JP2007183086A - Supercritical refrigeration cycle - Google Patents

Supercritical refrigeration cycle Download PDF

Info

Publication number
JP2007183086A
JP2007183086A JP2006158660A JP2006158660A JP2007183086A JP 2007183086 A JP2007183086 A JP 2007183086A JP 2006158660 A JP2006158660 A JP 2006158660A JP 2006158660 A JP2006158660 A JP 2006158660A JP 2007183086 A JP2007183086 A JP 2007183086A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006158660A
Other languages
Japanese (ja)
Other versions
JP4661696B2 (en
Inventor
Takekazu Kano
武和 加納
Shinji Kakehashi
伸治 梯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006158660A priority Critical patent/JP4661696B2/en
Priority to DE102006057584.9A priority patent/DE102006057584B4/en
Publication of JP2007183086A publication Critical patent/JP2007183086A/en
Application granted granted Critical
Publication of JP4661696B2 publication Critical patent/JP4661696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical refrigeration cycle that can appropriately suppress an abnormal rise in compressor discharge refrigerant temperature and an abnormal rise in high pressure side pressure without using a variable displacement compressor. <P>SOLUTION: A compressor and a pressure reducing means of the supercritical refrigeration cycle comprise a fixed displacement compressor 1 and an electric expansion valve 4 with electrically controllable travel, respectively. A bypass passage 9 is defined to interconnect a high pressure side refrigerant passage and a low pressure side refrigerant passage, and a mechanical pressure-sensitive valve 9a configured to open when the pressure of the high pressure side refrigerant passage rises to a predetermined pressure set in advance is disposed in the bypass passage 9. When a discharge refrigerant temperature of the compressor 1 rises to a predetermined high temperature, a control device 10 controls the electric expansion valve 4 to increase the travel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルに関するもので、車両用として好適なものである。   The present invention relates to a supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant, and is suitable for vehicles.

従来、特許文献1には、この種の超臨界冷凍サイクルにおいて、減圧手段をなす圧力制御弁の開度を、高圧側の冷媒圧力が目標高圧圧力となるように制御するとともに、この圧力制御弁と並列に逃がし弁を接続し、高圧側の冷媒圧力が所定値以上に上昇すると逃がし弁が開弁して高圧側の冷媒圧力の過度な上昇を防ぐことが記載されている。   Conventionally, in this type of supercritical refrigeration cycle, Patent Literature 1 controls the opening degree of a pressure control valve that constitutes a decompression unit so that the refrigerant pressure on the high pressure side becomes a target high pressure, and this pressure control valve. And a relief valve is connected in parallel, and when the refrigerant pressure on the high pressure side rises above a predetermined value, the relief valve opens to prevent excessive rise of the refrigerant pressure on the high pressure side.

また、特許文献2には、超臨界冷凍サイクルにおいて可変容量型圧縮機を用いて、サイクルの能力制御(冷媒流量制御)を行うことが記載されている。   Patent Document 2 describes that cycle capacity control (refrigerant flow rate control) is performed using a variable capacity compressor in a supercritical refrigeration cycle.

ところで、超臨界冷凍サイクルに用いられる冷媒としては、CO2が代表的であり、このCO2冷媒はフロン系の冷媒(R134a等)によるオゾン層破壊という不具合を解消できるが、その一方、CO2冷媒を用いた超臨界冷凍サイクルでは、フロン系冷媒を用いた通常の冷凍サイクルに比較して冷媒の物性の違いにより理論効率が低い。 Meanwhile, as the refrigerant used in the supercritical refrigeration cycle, CO 2 is typically, although the CO 2 refrigerant can be solved a problem that ozone depletion by the refrigerant (R134a and the like) of the fluorocarbon, whereas, CO 2 In a supercritical refrigeration cycle using a refrigerant, theoretical efficiency is low due to a difference in physical properties of the refrigerant as compared with a normal refrigeration cycle using a chlorofluorocarbon refrigerant.

そこで、効率向上のために内部熱交換器を設け、低圧側の圧縮機吸入冷媒と高圧側の放熱器出口冷媒との間で熱交換を行って、蒸発器の出入口間の冷媒エンタルピ差を増加させることが知られている(例えば、特許文献3参照)。
特開平11−248272号公報 特開平8−110104号公報 特開2003−74996号公報
Therefore, an internal heat exchanger is installed to improve efficiency, and heat exchange is performed between the low-pressure side compressor suction refrigerant and the high-pressure side radiator outlet refrigerant to increase the refrigerant enthalpy difference between the inlet and outlet of the evaporator. It is known to allow (see, for example, Patent Document 3).
JP-A-11-248272 JP-A-8-110104 JP 2003-74996 A

しかし、超臨界冷凍サイクルに内部熱交換器を設けると、圧縮機吸入冷媒が放熱器出口冷媒により加熱され、過熱度を持つため、圧縮機吐出冷媒の温度が過度に上昇するという問題が生じる。   However, when an internal heat exchanger is provided in the supercritical refrigeration cycle, the compressor intake refrigerant is heated by the radiator outlet refrigerant and has a degree of superheat, so that the temperature of the compressor discharge refrigerant rises excessively.

特許文献1〜3のいずれにも、この吐出冷媒温度の異常上昇を抑制するための対策が記載されていないが、特許文献2のように、可変容量型圧縮機を用いる超臨界冷凍サイクルでは、吐出冷媒温度が圧縮機限界温度を超えると、この温度上昇を判定して可変容量型圧縮機の容量を強制的に減少させ、それにより、高圧側圧力を低下して吐出冷媒温度を低下させることが考えられる。   Although none of Patent Documents 1 to 3 describes a measure for suppressing the abnormal increase in the discharged refrigerant temperature, as in Patent Document 2, in a supercritical refrigeration cycle using a variable capacity compressor, When the discharge refrigerant temperature exceeds the compressor limit temperature, this temperature increase is judged and the capacity of the variable displacement compressor is forcibly reduced, thereby lowering the high-pressure side pressure and lowering the discharge refrigerant temperature. Can be considered.

しかし、CO2冷媒を用いた超臨界冷凍サイクルでは高圧側圧力がフロン系冷媒を用いた通常の冷凍サイクルに比較して8倍程度に大幅に上昇するので、圧縮機として厚肉部材を使用した高耐圧構造にする必要があり、そのため、圧縮機の体格の大型化、重量増加が不可避である。   However, in the supercritical refrigeration cycle using a CO2 refrigerant, the high-pressure side pressure is significantly increased by about 8 times compared to a normal refrigeration cycle using a chlorofluorocarbon refrigerant. It is necessary to make a pressure-resistant structure. Therefore, an increase in the size and weight of the compressor is inevitable.

これに加え、可変容量型圧縮機を用いると、容量可変機構の追加によって圧縮機体格がより一層大型化し、また、重量も増加する。この結果、軽自動車や小型車のように、搭載スペースの制約が大きい車両では、圧縮機の搭載性確保が困難となる。   In addition, when a variable displacement compressor is used, the size of the compressor is further increased by adding a variable displacement mechanism, and the weight is also increased. As a result, it becomes difficult to secure the mountability of the compressor in a vehicle having a large mounting space restriction, such as a light vehicle or a small vehicle.

本発明は、上記点に鑑み、可変容量型圧縮機を使用せずに、圧縮機吐出冷媒温度の異常上昇および高圧側圧力の異常上昇を適切に抑制できる超臨界冷凍サイクルを提供することを目的とする。   An object of the present invention is to provide a supercritical refrigeration cycle that can appropriately suppress an abnormal rise in compressor discharge refrigerant temperature and an abnormal rise in high-pressure side pressure without using a variable capacity compressor in view of the above points. And

上記目的を達成するため、本発明では、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルにおいて、圧縮機を吐出容量が一定の固定容量型圧縮機(1)で構成し、減圧手段を、開度が電気的に制御可能な電気式膨張弁(4)で構成し、
圧縮機(1)の吐出側から電気式膨張弁(4)の入口側に至る高圧側冷媒通路と、電気式膨張弁(4)の出口側から圧縮機(1)の吸入側に至る低圧側冷媒通路とを連通するバイパス通路(9)と、
バイパス通路(9)に設けられ、高圧側冷媒通路の圧力が予め設定された所定の圧力以上に上昇すると開弁する機械式圧力応動弁(9a)と、
圧縮機(1)の吐出冷媒温度を検出する温度検出手段(11)と、
温度検出手段(11)の検出信号が入力され、電気式膨張弁(4)を制御する制御手段(10)とを備え、
制御手段(10)は、吐出冷媒温度が所定の高温以上に上昇すると電気式膨張弁(4)をその開度が増加するように制御することを第1の特徴としている。
In order to achieve the above object, in the present invention, in the supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant, the compressor is constituted by a fixed capacity compressor (1) having a constant discharge capacity, The decompression means is constituted by an electric expansion valve (4) whose opening degree can be electrically controlled,
A high-pressure side refrigerant passage from the discharge side of the compressor (1) to the inlet side of the electric expansion valve (4), and a low-pressure side from the outlet side of the electric expansion valve (4) to the suction side of the compressor (1) A bypass passage (9) communicating with the refrigerant passage;
A mechanical pressure responsive valve (9a) provided in the bypass passage (9) and opened when the pressure of the high-pressure side refrigerant passage rises above a predetermined pressure set in advance;
Temperature detecting means (11) for detecting the refrigerant temperature discharged from the compressor (1);
A detection signal from the temperature detection means (11) is input, and a control means (10) for controlling the electric expansion valve (4) is provided.
The first feature of the control means (10) is that the electrical expansion valve (4) is controlled to increase its opening when the discharged refrigerant temperature rises above a predetermined high temperature.

これによると、電気式膨張弁(4)の開度制御により圧縮機(1)の吐出冷媒温度の異常上昇を回避できる。   According to this, it is possible to avoid an abnormal increase in the refrigerant temperature discharged from the compressor (1) by controlling the opening of the electric expansion valve (4).

また、高圧側冷媒圧力はサイクル運転条件の変動に対して冷媒温度の変動よりも速いという特性があるが、機械式圧力応動弁(9a)は、圧力変化に直接応答して開閉動作を行うから、電気的圧力センサを使用する場合に比較して高圧側冷媒圧力の変動に対する開閉動作の応答性が高い。そのため、機械式圧力応動弁(9a)は高圧側冷媒圧力の異常上昇に対して迅速に開弁動作を行って、高圧側冷媒圧力の異常上昇を回避できる。   In addition, the high pressure side refrigerant pressure has a characteristic that it is faster than the fluctuation of the refrigerant temperature with respect to the fluctuation of the cycle operation condition, but the mechanical pressure responsive valve (9a) opens and closes directly in response to the pressure change. Compared with the case where an electric pressure sensor is used, the responsiveness of the opening / closing operation to the fluctuation of the high-pressure side refrigerant pressure is high. Therefore, the mechanical pressure responsive valve (9a) can quickly open the valve in response to an abnormal increase in the high-pressure side refrigerant pressure, thereby avoiding an abnormal increase in the high-pressure side refrigerant pressure.

