KR100251567B1 - Cooling cycle and its control method - Google Patents

Cooling cycle and its control method Download PDF

Info

Publication number
KR100251567B1
KR100251567B1 KR1019970045004A KR19970045004A KR100251567B1 KR 100251567 B1 KR100251567 B1 KR 100251567B1 KR 1019970045004 A KR1019970045004 A KR 1019970045004A KR 19970045004 A KR19970045004 A KR 19970045004A KR 100251567 B1 KR100251567 B1 KR 100251567B1
Authority
KR
South Korea
Prior art keywords
refrigerant
evaporator
pressure
temperature
compressor
Prior art date
Application number
KR1019970045004A
Other languages
Korean (ko)
Other versions
KR19990021459A (en
Inventor
김완용
김광일
양훈철
김의준
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019970045004A priority Critical patent/KR100251567B1/en
Publication of KR19990021459A publication Critical patent/KR19990021459A/en
Application granted granted Critical
Publication of KR100251567B1 publication Critical patent/KR100251567B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE: A refrigeration cycle and method for controlling refrigeration cycle is provided to achieve an improved cooling rate and maintain the temperature of the freezing and refrigerating compartments constant. CONSTITUTION: A refrigeration cycle includes a compressor(1) for compressing the refrigerant into high temperature high pressure state, a condenser(12) for removing heat from the high temperature high pressure refrigerant, a refrigerant pressure reducing unit(13) for lowering high pressure of the refrigerant into evaporating pressure, and an evaporator(14) where the refrigerant having a reduced pressure is heat exchanged. The compressor, condenser, refrigerant pressure reducing unit and the evaporator are connected in serial through the refrigerant pipe, thereby forming a closed cycle. Cooling air circulation fans(15,16) are arranged at the evaporator side so as to promote heat exchange operation of the evaporator. The refrigerant pressure reducing unit controls, in steps, the evaporating pressure of the refrigerant in accordance with the refrigeration load.

Description

냉동사이클Refrigeration cycle

본 발명은 냉동사이클에 관한 것으로, 더욱 상세하게는 종래 모세관을 대신하여, 냉매의 감압정도를 가변할 수 있는 냉매감압팽장장치가 마련된 냉동사이클에 관한 것이다.The present invention relates to a refrigerating cycle, and more particularly, to a refrigerating cycle provided with a refrigerant decompression expansion device that can vary the degree of decompression of the refrigerant instead of the conventional capillary.

일반적으로 냉동사이클은 냉매를 매개체로 하여 압축, 응축, 팽창, 그리고 증발과정이 연속적으로 수행되는 것으로, 이를 적용하는 제품으로 냉장고, 공기조화기 등을 들수 있다In general, a refrigeration cycle is a process in which a compression, condensation, expansion, and evaporation process is continuously performed using a refrigerant as a medium, and a product to which the refrigeration cycle is applied is a refrigerator or an air conditioner.

이러한 냉동사이클은 도 1에 도시된 바와 같이, 냉매를 고온고압으로 압축하는 압축기(1), 고온고압의 냉매로부터 열을 제거, 즉 응축하는 응축기(2)가 마련되고 있고, 고압의 냉매를 증발압력으로 저하시키는 냉매 조절기로써 모세관(3)이 설치되어 있다. 그리고 모세관(3)을 지나 감압된 냉매가 기화하여 열을 흡수하는 증발기(4)가 마련되고, 증발기(4)를 통하여 고내와 열교환된 냉매는 다시 압축기(1)로 유입되도록 증발기(4)와 압축기(1)는 직렬연결되어 있다.As shown in FIG. 1, the refrigeration cycle includes a compressor 1 for compressing a refrigerant at a high temperature and high pressure, a condenser 2 for removing heat from the refrigerant at a high temperature and high pressure, that is, condensation, and evaporating the high pressure refrigerant. A capillary tube 3 is provided as a refrigerant regulator for reducing pressure. An evaporator 4 is provided to absorb heat by evaporating the refrigerant decompressed through the capillary tube 3, and the refrigerant exchanged with the inside of the chamber through the evaporator 4 flows back into the compressor 1 to the compressor 1. The compressor 1 is connected in series.

즉, 압축기(1), 응축기(2), 모세관(3), 그리고 증발기(4)는 냉매관을 통해 모두 직렬연결 되며, 폐회로를 형성한다.That is, the compressor 1, the condenser 2, the capillary tube 3, and the evaporator 4 are all connected in series through the refrigerant pipe, thereby forming a closed circuit.

이와 같이 구성된 냉동사이클은 압축기(1)가 구동하게 되면 냉매는 고온고압의 증기로 되어 응축기(2)로 보내지고, 응축기(2)에서는 냉매가 지니고 있는 열을 외부로 방출하여 냉매를 응축한다. 그리고 계속적으로 열이 제거된 고압의 냉매는 지름이 작고 길게 마련된 모세관(3)을 지나면서 감압되어 적절한 증발압력으로 된다. 그리고 증발기(4)에서는 모세관(3)에서 감압된 냉매가 유입, 기화되면서 외부의 열을 흡수하여 냉장고 등의 고내를 냉각하고, 열교환된 냉매는 다시 고압으로 압축되기 위해 압축기(1)로 순환되어 냉동사이클을 이루게된다.In the refrigeration cycle configured as described above, when the compressor 1 is driven, the refrigerant becomes high-temperature, high-pressure steam and is sent to the condenser 2, and the condenser 2 discharges heat contained in the refrigerant to the outside to condense the refrigerant. Then, the high-pressure refrigerant from which heat is continuously removed is decompressed as it passes through the capillary tube 3 having a small diameter and is evaporated to an appropriate evaporation pressure. In the evaporator 4, the refrigerant decompressed in the capillary tube 3 is absorbed and vaporized while cooling the inside of the refrigerator and the like, and the heat exchanged refrigerant is circulated to the compressor 1 so as to be compressed again to a high pressure. A refrigeration cycle is achieved.

이러한 폐회로로 구성된 일반적인 냉동사이클은 냉장고 등의 고내의 온도가 미리설정된 설정온도이하로 냉각되면 압축기(1) 및 냉기순환팬(5,6)의 오프로 냉매의 강제순환이 정지되도록 회로구성되어 있다.The general refrigeration cycle composed of such a closed circuit is configured to stop the forced circulation of the refrigerant by turning off the compressor 1 and the cold air circulation fans 5 and 6 when the temperature in the refrigerator or the like is cooled below a predetermined set temperature. .

그러나 종래 냉동사이클은 다음과 같은 문제점이 있었다.However, the conventional refrigeration cycle had the following problems.

즉, 초기 압축기 구동시 증발기 부근에 정체되어 있던 냉매가 압축기의 흡입작용으로 인하여 순간적으로 압력이 하강하게 되고, 냉동사이클상의 냉매는 저항기능으로 작용하는 모세관을 통해 서서히 증발기로 흐르게 된다. 따라서, 냉동사이클상의 압력변화에 대응한 냉매의 흐름은 원활하지 못하게 된다. 이에 따라, 냉매의 냉장고 고내의 부하에 상당하는 냉력을 충분히 얻지 못한 냉매가 증발기에서 냉기순환팬에 의하여 열교환됨으로서 냉매는 과열된 상태로 압축기에 순환되어 압축기의 온도를 과도하게 상승시키는 등의 문제점이 있었다.In other words, the refrigerant stagnated near the evaporator during the initial compressor operation immediately decreases the pressure due to the suction action of the compressor, and the refrigerant on the refrigeration cycle gradually flows to the evaporator through a capillary tube acting as a resistance function. Therefore, the flow of the refrigerant corresponding to the pressure change on the refrigeration cycle is not smooth. Accordingly, the refrigerant that does not sufficiently obtain the cooling force corresponding to the load in the refrigerator refrigerator of the refrigerant is heat-exchanged by the cold air circulation fan in the evaporator, so that the refrigerant is circulated in the compressor in an overheated state and the temperature of the compressor is excessively increased. there was.

또한, 초기구동시 냉매의 과열로 증발기에서 열교환력이 떨어져 고내의 설정온도까지 수렴되는데 많은 시간이 소요되며, 이로 인한 소비전력이 증대되는 등의 문제점이 있었다.In addition, since the heat exchange force in the evaporator due to the overheating of the refrigerant during the initial driving, it takes a lot of time to converge to the set temperature in the high temperature, resulting in increased power consumption.

또한, 초기구동시 압축기의 구동에 의한 증발기 부근의 냉매압력과 모세관의 압력차로 인하여 냉매의 흐름이 원활하지 않아 이를 개선하기 위하여 냉매를 과도하게 충전하는 등의 문제점이 있었다.In addition, due to the difference in the refrigerant pressure in the vicinity of the evaporator and the pressure difference between the capillary tube by the operation of the compressor during the initial drive, there is a problem such as excessive charging of the refrigerant to improve the flow of the refrigerant.

본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로, 그 목적은 구조물로서 냉매를 냉장실 기준증발온도로 1차감압시키고, 냉매감압팽창장치로서 냉매를 냉동실 기준증발온도로 2차감압시킬 수 있도록 한 냉동사이클을 제공하는데 있다.The present invention has been made to solve the above-mentioned problems, the object of the present invention is to reduce the refrigerant to the standard evaporation temperature of the refrigerator as a structure, and to reduce the refrigerant to the standard evaporation temperature of the freezer as the refrigerant pressure expansion device. To provide a refrigeration cycle.

본 발명의 다른 목적은 냉매감압팽창장치를 이용하여 냉매의 감압정도를 냉동부하에 따라 가변할 수 있도록 한 냉동사이클을 제공하는데 있다.Another object of the present invention is to provide a refrigeration cycle that can be used to vary the degree of decompression of the refrigerant according to the refrigeration load using the refrigerant pressure reduction expansion device.

도 1은 종래 냉동사이클,1 is a conventional refrigeration cycle,

도 2는 본 발명에 따른 냉동사이클,2 is a refrigeration cycle according to the present invention,

도 3은 종래 모세관에서의 감압상태를 보인 상태도,Figure 3 is a state diagram showing a reduced pressure state in a conventional capillary,

도 4a,b는 본 발명에 따른 냉동감압팽창장치의 동작 및 구성의 개략도,Figure 4a, b is a schematic diagram of the operation and configuration of the refrigeration decompression device according to the present invention,

도 5는 본 발명에 적용된 냉장고의 제어블록도,5 is a control block diagram of a refrigerator applied to the present invention;

도 6은 본 발명에 적용된 냉장고의 제어흐름도,6 is a control flow diagram of a refrigerator applied to the present invention,

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10:전원부 20:기능설정부 30:냉동실온도감지부10: power supply unit 20: function setting unit 30: freezer temperature detection unit

40:냉장실온도감지부 50:증발기온도감지부 60:냉동실냉기순환팬구동부40: fridge temperature detection unit 50: evaporator temperature detection unit 60: freezer compartment circulation fan drive unit

70:냉장실냉기순환팬구동부 80:감압팽창장치구동부70: refrigerating chamber cooling fan drive unit 80: pressure reduction expansion unit drive unit

90:압축기구동부90: compression mechanism moving part

이러한 기술적 과제를 달성하기 위한 본 발명의 구성은, 냉매를 압축하는 압축기, 냉매를 응축하는 응축기, 냉매를 감압하는 감압장치, 냉매가 기화하여 열을 흡수하는 증발기, 상기 압축기, 응축기, 감압장치, 증발기를 직렬연결하여 냉매의 흐름을 유도하는 냉매관이 마련된 냉동사이클에 있어서, 상기 감압장치는 냉매의 흐름을 제어하여 냉매의 감압을 가변시킬 수 있는 것을 특징으로 한다.The configuration of the present invention for achieving the technical problem, a compressor for compressing the refrigerant, a condenser for condensing the refrigerant, a pressure reducing device for reducing the refrigerant, an evaporator for vaporizing the refrigerant to absorb heat, the compressor, a condenser, a pressure reducing device, In the refrigeration cycle provided with a refrigerant pipe for inducing the flow of the refrigerant by connecting the evaporator in series, the decompression device is characterized in that the pressure of the refrigerant can be varied by controlling the flow of the refrigerant.

이하, 본 발명에 따른 하나의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명하고자 한다.Hereinafter, one preferred embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 냉동사이클, 도 3은 종래 모세관에서의 감압상태를 보인 상태도, 도 4는 본 발명에 따른 냉동감압팽창장치의 개략도, 도 5는 본 발명에 적용된 냉장고의 제어블록도, 도 6은 본 발명에 적용된 냉장고의 제어흐름도이다.2 is a refrigeration cycle according to the present invention, Figure 3 is a state diagram showing a decompression state in a conventional capillary tube, Figure 4 is a schematic diagram of a refrigeration pressure reduction apparatus according to the present invention, Figure 5 is a control block diagram of a refrigerator applied to the present invention 6 is a control flowchart of a refrigerator applied to the present invention.

먼저, 도 2를 참조하여 본 발명에 따른 냉동사이클을 설명하고자 한다.First, a refrigeration cycle according to the present invention will be described with reference to FIG. 2.

그 구성은 냉매를 고온고압으로 압축하는 압축기(11), 고온고압의 냉매로부터 열을 제거, 즉 응축하는 응축기(12)가 마련되고 있고, 고압의 냉매를 증발압력으로 저하시키는 냉매 조절기로써 냉매감압팽창장치(13)가 설치되고 있다. 그리고 냉매감압장치(13)를 지나 감압된 냉매가 기화하여 열을 흡수하는 증발기(14)가 마련되고, 증발기(14)를 통하여 고내와 열교환된 냉매는 다시 압축기(11)로 유입되도록 직렬 연결된다.The constitution includes a compressor 11 for compressing a refrigerant at a high temperature and high pressure, and a condenser 12 for removing heat from the refrigerant at a high temperature and high pressure, that is, condensation 12, and reducing the refrigerant as a refrigerant regulator for reducing the high pressure refrigerant to the evaporation pressure. An expansion device 13 is provided. An evaporator 14 is provided to absorb heat by evaporating the refrigerant decompressed through the refrigerant pressure reducing device 13, and the refrigerant exchanged with the inside of the chamber through the evaporator 14 is connected in series so as to flow into the compressor 11 again. .

즉, 압축기(11), 응축기(12), 냉매감압팽창장치(13), 그리고 증발기(14)는 냉매관을 통해 모두 직렬 연결되며, 폐회로를 형성한다. 그리고 증발기(14)의 열교환을 촉진시키기 위한 냉기순환팬(15,16)이 증발기(14)측에 더 마련된다.That is, the compressor 11, the condenser 12, the refrigerant pressure expansion device 13, and the evaporator 14 are all connected in series through the refrigerant pipe, and forms a closed circuit. Further, cold air circulation fans 15 and 16 for further promoting heat exchange of the evaporator 14 are further provided on the evaporator 14 side.

전술한 구성부중 본 발명의 특징적인 요소로 냉매감압팽창장치(13)가 마련되는데 이는 냉매의 증발압력을 냉동부하에 따라 단계적으로 제어하기 위함이다.Among the components described above, a characteristic element of the present invention is provided with a refrigerant pressure reducing device (13), which is to control the evaporation pressure of the refrigerant step by step according to the refrigeration load.

즉, 그 개념 및 구조를 도 3 과 도 4를 참조하여 설명하면 다음과 같다.That is, the concept and structure thereof will be described with reference to FIGS. 3 and 4 as follows.

먼저, 도 3은 종래 모세관에서의 일어나는 냉매의 감압상태 변화를 보인 것으로, 응축기(2)로부터 순환된 냉매는 모세관(3)을 통과하는 도중 감압되어 모세관(3)의 출구측에서는 냉동실 기준 증발온도(냉동실의 고내 설정온도를 -18도시 할때 냉동실을 충분히 냉각시킬 수 있는 증발기온도)를 만들수 있을 정도로 감압된다. 따라서, 모세관(3)의 전체길이(L)의 중간을 통과하는 냉매는 그 감압정도가 냉장실 기준 증발온도(냉장실의 온도를 3도시라 할때 냉장실을 충분히 냉각시킬 수 있는 증발기온도)를 만들수 있을 정도로 감압된다.First, FIG. 3 illustrates a change in the depressurization state of a refrigerant occurring in a conventional capillary tube. The refrigerant circulated from the condenser 2 is decompressed while passing through the capillary tube 3, and the freezing chamber reference evaporation temperature ( When the set temperature in the freezer compartment is -18 degrees, the pressure is reduced enough to make an evaporator temperature that can sufficiently cool the freezer compartment. Therefore, the refrigerant passing through the middle of the total length L of the capillary tube 3 can make the decompression degree based on the refrigerating chamber standard evaporation temperature (evaporator temperature which can sufficiently cool the refrigerating chamber when the temperature of the refrigerating chamber is 3 cities). It is decompressed to a degree.

그리고 도 4는 도 3을 참고로하여 본 발명에 따른 냉매감압팽창장치(13)의 구조 및 그 동작상태를 보인 것으로, 도 4a는 냉매감압팽창장치의 온상태를, 도 4b는 냉매감압팽창장치의 오프상태를 나타낸 것이다. 먼저, 냉매감압팽창장치(13)의 그 구성은 냉장실 기준 증발온도까지 1차 감압시키는 1차감압부(26)와 냉장실 기준 증발온도에서 냉동실 기준 증발온도까지 감압정도를 가변할 수 있는 2차감압부로 구성된다. 즉, 1차감압부(26)는 종래 모세관과 동일한 구조로 만들어지는데 그 길이는 종래 모세관에 비해 그 절반이다. 이는 도 3에서 전술한 바와 같이, 종래 모세관 길이(L)의 1/2만을 취함으로서 1차감압부(26)에서 냉장실 기준 증발온도에 해당하는 냉매의 감압정도를 얻게 된다. 그리고 2차감압부는 냉매관에 냉매의 흐름을 제어하기 위한 일종의 유로저항부인 밸브(28)를 채용하여, 냉동부하에 따라 냉매의 흐르는 양을 제어할 수 있도록 구성된다. 즉, 도 4a에 도시된 바와 같이, 밸브구동장치(27)를 온시켰을 경우 밸브(28)가 냉매관의 일부를 닫아 냉매의 흐름을 어렵게하여 냉매의 감압정도를 높이며, 도 4b에 도시한 바와 같이, 밸브구동장치(27)을 오프시켰을 경우 밸브(28)는 냉매관을 개방시켜 냉매의 흐름을 원활하게하여 냉매의 감압정도를 낮출수 있게 된다.And Figure 4 shows the structure and operation state of the refrigerant pressure expansion device 13 according to the present invention with reference to Figure 3, Figure 4a is a state of the refrigerant pressure expansion device, Figure 4b refrigerant pressure expansion device It shows off state of. First, the configuration of the refrigerant decompression expansion device 13 includes a primary decompression unit 26 for reducing the primary pressure to the refrigerating chamber reference evaporation temperature and a secondary decompression unit for varying the degree of decompression from the refrigerating chamber reference evaporation temperature to the freezing chamber reference evaporation temperature. It is composed. That is, the primary pressure reducing section 26 is made of the same structure as the conventional capillary tube, and its length is half that of the conventional capillary tube. As described above with reference to Figure 3, by taking only 1/2 of the conventional capillary length (L) to obtain a decompression degree of the refrigerant corresponding to the refrigeration chamber reference evaporation temperature in the primary decompression unit 26. In addition, the secondary decompression unit employs a valve 28, which is a kind of flow path resistance unit for controlling the flow of the refrigerant in the refrigerant pipe, and is configured to control the amount of refrigerant flowing in accordance with the refrigeration load. That is, as shown in FIG. 4A, when the valve driving device 27 is turned on, the valve 28 closes a part of the refrigerant pipe to make the refrigerant difficult to flow, thereby increasing the degree of decompression of the refrigerant, as shown in FIG. 4B. Likewise, when the valve driving device 27 is turned off, the valve 28 opens the refrigerant pipe to smooth the flow of the refrigerant, thereby lowering the decompression degree of the refrigerant.

그리고 냉매감압팽창장치의 밸브(28)는 그 구동원이 열, 전기, 모타, 정전압, 압전 등에 의하여 구동될 수 있으며, 또한 수동으로도 그 조절이 가능하다. 그리고 냉매감압팽창장치(13)의 온, 오프 동작에 있어서 밸브(28)의 열리고 닫힘은 서서히 이루어져 냉매의 급격한 감압변화를 피할 수 있도록 구성된다.The valve 28 of the refrigerant decompression expansion device may be driven by heat, electricity, motor, constant voltage, piezoelectric, or the like, and may be manually adjusted. In the on / off operation of the refrigerant pressure reducing expansion device 13, the valve 28 is opened and closed gradually so as to avoid a sudden change in pressure of the refrigerant.

그리고 도 5는 본 발명이 적용된 냉장고의 제어블록도로서, 그 구성은 다음과 같다. 먼저, 냉장고 시스템의 전체적인 제어에 관련된 동작을 수행하는 제어부와(100), 상기 제어부(100) 및 각 구동부의 구동전원을 공급하기 위한 전원부(10), 냉장고의 운전상태를 설정하기 위한 기능설정부(20), 냉동실 온도를 읽어들이기 위한 냉동실 온도 감지부(30), 냉장실 온도를 읽어들이기 위한 냉장실 온도 감지부(40), 증발기 온도를 읽어들이기 위한 증발기 온도 감지부(50), 냉동실 냉기순환 팬(15)을 구동하기 위한 팬구동부(60), 냉장실 냉기순환 팬(16)을 구동하기 위한 팬구동부(70), 냉매의 흐름을 제어하여 냉매의 감압을 가변시키기 위한 감압팽창장치구동부(80) 및 밸브(28), 그리고 냉매를 고온고압으로 압축하기 위한 압축기구동부(90) 및 압축기(COMP)(5) 등을 포함한다.And Figure 5 is a control block diagram of a refrigerator to which the present invention is applied, the configuration is as follows. First, a control unit 100 performing an operation related to overall control of the refrigerator system, a power supply unit 10 for supplying driving power to the control unit 100 and each driving unit, and a function setting unit for setting an operation state of the refrigerator 20, a freezer compartment temperature detector 30 for reading the freezer compartment temperature, a freezer compartment temperature detector 40 for reading the refrigerator compartment temperature, an evaporator temperature detector 50 for reading the evaporator temperature, a freezer cold air circulation fan Fan drive unit 60 for driving 15, the fan drive unit 70 for driving the cold air circulation fan 16, the decompression expansion device driver for controlling the flow of the refrigerant to change the pressure of the refrigerant 80 And a valve 28, and a compressor driving unit 90, a compressor (COMP) 5, etc. for compressing the refrigerant at high temperature and high pressure.

이하, 전술한 구성부 및 도 6을 참조하여 본 발명이 적용된 냉장고의 제어흐름을 설명하고자 한다.Hereinafter, a control flow of the refrigerator to which the present invention is applied will be described with reference to the above-described components and FIG. 6.

먼저, 냉장고에 전원이 공급된 상태에서 소비자가 기능설정부(20)를 통하여 운전모드 및 희망고내온도를 입력하면, 제어부(100)는 프로그램의 연산을 통하여 고내조건 및 외기조건, 그리고 각 부하의 조건을 판단한다. 즉, 냉동실 및 냉장실 온도감지부(30,40)로부터 냉동실 및 냉장실 고내온도를 감지하고, 증발기 온도 감지부(50)로부터 증발기(14)의 온도를 감지하고(S1), 각 부하단의 이상유무를 체크한다음 냉동사이클을 운전시키게 된다.First, when the consumer inputs the operation mode and the desired high internal temperature through the function setting unit 20 while the refrigerator is supplied with power, the control unit 100 calculates the internal and external conditions and the load of each load through the calculation of the program. Determine the condition. That is, the freezer compartment and the refrigerating compartment temperature sensing unit 30, 40 detects the freezer compartment and the refrigerator compartment internal temperature, the evaporator temperature sensing unit 50 detects the temperature of the evaporator 14 (S1), each load stage abnormality After checking, the refrigeration cycle will run.

즉, 제어부(100)는 냉장실 고내온도와 냉장실 설정온도를 비교하여 냉장실 고내온도가 더 높다고 판단(S2)되면 압축기(11)를 운전시키며(S3), 냉장실 설정온도가 더 높다고 판단(S2)되면 압축기(11)를 운전시키지 않은채 단계 S6이하를 수행한다.That is, the control unit 100 compares the refrigerator compartment internal temperature and the refrigerator compartment set temperature, and if it is determined that the refrigerator compartment internal temperature is higher (S2), operates the compressor 11 (S3) and determines that the refrigerator compartment set temperature is higher (S2). Step S6 or below is performed without the compressor 11 being operated.

단계 S3에서 압축기(11)가 운전되면 제어부(100)는 냉장실 고내온도와 냉장실 증발기온도를 비교하여 냉장실 고내온도가 더 높다고 판단(S4)되면 냉장실 냉기순환팬(16)을 운전시키며(S5), 냉장실 증발기 온도가 더 높다고 판단(S4)되면 냉장실 팬(16)을 정지상태로 유지시킨다(S14). 이는 냉장실 증발기의 온도가 더 높을 때 열교환을 시킬 경우 오히려 열교환이 손실되기 때문이다.When the compressor 11 is operated in step S3, the controller 100 compares the refrigerator compartment internal temperature and the refrigerator compartment evaporator temperature to determine that the refrigerator compartment internal temperature is higher (S4) and operates the refrigerator compartment cold air circulation fan 16 (S5). When it is determined that the refrigerating chamber evaporator temperature is higher (S4), the refrigerating compartment fan 16 is kept at a stop state (S14). This is because heat exchange is lost when heat exchange occurs when the temperature of the refrigerating chamber evaporator is higher.

단계 S5에서 냉장실 냉기순환팬이 운전되면, 제어부(100)는 냉동실 고내온도와 냉동실 설정온도를 비교하여 냉동실 고내온도가 더 높다고 판단(S6)되면 압축기(11)를 운전시킨다. 이때 단계 S3에서 압축기(11)를 운전시킨 경우 계속적으로 압축기(11)의 운전상태를 유지시킨다(S7).When the refrigerating compartment cold air circulation fan is operated in step S5, the controller 100 compares the freezer compartment internal temperature and the freezer compartment set temperature to determine that the freezer compartment internal temperature is higher (S6) to operate the compressor 11. In this case, when the compressor 11 is operated in step S3, the operating state of the compressor 11 is continuously maintained (S7).

단계 S7에서 압축기(11)가 운전되면 제어부(100)는 미리 설정된 냉장실 기준 증발온도와 냉장실 증발기 온도를 비교하여 냉장실 기준 증발온도가 더 높다고 판단되면 감압팽창장치 구동부(80)를 제어하여 밸브(28)를 온시키며(S9), 냉장실 증발기온도가 더 높다고 판단된 경우 밸브(28)의 오프상태를 유지시킨다. 이는 냉매의 감압을 가변시키기 위한 것으로, 냉장실 기준 증발온도가 냉장실 증발기온도보다 더 낮을 경우 냉장실을 충분히 냉각시킬 수 있게 되므로, 밸브(28)를 온시켜 냉매의 흐름을 어렵게 하므로서 냉매를 더욱감압시켜 냉동실에서의 열교환을 극대화시키기 위한 것이며, 밸브(28)의 오프를 유지시키는 경우는 냉장실 기준 증발온도가 냉장실 증발기온도보다 더 높아 냉장실을 충분히 냉각시킬 수 없으므로, 냉매의 흐름을 원활히 하여 열교환율을 높여주기 위함이다.When the compressor 11 is operated in step S7, the controller 100 compares the preset refrigerator compartment reference evaporation temperature with the refrigerator compartment evaporator temperature, and when it is determined that the refrigerator compartment reference evaporation temperature is higher, the controller 100 controls the pressure reducing device driver 80 to control the valve 28. ) Is turned on (S9), and if it is determined that the refrigerating chamber evaporator temperature is higher, the valve 28 is kept off. This is for varying the depressurization of the refrigerant, and when the refrigerator compartment reference evaporation temperature is lower than the refrigerator compartment evaporator temperature, the refrigerator compartment can be sufficiently cooled, thereby further reducing the refrigerant by turning on the valve 28 and making the refrigerant difficult to flow. In order to maximize the heat exchange in the case, and the valve 28 is kept off, the refrigerating chamber standard evaporation temperature is higher than the refrigerating chamber evaporator temperature, so that the refrigerating chamber cannot be sufficiently cooled, thereby increasing the heat exchange rate by smoothing the flow of the refrigerant. For sake.

단계 S9에서 밸브(28)가 온되면 제어부(100)는 냉동실 고내온도와 냉동실 증발기 온도를 비교하여 냉동실 고내온도가 더 높다고 판단(S10)되면 냉동실 냉기순환팬(15)을 운전시키며(S11), 냉동실 증발기온도가 더 높다고 판단되면 냉동실 냉기순환팬을 정지상태로 유지시킨다(S15). 이는 냉동실 증발기의 온도가 더 높음으로 해서 열교환을 시킬경우 오히려 열교환의 손실을 가져오게 되기 때문이다.When the valve 28 is turned on in step S9, the control unit 100 compares the freezer compartment internal temperature with the freezer compartment evaporator temperature and determines that the freezer compartment internal temperature is higher (S10) to operate the freezer compartment cold air circulation fan 15 (S11). When it is determined that the freezer compartment evaporator temperature is higher, the freezer compartment cold air circulation fan is kept at a stop state (S15). This is because when the heat exchange is performed due to the higher temperature of the freezer compartment evaporator, a loss of heat exchange is caused.

단계 S11에서 냉동실 순환팬(15)이 운전되면 제어부(100)는 냉동실 고내온도와 냉동실 설정온도를 비교하고, 그리고 냉장실 고내온도와 냉장실 설정온도를 비교하여, 그 결과가 모두 고내 설정온도보다 더 높다고 판단되면, 계속적인 압축기(11)의 운전을 수행하고, 고내 설정온도보다 모두 더 낮다고 판단되면 압축기(11) 및 냉기순환팬(15,16)의 운전을 정지시키고(S13), 제어흐름은 초기단계(S1)로 리턴되어 상기 단계를 계속적으로 반복 수행한다.When the freezer compartment circulation fan 15 is operated in step S11, the control unit 100 compares the freezer compartment internal temperature and the freezer compartment set temperature, and compares the refrigerator compartment internal temperature and the refrigerator compartment set temperature, and the results are all higher than the internal preset temperature. If it is determined, the operation of the compressor 11 is continuously performed, and if it is determined that all of them are lower than the set temperature in the refrigerator, the operation of the compressor 11 and the cold air circulation fans 15 and 16 are stopped (S13), and the control flow is initialized. Returning to step S1, the step is repeated repeatedly.

이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 1,2차 감압단계를 두고 또한 냉매의 감압을 가변할 수 있는 장치를 둠으로서, 부하의 증감에 따른 능동적인 대응이 가능하게 된다. 따라서, 냉각속도 개선 및 냉동실 및 냉장실 고내온도의 정온유지가 가능하며, 압축기의 초기운전시 냉매의 급격한 흐름을 적극적으로 대처할 수 있어 냉매의 충전량을 상대적으로 감소시킬 수 있는 뛰어난 효과를 제공한다.As described in detail above, according to the present invention, by providing a device capable of varying the depressurization of the refrigerant after the first and second depressurization steps, it is possible to actively respond to the increase and decrease of the load. Therefore, it is possible to improve the cooling rate and maintain the constant temperature of the freezer compartment and the refrigerating compartment, and to cope with the rapid flow of the refrigerant during the initial operation of the compressor to provide an excellent effect of relatively reducing the amount of refrigerant charged.

Claims (4)

냉매를 압축하는 압축기, 냉매를 응축하는 응축기, 냉매를 감압하는 감압장치, 냉매가 기화하여 열을 흡수하는 증발기, 상기 압축기, 응축기, 감압장치, 증발기를 직렬연결하여 냉매의 흐름을 유도하는 냉매관이 마련된 냉동사이클에 있어서,A compressor that compresses the refrigerant, a condenser that condenses the refrigerant, a decompression device that depressurizes the refrigerant, an evaporator that vaporizes the refrigerant to absorb heat, and a refrigerant pipe that induces the refrigerant flow by connecting the compressor, the condenser, the decompression device, and the evaporator in series. In this provided refrigeration cycle, 상기 감압장치는 냉매의 흐름을 제어하여 냉매의 감압을 가변시킬 수 있는 것을 특징으로 하는 냉동사이클.The decompression device is a refrigeration cycle, characterized in that for controlling the flow of the refrigerant to vary the pressure of the refrigerant. 제 1항에 있어서, 상기 감압장치는 냉매관의 내부직경을 작게하여 냉매의 흐름을 어렵게 하여 감압시키는 1차감압부와, 냉매관의 유로의 가변시키기 위한 수단이 마련된 2차감압부로 구성된 것을 특징으로 하는 냉동사이클.2. The pressure reducing device of claim 1, wherein the pressure reducing device comprises a first pressure reducing part which reduces the internal diameter of the refrigerant pipe to make the refrigerant difficult to flow, and a second pressure reducing part provided with means for varying the flow path of the refrigerant pipe. Refrigeration cycle. 제 2항에 있어서, 상기 2차감압부는 냉매관의 유로를 가변시킴에 있어, 냉매의 감압이 서서히 이루어질 수 있도록 소정시간에 걸쳐 구동되는 것을 특징으로 하는 냉동사이클.The refrigerating cycle according to claim 2, wherein the secondary decompression unit is driven over a predetermined time so that the depressurization of the refrigerant can be made gradually in varying the flow path of the refrigerant pipe. 제 1항에 있어서, 상기 1차감압부의 냉매감압정도는 냉장실의 온도를 충분히 냉각시킬 수 있도록 감압되며, 상기 2차감압부의 온동작에 의한 냉매감압정도는 냉동실의 온도를 충분히 냉각시킬 수 있도록 감압됨을 특징으로 하는 냉동사이클.The method of claim 1, wherein the refrigerant decompression degree of the primary decompression unit is reduced to sufficiently cool the temperature of the refrigerating chamber, and the refrigerant decompression degree of the on-reduction operation of the secondary decompression unit is depressurized to sufficiently cool the temperature of the freezing chamber. Refrigeration cycle characterized in that.
KR1019970045004A 1997-08-30 1997-08-30 Cooling cycle and its control method KR100251567B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970045004A KR100251567B1 (en) 1997-08-30 1997-08-30 Cooling cycle and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970045004A KR100251567B1 (en) 1997-08-30 1997-08-30 Cooling cycle and its control method

Publications (2)

Publication Number Publication Date
KR19990021459A KR19990021459A (en) 1999-03-25
KR100251567B1 true KR100251567B1 (en) 2000-04-15

Family

ID=19520471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970045004A KR100251567B1 (en) 1997-08-30 1997-08-30 Cooling cycle and its control method

Country Status (1)

Country Link
KR (1) KR100251567B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705766B1 (en) * 2005-12-13 2007-04-09 주식회사 대우일렉트로닉스 Quick freezing system for refrigerator

Also Published As

Publication number Publication date
KR19990021459A (en) 1999-03-25

Similar Documents

Publication Publication Date Title
JP3948919B2 (en) Method and apparatus for controlling at least one compressor of a cooling system with a variable speed drive
JP3192130B2 (en) Operating method of refrigeration container and refrigeration system
US20140208783A1 (en) Refrigerator
US4966010A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
EP2869009B1 (en) Refrigerator and method of controlling the same
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
KR20060024438A (en) Control of refrigeration system
WO2008002048A1 (en) High efficiency refrigeration system for saving energy and control method the same
KR20130088914A (en) Refrigerator and control method of the same
US6807817B2 (en) Method for operating compressors of air conditioner
US5722248A (en) Operating control circuit for a refrigerator having high efficiency multi-evaporator cycle (h.m. cycle)
KR20110072441A (en) Refrigerator and method for controlling operation thereof
KR20150075529A (en) Cooling apparatus of refrigerator and control method thereof
JP2000146328A (en) Refrigerating and air-conditioning device
KR100751109B1 (en) Refrigerator and controlling method thereof
JP2000230766A (en) Cooling cycle and refrigerator
KR100251567B1 (en) Cooling cycle and its control method
AU2020360865B2 (en) A heat pump
JPH11201563A (en) Cooling device
JP2002071228A (en) Control device for refrigerating cycle
KR100400470B1 (en) Fan Control Method of Air Conditioner
JPH1038421A (en) Refrigerating cycle
KR102211202B1 (en) A refrigerator and a control method the same
KR100366450B1 (en) Method and device for controlling of stepping motor valve
KR100196320B1 (en) Instrument and method for controlling in bus air-conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071221

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee