control device 16 serves as a low-pressure side flow control device.

図2に示すように、空気調和機は、冷凍回路の運転を制御して、空調運転を制御する制御装置20を備えている。空気調和機には、室外熱交換器4の出口温度を検出する温度センサ21、室内熱交換器7の出口温度を検出する温度センサ22、圧縮機3から吐出された冷媒の吐出温度を検出する吐出温度センサ23、室温センサ24、外気温センサ25が設けられる。   As shown in FIG. 2, the air conditioner includes a control device 20 that controls the operation of the refrigeration circuit and controls the air conditioning operation. In the air conditioner, a temperature sensor 21 that detects an outlet temperature of the outdoor heat exchanger 4, a temperature sensor 22 that detects an outlet temperature of the indoor heat exchanger 7, and a discharge temperature of the refrigerant discharged from the compressor 3 are detected. A discharge temperature sensor 23, a room temperature sensor 24, and an outside air temperature sensor 25 are provided.

制御装置20は、CPU、メモリ等を備えたマイコンから構成され、所望の空調運転に応じて、これらの温度センサの出力や、リモコン、本体の操作スイッチの操作信号等に基づき、圧縮機3、送風機26、絞り装置5、第一流量調整装置16及び第二流量調整装置17の動作を制御して、冷媒回路の運転を制御する。   The control device 20 is composed of a microcomputer equipped with a CPU, a memory, and the like. Based on outputs of these temperature sensors, remote controllers, operation signals of operation switches of the main body, and the like according to a desired air conditioning operation, the compressor 3, The operation of the refrigerant circuit is controlled by controlling the operations of the blower 26, the expansion device 5, the first flow rate adjusting device 16, and the second flow rate adjusting device 17.

絞り装置5は、冷媒の流量を調整する装置であり、本実施形態では膨張弁が用いられているが、これに限らず複数のキャピラリチューブを並べて、流路を切り替えるようにしてもよい。また、第一流量調整装置16及び第二流量調整装置17は、開閉することによって第一連結管14及び第二連結管15における冷媒の流れを制御する。   The expansion device 5 is a device that adjusts the flow rate of the refrigerant. In this embodiment, an expansion valve is used. However, the expansion device 5 is not limited thereto, and a plurality of capillary tubes may be arranged to switch the flow path. The first flow rate adjusting device 16 and the second flow rate adjusting device 17 control the flow of the refrigerant in the first connecting pipe 14 and the second connecting pipe 15 by opening and closing.

すなわち、第一流量調整装置16及び第二流量調整装置17は、レシーバ13内の冷媒の圧力を調整するものであり、膨張弁、流量調整弁、ストップ弁などを用いる。本実施形態では、第一流量調整装置16及び第二流量調整装置17として、同型のニードルバルブを用い、全開位置を基準としてステッピングモータによって開度を正確に制御する構成とされる。   That is, the first flow rate adjusting device 16 and the second flow rate adjusting device 17 adjust the pressure of the refrigerant in the receiver 13, and use an expansion valve, a flow rate adjustment valve, a stop valve, and the like. In the present embodiment, the first flow rate adjusting device 16 and the second flow rate adjusting device 17 are configured to use the same type of needle valve and to accurately control the opening degree by the stepping motor with the fully open position as a reference.

一般的に、室外熱交換器4の容量は室内熱交換器7の容量よりも大である。そのため、冷房運転時には、より多くの冷媒が必要となる。本実施形態においても、冷房定格運転時の最適冷媒量は暖房定格運転時の最適冷媒量よりも多くなるように設定される。ここで、定格運転とは、圧縮機の回転数を予め設定した一定値で駆動させる運転を意味する。圧縮機の回転数としては、最小回転数と最大回転数の間の運転効率が高く標準的な回転数が設定される。   Generally, the capacity of the outdoor heat exchanger 4 is larger than the capacity of the indoor heat exchanger 7. Therefore, more refrigerant is required during the cooling operation. Also in the present embodiment, the optimum refrigerant amount during the cooling rated operation is set to be larger than the optimum refrigerant amount during the heating rated operation. Here, the rated operation means an operation in which the rotation speed of the compressor is driven at a preset constant value. As the rotation speed of the compressor, a standard rotation speed is set with high operation efficiency between the minimum rotation speed and the maximum rotation speed.

また、最適冷媒量とは、冷媒回路に封入された冷媒量からレシーバ内に貯留される冷媒量を引いた、実際に冷媒回路を循環する冷媒量(循環冷媒量)のうち、「空調能力」/「消費電力」で表わされるCOP(成績係数)が最大となる冷媒量を意味する。すなわち、冷房運転および除湿運転が最適冷媒量の多い空調運転、暖房運転が最適冷媒量の少ない空調運転とされる。   The optimum refrigerant amount is the “air conditioning capacity” of the refrigerant amount (circulating refrigerant amount) that actually circulates in the refrigerant circuit obtained by subtracting the refrigerant amount stored in the receiver from the refrigerant amount enclosed in the refrigerant circuit. / Refers to the amount of refrigerant that maximizes the COP (coefficient of performance) represented by “power consumption”. That is, the cooling operation and the dehumidifying operation are the air conditioning operation with a large amount of the optimum refrigerant, and the heating operation is the air conditioning operation with a small amount of the optimum refrigerant.

制御装置20には、設定温度、室温及び外気温に応じて最適となる圧縮機の回転数及び絞り装置の開度を予め実験により求めたデータが記憶される。さらに、その条件下で冷媒量を「冷房定格運転時の最適冷媒量」又は「暖房定格運転時の最適冷媒量」に調整するための第一流量調整装置16及び第二流量調整装置17の開閉制御条件が制御装置20に記憶される。   The control device 20 stores data obtained through experiments in advance on the compressor rotation speed and the opening degree of the expansion device that are optimal in accordance with the set temperature, the room temperature, and the outside air temperature. Furthermore, opening and closing of the first flow rate adjusting device 16 and the second flow rate adjusting device 17 for adjusting the refrigerant amount to “optimum refrigerant amount at the rated cooling operation” or “optimum refrigerant amount at the rated heating operation” under the conditions. The control condition is stored in the control device 20.

空調運転が開始すると、制御装置20は、設定温度と室温とに基づいて圧縮機3の目標回転数を設定し、目標回転数に応じて絞り装置5の開度を決める。制御装置20は、決められた運転条件にしたがって、室温が設定温度になるように圧縮機3、絞り装置5、送風機26などを制御する。   When the air conditioning operation starts, the control device 20 sets a target rotational speed of the compressor 3 based on the set temperature and room temperature, and determines the opening degree of the expansion device 5 according to the target rotational speed. The control device 20 controls the compressor 3, the expansion device 5, the blower 26, and the like so that the room temperature becomes the set temperature in accordance with the determined operating conditions.

そして、制御装置20は、空調運転を開始して、圧縮機3の運転を開始すると、冷媒量調整制御を行う。空調運転が暖房運転の場合、暖房定格運転時の最適冷媒量は冷房定格運転時の最適冷媒量よりも少なくなるため、過剰な冷媒をレシーバ13に溜めるように第一流量調整装置16及び第二流量調整装置17が開閉制御される。具体的に、圧縮機3の運転中、低圧側流量調整装置である第一流量調整装置16を閉じたまま、高圧側流量調整装置である第二流量調整装置17を所定の開度で所定時間開くことでレシーバ13内に所定量の冷媒が溜められる。なお、第二流量調整装置17は制御実行後に閉鎖される。   And the control apparatus 20 will perform refrigerant | coolant amount adjustment control, if air conditioning operation is started and the operation of the compressor 3 is started. When the air conditioning operation is the heating operation, the optimum refrigerant amount during the heating rated operation is smaller than the optimum refrigerant amount during the cooling rated operation. The flow rate adjusting device 17 is controlled to open and close. Specifically, during the operation of the compressor 3, the first flow rate adjustment device 16 that is the low pressure side flow rate adjustment device is closed and the second flow rate adjustment device 17 that is the high pressure side flow rate adjustment device is closed at a predetermined opening for a predetermined time. By opening, a predetermined amount of refrigerant is stored in the receiver 13. The second flow rate adjusting device 17 is closed after the control is executed.

一方、空調運転が冷房運転の場合、暖房運転時とは逆にレシーバ13内に溜められた冷媒は冷媒回路に戻すように第一流量調整装置16及び第二流量調整装置17が開閉制御される。具体的には、高圧側流量調整装置である第一流量調整装置16を閉じたまま、低圧側流量調整装置である第二流量調整装置17を開くことでレシーバ13内の冷媒は冷媒回路に戻される。なお、第二流量調整装置17は制御実行後に閉鎖される。   On the other hand, when the air conditioning operation is the cooling operation, the first flow rate adjusting device 16 and the second flow rate adjusting device 17 are controlled to be opened and closed so that the refrigerant stored in the receiver 13 is returned to the refrigerant circuit, contrary to the heating operation. . Specifically, the refrigerant in the receiver 13 is returned to the refrigerant circuit by opening the second flow rate adjusting device 17 that is the low pressure side flow rate adjusting device while the first flow rate adjusting device 16 that is the high pressure side flow rate adjusting device is closed. It is. The second flow rate adjusting device 17 is closed after the control is executed.

このように、第一流量調整装置16及び第二流量調整装置17を開閉制御することにより、冷媒回路を循環する冷媒量を一定量(最適冷媒量)に調整することができ、空調能力を高めることができる。したがって、運転効率が向上して、省エネ運転を実現できる。   In this way, by controlling the opening and closing of the first flow rate adjusting device 16 and the second flow rate adjusting device 17, the amount of refrigerant circulating in the refrigerant circuit can be adjusted to a constant amount (optimum refrigerant amount), and the air conditioning capability is enhanced. be able to. Therefore, driving efficiency is improved and energy-saving driving can be realized.

図3は、本実施形態の空気調和機の電気回路構成を示すブロック図である。本実施形態の空気調和機は、外部の交流電源Pから交流電圧の供給を受け、この交流電圧から直流を生成するコンバータ27と、生成された直流を交流に変換して圧縮機3の運転周波数を可変して駆動するインバータ28とを備えている。さらに、コンバータ27で生成した高圧直流電圧を12Vと5Vの2種類の低圧直流電圧に変換する直流電源回路29を備えている。   FIG. 3 is a block diagram showing an electric circuit configuration of the air conditioner of the present embodiment. The air conditioner of the present embodiment is supplied with an AC voltage from an external AC power supply P, generates a DC from the AC voltage, and converts the generated DC into AC to operate the compressor 3 at an operating frequency. And an inverter 28 that drives the power supply in a variable manner. Furthermore, a DC power supply circuit 29 that converts the high-voltage DC voltage generated by the converter 27 into two types of low-voltage DC voltages of 12V and 5V is provided.

直流電源回路29で生成された12Vの電圧は、並列に配設された第一流量調整装置16、第二流量調整装置17及びコンデンサ31に印加される。直流電源回路29で生成された5Vの電圧は、並列に配設された制御装置20及びコンデンサ32に印加される。図示のごとく、コンデンサ31及び32は蓄電装置として用いられ、外部からの電源Pが供給されることで通電時に電力を蓄えて、外部からの電源Pが途絶えたときに貯えた電力を制御装置20と、第一流量調整装置16及び第二流量調整装置17に供給する無停電電源として機能する。   The 12V voltage generated by the DC power supply circuit 29 is applied to the first flow rate adjusting device 16, the second flow rate adjusting device 17 and the capacitor 31 which are arranged in parallel. The voltage of 5V generated by the DC power supply circuit 29 is applied to the control device 20 and the capacitor 32 arranged in parallel. As shown in the figure, the capacitors 31 and 32 are used as a power storage device. When the external power source P is supplied, the capacitors 31 and 32 store power when energized, and store the power stored when the external power source P is cut off. And function as an uninterruptible power supply to be supplied to the first flow rate adjusting device 16 and the second flow rate adjusting device 17.

なお、空気調和機には、外部電源Pの交流電圧を検出する交流電圧検出回路33が設置されており、交流電圧検出回路33で検出された電圧値が制御装置20に入力される。制御装置20では、図4に示すように、交流電圧検出回路33から入力された電圧値が正常とみなされる待機電圧値(既知データを基に決定される)よりも低い場合には第一流量調整装置16及び第二流量調整装置17を開放する。   The air conditioner is provided with an AC voltage detection circuit 33 that detects an AC voltage of the external power supply P, and a voltage value detected by the AC voltage detection circuit 33 is input to the control device 20. In the control device 20, as shown in FIG. 4, when the voltage value input from the AC voltage detection circuit 33 is lower than the standby voltage value (determined based on the known data) regarded as normal, the first flow rate is set. The adjusting device 16 and the second flow rate adjusting device 17 are opened.

このように、停電等により、外部からの電源が途絶えたときに蓄電装置に貯えていた電力によって第一流量調整装置16及び第二流量調整装置17の両方を開放することでレシーバ13内に溜められていた冷媒を速やかに冷媒回路に戻すことが可能となる。従って、信頼性の高い空気調和機を得ることができる。なお、流量調整装置は全開とするのが望ましいが、冷媒がすみやかに冷媒回路に戻る程度の開度でもよい。少なくとも、閉塞された状態でなく、開かれた状態となるようにする。   As described above, when both the first flow rate adjusting device 16 and the second flow rate adjusting device 17 are opened by the power stored in the power storage device when the external power supply is interrupted due to a power failure or the like, the power is stored in the receiver 13. It becomes possible to quickly return the refrigerant to the refrigerant circuit. Therefore, a highly reliable air conditioner can be obtained. The flow rate adjusting device is preferably fully open, but may have an opening degree that allows the refrigerant to quickly return to the refrigerant circuit. At least, it should be in an open state, not a closed state.

本発明は、上記実施形態に限定されるものではなく、本発明の範囲内で上記実施形態に多くの修正および変更を加えることができる。具体的に、上記実施形態では第一連結管14及び第二連結管15の一端側はそれぞれ冷媒回路の配管11及び12に接続され、他端側はそれぞれ個々にレシーバ13に接続されているが、これに限らず、たとえば、図5に示すように、第一連結管14及び第二連結管15の他端側を集合させた後に、一本の連結管としてレシーバ13に接続することも可能である。   The present invention is not limited to the above embodiment, and many modifications and changes can be made to the above embodiment within the scope of the present invention. Specifically, in the above embodiment, one end side of the first connecting pipe 14 and the second connecting pipe 15 is connected to the pipes 11 and 12 of the refrigerant circuit, respectively, and the other end side is individually connected to the receiver 13. Not limited to this, for example, as shown in FIG. 5, after the other end sides of the first connecting pipe 14 and the second connecting pipe 15 are assembled, it is possible to connect to the receiver 13 as a single connecting pipe. It is.

また、図6に示すように、レシーバ13と配管11とを連結する連結管14を1本として連結管14に1つの流量調整装置16を介装させるようにしてもよい。さらに、本実施形態では蓄電装置としてコンデンサを用いているが、これに限らず、蓄電池を使用することも可能である。   In addition, as shown in FIG. 6, one connecting pipe 14 that connects the receiver 13 and the pipe 11 may be provided, and a single flow rate adjusting device 16 may be interposed in the connecting pipe 14. Furthermore, although the capacitor is used as the power storage device in the present embodiment, the present invention is not limited to this, and a storage battery can also be used.

1 室外機
2 室内機
3 圧縮機
4 室外熱交換器
5 絞り装置
6 二方弁
7 室内熱交換器
8 三方弁
9 四方弁
10 冷媒量調整部
11 配管
12 配管
13 レシーバ
14 第一連結管
15 第二連結管
16 第一流量調整装置
17 第二流量調整装置
20 制御装置
21 温度センサ
22 温度センサ
23 吐出温度センサ
24 室温センサ
25 外気温センサ
26 送風機
27 コンバータ
28 インバータ
29 直流電源回路
31 コンデンサ
32 コンデンサ
33 交流電圧検出回路
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Outdoor heat exchanger 5 Throttle device 6 Two-way valve 7 Indoor heat exchanger 8 Three-way valve 9 Four-way valve 10 Refrigerant amount adjustment part 11 Pipe 12 Pipe 13 Receiver 14 First connection pipe 15 1st Two connecting pipes 16 First flow rate adjustment device 17 Second flow rate adjustment device 20 Control device 21 Temperature sensor 22 Temperature sensor 23 Discharge temperature sensor 24 Room temperature sensor 25 Outside temperature sensor 26 Blower 27 Converter 28 Inverter 29 DC power supply circuit 31 Capacitor 32 Capacitor 33 AC voltage detection circuit

Claims (4)

圧縮機、凝縮器、絞り装置および蒸発器が配管により順次接続されて冷媒が流れる冷媒回路が構成され、前記冷媒回路を流れる冷媒の量を調整する冷媒量調整部が設けられ、前記冷媒量調整部は、冷媒を溜めるレシーバと、前記レシーバと前記冷媒回路を構成する配管とを連結する連結管と、前記連結管に介装された、冷媒の流量を調整する流量調整装置とを備え、前記流量調整装置の開度を制御する制御装置が設けられた空気調和機であって、通電時に電力を蓄えて、外部からの電源が途絶えたときに貯えた電力を前記制御装置及び流量調整装置に供給する蓄電装置が設けられ、前記制御装置は、外部からの電源が途絶えたと判断したときに、前記蓄電装置から供給された電力によって前記流量調整装置を開くことを特徴とする空気調和機。   A compressor, a condenser, a throttling device, and an evaporator are sequentially connected by a pipe to form a refrigerant circuit through which a refrigerant flows, and a refrigerant amount adjusting unit that adjusts the amount of refrigerant flowing through the refrigerant circuit is provided, and the refrigerant amount adjustment The section includes a receiver for storing a refrigerant, a connection pipe that connects the receiver and a pipe constituting the refrigerant circuit, and a flow rate adjustment device that is interposed in the connection pipe and adjusts the flow rate of the refrigerant. An air conditioner provided with a control device for controlling the opening degree of the flow rate adjusting device, storing power when energized, and storing the power stored when the external power supply is cut off to the control device and the flow rate adjusting device. An air conditioner characterized in that a power storage device to be supplied is provided, and the control device opens the flow rate adjusting device with electric power supplied from the power storage device when it is determined that an external power supply is interrupted 圧縮機、凝縮器、絞り装置および蒸発器が配管により順次接続されて冷媒が流れる冷媒回路が構成され、前記冷媒回路を流れる冷媒の量を調整する冷媒量調整部が前記絞り装置と並列に設けられ、前記冷媒量調整部は、前記絞り装置前後の高圧側配管から低圧側配管に流れる冷媒の圧力を利用して冷媒を溜めるレシーバと、前記レシーバと前記高圧側配管とを連結する高圧側連結管及び前記レシーバと前記低圧側配管とを連結する低圧側連結管と、前記高圧側連結管及び低圧側連結管にそれぞれ介装された高圧側流量調整装置及び低圧側流量調整装置と、前記高圧側流量調整装置及び低圧側流量調整装置の開度を制御する制御装置とを備えた空気調和機であって、通電時に電力を蓄えて、外部からの電源が途絶えたときに貯えた電力を前記制御装置、前記高圧側流量調整装置及び低圧側流量調整装置に供給する蓄電装置が設けられ、前記制御装置は、外部からの電源が途絶えたと判断したときに、前記高圧側流量調整装置及び低圧側流量調整装置の少なくとも一方を開くことを特徴とする空気調和機。   A compressor, a condenser, a throttling device, and an evaporator are sequentially connected by a pipe to form a refrigerant circuit through which refrigerant flows, and a refrigerant amount adjusting unit that adjusts the amount of refrigerant flowing through the refrigerant circuit is provided in parallel with the throttling device. The refrigerant amount adjusting unit is configured to connect a receiver that collects refrigerant by using a pressure of refrigerant flowing from a high-pressure side pipe before and after the throttle device to a low-pressure side pipe, and a high-pressure side connection that connects the receiver and the high-pressure side pipe. A low-pressure side connecting pipe connecting the pipe and the receiver and the low-pressure side pipe, a high-pressure side flow adjusting device and a low-pressure side flow adjusting device respectively interposed in the high-pressure side connecting pipe and the low-pressure side connecting pipe, and the high pressure An air conditioner having a control device for controlling the opening degree of the side flow rate adjustment device and the low pressure side flow rate adjustment device, storing power when energized, and storing the power stored when the external power supply is cut off System And a power storage device that supplies power to the high-pressure side flow rate adjustment device and the low-pressure side flow rate adjustment device, and the control device determines that the power supply from the outside has been interrupted, the high-pressure side flow rate adjustment device and the low-pressure side flow rate An air conditioner characterized by opening at least one of the adjusting devices. 前記制御装置は、外部からの電源が途絶えたと判断したときに、少なくとも前記低圧側流量調整装置を開くことを特徴とする請求項2に記載の空気調和機。   3. The air conditioner according to claim 2, wherein the control device opens at least the low-pressure side flow rate adjusting device when it is determined that the power supply from the outside is cut off. 前記蓄電装置が、コンデンサであることを特徴とする請求項1〜3のいずれかに記載の空気調和機。   The air conditioner according to claim 1, wherein the power storage device is a capacitor.
JP2012273184A 2012-12-14 2012-12-14 Air conditioner Active JP6068121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273184A JP6068121B2 (en) 2012-12-14 2012-12-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273184A JP6068121B2 (en) 2012-12-14 2012-12-14 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014119153A true JP2014119153A (en) 2014-06-30
JP6068121B2 JP6068121B2 (en) 2017-01-25

Family

ID=51174144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273184A Active JP6068121B2 (en) 2012-12-14 2012-12-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP6068121B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508802A1 (en) * 2015-10-20 2019-07-10 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2020118375A (en) * 2019-01-24 2020-08-06 サンデン・リテールシステム株式会社 Cooling device
EP3693680A1 (en) 2015-10-08 2020-08-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2021210215A1 (en) * 2020-04-16 2021-10-21 ダイキン工業株式会社 Valve opening circuit and heat pump device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346348A (en) * 1986-08-12 1988-02-27 ダイキン工業株式会社 Electric expansion valve controller
JPS6457036A (en) * 1987-08-28 1989-03-03 Toshiba Corp Control device for air conditioner
JPH04270863A (en) * 1991-02-26 1992-09-28 Sanyo Electric Co Ltd Cooling device
JPH054220U (en) * 1991-04-12 1993-01-22 三菱電機株式会社 Air conditioner power reset means
JPH05126425A (en) * 1991-11-07 1993-05-21 Matsushita Refrig Co Ltd Apparatus for cooling and heating
JPH07159010A (en) * 1993-12-09 1995-06-20 Matsushita Electric Ind Co Ltd Air conditioner
JPH08313069A (en) * 1995-05-19 1996-11-29 Fujitsu General Ltd Air conditioning equipment
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2000146328A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating and air-conditioning device
JP2004324949A (en) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp Refrigerant circuit and refrigerating machine comprising the same
JP2009156531A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Refrigeration system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346348A (en) * 1986-08-12 1988-02-27 ダイキン工業株式会社 Electric expansion valve controller
JPS6457036A (en) * 1987-08-28 1989-03-03 Toshiba Corp Control device for air conditioner
JPH04270863A (en) * 1991-02-26 1992-09-28 Sanyo Electric Co Ltd Cooling device
JPH054220U (en) * 1991-04-12 1993-01-22 三菱電機株式会社 Air conditioner power reset means
JPH05126425A (en) * 1991-11-07 1993-05-21 Matsushita Refrig Co Ltd Apparatus for cooling and heating
JPH07159010A (en) * 1993-12-09 1995-06-20 Matsushita Electric Ind Co Ltd Air conditioner
JPH08313069A (en) * 1995-05-19 1996-11-29 Fujitsu General Ltd Air conditioning equipment
JPH11248266A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Air conditioner and condenser
JP2000146328A (en) * 1998-11-16 2000-05-26 Sanyo Electric Co Ltd Refrigerating and air-conditioning device
JP2004324949A (en) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp Refrigerant circuit and refrigerating machine comprising the same
JP2009156531A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Refrigeration system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563894B2 (en) 2015-08-28 2020-02-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3693680A1 (en) 2015-10-08 2020-08-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10767912B2 (en) 2015-10-08 2020-09-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP3508802A1 (en) * 2015-10-20 2019-07-10 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2020118375A (en) * 2019-01-24 2020-08-06 サンデン・リテールシステム株式会社 Cooling device
JP7257151B2 (en) 2019-01-24 2023-04-13 サンデン・リテールシステム株式会社 Cooling system
WO2021210215A1 (en) * 2020-04-16 2021-10-21 ダイキン工業株式会社 Valve opening circuit and heat pump device
JP2021169892A (en) * 2020-04-16 2021-10-28 ダイキン工業株式会社 Valve opening circuit and heat pump device
CN115413314A (en) * 2020-04-16 2022-11-29 大金工业株式会社 Valve opening circuit and heat pump device
EP4137757A4 (en) * 2020-04-16 2023-10-25 Daikin Industries, Ltd. Valve opening circuit and heat pump device
JP7440761B2 (en) 2020-04-16 2024-02-29 ダイキン工業株式会社 Open valve circuit and heat pump device

Also Published As

Publication number Publication date
JP6068121B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
US20160313041A1 (en) Diagnostics For Variable-Capacity Compressor Control Systems And Methods
KR950014469B1 (en) Multi-system air-conditioning machine in which outdoor unit isconnected to a plurality of indoor units
CN100529602C (en) Variable-capacity air conditioner
JP6068121B2 (en) Air conditioner
JP6148001B2 (en) Air conditioner
JP3322684B2 (en) Air conditioner
EP3115715B1 (en) Refrigeration cycle system
JP2922002B2 (en) Air conditioner
JP2007205615A (en) Air conditioner
JP6105270B2 (en) Air conditioner
KR101611315B1 (en) Air conditioner and operating method thereof
JP2014119154A (en) Air conditioner
CN107894058B (en) Air conditioner state control method and device
JP2014119150A (en) Air conditioner
KR101596680B1 (en) Air-conditioner and method
JP6251429B2 (en) Air conditioner
JP5962063B2 (en) Power supply control device for refrigeration equipment and refrigeration system
KR100667097B1 (en) Operation method for multi type air conditioner
JP6507598B2 (en) Air conditioning system
JP7086276B2 (en) Air conditioner
JPH0442665Y2 (en)
KR100575696B1 (en) Multi-air conditioner with emergency power supply part
JPH0828982A (en) Air conditioner
JP2014173739A (en) Air conditioner
JPH07120090A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150