従って、超臨界冷凍サイクルの圧縮機として固定容量型圧縮機(1)を用いても、サイクル保護制御を適切に実行できる。   Therefore, even when the fixed capacity compressor (1) is used as the compressor of the supercritical refrigeration cycle, the cycle protection control can be appropriately executed.

そして、固定容量型圧縮機(1)の使用により圧縮機体格の小型化、重量低減を図ることができ、圧縮機(1)の車両等への搭載性確保が容易となる。   Further, the use of the fixed capacity compressor (1) can reduce the size of the compressor and reduce the weight of the compressor (1), and the ease of mounting the compressor (1) on a vehicle or the like is facilitated.

上記第1の特徴では、機械式圧力応動弁(9a)を具体的には電気式膨張弁(4)と並列接続するようになっている。   In the first feature, the mechanical pressure responsive valve (9a) is specifically connected in parallel with the electric expansion valve (4).

また、本発明では、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルにおいて、圧縮機を吐出容量が一定の固定容量型圧縮機(1)で構成し、
減圧手段を、高圧冷媒を減圧膨張させる絞り通路(43)と、絞り通路(43)の開度を調整する弁体(44)と、電磁吸引力を発生して弁体(44)の位置を直線的に変位させる電磁コイル(44)とを有するリニアソレノイド型電気式膨張弁(4)で構成し、
絞り通路(43)上流側の高圧冷媒と絞り通路(43)下流側の低圧冷媒との差圧に応じた力が弁体(44)に対して開弁方向の力として作用するようになっており、
更に、圧縮機(1)の吐出冷媒温度を検出する温度検出手段(11)と、
温度検出手段(11)の検出信号が入力され、リニアソレノイド型電気式膨張弁(4)を制御する制御手段(10)とを備え、
制御手段(10)は、吐出冷媒温度が所定の高温以上に上昇するとリニアソレノイド型電気式膨張弁(4)をその開度が増加するように制御することを第2の特徴としている。
In the present invention, in the supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant, the compressor is configured with a fixed capacity compressor (1) having a constant discharge capacity,
The decompression means includes a throttle passage (43) that decompresses and expands the high-pressure refrigerant, a valve body (44) that adjusts the opening of the throttle passage (43), and generates an electromagnetic attraction force to position the valve body (44). A linear solenoid type electric expansion valve (4) having a linearly displaced electromagnetic coil (44);
A force corresponding to the differential pressure between the high-pressure refrigerant on the upstream side of the throttle passage (43) and the low-pressure refrigerant on the downstream side of the throttle passage (43) acts as a force in the valve opening direction on the valve body (44). And
Furthermore, temperature detection means (11) for detecting the refrigerant discharge temperature of the compressor (1),
A control means (10) for receiving a detection signal of the temperature detection means (11) and controlling the linear solenoid type electric expansion valve (4);
The control means (10) has a second feature that the linear solenoid type electric expansion valve (4) is controlled to increase its opening degree when the discharged refrigerant temperature rises above a predetermined high temperature.

本発明の第2の特徴によると、リニアソレノイド型電気式膨張弁(4)自身に上記第1の特徴における機械式圧力応動弁(9a)の役割を兼務させることができる。   According to the second feature of the present invention, the linear solenoid type electric expansion valve (4) itself can serve as the mechanical pressure responsive valve (9a) in the first feature.

つまり、第2の特徴によるリニアソレノイド型電気式膨張弁(4)は絞り通路(43)上流側の高圧冷媒と絞り通路(43)下流側の低圧冷媒との差圧に応じた力が弁体(44)に対して開弁方向の力として作用するようになっているから、高圧側冷媒圧力が上昇すると、上記差圧に応じた力が増大して弁体(44)を開弁方向に変位させることができる。ここで、弁体(44)の開弁方向への変位は、高圧側冷媒圧力の上昇に直接応答して迅速に行われるから、高圧側冷媒圧力の上昇に伴って絞り通路(43)の開度を迅速に増加して高圧側冷媒圧力の異常上昇を回避できる。   That is, the linear solenoid type electric expansion valve (4) according to the second feature has a valve body that has a force corresponding to the differential pressure between the high-pressure refrigerant upstream of the throttle passage (43) and the low-pressure refrigerant downstream of the throttle passage (43). Since it acts as a force in the valve opening direction on (44), when the high-pressure side refrigerant pressure rises, the force corresponding to the differential pressure increases to bring the valve element (44) in the valve opening direction. Can be displaced. Here, the displacement of the valve body (44) in the valve opening direction is performed quickly in direct response to the increase in the high-pressure side refrigerant pressure, so that the throttle passage (43) opens as the high-pressure side refrigerant pressure increases. The degree can be increased rapidly to avoid an abnormal increase in the high-pressure side refrigerant pressure.

従って、本発明の第2の特徴によると、上記第1の特徴における機械式圧力応動弁(9a)およびバイパス通路(9)を必要とせずに、上記第1の特徴と同等の作用効果を発揮できる。   Therefore, according to the second feature of the present invention, the mechanical pressure responsive valve (9a) and the bypass passage (9) in the first feature are not required, and the same effect as the first feature is exhibited. it can.

上記第2の特徴において、弁体(44)は具体的には絞り通路(43)の下流側に配置され、絞り通路(43)を通過する冷媒流れの動圧が、前記差圧に応じた力として弁体(44)に作用するようになっている。   In the second feature, the valve body (44) is specifically disposed downstream of the throttle passage (43), and the dynamic pressure of the refrigerant flow passing through the throttle passage (43) corresponds to the differential pressure. It acts on the valve body (44) as a force.

また、上記第2の特徴において、リニアソレノイド型電気式膨張弁(4)は、具体的には電磁コイル(44)の電磁吸引力が増加することにより弁体(44)が閉弁方向に変位するようになっている。   Further, in the second feature, the linear solenoid type electric expansion valve (4), specifically, the valve element (44) is displaced in the valve closing direction by increasing the electromagnetic attractive force of the electromagnetic coil (44). It is supposed to be.

これによると、電磁コイル(44)の通電回路の断線故障発生時等には、電磁コイル(44)の電磁吸引力消滅により弁体(44)が開弁方向に変位するので、電気式膨張弁(4)の開弁状態を確保できる。よって、断線故障発生時等にも電気式膨張弁(4)の閉弁による異常高圧発生等の不具合を回避できる。   According to this, when the disconnection failure of the energization circuit of the electromagnetic coil (44) occurs, the valve element (44) is displaced in the valve opening direction due to disappearance of the electromagnetic attractive force of the electromagnetic coil (44). The open state of (4) can be secured. Therefore, it is possible to avoid problems such as occurrence of abnormal high pressure due to closing of the electric expansion valve (4) even when a disconnection failure occurs.

上記第1、第2の特徴において、具体的には、吐出冷媒温度が所定の高温に上昇したとき、吐出冷媒温度が一定温度低下するまで、電気式膨張弁(4)の開度を微小開度ずつ増加するようにしている。   In the first and second features described above, specifically, when the discharge refrigerant temperature rises to a predetermined high temperature, the opening of the electric expansion valve (4) is slightly opened until the discharge refrigerant temperature drops to a certain temperature. I try to increase it by degrees.

このような膨張弁開度を微小開度ずつ増加する制御によって、吐出冷媒温度が大きく変動するハンチング現象を回避できる。   By controlling such an opening degree of the expansion valve to be increased by a minute opening degree, a hunting phenomenon in which the discharge refrigerant temperature fluctuates greatly can be avoided.

また、上記第1、第2の特徴において、具体的には、吐出冷媒温度が所定の高温まで上昇していない通常運転時には、実際の高圧側冷媒圧力が放熱器(2)の出口冷媒温度に基づいて決定される目標高圧圧力となるように電気式膨張弁(4)の開度を制御する。   In the first and second features described above, more specifically, during normal operation in which the discharged refrigerant temperature does not rise to a predetermined high temperature, the actual high-pressure side refrigerant pressure becomes equal to the outlet refrigerant temperature of the radiator (2). The opening degree of the electric expansion valve (4) is controlled so as to be a target high pressure determined based on this.

なお、上記各手段および特許請求の範囲の各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means and each means of a claim shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は第1実施形態を示す車両空調用冷凍サイクルの構成図であって、この冷凍サイクルは、冷媒として高圧圧力が臨界圧力以上(超臨界状態)となるCO2を用いている。従って、この冷凍サイクルは超臨界冷凍サイクルを構成する。
(First embodiment)
FIG. 1 is a configuration diagram of a refrigeration cycle for vehicle air conditioning showing the first embodiment. This refrigeration cycle uses CO 2 whose refrigerant has a high pressure equal to or higher than a critical pressure (supercritical state). Therefore, this refrigeration cycle constitutes a supercritical refrigeration cycle.

圧縮機1は図示しない車両走行用エンジンからベルト、プーリを介して駆動力を得て冷媒を吸入圧縮するものである。この圧縮機1への駆動力の伝達は、クラッチ手段をなす電磁クラッチ1aによって断続される。   The compressor 1 sucks and compresses refrigerant by obtaining a driving force from a vehicle running engine (not shown) via a belt and a pulley. The transmission of the driving force to the compressor 1 is interrupted by an electromagnetic clutch 1a that constitutes a clutch means.

ここで、圧縮機1は冷媒の吐出容量(幾何学的な容積)が常に一定となっている固定容量型圧縮機である。従って、圧縮機1の冷媒吐出能力(サイクル内冷媒循環流量)は電磁クラッチ1aの断続によって圧縮機断続作動の稼働率を調整することにより調整される。   Here, the compressor 1 is a fixed capacity type compressor in which the discharge capacity (geometric volume) of the refrigerant is always constant. Accordingly, the refrigerant discharge capacity (refrigerant circulation flow rate in the cycle) of the compressor 1 is adjusted by adjusting the operation rate of the compressor intermittent operation by the intermittent operation of the electromagnetic clutch 1a.

圧縮機1の吐出側には放熱器2が設けられている。この放熱器2は、圧縮機1から吐出された高温高圧の超臨界状態にある吐出冷媒と外気(室外空気)との間で熱交換して冷媒を冷却させる。放熱器2には電動式の冷却ファン2aによって外気が送風される。   A radiator 2 is provided on the discharge side of the compressor 1. The radiator 2 cools the refrigerant by exchanging heat between the discharged refrigerant in the supercritical state at high temperature and high pressure discharged from the compressor 1 and the outside air (outdoor air). Outside air is blown to the radiator 2 by an electric cooling fan 2a.

放熱器2の出口側には内部熱交換器3の高圧側流路3aが設けられ、この高圧側流路3aの出口側に減圧手段をなす電気式膨張弁4が設けられている。この電気式膨張弁4は、サイクル通常運転時にはサイクル高圧側圧力が目標高圧圧力となるように電気的に開度が制御される圧力制御弁としての役割を果たす。また、電気式膨張弁4は後述するように圧縮機1の吐出冷媒温度の異常上昇時には吐出冷媒温度抑制のための制御弁としての役割を果たす。   A high-pressure side passage 3a of the internal heat exchanger 3 is provided on the outlet side of the radiator 2, and an electric expansion valve 4 serving as a decompression unit is provided on the outlet side of the high-pressure side passage 3a. The electric expansion valve 4 serves as a pressure control valve whose opening degree is electrically controlled so that the cycle high-pressure side pressure becomes the target high-pressure during normal cycle operation. Further, as will be described later, the electric expansion valve 4 serves as a control valve for suppressing the discharge refrigerant temperature when the discharge refrigerant temperature of the compressor 1 rises abnormally.

電気式膨張弁4は、具体的には例えば、ステッピングモータからなる電気アクチュエータ機構と、この電気アクチュエータ機構により駆動される弁機構とにより構成され、弁機構の開度は電気アクチュエータ機構の作動角により微小量ずつ微細に調整できるようになっている。   Specifically, the electric expansion valve 4 includes, for example, an electric actuator mechanism including a stepping motor and a valve mechanism driven by the electric actuator mechanism. The opening degree of the valve mechanism depends on the operating angle of the electric actuator mechanism. It can be finely adjusted by minute amounts.

電気式膨張弁4の出口側には蒸発器5が設けられている。この蒸発器5は車両用空調装置の室内空調ユニット部の空気通路をなすケース6内に配置され、このケース6内の空気を冷却する冷却手段を構成する。蒸発器5の空気流れ上流側には電動式の送風機7が配置され、図示しない内外気切替箱を通して導入される内気または外気がケース6内に送風され、蒸発器5により冷却される。   An evaporator 5 is provided on the outlet side of the electric expansion valve 4. The evaporator 5 is disposed in a case 6 that forms an air passage of an indoor air conditioning unit of the vehicle air conditioner, and constitutes a cooling means for cooling the air in the case 6. An electric blower 7 is arranged on the upstream side of the air flow of the evaporator 5. Inside air or outside air introduced through an inside / outside air switching box (not shown) is blown into the case 6 and cooled by the evaporator 5.

なお、ケース6内には、蒸発器5の空気流れ下流側に空気を加熱する加熱手段をなすヒータコア(図示せず)が配置され、このヒータコアの加熱度合いにより温度調整された空調風がケース6の空気流れ下流側端部の吹出口(図示せず)から車室内へ吹き出すようになっている。   Note that a heater core (not shown) serving as a heating means for heating air is disposed in the case 6 on the downstream side of the air flow of the evaporator 5, and conditioned air whose temperature is adjusted by the degree of heating of the heater core is provided in the case 6. The air flow is blown out from the outlet (not shown) at the downstream end of the air flow into the vehicle compartment.

蒸発器5の出口側にはアキュムレータ8が設けられている。このアキュムレータ8は、蒸発器5の出口冷媒の液冷媒(飽和液相冷媒)とガス冷媒(飽和気相冷媒)とを分離してサイクル内の余剰冷媒を蓄える気液分離手段であって、ここで分離されたガス冷媒を圧縮機1の吸入側に向けて導出する。   An accumulator 8 is provided on the outlet side of the evaporator 5. This accumulator 8 is gas-liquid separation means for separating liquid refrigerant (saturated liquid phase refrigerant) and gas refrigerant (saturated gas phase refrigerant) as outlet refrigerant of the evaporator 5 and storing excess refrigerant in the cycle. The gas refrigerant separated in step (3) is led out toward the suction side of the compressor 1.

アキュムレータ8の出口側には内部熱交換器3の低圧側流路3bが設けられている。従って、アキュムレータ8の出口配管はこの低圧側流路3bを介して圧縮機1の吸入側に接続される。   On the outlet side of the accumulator 8, a low pressure side flow path 3 b of the internal heat exchanger 3 is provided. Accordingly, the outlet pipe of the accumulator 8 is connected to the suction side of the compressor 1 through the low pressure side flow path 3b.

内部熱交換器3はアキュムレータ8から流出する冷媒(圧縮機吸入冷媒)と放熱器2の出口側高圧冷媒とを熱交換し、蒸発器5に流入する冷媒のエンタルピを低下させて蒸発器5の冷媒入口側と出口側における冷媒のエンタルピ差(冷凍能力)を増大させるとともに、圧縮機1に液冷媒が吸入されることを防止するものである。   The internal heat exchanger 3 exchanges heat between the refrigerant flowing out of the accumulator 8 (compressor suction refrigerant) and the high-pressure refrigerant on the outlet side of the radiator 2, and reduces the enthalpy of the refrigerant flowing into the evaporator 5. While increasing the enthalpy difference (refrigeration capacity) of the refrigerant | coolant in a refrigerant | coolant inlet side and an outlet side, it prevents that a liquid refrigerant is inhaled by the compressor 1. FIG.

電気式膨張弁4にはバイパス通路9が並列接続されており、このバイパス通路9は高圧側冷媒通路と低圧側冷媒通路とを直接連痛するものである。ここで、高圧側冷媒通路は圧縮機1の吐出側から電気式膨張弁4の入口側に至る通路である。また、低圧側冷媒通路は電気式膨張弁4の出口側から圧縮機1の吸入側に至る通路である。   A bypass passage 9 is connected in parallel to the electric expansion valve 4, and this bypass passage 9 directly connects the high-pressure side refrigerant passage and the low-pressure side refrigerant passage. Here, the high-pressure side refrigerant passage is a passage from the discharge side of the compressor 1 to the inlet side of the electric expansion valve 4. The low-pressure side refrigerant passage is a passage from the outlet side of the electric expansion valve 4 to the suction side of the compressor 1.

バイパス通路9には機械式圧力応動弁9aが配置され、この機械式圧力応動弁9aによりバイパス通路9が開閉される。   A mechanical pressure responsive valve 9a is disposed in the bypass passage 9, and the bypass passage 9 is opened and closed by the mechanical pressure responsive valve 9a.

機械式圧力応動弁9aは、通常時は閉弁状態を維持する常閉式の弁機構(リリーフ弁)であって、電気式膨張弁4の入口側圧力、すなわち、高圧側冷媒圧力がサイクル保護のために設定した所定値以上に異常上昇すると、機械式圧力応動弁9aが開弁して高圧側冷媒圧力の上昇を抑制するようになっている。従って、機械式圧力応動弁9aの開弁時の通路面積は電気式膨張弁4の通路面積よりも十分大きくしてある。   The mechanical pressure responsive valve 9a is a normally closed valve mechanism (relief valve) that normally maintains a closed state, and the pressure on the inlet side of the electric expansion valve 4, that is, the high-pressure side refrigerant pressure is cycle protection. For this reason, when the pressure rises above a predetermined value set for this purpose, the mechanical pressure responsive valve 9a is opened to suppress an increase in the high-pressure side refrigerant pressure. Therefore, the passage area when the mechanical pressure responsive valve 9 a is opened is sufficiently larger than the passage area of the electric expansion valve 4.

機械式圧力応動弁9aは高圧側冷媒圧力に応動する純機械的圧力応動機構を持つ開閉弁である。具体的には、高圧側冷媒圧力に応動して変位するダイヤフラム等の圧力応動部材と、この圧力応動部材に対して高圧側冷媒圧力と逆方向のばね荷重を加えるコイルばね等のばね手段と、圧力応動部材に連結され圧力応動部材の変位に応じて変位する弁機構とを用いて、機械式圧力応動弁9aを構成できる。   The mechanical pressure responsive valve 9a is an on-off valve having a pure mechanical pressure responsive mechanism that responds to the high-pressure side refrigerant pressure. Specifically, a pressure responsive member such as a diaphragm that is displaced in response to the high-pressure side refrigerant pressure, and a spring means such as a coil spring that applies a spring load in a direction opposite to the high-pressure side refrigerant pressure to the pressure responsive member; The mechanical pressure responsive valve 9a can be configured using a valve mechanism connected to the pressure responsive member and displaced in accordance with the displacement of the pressure responsive member.

次に、第1実施形態における電気制御部の概要を説明する。空調用制御装置10は、マイクロコンピュータおよびその周辺回路等から構成される制御手段であって、予め設定されたプログラムに従って所定の演算処理を行って、空調機器の作動を制御する。   Next, an outline of the electric control unit in the first embodiment will be described. The air-conditioning control device 10 is a control means including a microcomputer and its peripheral circuits, and performs predetermined arithmetic processing according to a preset program to control the operation of the air-conditioning equipment.

具体的には、空調用制御装置10の出力側に、圧縮機1の電磁クラッチ1a、放熱器2の冷却ファン2a、電気式膨張弁4、電動送風機7等の空調機器が接続され、これらの空調機器の作動を制御する。   Specifically, air-conditioning equipment such as the electromagnetic clutch 1a of the compressor 1, the cooling fan 2a of the radiator 2, the electric expansion valve 4, and the electric blower 7 is connected to the output side of the air-conditioning control device 10. Control the operation of air conditioning equipment.

空調用制御装置10の入力側には圧縮機1の吐出冷媒温度センサ11、放熱器2の出口側の冷媒温度センサ12、放熱器2の出口側の冷媒圧力センサ13、蒸発器5の吹出空気温度センサ14等が接続される。   On the input side of the air-conditioning control device 10, the refrigerant temperature sensor 11 discharged from the compressor 1, the refrigerant temperature sensor 12 at the outlet side of the radiator 2, the refrigerant pressure sensor 13 at the outlet side of the radiator 2, and the air blown from the evaporator 5 A temperature sensor 14 or the like is connected.

なお、空調用制御装置10には周知の外気温度センサ、内気温度センサ、日射センサ等を包含するセンサ群15からも検出信号が入力される。これらの各種センサ11〜15によって本実施形態の各種検出手段が構成される。また、空調用制御装置10には車室内の計器盤(インパネ)付近に配置される空調操作パネル16の操作部材から種々な空調操作信号が入力される。   The air conditioning control device 10 also receives detection signals from a sensor group 15 including well-known outside air temperature sensors, inside air temperature sensors, solar radiation sensors, and the like. These various sensors 11 to 15 constitute various detection means of the present embodiment. In addition, various air conditioning operation signals are input to the air conditioning control device 10 from the operation members of the air conditioning operation panel 16 disposed near the instrument panel (instrument panel) in the passenger compartment.

具体的には、温度設定スイッチによる車室内の設定温度信号、エアコンスイッチによる圧縮機作動指令信号、風量切替スイッチによる電動送風機7の風量切替信号、吹出モード切替スイッチによる室内空調ユニット部の吹出モード切替信号、内外気切替スイッチによる内外気切替箱の内外気導入モード切替信号等の空調操作信号が空調操作パネル16から入力される。   Specifically, the set temperature signal in the passenger compartment by the temperature setting switch, the compressor operation command signal by the air conditioner switch, the air volume switching signal of the electric blower 7 by the air volume switching switch, and the blowing mode switching of the indoor air conditioning unit by the blowing mode switching switch An air conditioning operation signal such as a signal and an inside / outside air introduction mode switching signal of the inside / outside air switching box by the inside / outside air switching switch is input from the air conditioning operation panel 16.

また、空調用制御装置10はエンジン制御装置17と電気接続され、エンジン制御装置17との間で電気信号の通信を行うようになっている。エンジン制御装置17から空調用制御装置10に対して、エンジン回転数、エンジン水温、車速等の車両側の検出信号が入力される。   The air-conditioning control device 10 is electrically connected to the engine control device 17 so as to communicate electric signals with the engine control device 17. Vehicle-side detection signals such as engine speed, engine water temperature, and vehicle speed are input from the engine control device 17 to the air conditioning control device 10.

次に、上記構成において第1実施形態の作動を説明する。最初に、冷凍サイクルの基本的作動を説明する。空調操作パネル16のエアコンスイッチが投入されると、電磁クラッチ1aが空調用制御装置10により通電され接続状態になる。これにより、車両エンジンの駆動力が電磁クラッチ1aを介して圧縮機1に伝達され、圧縮機1が駆動される。   Next, the operation of the first embodiment in the above configuration will be described. First, the basic operation of the refrigeration cycle will be described. When the air-conditioner switch of the air-conditioning operation panel 16 is turned on, the electromagnetic clutch 1a is energized by the air-conditioning control device 10 to enter a connected state. Thereby, the driving force of the vehicle engine is transmitted to the compressor 1 via the electromagnetic clutch 1a, and the compressor 1 is driven.

圧縮機1により圧縮された高温高圧の冷媒は、臨界圧力よりも圧力が高い超臨界状態にて放熱器2内に流入する。ここで、高温高圧の超臨界状態の冷媒は冷却ファン2aによって送風される外気と熱交換して外気中に放熱し、エンタルピを減少する。   The high-temperature and high-pressure refrigerant compressed by the compressor 1 flows into the radiator 2 in a supercritical state where the pressure is higher than the critical pressure. Here, the high-temperature and high-pressure supercritical refrigerant exchanges heat with the outside air blown by the cooling fan 2a to dissipate heat into the outside air, thereby reducing enthalpy.

そして、放熱器2の出口冷媒は、内部熱交換器3の高圧側流路3aを通過して膨張弁4へ向かう。ここで、放熱器2の出口冷媒は、内部熱交換器3の高圧側流路3aを通過する際に低圧側流路3bの低温低圧冷媒と熱交換して低圧冷媒側に放熱する。   And the exit refrigerant | coolant of the heat radiator 2 passes the high voltage | pressure side flow path 3a of the internal heat exchanger 3, and goes to the expansion valve 4. FIG. Here, the outlet refrigerant of the radiator 2 exchanges heat with the low-temperature and low-pressure refrigerant of the low-pressure side passage 3b when passing through the high-pressure side passage 3a of the internal heat exchanger 3, and radiates heat to the low-pressure refrigerant side.

内部熱交換器3の高圧側流路3aを通過して更に放熱した冷媒は次に、膨張弁4の絞り通路にて減圧され、低温低圧の気液2相状態となる。この低温低圧の気液2相冷媒は次に蒸発器5に流入し、ここで、電動送風機7の送風空気から吸熱して蒸発する。これにより、電動送風機7の送風空気を蒸発器5で冷却することができ、冷風を車室内へ吹き出すことができる。   The refrigerant that has further dissipated heat after passing through the high-pressure channel 3a of the internal heat exchanger 3 is then depressurized in the throttle passage of the expansion valve 4 to be in a low-temperature and low-pressure gas-liquid two-phase state. This low-temperature and low-pressure gas-liquid two-phase refrigerant then flows into the evaporator 5 where it absorbs heat from the blown air of the electric blower 7 and evaporates. Thereby, the blowing air of the electric blower 7 can be cooled by the evaporator 5, and the cool air can be blown out into the vehicle interior.

蒸発器5を通過した低圧冷媒は次にアキュムレータ8内に流入し、この低圧冷媒の液冷媒とガス冷媒とが分離され、液冷媒はアキュムレータ8内の底部側に貯留される。これに対し、ガス冷媒はアキュムレータ8内の上部側に集まって、アキュムレータ8上部の出口から圧縮機1の吸入側に向けて導出される。   The low-pressure refrigerant that has passed through the evaporator 5 then flows into the accumulator 8, and the liquid refrigerant and gas refrigerant of the low-pressure refrigerant are separated, and the liquid refrigerant is stored on the bottom side in the accumulator 8. On the other hand, the gas refrigerant gathers on the upper side in the accumulator 8 and is led out from the outlet on the accumulator 8 toward the suction side of the compressor 1.

アキュムレータ8出口の低圧ガス冷媒(圧縮機吸入冷媒)は、内部熱交換器3の低圧側流路3bにて放熱器2の出口冷媒から吸熱するので、放熱器2の出口冷媒が冷却され、そのエンタルピが減少する。内部熱交換器3にて吸熱した過熱ガス冷媒が圧縮機1に吸入され、再度、圧縮される。   The low-pressure gas refrigerant (compressor suction refrigerant) at the outlet of the accumulator 8 absorbs heat from the outlet refrigerant of the radiator 2 in the low-pressure side passage 3b of the internal heat exchanger 3, so that the outlet refrigerant of the radiator 2 is cooled, Enthalpy decreases. The superheated gas refrigerant that has absorbed heat in the internal heat exchanger 3 is sucked into the compressor 1 and compressed again.

次に、冷凍サイクル各部の冷媒状態の検出信号に基づく冷凍サイクル自動制御を図2により説明する。図2は空調用制御装置10により実行される制御ルーチンのフローチャートであり、この制御ルーチンは、冷凍サイクル(圧縮機1)の起動によってスタートする。   Next, the refrigeration cycle automatic control based on the detection signal of the refrigerant state of each part of the refrigeration cycle will be described with reference to FIG. FIG. 2 is a flowchart of a control routine executed by the air-conditioning control apparatus 10, and this control routine starts upon activation of the refrigeration cycle (compressor 1).

まず、温度センサ11により検出される圧縮機吐出冷媒温度Tdが予め設定された所定の高温To以上であるか判定する(S10)。この所定の高温とは、圧縮機1の耐熱温度、圧縮機1吐出側配管のゴムホースの耐熱温度等を考慮して設定された限界温度であって、例えば、150℃である。   First, it is determined whether the compressor discharge refrigerant temperature Td detected by the temperature sensor 11 is equal to or higher than a predetermined high temperature To (S10). The predetermined high temperature is a limit temperature set in consideration of the heat resistance temperature of the compressor 1, the heat resistance temperature of the rubber hose of the discharge side piping of the compressor 1, and is 150 ° C., for example.

通常運転時には圧縮機吐出冷媒温度Tdが所定の高温To未満の温度になっている。そのため、通常運転時にはステップS10の判定がNOとなり、電気式膨張弁4の開度制御による高圧圧力Pdの制御を行う(S20)。   During normal operation, the compressor discharge refrigerant temperature Td is lower than a predetermined high temperature To. Therefore, the determination in step S10 is NO during normal operation, and the high pressure Pd is controlled by controlling the opening of the electric expansion valve 4 (S20).

この高圧圧力Pdの制御は、具体的には、放熱器2出口側の冷媒温度センサ12により検出される放熱器出口側冷媒温度TfによりサイクルCOP(成績係数)が最大となる目標高圧圧力Poを算出し、放熱器2出口側の冷媒圧力センサ13により検出される実際の高圧側圧力Pdが目標高圧圧力Poとなるように電気式膨張弁4の開度を制御する。   Specifically, the high pressure Pd is controlled by setting the target high pressure Po at which the cycle COP (coefficient of performance) is maximized by the radiator outlet side refrigerant temperature Tf detected by the refrigerant temperature sensor 12 on the outlet side of the radiator 2. The opening degree of the electric expansion valve 4 is controlled so that the actual high-pressure side pressure Pd detected by the refrigerant pressure sensor 13 on the outlet side of the radiator 2 becomes the target high-pressure pressure Po.

つまり、実際の高圧側圧力Pdが目標高圧圧力Poより高いときは電気式膨張弁4の開度を増加し、逆に、実際の高圧側圧力Pdが目標高圧圧力Poより低いときは電気式膨張弁4の開度を減少させる。   That is, when the actual high-pressure side pressure Pd is higher than the target high-pressure pressure Po, the opening degree of the electric expansion valve 4 is increased. Conversely, when the actual high-pressure side pressure Pd is lower than the target high-pressure pressure Po, electric expansion is performed. The opening degree of the valve 4 is decreased.

次に、圧縮機1の作動の断続制御による蒸発器温度の制御を行う(S30)。この蒸発器温度の制御は、具体的には、車室内へ吹き出す空気の目標温度TAO、外気温度Tam等により蒸発器吹出空気の目標温度TEOを算出し、温度センサ14により検出される実際の蒸発器吹出温度Teが蒸発器目標温度TEOとなるように圧縮機1の作動を断続制御する。   Next, the evaporator temperature is controlled by intermittent control of the operation of the compressor 1 (S30). Specifically, the evaporator temperature is controlled by calculating the target temperature TEO of the evaporator blown air based on the target temperature TAO of the air blown into the vehicle interior, the outside air temperature Tam, etc., and the actual evaporation detected by the temperature sensor 14. The operation of the compressor 1 is intermittently controlled so that the compressor outlet temperature Te becomes the evaporator target temperature TEO.

つまり、蒸発器吹出温度Teが蒸発器目標温度TEOより高いときは、圧縮機1を作動させ、逆に、蒸発器吹出温度Teが蒸発器目標温度TEOより低いときは圧縮機1を停止する。このように、圧縮機1の作動を断続制御することにより、圧縮機1の稼働率が制御され、これにより、蒸発器5への循環冷媒流量が調整される。その結果、蒸発器5の冷却能力が調整されて、蒸発器吹出温度Teを蒸発器目標温度TEOに制御できる。なお、蒸発器目標温度TEOの最低温度は蒸発器5のフロスト防止のために0℃より若干高めの温度(3℃付近)に決定される。   That is, when the evaporator outlet temperature Te is higher than the evaporator target temperature TEO, the compressor 1 is operated. Conversely, when the evaporator outlet temperature Te is lower than the evaporator target temperature TEO, the compressor 1 is stopped. Thus, the operation rate of the compressor 1 is controlled by intermittently controlling the operation of the compressor 1, thereby adjusting the circulating refrigerant flow rate to the evaporator 5. As a result, the cooling capacity of the evaporator 5 is adjusted, and the evaporator outlet temperature Te can be controlled to the evaporator target temperature TEO. The minimum temperature of the evaporator target temperature TEO is determined to be slightly higher than 0 ° C. (around 3 ° C.) in order to prevent the evaporator 5 from being frosted.

一方、圧縮機吐出冷媒温度Tdが所定の高温To以上になると、ステップS10の判定がYESとなり、電気式膨張弁4の開度を所定量増加する(S40)。具体的には、電気式膨張弁4の開度を、ステップS40の判定前の開度よりも所定量増加する。本実施形態では、電気式膨張弁4の弁機構のストロークを0.01mm増加して弁機構開度を所定量増加させる。ここで、電気式膨張弁4の弁機構の全ストロークが2.0mmであるから、0.01mmのストローク増加は1/200の開度増加に相当する。   On the other hand, when the compressor discharge refrigerant temperature Td becomes equal to or higher than the predetermined high temperature To, the determination in step S10 becomes YES, and the opening degree of the electric expansion valve 4 is increased by a predetermined amount (S40). Specifically, the opening degree of the electric expansion valve 4 is increased by a predetermined amount from the opening degree before the determination in step S40. In this embodiment, the stroke of the valve mechanism of the electric expansion valve 4 is increased by 0.01 mm to increase the valve mechanism opening by a predetermined amount. Here, since the total stroke of the valve mechanism of the electric expansion valve 4 is 2.0 mm, an increase in stroke of 0.01 mm corresponds to an increase in opening of 1/200.

次に、圧縮機1の断続制御による蒸発器温度の制御を行う(S50)。この蒸発器温度の制御は前述のステップS30と同じでよいから、具体的説明を省略する。   Next, the evaporator temperature is controlled by intermittent control of the compressor 1 (S50). Since the control of the evaporator temperature may be the same as that in step S30 described above, a detailed description thereof will be omitted.

次に、膨張弁開度を増加した後の経過時間tが所定時間to以上になったか判定し(S60)、経過時間tが所定時間to未満である間は待機し、経過時間tが所定時間to以上になると、ステップS70に進む。このステップS70では、圧縮機吐出冷媒温度Tdが、所定の高温Toから所定温度αを減じた値(To−α)以下に低下したか判定する。   Next, it is determined whether or not the elapsed time t after increasing the expansion valve opening is equal to or longer than the predetermined time to (S60), and waits while the elapsed time t is less than the predetermined time to, and the elapsed time t is the predetermined time. If it is greater than or equal to, the process proceeds to step S70. In this step S70, it is determined whether or not the compressor discharge refrigerant temperature Td has decreased to a value (To−α) that is equal to or lower than the predetermined high temperature To minus the predetermined temperature α.

なお、所定時間toは膨張弁開度を増加した後に 圧縮機吐出冷媒温度Tdが実際に低下するに必要な時間である。また、所定温度αは1〜3℃程度の温度であって、電気式膨張弁4の開閉作動のハンチングを防ぐためのものである。   The predetermined time to is a time required for the compressor discharge refrigerant temperature Td to actually decrease after the expansion valve opening is increased. Further, the predetermined temperature α is a temperature of about 1 to 3 ° C., and is intended to prevent hunting of the opening / closing operation of the electric expansion valve 4.

ステップS70の判定がNOであると、ステップS40に戻り、電気式膨張弁4の開度を所定量増加する。従って、圧縮機吐出冷媒温度Tdが(To−α)以下の温度に低下するまで、電気式膨張弁4の開度を所定量ずつ増加していく。そして、圧縮機吐出冷媒温度Tdが(To−α)以下の温度に低下すると、ステップS10に戻り、ステップS10の判定がYESとなるので、ステップS20、S30による通常運転時の制御を再び行う。   If the determination in step S70 is NO, the process returns to step S40, and the opening degree of the electric expansion valve 4 is increased by a predetermined amount. Accordingly, the opening degree of the electric expansion valve 4 is increased by a predetermined amount until the compressor discharge refrigerant temperature Td decreases to a temperature equal to or lower than (To−α). When the compressor discharge refrigerant temperature Td falls to a temperature equal to or lower than (To−α), the process returns to step S10, and the determination in step S10 is YES, so that the control during normal operation in steps S20 and S30 is performed again.

以上のように、電気式膨張弁4の開度制御を行うことにより圧縮機吐出冷媒温度Tdを所定の高温To以下に制御できるから、圧縮機1として固定容量型圧縮機を用いることができる。固定容量型圧縮機1は、可変容量型圧縮機に比較して容量可変機構を持たないから、体格を小型軽量化でき、車両への搭載スペースを縮小できる。   As described above, the compressor discharge refrigerant temperature Td can be controlled to be equal to or lower than the predetermined high temperature To by performing the opening degree control of the electric expansion valve 4, so that a fixed capacity type compressor can be used as the compressor 1. Since the fixed capacity compressor 1 does not have a variable capacity mechanism as compared with the variable capacity compressor, the physique can be reduced in size and weight, and the mounting space in the vehicle can be reduced.

また、サイクル高圧側の冷媒圧力が予め設定した所定圧力以上に上昇すると、機械式圧力応動弁9aはこの高圧側の冷媒圧力の上昇に速やかに応動して開弁する。これにより、電気式膨張弁4の入口側通路(高圧側冷媒通路)と電気式膨張弁4の出口側通路(低圧側冷媒通路)との間がバイパス通路9によって直接連通する。   Further, when the refrigerant pressure on the cycle high pressure side rises above a predetermined pressure set in advance, the mechanical pressure responsive valve 9a opens quickly in response to the increase in the refrigerant pressure on the high pressure side. Thereby, the bypass passage 9 directly communicates between the inlet side passage (high pressure side refrigerant passage) of the electric expansion valve 4 and the outlet side passage (low pressure side refrigerant passage) of the electric expansion valve 4.

ここで、機械式圧力応動弁9aの開弁時の通路面積は電気式膨張弁4側の通路面積よりも十分大きいので、機械式圧力応動弁9aの開弁によって高圧側の冷媒圧力が低下する。これにより、高圧側の冷媒圧力が予め設定した所定圧力以上に上昇した異常状態を解消できる。   Here, since the passage area when the mechanical pressure responsive valve 9a is opened is sufficiently larger than the passage area on the electric expansion valve 4 side, the refrigerant pressure on the high pressure side is reduced by opening the mechanical pressure responsive valve 9a. . As a result, the abnormal state in which the refrigerant pressure on the high-pressure side rises above a predetermined pressure set in advance can be eliminated.

なお、冷媒圧力の変化は冷媒温度の変化のように熱の移動を伴わないから、冷媒温度の変化に比較して冷媒圧力は急激に変化する。そのため、冷媒圧力の異常上昇を確実に回避するためには、弁機構の即答性が非常に重要である。   Since the change in the refrigerant pressure is not accompanied by the movement of heat unlike the change in the refrigerant temperature, the refrigerant pressure changes abruptly as compared with the change in the refrigerant temperature. Therefore, in order to reliably avoid an abnormal increase in the refrigerant pressure, the quick response of the valve mechanism is very important.

高圧側の冷媒圧力の上昇を圧力センサにて電気的に検出して、弁機構の開弁動作を電気的に制御する場合には、圧力センサにおける応答遅れが問題となって、弁機構の即答性が悪化するが、本実施形態によると、機械式圧力応動弁9aはダイヤフラム等の圧力応動部材により冷媒圧力の変化に直接応答して弁機構を開弁するので、弁機構の即答性が非常に良好であり、冷媒圧力の異常上昇を確実に回避できる。   When the increase in the refrigerant pressure on the high-pressure side is electrically detected by the pressure sensor and the valve opening operation of the valve mechanism is electrically controlled, the response delay of the pressure sensor becomes a problem, and the prompt response of the valve mechanism However, according to the present embodiment, the mechanical pressure responsive valve 9a opens the valve mechanism in direct response to a change in the refrigerant pressure by a pressure responsive member such as a diaphragm. Therefore, it is possible to reliably avoid an abnormal increase in the refrigerant pressure.

(第2実施形態)
上述の第1実施形態では、電気式膨張弁4として、ステッピングモータ等の電気アクチュエータ機構により弁機構の開度を微小量ずつ微細に調整するタイプの電気式膨張弁を使用し、この電気式膨張弁4にバイパス通路9を並列接続し、このバイパス通路9に機械式圧力応動弁9aを配置しているが、第2実施形態では、電気式膨張弁4として、図3に示すリニアソレノイド型電気式膨張弁を使用し、このリニアソレノイド型電気式膨張弁4自身に機械式圧力応動弁9aと同等の機能を兼務させるようにしている。
(Second Embodiment)
In the first embodiment described above, an electric expansion valve of a type that finely adjusts the opening degree of the valve mechanism by a minute amount by an electric actuator mechanism such as a stepping motor is used as the electric expansion valve 4. A bypass passage 9 is connected in parallel to the valve 4 and a mechanical pressure responsive valve 9a is disposed in the bypass passage 9. In the second embodiment, the linear expansion type electric valve shown in FIG. This linear solenoid type electric expansion valve 4 itself has a function equivalent to that of the mechanical pressure responsive valve 9a.

これにより、図4に示すように第1実施形態のバイパス通路9および機械式圧力応動弁9aを廃止している。   Thereby, as shown in FIG. 4, the bypass passage 9 and the mechanical pressure responsive valve 9a of 1st Embodiment are abolished.

第2実施形態によるリニアソレノイド型電気式膨張弁4を図3により具体的に説明すると、40は膨張弁4のハウジングであり、その全体形状は円筒状になっている。ハウジング40のうち、円筒形状の軸方向の一端側(図4の上方側)の内部に冷媒通路が構成される。   The linear solenoid type electric expansion valve 4 according to the second embodiment will be described in detail with reference to FIG. 3. Reference numeral 40 denotes a housing of the expansion valve 4, and the overall shape thereof is cylindrical. In the housing 40, a refrigerant passage is configured inside one end side (upper side in FIG. 4) of the cylindrical shape in the axial direction.

具体的には、図4に示す内部熱交換器3の高圧側流路3aの出口側に接続される高圧冷媒室41と、減圧後の低圧冷媒を蒸発器5の入口側に向かって流出させる低圧冷媒室42と、この両室41、42の間に位置する絞り通路43がハウジング40の軸方向一端側に形成されている。なお、41aは高圧冷媒室41の入口孔で、42aは低圧冷媒室42の出口孔である。   Specifically, the high-pressure refrigerant chamber 41 connected to the outlet side of the high-pressure side passage 3a of the internal heat exchanger 3 shown in FIG. 4 and the low-pressure refrigerant after depressurization flow toward the inlet side of the evaporator 5. A low-pressure refrigerant chamber 42 and a throttle passage 43 positioned between the chambers 41 and 42 are formed on one end side in the axial direction of the housing 40. In addition, 41a is an inlet hole of the high-pressure refrigerant chamber 41, and 42a is an outlet hole of the low-pressure refrigerant chamber 42.

絞り通路43は、両冷媒室41、42に比較して通路面積が大幅に小さい小径の円形孔からなり、高圧冷媒室41の高圧冷媒を減圧膨張させる。   The throttle passage 43 is a small-diameter circular hole whose passage area is significantly smaller than both the refrigerant chambers 41, 42, and decompresses and expands the high-pressure refrigerant in the high-pressure refrigerant chamber 41.

絞り通路43の下流側、すなわち、低圧冷媒室42側に絞り通路43の開度を調整する弁体44が対向配置されている。この弁体44は、ハウジング40の軸方向に細長く延びる円柱形状である。なお、図3は弁体44が絞り通路43から最も離れた位置(図3の最も下方側位置)に変位した最大開度位置(全開位置)の状態を示している。   A valve body 44 that adjusts the opening degree of the throttle passage 43 is disposed opposite to the downstream side of the throttle passage 43, that is, on the low-pressure refrigerant chamber 42 side. The valve body 44 has a cylindrical shape that extends in the axial direction of the housing 40. FIG. 3 shows a state of the maximum opening position (fully opened position) in which the valve body 44 is displaced to the position farthest from the throttle passage 43 (the lowermost position in FIG. 3).

ハウジング40内部のうち、円筒形状の軸方向の他端側には電磁コイル45が円筒状に配置されている。ハウジング40のうち、電磁コイル45の周囲に位置する符号40aの領域は磁気回路を構成する磁性体部分である。   An electromagnetic coil 45 is arranged in a cylindrical shape on the other axial end side of the cylindrical shape inside the housing 40. In the housing 40, a region 40a located around the electromagnetic coil 45 is a magnetic part constituting the magnetic circuit.

弁体44のうち、ハウジング40の軸方向他端側には大径部44aが形成され、この大径部44aは磁性体で構成され、可動鉄心の役割を果たす。この大径部(磁性体部)44aの端面はハウジング40の内周磁性体部40bの端面に所定寸法の空隙46を介して対向している。   A large-diameter portion 44a is formed on the other end side in the axial direction of the housing 40 of the valve body 44. The large-diameter portion 44a is made of a magnetic material and serves as a movable iron core. The end surface of the large-diameter portion (magnetic body portion) 44a is opposed to the end surface of the inner peripheral magnetic body portion 40b of the housing 40 with a gap 46 having a predetermined dimension.

電磁コイル45に通電すると、ハウジング40の内周磁性体部40bの端面と弁体44の大径部44aの端面との間に電磁吸引力が作用して、弁体44が絞り通路43に接近する側(図3の上方側)へ軸方向に変位するようになっている。これにより、弁体44の上端部と絞り通路43との間隙が変化して絞り通路43の開度(通路面積)が変化するようになっている。   When the electromagnetic coil 45 is energized, an electromagnetic attractive force acts between the end surface of the inner peripheral magnetic body portion 40 b of the housing 40 and the end surface of the large-diameter portion 44 a of the valve body 44, so that the valve body 44 approaches the throttle passage 43. It is displaced in the axial direction to the side (upper side in FIG. 3). As a result, the gap between the upper end of the valve body 44 and the throttle passage 43 changes, and the opening degree (passage area) of the throttle passage 43 changes.

次に、第2実施形態の作動を説明する。第2実施形態によるリニアソレノイド型電気式膨張弁4では、ハウジング40の内周磁性体部40bの端面と弁体44の大径部44aの端面との間の電磁吸引力が、弁体44を絞り通路43側(図3の上方側)へ変位させる閉弁方向の力として作用する。   Next, the operation of the second embodiment will be described. In the linear solenoid type electric expansion valve 4 according to the second embodiment, the electromagnetic attractive force between the end surface of the inner peripheral magnetic body portion 40b of the housing 40 and the end surface of the large diameter portion 44a of the valve body 44 causes the valve body 44 to move. It acts as a force in the valve closing direction to be displaced toward the throttle passage 43 side (upper side in FIG. 3).

これに対し、高圧冷媒室41と低圧冷媒室42との差圧に応じた力、すなわち、絞り通路43を通過して低圧冷媒室42内へ噴出する冷媒流れの動圧が、弁体44を絞り通路43から離れる側へ変位させる開弁方向の力として作用する。   On the other hand, the force corresponding to the differential pressure between the high-pressure refrigerant chamber 41 and the low-pressure refrigerant chamber 42, that is, the dynamic pressure of the refrigerant flow ejected into the low-pressure refrigerant chamber 42 through the throttle passage 43 causes the valve element 44 to It acts as a force in the valve opening direction that causes the valve to be displaced away from the throttle passage 43.

このため、電磁コイル45への電流量を増加すると、ハウジング40の内周磁性体部40bの端面と弁体44の大径部44aの端面との間の電磁吸引力が増加して、弁体44が絞り通路43側(図3の上方側)へ変位し、絞り通路43の開度(通路面積)を減少する。   For this reason, when the amount of current to the electromagnetic coil 45 is increased, the electromagnetic attractive force between the end surface of the inner peripheral magnetic body portion 40b of the housing 40 and the end surface of the large diameter portion 44a of the valve body 44 is increased. 44 is displaced to the throttle passage 43 side (upper side in FIG. 3), and the opening degree (passage area) of the throttle passage 43 is decreased.

逆に、電磁コイル45への電流量を減少すると、ハウジング40の内周磁性体部40bの端面と弁体44の大径部44aの端面との間の電磁吸引力が減少するので、弁体44は前記動圧による開弁側の力によって絞り通路43から離れる側(図3の下方側)へ変位し、絞り通路43の開度(通路面積)を増加する。   Conversely, when the amount of current to the electromagnetic coil 45 is reduced, the electromagnetic attractive force between the end surface of the inner peripheral magnetic body portion 40b of the housing 40 and the end surface of the large diameter portion 44a of the valve body 44 is reduced. 44 is displaced to the side away from the throttle passage 43 (lower side in FIG. 3) by the valve opening side force due to the dynamic pressure, and the opening degree (passage area) of the throttle passage 43 is increased.

なお、第2実施形態によるリニアソレノイド型電気式膨張弁4の具体的な弁開度制御は図2に示す第1実施形態と基本的には同じでよい。従って、第2実施形態による具体的な弁開度制御の説明は省略する。   The specific valve opening degree control of the linear solenoid type electric expansion valve 4 according to the second embodiment may be basically the same as that of the first embodiment shown in FIG. Therefore, the description of the specific valve opening control according to the second embodiment is omitted.

ところで、電気式膨張弁4を第1実施形態のようにステッピングモータ等からなる電気アクチュエータ機構と、この電気アクチュエータ機構により駆動される弁機構とにより構成する場合には、弁機構の位置がステッピングモータ等からなる電気アクチュエータ機構により所定の制御位置に固定される。   By the way, when the electric expansion valve 4 is constituted by an electric actuator mechanism comprising a stepping motor or the like and a valve mechanism driven by this electric actuator mechanism as in the first embodiment, the position of the valve mechanism is the stepping motor. It is fixed at a predetermined control position by an electric actuator mechanism composed of, for example.

そのため、電気アクチュエータ機構の制御信号を変更しない限り弁機構の位置は一定位置に固定されることになる。従って、第1実施形態によると、電気式膨張弁4自体に機械式圧力応動弁の役割を兼務させることはできない。   Therefore, the position of the valve mechanism is fixed at a fixed position unless the control signal of the electric actuator mechanism is changed. Therefore, according to the first embodiment, the electric expansion valve 4 itself cannot serve as a mechanical pressure responsive valve.

これに対し、第2実施形態によるリニアソレノイド型電気式膨張弁4においては、弁体44の位置は電磁コイル45への電流量により決まる電磁吸引力と弁体44に作用する前記動圧による開弁方向の力とにより決定されるようになっている。   On the other hand, in the linear solenoid type electric expansion valve 4 according to the second embodiment, the position of the valve body 44 is opened by the electromagnetic attraction force determined by the amount of current to the electromagnetic coil 45 and the dynamic pressure acting on the valve body 44. It is determined by the force in the valve direction.

このため、弁体44の位置が電磁コイル45への電流量により決まる所定位置に制御されている状態において、高圧側冷媒圧力が何らかの原因で急激に上昇すると、この急激な冷媒圧力上昇によって前記動圧による開弁側の力を急上昇させる。これにより、弁体44が絞り通路43から離れる側(図3の下方側)へ迅速に変位して、弁開度を迅速に増加させる。   Therefore, in a state where the position of the valve body 44 is controlled to a predetermined position determined by the amount of current to the electromagnetic coil 45, if the high-pressure side refrigerant pressure suddenly rises for some reason, The valve opening side force due to pressure is increased rapidly. As a result, the valve body 44 is quickly displaced to the side away from the throttle passage 43 (the lower side in FIG. 3), and the valve opening is rapidly increased.

その結果、高圧側冷媒圧力の異常上昇をリニアソレノイド型電気式膨張弁4自身の弁開度増加により回避できる。したがって、第1実施形態の機械式圧力応動弁9aと同等の機能をリニアソレノイド型電気式膨張弁4自身に兼務させることができる。   As a result, an abnormal increase in the high-pressure side refrigerant pressure can be avoided by increasing the valve opening degree of the linear solenoid type electric expansion valve 4 itself. Therefore, the linear solenoid type electric expansion valve 4 itself can have the same function as the mechanical pressure responsive valve 9a of the first embodiment.

なお、上述の第2実施形態では、電磁コイル45の電磁吸引力により弁体44が絞り通路43に接近する側(閉弁側)へ変位するようにしているので、電磁コイル45の断線時等には、電磁吸引力が消滅して弁体44が絞り通路43から離れる側(開弁側)へ変位する。従って、電磁コイル45の断線時等にも弁体44の開弁状態を確保できる。そのため、弁体44の開弁による高圧側冷媒圧力の異常上昇を未然に防止でき、安全である。   In the second embodiment described above, the valve body 44 is displaced toward the side closer to the throttle passage 43 (the valve closing side) by the electromagnetic attractive force of the electromagnetic coil 45. Therefore, when the electromagnetic coil 45 is disconnected, etc. The electromagnetic attraction force disappears and the valve body 44 is displaced to the side away from the throttle passage 43 (the valve opening side). Therefore, the valve body 44 can be kept open even when the electromagnetic coil 45 is disconnected. Therefore, an abnormal increase in the high-pressure side refrigerant pressure due to the opening of the valve body 44 can be prevented in advance, which is safe.

(他の実施形態)
なお、上述の第2実施形態では、弁体44にバネ力を作用させない例を示しているが、ハウジング40の内周磁性体部40bの端面と弁体44の大径部44aの端面との間の空隙46にバネを配置し、このバネにより弁体44に対して絞り通路43から離れる側(開弁側)への力を作用させるようにしてもよい。
(Other embodiments)
In the second embodiment described above, an example in which the spring force is not applied to the valve body 44 is shown, but the end surface of the inner peripheral magnetic body portion 40b of the housing 40 and the end surface of the large diameter portion 44a of the valve body 44 are shown. A spring may be arranged in the gap 46 between them, and a force to the side away from the throttle passage 43 (opening side) may be applied to the valve body 44 by this spring.

また、上述の第2実施形態では、電磁コイル45の電磁吸引力により弁体44が絞り通路43に接近する側(閉弁側)へ変位するようにしているが、これとは逆に、電磁コイル45の電磁吸引力により弁体44が絞り通路43から離れる側(開弁側)へ変位する構成としてもよい。但し、この場合は、弁体44が絞り通路43に接近する側(閉弁側)へ変位するバネ力を発生するバネが必須となる。   Further, in the second embodiment described above, the valve body 44 is displaced toward the side closer to the throttle passage 43 (valve closing side) by the electromagnetic attractive force of the electromagnetic coil 45. The valve body 44 may be displaced to the side away from the throttle passage 43 (the valve opening side) by the electromagnetic attraction force of the coil 45. However, in this case, a spring that generates a spring force that displaces the valve body 44 toward the side closer to the throttle passage 43 (the valve closing side) is essential.

また、上述の第1実施形態では、機械式圧力応動弁9aを電気式膨張弁4と並列接続されるバイパス通路9を設け、このバイパス通路9に機械式圧力応動弁9aを設けているが、サイクルの高圧側冷媒通路と低圧側冷媒通路とを連通するバイパス通路であれば、どのバイパス通路に機械式圧力応動弁9aを設けてもよい。   In the first embodiment described above, the mechanical pressure responsive valve 9a is provided with the bypass passage 9 connected in parallel with the electric expansion valve 4, and the mechanical pressure responsive valve 9a is provided in the bypass passage 9. As long as the bypass passage communicates the high-pressure side refrigerant passage and the low-pressure side refrigerant passage of the cycle, the mechanical pressure responsive valve 9a may be provided in any bypass passage.

例えば、圧縮機1の吐出側と吸入側とを連通するバイパス通路に機械式圧力応動弁9aを設けてもよい。この場合は、バイパス通路および機械式圧力応動弁9aをともに圧縮機1に内蔵させてもよい。   For example, the mechanical pressure responsive valve 9a may be provided in a bypass passage that connects the discharge side and the suction side of the compressor 1. In this case, both the bypass passage and the mechanical pressure responsive valve 9a may be incorporated in the compressor 1.

また、電気式膨張弁4と並列接続されるバイパス通路9に機械式圧力応動弁9aを設ける場合に、電気式膨張弁4とバイパス通路9と機械式圧力応動弁9aとを一体構造物として構成してもよい。   Further, when the mechanical pressure responsive valve 9a is provided in the bypass passage 9 connected in parallel with the electric expansion valve 4, the electric expansion valve 4, the bypass passage 9 and the mechanical pressure responsive valve 9a are configured as an integral structure. May be.

また、上述の第1実施形態ではCO2冷媒を用いて超臨界冷凍サイクルを構成しているが、冷媒としてCO2以外の例えばエチレン、エタン、酸化窒素等の冷媒を用いて超臨界冷凍サイクルを構成してもよい。この点は第2実施形態においても同様である。 In the first embodiment described above, the supercritical refrigeration cycle is configured by using the CO 2 refrigerant, but the supercritical refrigeration cycle is performed by using a refrigerant other than CO 2 such as ethylene, ethane, and nitrogen oxide. It may be configured. This is the same in the second embodiment.

また、上述の第1、第2実施形態では、放熱器2出口側に配置した冷媒圧力センサ13により高圧側圧力を検出しているが、圧縮機1の吐出側から膨張弁4の入口側に至る高圧側通路では冷媒圧力が略一定となるので、放熱器2出口側に限定されることなく、この高圧側通路のどの場所に冷媒圧力センサ13を配置してもよい。   In the first and second embodiments described above, the high pressure side pressure is detected by the refrigerant pressure sensor 13 disposed on the outlet side of the radiator 2, but from the discharge side of the compressor 1 to the inlet side of the expansion valve 4. Since the refrigerant pressure is substantially constant in the high-pressure side passage to reach, the refrigerant pressure sensor 13 may be disposed anywhere in the high-pressure side passage without being limited to the outlet side of the radiator 2.

また、上述の第1、第2実施形態では、冷房運転専用のサイクルに適用する場合について説明したが、本発明はこれに限定されるものではなく、暖房運転又は除湿運転が可能なヒートポンプサイクルに適用してもよいことはもちろんであり、更に、車両用以外の用途にも本発明は適用できる。   In the first and second embodiments described above, the case where the present invention is applied to a cycle dedicated to cooling operation has been described. However, the present invention is not limited to this, and the heat pump cycle capable of heating operation or dehumidifying operation is used. Of course, the present invention may be applied, and the present invention can be applied to uses other than those for vehicles.

また、上述の第1実施形態では、機械式圧力応動弁9aの開弁時の通路面積を電気式膨張弁4の通路面積よりも十分大きく設定したが、本発明はこれに限定されるものではなく、機械式圧力応動弁9aが開弁することによって高圧側冷媒圧力の上昇を抑制できるのであれば、機械式圧力応動弁9aの開弁時の通路面積を電気式膨張弁4の通路面積よりも大きく設定しなくてもよい。   In the first embodiment described above, the passage area when the mechanical pressure responsive valve 9a is opened is set sufficiently larger than the passage area of the electric expansion valve 4. However, the present invention is not limited to this. If the mechanical pressure responsive valve 9a is opened and the increase in the high-pressure side refrigerant pressure can be suppressed, the passage area when the mechanical pressure responsive valve 9a is opened is greater than the passage area of the electric expansion valve 4. Need not be set large.

本発明の第1実施形態による車両用冷凍サイクルの全体構成の概要図である。1 is a schematic diagram of an overall configuration of a refrigeration cycle for a vehicle according to a first embodiment of the present invention. 本発明の第1実施形態による冷凍サイクルの作動制御を示すフローチャートである。It is a flowchart which shows the operation control of the refrigerating cycle by 1st Embodiment of this invention. 本発明の第2実施形態における電気式膨張弁の断面図である。It is sectional drawing of the electric expansion valve in 2nd Embodiment of this invention. 本発明の第2実施形態による車両用冷凍サイクルの全体構成の概要図である。It is a schematic diagram of the whole structure of the refrigeration cycle for vehicles by 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…放熱器、3…内部熱交換器、4…電気式膨張弁(減圧手段)、
5…蒸発器、9…バイパス通路、9a…機械式圧力応動弁、10…制御装置(制御手段)、11…吐出冷媒温度センサ(温度検出手段)、43…絞り通路、44…弁体、
45…電磁コイル。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Radiator, 3 ... Internal heat exchanger, 4 ... Electric expansion valve (pressure reduction means),
DESCRIPTION OF SYMBOLS 5 ... Evaporator, 9 ... Bypass passage, 9a ... Mechanical pressure responsive valve, 10 ... Control apparatus (control means), 11 ... Discharge refrigerant temperature sensor (temperature detection means), 43 ... Restriction passage, 44 ... Valve body,
45: Electromagnetic coil.

Claims (7)

冷媒を吸入圧縮する圧縮機(1)と、
前記圧縮機(1)の吐出冷媒を冷却する放熱器(2)と、
前記放熱器(2)の出口側冷媒を減圧する減圧手段(4)と、
前記減圧手段(4)により減圧された低圧冷媒を蒸発させる蒸発器(5)とを備え、
前記蒸発器(5)を通過した冷媒が前記圧縮機(1)に吸入されるようになっており、
更に、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルにおいて、
前記圧縮機を吐出容量が一定の固定容量型圧縮機(1)で構成し、
前記減圧手段を、開度が電気的に制御可能な電気式膨張弁(4)で構成し、
前記圧縮機(1)の吐出側から前記電気式膨張弁(4)の入口側に至る高圧側冷媒通路と、前記電気式膨張弁(4)の出口側から前記圧縮機(1)の吸入側に至る低圧側冷媒通路とを連通するバイパス通路(9)と、
前記バイパス通路(9)に設けられ、前記高圧側冷媒通路の圧力が予め設定された所定の圧力以上に上昇すると開弁する機械式圧力応動弁(9a)と、
前記圧縮機(1)の吐出冷媒温度を検出する温度検出手段(11)と、
前記温度検出手段(11)の検出信号が入力され、前記電気式膨張弁(4)を制御する制御手段(10)とを備え、
前記制御手段(10)は、前記吐出冷媒温度が所定の高温以上に上昇すると前記電気式膨張弁(4)をその開度が増加するように制御することを特徴とする超臨界冷凍サイクル。
A compressor (1) for sucking and compressing refrigerant;
A radiator (2) for cooling the refrigerant discharged from the compressor (1);
Decompression means (4) for decompressing the outlet side refrigerant of the radiator (2);
An evaporator (5) for evaporating the low-pressure refrigerant decompressed by the decompression means (4),
The refrigerant that has passed through the evaporator (5) is sucked into the compressor (1),
Furthermore, in the supercritical refrigeration cycle where the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant,
The compressor is composed of a fixed capacity type compressor (1) having a constant discharge capacity,
The pressure reducing means is composed of an electric expansion valve (4) whose opening degree can be electrically controlled,
A high-pressure side refrigerant passage extending from the discharge side of the compressor (1) to the inlet side of the electric expansion valve (4), and from the outlet side of the electric expansion valve (4) to the suction side of the compressor (1) A bypass passage (9) communicating with the low-pressure side refrigerant passage leading to
A mechanical pressure responsive valve (9a) provided in the bypass passage (9) and opened when the pressure of the high-pressure side refrigerant passage rises above a predetermined pressure set in advance;
Temperature detecting means (11) for detecting the refrigerant temperature discharged from the compressor (1);
A control means (10) for receiving the detection signal of the temperature detection means (11) and controlling the electric expansion valve (4);
The supercritical refrigeration cycle, wherein the control means (10) controls the electric expansion valve (4) to increase its opening when the discharge refrigerant temperature rises above a predetermined high temperature.
前記機械式圧力応動弁(9a)は、前記電気式膨張弁(4)と並列接続されていることを特徴とする請求項1に記載の超臨界冷凍サイクル。 The supercritical refrigeration cycle according to claim 1, wherein the mechanical pressure responsive valve (9a) is connected in parallel with the electric expansion valve (4). 冷媒を吸入圧縮する圧縮機(1)と、
前記圧縮機(1)の吐出冷媒を冷却する放熱器(2)と、
前記放熱器(2)の出口側冷媒を減圧する減圧手段(4)と、
前記減圧手段(4)により減圧された低圧冷媒を蒸発させる蒸発器(5)とを備え、
前記蒸発器(5)を通過した冷媒が前記圧縮機(1)に吸入されるようになっており、
更に、高圧側の冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルにおいて、
前記圧縮機を吐出容量が一定の固定容量型圧縮機(1)で構成し、
前記減圧手段を、高圧冷媒を減圧膨張させる絞り通路(43)と、前記絞り通路(43)の開度を調整する弁体(44)と、電磁吸引力を発生して前記弁体(44)の位置を直線的に変位させる電磁コイル(44)とを有するリニアソレノイド型電気式膨張弁(4)で構成し、
前記絞り通路(43)上流側の高圧冷媒と前記絞り通路(43)下流側の低圧冷媒との差圧に応じた力が前記弁体(44)に対して開弁方向の力として作用するようになっており、
更に、前記圧縮機(1)の吐出冷媒温度を検出する温度検出手段(11)と、
前記温度検出手段(11)の検出信号が入力され、前記リニアソレノイド型電気式膨張弁(4)を制御する制御手段(10)とを備え、
前記制御手段(10)は、前記吐出冷媒温度が所定の高温以上に上昇すると前記リニアソレノイド型電気式膨張弁(4)をその開度が増加するように制御することを特徴とする超臨界冷凍サイクル。
A compressor (1) for sucking and compressing refrigerant;
A radiator (2) for cooling the refrigerant discharged from the compressor (1);
Decompression means (4) for decompressing the outlet side refrigerant of the radiator (2);
An evaporator (5) for evaporating the low-pressure refrigerant decompressed by the decompression means (4),
The refrigerant that has passed through the evaporator (5) is sucked into the compressor (1),
Furthermore, in the supercritical refrigeration cycle where the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant,
The compressor is composed of a fixed capacity type compressor (1) having a constant discharge capacity,
The pressure reducing means includes a throttle passage (43) for decompressing and expanding high-pressure refrigerant, a valve body (44) for adjusting the opening of the throttle passage (43), and an electromagnetic suction force to generate the valve body (44). A linear solenoid type electric expansion valve (4) having an electromagnetic coil (44) for linearly displacing the position of
A force corresponding to the differential pressure between the high-pressure refrigerant upstream of the throttle passage (43) and the low-pressure refrigerant downstream of the throttle passage (43) acts as a force in the valve opening direction on the valve body (44). And
Furthermore, temperature detection means (11) for detecting the refrigerant discharge temperature of the compressor (1),
A control means (10) for receiving the detection signal of the temperature detection means (11) and controlling the linear solenoid type electric expansion valve (4);
The control means (10) controls the linear solenoid type electric expansion valve (4) to increase its opening degree when the discharged refrigerant temperature rises above a predetermined high temperature. cycle.
前記弁体(44)は前記絞り通路(43)の下流側に配置され、前記絞り通路(43)を通過する冷媒流れの動圧が、前記差圧に応じた力として前記弁体(44)に作用することを特徴とする請求項3に記載の超臨界冷凍サイクル。 The valve body (44) is disposed on the downstream side of the throttle passage (43), and the dynamic pressure of the refrigerant flow passing through the throttle passage (43) is a force corresponding to the differential pressure. The supercritical refrigeration cycle according to claim 3, wherein 前記電磁コイル(44)の電磁吸引力が増加することにより前記弁体(44)が閉弁方向に変位するようになっていることを特徴とする請求項3または4に記載の超臨界冷凍サイクル。 The supercritical refrigeration cycle according to claim 3 or 4, wherein the valve element (44) is displaced in the valve closing direction when the electromagnetic attractive force of the electromagnetic coil (44) is increased. . 前記制御手段(10)は、前記吐出冷媒温度が前記所定の高温に上昇したとき、前記吐出冷媒温度が一定温度低下するまで、前記電気式膨張弁(4)の開度を微小開度ずつ増加することを特徴とする請求項1ないし5のいずれか1つに記載の超臨界冷凍サイクル。 When the discharge refrigerant temperature rises to the predetermined high temperature, the control means (10) increases the opening of the electric expansion valve (4) by a small opening until the discharge refrigerant temperature decreases by a certain temperature. The supercritical refrigeration cycle according to any one of claims 1 to 5, wherein: 前記制御手段(10)は、前記吐出冷媒温度が前記所定の高温まで上昇していない通常運転時に、実際の高圧側冷媒圧力が前記放熱器(2)の出口冷媒温度に基づいて決定される目標高圧圧力となるように前記電気式膨張弁(4)の開度を制御することを特徴とする請求項1ないし6のいずれか1つに記載の超臨界冷凍サイクル。
The control means (10) is configured such that an actual high-pressure side refrigerant pressure is determined based on an outlet refrigerant temperature of the radiator (2) during a normal operation in which the discharge refrigerant temperature does not rise to the predetermined high temperature. The supercritical refrigeration cycle according to any one of claims 1 to 6, wherein the opening degree of the electric expansion valve (4) is controlled so as to be a high pressure.
JP2006158660A 2005-12-08 2006-06-07 Supercritical refrigeration cycle Expired - Fee Related JP4661696B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006158660A JP4661696B2 (en) 2005-12-08 2006-06-07 Supercritical refrigeration cycle
DE102006057584.9A DE102006057584B4 (en) 2005-12-08 2006-12-06 Supercritical cooling circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005354770 2005-12-08
JP2006158660A JP4661696B2 (en) 2005-12-08 2006-06-07 Supercritical refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2007183086A true JP2007183086A (en) 2007-07-19
JP4661696B2 JP4661696B2 (en) 2011-03-30

Family

ID=38190188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158660A Expired - Fee Related JP4661696B2 (en) 2005-12-08 2006-06-07 Supercritical refrigeration cycle

Country Status (2)

Country Link
JP (1) JP4661696B2 (en)
DE (1) DE102006057584B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132571A (en) * 2018-02-02 2019-08-08 株式会社デンソー Refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2508655A (en) * 2012-12-07 2014-06-11 Elstat Electronics Ltd CO2 refrigeration compressor control system
DE102015102400A1 (en) * 2015-02-20 2016-08-25 Denso Automotive Deutschland Gmbh Method for operating a refrigerant circuit, in particular in low-load operation
CN108106032A (en) * 2016-11-25 2018-06-01 开利公司 The cooling means of refrigeration system and its electric control gear

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292747A (en) * 1991-03-20 1992-10-16 Toyota Autom Loom Works Ltd Operation control device for air conditioner
JPH05262127A (en) * 1991-03-15 1993-10-12 Toyota Autom Loom Works Ltd Driving control method of air-conditioner having rotary swash plate type variable capacity compressor
JP2001116398A (en) * 1999-10-15 2001-04-27 Zexel Valeo Climate Control Corp Refrigeration cycle
JP2001174091A (en) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp Refrigeration cycle
JP2002061990A (en) * 2000-08-23 2002-02-28 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2003028522A (en) * 2001-07-16 2003-01-29 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2003065635A (en) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp Freezing cycle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4432272C2 (en) 1994-09-09 1997-05-15 Daimler Benz Ag Method for operating a refrigeration system for air conditioning vehicles and a refrigeration system for performing the same
US6105386A (en) 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JPH11248272A (en) 1998-01-05 1999-09-14 Denso Corp Supercritical refrigeration cycle
JP4688369B2 (en) 2001-08-30 2011-05-25 株式会社日本クライメイトシステムズ Air conditioner for vehicles
DE10338388B3 (en) 2003-08-21 2005-04-21 Daimlerchrysler Ag Method for controlling an air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262127A (en) * 1991-03-15 1993-10-12 Toyota Autom Loom Works Ltd Driving control method of air-conditioner having rotary swash plate type variable capacity compressor
JPH04292747A (en) * 1991-03-20 1992-10-16 Toyota Autom Loom Works Ltd Operation control device for air conditioner
JP2001116398A (en) * 1999-10-15 2001-04-27 Zexel Valeo Climate Control Corp Refrigeration cycle
JP2001174091A (en) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp Refrigeration cycle
JP2002061990A (en) * 2000-08-23 2002-02-28 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2003028522A (en) * 2001-07-16 2003-01-29 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2003065635A (en) * 2001-08-24 2003-03-05 Zexel Valeo Climate Control Corp Freezing cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019132571A (en) * 2018-02-02 2019-08-08 株式会社デンソー Refrigeration cycle device
JP6998780B2 (en) 2018-02-02 2022-01-18 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
DE102006057584B4 (en) 2018-11-22
JP4661696B2 (en) 2011-03-30
DE102006057584A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4096491B2 (en) Refrigeration cycle equipment
JP6332193B2 (en) Air conditioner for vehicles
JPWO2017217099A1 (en) Refrigeration cycle equipment
CN109642756B (en) Refrigeration cycle device
JP2006177632A (en) Refrigerating cycle
JP6149237B2 (en) Vehicle air conditioner and expansion valve
JP2021105457A (en) Refrigeration cycle device
JP2006029715A (en) Refrigerating cycle device
JP4661696B2 (en) Supercritical refrigeration cycle
JP6119616B2 (en) Heat pump cycle
JP5991277B2 (en) Integrated valve for heat pump
JP6572695B2 (en) Integrated valve
WO2017187790A1 (en) Coolant quantity insufficiency sensing device and refrigeration cycle device
JP6565737B2 (en) Refrigeration cycle equipment
JP6572829B2 (en) Integrated valve
JP6601307B2 (en) Refrigeration cycle equipment
JP2006145170A (en) Refrigerating cycle
JP2018013248A (en) Ejector type refrigeration cycle
JP2008164256A (en) Refrigerating cycle device
JP3924935B2 (en) Thermal expansion valve
JP2017150730A (en) Refrigeration cycle device
JP6079475B2 (en) Differential pressure valve for heat pump
JP7331806B2 (en) refrigeration cycle equipment
WO2023106020A1 (en) Heat pump cycle device
JP2007071453A (en) Refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R151 Written notification of patent or utility model registration

Ref document number: 4661696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees