JP2000337735A - Pressure reducer for air cooling cycle - Google Patents

Pressure reducer for air cooling cycle

Info

Publication number
JP2000337735A
JP2000337735A JP11148549A JP14854999A JP2000337735A JP 2000337735 A JP2000337735 A JP 2000337735A JP 11148549 A JP11148549 A JP 11148549A JP 14854999 A JP14854999 A JP 14854999A JP 2000337735 A JP2000337735 A JP 2000337735A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
piston
pressure reducing
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148549A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nanba
良彰 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP11148549A priority Critical patent/JP2000337735A/en
Publication of JP2000337735A publication Critical patent/JP2000337735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves

Abstract

PROBLEM TO BE SOLVED: To improve the fuel consumption of a vehicle and the degree of freedom in the layout thereof while reducing the size and weight by providing a back pressure line communicating with a refrigerant inlet and a cylinder chamber on the axis of a power element and a back pressure control valve on a control pressure release pipe. SOLUTION: A pressure reducing hole 1 is made in a refrigerant passage between a refrigerant inlet 9 and a refrigerant outlet 10 and a cylinder chamber 2 communicating with the refrigerant passage and the refrigerant outlet 10 are interconnected through a control pressure release pipe 11. A piston 3 in the cylinder chamber 2 is coupled with a valve 4 for opening/closing the pressure reducing hole 1 through a stem 5 thus constituting a power element 6. A back pressure line 7 communicating with the refrigerant inlet 9 and the cylinder chamber 2 is provided on the axis of the power element 6 and a back pressure control valve 8 is provided on the control pressure release pipe 11. Carbon dioxide is employed as refrigerant and the opening of the pressure reducing hole 1 is controlled by means of the valve 4 based on the difference between the fluid pressure acting on one end face of the piston 3 and the refrigerant pressure acting on the other end face thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、車載用空気調和装
置の冷房サイクルなどに用いて任意の冷媒減圧を得る装
置に関し、特にピストンを有するパイロット式の冷房サ
イクル用減圧装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for obtaining an arbitrary pressure reduction of a refrigerant for use in a cooling cycle of an air conditioner for a vehicle, and more particularly to a pilot-type pressure reducing apparatus having a piston for a cooling cycle.

【従来の技術】車載用エアコンの冷房サイクルには、H
FC12やHFC134aなどのフロン冷媒が用いられ
ているが、これらが大気中に放出されるとオゾン層の破
壊による地球温暖化といった環境問題が懸念される。こ
のため、脱フロン対策の1つとして、二酸化炭素、エチ
レン、エタン、酸化窒素などを使用した冷房サイクルが
提案されている(例えば、特公平7−18602号公報
参照)。これら二酸化炭素等を冷媒とした冷房サイクル
は、原理的にはフロンを使用した従来の冷房サイクルと
同じであるが、例えば二酸化炭素の臨界温度は約31℃
と従来のフロンの臨界温度(例えば、R−12は112
℃)に比べて著しく低いので、外気温度が高くなる夏場
などでは放熱器(ガスクーラ)側での二酸化炭素温度が
二酸化炭素の臨界温度より高くなり、放熱器の出口にお
いても二酸化炭素は凝縮しない点が相違する。この放熱
器の出口の状態は、圧縮機の吐出圧と放熱器の出口にお
ける二酸化炭素の温度とによって決定され、放熱器の出
口における二酸化炭素の温度と圧力は、放熱器の放熱能
力と外気温度とによって決定される。ところが、外気温
度は制御できないので、放熱器の出口における二酸化炭
素の温度と圧力は実質的に制御することは出来ない。た
だし、放熱器の出口における状態は、圧縮機の吐出圧
(放熱器の出口の冷媒圧力)を制御することにより制御
可能となるため、外気温度が高い夏場などでは、十分な
冷房能力(エンタルピ差)を確保するために、放熱器の
出口における冷媒圧力を高くすることが行われている。
こうした放熱器の出口の冷媒圧を制御する減圧装置の中
で、ピストン構造のパイロット式減圧装置が提案されて
いる。(例えば、特開平9−264449号公報参
照)。この種のパイロット式減圧装置によれば、目標と
する放熱器の出口圧力に応じた電気信号(ON/OFF
デューティー比信号)を送出することで、ピストンを介
して減圧弁の開度が制御されるので、熱負荷に応じたき
め細かな制御が可能となる。なお、フロン冷媒を用いた
冷房サイクルでは、蒸発器の出口温度を感知して減圧弁
の開度を制御する、いわゆる感温式膨張弁が用いられて
いるが、上述したように二酸化炭素等を冷媒とした冷房
サイクルでは、サイクル内の冷媒圧が3.5〜15MP
aと、従来のフロン系(0.2〜3.0MPa)に比べ
て著しく高いので、従来の感温式膨張弁を構成するダイ
アフラムの耐圧が問題となる。こうした理由から、二酸
化炭素等を冷媒とした冷房サイクルではパイロット式減
圧装置が主流となっている。
2. Description of the Related Art In a cooling cycle of an air conditioner for vehicles, H
Although chlorofluorocarbon refrigerants such as FC12 and HFC134a are used, if these are released into the atmosphere, there is a concern about environmental problems such as global warming due to destruction of the ozone layer. For this reason, a cooling cycle using carbon dioxide, ethylene, ethane, nitric oxide, or the like has been proposed as one of the measures against chlorofluorocarbon (see, for example, Japanese Patent Publication No. Hei 7-18602). The cooling cycle using carbon dioxide or the like as a refrigerant is in principle the same as a conventional cooling cycle using chlorofluorocarbon, but for example, the critical temperature of carbon dioxide is about 31 ° C.
And the critical temperature of conventional fluorocarbon (for example, R-12 is 112
℃), the temperature of carbon dioxide on the radiator (gas cooler) side becomes higher than the critical temperature of carbon dioxide in summer when the outside air temperature rises, and the carbon dioxide does not condense at the outlet of the radiator. Are different. The state of the outlet of the radiator is determined by the discharge pressure of the compressor and the temperature of the carbon dioxide at the outlet of the radiator, and the temperature and pressure of the carbon dioxide at the outlet of the radiator are determined by the radiator's heat radiation capacity and the outside air temperature. And is determined by However, since the outside air temperature cannot be controlled, the temperature and pressure of carbon dioxide at the outlet of the radiator cannot be substantially controlled. However, since the state at the outlet of the radiator can be controlled by controlling the discharge pressure of the compressor (the refrigerant pressure at the outlet of the radiator), sufficient cooling capacity (enthalpy difference) can be obtained in summer when the outside air temperature is high. In order to secure (1), the refrigerant pressure at the outlet of the radiator is increased.
Among such pressure reducing devices that control the refrigerant pressure at the outlet of the radiator, a pilot type pressure reducing device having a piston structure has been proposed. (See, for example, JP-A-9-264449). According to this type of pilot pressure reducing device, an electric signal (ON / OFF) corresponding to a target outlet pressure of the radiator is provided.
By transmitting the duty ratio signal), the opening degree of the pressure reducing valve is controlled via the piston, so that fine control according to the heat load can be performed. In the cooling cycle using a CFC refrigerant, a so-called temperature-sensitive expansion valve that controls the opening of the pressure reducing valve by sensing the outlet temperature of the evaporator is used. In the cooling cycle using the refrigerant, the refrigerant pressure in the cycle is 3.5 to 15MP.
a, which is significantly higher than that of the conventional Freon system (0.2 to 3.0 MPa), there is a problem with the pressure resistance of the diaphragm constituting the conventional temperature-sensitive expansion valve. For these reasons, pilot-type pressure reducing devices are mainly used in cooling cycles using carbon dioxide or the like as a refrigerant.

【発明が解決しようとする課題】しかしながら、このよ
うな従来技術では、図7に示すように長いピストン背圧
管が必要となり、減圧装置が大型になってしまい、重量
も増加してしまうという問題があった。また、二酸化炭
素等の冷媒を用いたパイロット式減圧装置においては、
ピストン背圧管の接合部に非常に大きな圧力がかかるた
め、冷媒漏れ保証が困難であるという問題があった。本
発明は、上述の問題点に鑑みてなされたもので、パイロ
ット式減圧装置において、減圧装置を小型化し、軽量化
を図るとともに、冷媒漏れを極力抑えるために配管等の
接合部の数を減縮することを目的とする。
However, in such a conventional technique, a long piston back pressure tube is required as shown in FIG. 7, so that the decompression device becomes large and the weight increases. there were. Also, in a pilot pressure reducing device using a refrigerant such as carbon dioxide,
Since a very large pressure is applied to the joint of the piston back pressure tube, there is a problem that it is difficult to guarantee the refrigerant leakage. The present invention has been made in view of the above-described problems, and in a pilot-type pressure reducing device, while reducing the size and weight of the pressure reducing device and reducing the number of joints such as pipes in order to minimize refrigerant leakage. The purpose is to do.

【課題を解決するための手段】請求項1に記載の発明で
は、冷媒入り口と冷媒出口との間の冷媒流路に形成され
た減圧孔と、前記冷媒流路に連通するシリンダ室と、前
記シリンダ室と前記冷媒出口とを連通する制御圧抜き管
と、前記シリンダ室内に設けられたピストンと、このピ
ストンに連結され前記減圧孔を開閉する弁体と、前記ピ
ストンと前記弁体とこれらを連結するステムとから構成
されるパワーエレメントとを備え、二酸化炭素を冷媒と
し、前記ピストンの一端面に作用する流体圧と前記ピス
トンの他端面に作用する冷媒圧との差圧により、前記弁
体による減圧孔の開度を制御する減圧装置において、前
記パワーエレメントの軸心に、冷媒入り口とシリンダ室
との間を連通する背圧ラインを設け、前記制御圧抜き管
に背圧制御弁を設けたことを特徴とする。請求項2に記
載の発明では、請求項1に記載の冷房サイクル用減圧装
置において、前記冷媒入り口に、冷媒の背圧ラインへの
流通を確保しつつ、弁体に作用する動圧を排除するため
の防護壁を設けたことを特徴とする。
According to the present invention, a pressure reducing hole formed in a refrigerant flow path between a refrigerant inlet and a refrigerant outlet, a cylinder chamber communicating with the refrigerant flow path, A control pressure release pipe communicating the cylinder chamber with the refrigerant outlet, a piston provided in the cylinder chamber, a valve connected to the piston to open and close the pressure reducing hole, the piston and the valve, A power element composed of a connecting stem and carbon dioxide as a refrigerant, wherein the valve element is driven by a differential pressure between a fluid pressure acting on one end face of the piston and a refrigerant pressure acting on the other end face of the piston. In the pressure reducing device for controlling the degree of opening of the pressure reducing hole, a back pressure line communicating between the refrigerant inlet and the cylinder chamber is provided in the axis of the power element, and a back pressure control valve is provided in the control pressure release pipe. Characterized in that was. According to the second aspect of the present invention, in the pressure reducing apparatus for a cooling cycle according to the first aspect, the dynamic pressure acting on the valve body is eliminated while ensuring the circulation of the refrigerant to the back pressure line at the refrigerant inlet. A protective wall is provided.

【発明の作用及び効果】請求項1に記載の発明では、前
記パワーエレメント内に背圧ラインを備えたことによ
り、従来のようなピストン背圧管を高圧制御弁の外側に
設ける必要がなく、これにより、構成を小型化でき、軽
量化を図ることにより車両の燃費向上、及びレイアウト
自由度の向上等を図ることが出来る。また、配管の接合
部を削減することが可能となり、これにより、冷媒漏れ
を防ぐことが出来る。請求項2に記載の発明では、請求
項1に記載の冷房サイクル用減圧装置において、弁体の
下部に防護壁を設けたことにより、冷媒の動圧によるパ
ワーエレメントの不安定な動作を排除することが可能と
なり、安定した弁作動を実行することが出来る。
According to the first aspect of the present invention, since the back pressure line is provided in the power element, it is not necessary to provide a piston back pressure pipe outside the high pressure control valve as in the prior art. As a result, the configuration can be reduced in size and the weight can be reduced, so that the fuel efficiency of the vehicle can be improved and the layout flexibility can be improved. In addition, it is possible to reduce the number of joints in the pipe, thereby preventing refrigerant leakage. According to the second aspect of the present invention, in the pressure reducing apparatus for a cooling cycle according to the first aspect, by providing a protection wall below the valve body, unstable operation of the power element due to dynamic pressure of the refrigerant is eliminated. It is possible to perform stable valve operation.

【実施の形態】以下、本発明の実施の形態を図面に基づ
いて詳細に説明する。 (実施の形態1)図2は、本発明の減圧装置が適用され
る冷房サイクルの一例を示す全体回路図である。まず、
図2に示す冷房サイクルの構成から説明すると、本実施
の形態1に係わる冷房サイクルは、圧縮機1、放熱器
2、減圧装置3、蒸発器4、及びアキュムレータ5がこ
の順序で冷媒配管8により接続されており、閉回路が構
成されている。圧縮機1は、図外のエンジン等から駆動
力を得て気相状態の二酸化炭素冷媒を圧縮し、放熱器2
に向かって吐出する。放熱器2は、圧縮機1で圧縮され
た二酸化炭素冷媒を外気等との間で熱交換して冷却する
ものであり、この熱交換を促進するためあるいは停車中
においても熱交換できるようにクーリングファン6が負
荷されている。また、放熱器2は、放熱器2内の二酸化
炭素冷媒の温度と外気温度との差を出来る限り大きくす
るために、例えば車両の前面に配置されている。減圧装
置3は、放熱器2から流出した高圧(約10MPa)の
二酸化炭素の冷媒を、減圧孔13を通過させることで減
圧するもので、これについては後述する。なお、減圧装
置3は、二酸化炭素冷媒を減圧するとともに、放熱器2
の出口側の圧力を制御する機能も兼ね備えており、この
減圧装置3で減圧された二酸化炭素冷媒は、気液二相状
態となって蒸発器(吸熱器)4に流入する。蒸発器4
は、車室内に吹き出す空気を冷却するためのもので、例
えば車載された空調ユニットのケーシングに内蔵され、
ファン7により取り込まれた車室外空気又は車室内空気
が当該蒸発器4を通過することによりこの取り入れ空気
が冷却され、図外の吹き出し口を介して車室内の所望の
位置に吹き出される。すなわち、減圧装置3から流下し
た気液二相状態の二酸化炭素冷媒は、蒸発器4内で蒸発
(気化)する際に取り入れ空気から蒸発潜熱を奪うこと
でこれを冷却する。アキュムレータ5は、蒸発器4を通
過した二酸化炭素冷媒を、気相の冷媒と液相の冷媒とを
分離して、気相状態の冷媒のみを圧縮機1へ送るととも
に液相状態の冷媒を一時的に蓄えるものである。次に、
図3により減圧装置3について詳述する。本実施の形態
1の減圧装置3は、ハウジング301、302及びエン
ドソケット303によって構成され、エンドソケット3
03には放熱器2からの高圧冷媒が流入する冷媒入り口
15が形成され、ハウジング302には、減圧された冷
媒が蒸発器4に向かって流出する冷媒出口22が形成さ
れている。ハウジング301とエンドソケット303の
接触部分には冷媒漏れを防ぐためのリングシール25が
設けられている。前記冷媒入り口15と前記冷媒出口2
2の間には減圧孔13及びパワーエレメント23が設け
られている。このパワーエレメント23は、ピストン1
2,ステム14及び弁体19より構成されており、ピス
トン12の動きと一体に作動するものである。前記ピス
トン12の上方にはコイルスプリング23が備えられ、
弁体19を減圧孔13の開放方向にばね付勢している。
前記パワーエレメント23の軸心部には、背圧ライン2
0が設けられており、この背圧ライン20は冷媒入り口
15とハウジング302に設けられたシリンダ室11と
を連通している。これにより、冷媒入り口15から高圧
の冷媒をシリンダ室11のピストン上側の空間に送るこ
とでピストン12に背圧をかけ、弁体19にかかる高圧
にうち勝って弁体19を押し下げることで開弁作動を補
助する構成となっている。シリンダ室11には、冷媒出
口22とシリンダ室11を連通する制御圧抜き管16が
設けられ、この制御圧抜き管16上には背圧制御弁17
が設けられている。背圧ライン20によりシリンダ室1
1のピストン上側の空間に送られた高圧冷媒の圧力を背
圧制御弁17により調節しながら冷媒出口22にリーク
することでピストン12にかかる背圧を調節し、弁の開
度を調節している。ハウジング301には高圧冷媒の流
体圧による影響を排除するために防護壁21が設けられ
ている。この防護壁21には、冷媒を流通させるための
孔が設けられており、冷媒流体が弁体19に直接ぶつか
ることなく冷媒圧力をシリンダ室11に供給するよう構
成されている。この防護壁21と弁体19の間には、コ
イルスプリング18が備えられ、弁体19を減圧孔13
の閉塞方向にばね付勢している。次に、図6のモリエル
線図を参照しながら本実施の形態1における冷房サイク
ルの作用を説明する。まず、圧縮機1にて気相状態の二
酸化炭素冷媒を圧縮し(A−B)、この高温高圧の気相
状態の二酸化炭素冷媒を放熱器2にて冷却する(B−
C)。そして、減圧装置3により減圧した後(C−
D)、気液二相状態となった二酸化炭素冷媒を蒸発器4
にて蒸発させて(D−A)、蒸発潜熱を取り入れ空気か
ら奪ってこれを冷却する。これにより、空調装置のユニ
ット内に導入された取り入れ空気が冷却され、車室内に
吹き出されることで車室内が冷房される。蒸発器4を通
過した二酸化炭素冷媒は、アキュムレータ5にて気液分
離され、気相状態の冷媒のみが再び圧縮機1へ吸入され
る。このモリエル線図のC−Dの減圧過程において、蒸
発器4における熱負荷に応じて以下の制御が実行され
る。すなわち、夏場等のように熱負荷が高い場合(多く
の冷房を必要とする場合)には、減圧装置3から蒸発器
4へ多量の冷媒を供給する必要があるため、弁体19の
開度を大きくすべく、背圧制御弁17のデューティー比
を減少させる(開放時間比を減少)。これにより、背圧
ライン20を介して高圧の冷媒がピストン12の頂面側
の空間に導入され差圧が大きくなるので、ピストン12
が下方に押圧され、その結果、ステム14を介して弁体
19も下方に移動し、減圧孔13が開く。これに対し
て、熱負荷がさほど大きくない場合には、背圧制御弁1
7のデューティー比を増加させ、冷媒出口22の圧力を
高くすることで、ピストン12は上方に移動し、これに
応じて弁体19も上方に移動して、減圧孔13の開度が
小さくなる。なお、ピストン12が下方位置から上方へ
移動する際に、ピストン12の上側の空間に導入された
冷媒は、制御抜き圧管16を介して冷媒出口22へ逃が
されるので、ピストン12の動作が円滑に行われる。ま
た、図5に示すように従来は冷媒入り口(A地点)と、
ピストンの上側の空間(C地点)との差圧勾配を弁調整
することにより、ピストン12を上下動させていたが、
本発明では、制御圧抜き管16に背圧制御弁17を設け
たことにより、ピストン12の上側の空間(C地点)
と、冷媒出口とつながっているピストン12の下側の空
間(E地点)との差圧勾配を弁調整することにより、ピ
ストン12を上下動させる構成となっている。このと
き、弁体19が減圧孔13を開くと、放熱器2から高圧
の冷媒が減圧装置の冷媒入り口15へ流入し、この冷媒
の流速の伴う動圧が弁体19に衝突する事により、ピス
トンの動きを不安定にさせる場合があるため、本実施の
形態1では、防護壁21を設置することで、この冷媒の
動圧による不安定要素を排除している。以上説明したよ
うに、本実施の形態1では、従来のようにピストン背圧
管を制御弁の外側に設ける必要がない構造を採用したこ
とにより、減圧装置を小型化でき、例えば、フロンガス
冷媒によるエアコンシステムの搭載空間に、そのまま二
酸化炭素冷媒によるエアコンシステムを搭載することが
出来る。 (実施の形態2)本実施の形態1においては、防護壁2
1の中心に背圧ライン20に冷媒を送流するための管が
設けられていたが、この構成に限られるものではなく、
図4(a)に示すように弁体としてボール弁28を使用
し、このボール弁28の投影面積に相当する円板を中心
部に備えた防護壁27(図4(b)参照)を設けること
により、ボール部に衝突し、下から押し上げる冷媒の動
圧による力を散らす構成としても良い。これにより、簡
単な構成で安定した弁作動を行うことができる。
Embodiments of the present invention will be described below in detail with reference to the drawings. (Embodiment 1) FIG. 2 is an overall circuit diagram showing an example of a cooling cycle to which the pressure reducing device of the present invention is applied. First,
Explaining from the configuration of the cooling cycle shown in FIG. 2, in the cooling cycle according to the first embodiment, the compressor 1, the radiator 2, the pressure reducing device 3, the evaporator 4, and the accumulator 5 are connected by the refrigerant pipe 8 in this order. Connected to form a closed circuit. The compressor 1 obtains a driving force from an engine or the like (not shown) to compress the gaseous carbon dioxide refrigerant,
Discharge toward. The radiator 2 cools the carbon dioxide refrigerant compressed by the compressor 1 by exchanging heat with the outside air or the like. In order to promote the heat exchange or to allow the heat exchange even when the vehicle is stopped, the radiator 2 is cooled. Fan 6 is loaded. The radiator 2 is disposed, for example, on the front of a vehicle in order to maximize the difference between the temperature of the carbon dioxide refrigerant in the radiator 2 and the outside air temperature. The pressure reducing device 3 reduces the pressure of the high-pressure (about 10 MPa) carbon dioxide refrigerant flowing out of the radiator 2 by passing it through the pressure reducing holes 13, which will be described later. In addition, the pressure reducing device 3 reduces the pressure of the carbon dioxide refrigerant and
The carbon dioxide refrigerant decompressed by the decompression device 3 flows into the evaporator (heat absorber) 4 in a gas-liquid two-phase state. Evaporator 4
Is for cooling the air blown into the passenger compartment, for example, built in the casing of the air conditioning unit mounted on the vehicle,
When the outside air or the inside air taken in by the fan 7 passes through the evaporator 4, the taken air is cooled, and is blown out to a desired position in the vehicle room through an outlet (not shown). That is, the carbon dioxide refrigerant in the gas-liquid two-phase state flowing down from the decompression device 3 is cooled by removing latent heat of evaporation from the intake air when evaporating (vaporizing) in the evaporator 4. The accumulator 5 separates the carbon dioxide refrigerant having passed through the evaporator 4 into a gas phase refrigerant and a liquid phase refrigerant, sends only the gas phase refrigerant to the compressor 1, and temporarily converts the liquid phase refrigerant. It is something to store. next,
The pressure reducing device 3 will be described in detail with reference to FIG. The pressure reducing device 3 according to the first embodiment includes housings 301 and 302 and an end socket 303, and the end socket 3
A refrigerant inlet 15 through which the high-pressure refrigerant from the radiator 2 flows is formed in 03, and a refrigerant outlet 22 through which the depressurized refrigerant flows out toward the evaporator 4 is formed in the housing 302. A ring seal 25 for preventing refrigerant leakage is provided at a contact portion between the housing 301 and the end socket 303. The refrigerant inlet 15 and the refrigerant outlet 2
Between them, a pressure reducing hole 13 and a power element 23 are provided. This power element 23 is a piston 1
2, a stem 14 and a valve body 19, which operate integrally with the movement of the piston 12. Above the piston 12, a coil spring 23 is provided,
The valve body 19 is spring-biased in the opening direction of the pressure reducing hole 13.
A back pressure line 2 is provided at the axis of the power element 23.
The back pressure line 20 communicates the refrigerant inlet 15 with the cylinder chamber 11 provided in the housing 302. Thereby, the back pressure is applied to the piston 12 by sending the high-pressure refrigerant to the space above the piston of the cylinder chamber 11 from the refrigerant inlet 15, and the valve is opened by overcoming the high pressure applied to the valve 19 and pushing down the valve 19. It is configured to assist the operation. The cylinder chamber 11 is provided with a control pressure release pipe 16 that communicates the refrigerant outlet 22 with the cylinder chamber 11, and a back pressure control valve 17 is provided on the control pressure release pipe 16.
Is provided. Cylinder chamber 1 by back pressure line 20
The back pressure applied to the piston 12 is adjusted by leaking to the refrigerant outlet 22 while adjusting the pressure of the high-pressure refrigerant sent to the space above the first piston by the back pressure control valve 17, and the opening degree of the valve is adjusted. I have. The housing 301 is provided with a protective wall 21 for eliminating the influence of the fluid pressure of the high-pressure refrigerant. The protective wall 21 is provided with a hole through which the refrigerant flows, and is configured to supply the refrigerant pressure to the cylinder chamber 11 without the refrigerant fluid directly hitting the valve body 19. A coil spring 18 is provided between the protection wall 21 and the valve element 19, and the valve element 19 is
Is biased in the closing direction. Next, the operation of the cooling cycle in the first embodiment will be described with reference to the Mollier diagram of FIG. First, the gas-phase carbon dioxide refrigerant is compressed by the compressor 1 (A-B), and the high-temperature and high-pressure gas-phase carbon dioxide refrigerant is cooled by the radiator 2 (B-B).
C). After the pressure is reduced by the pressure reducing device 3 (C-
D) The carbon dioxide refrigerant in the gas-liquid two-phase state is
(DA) to take in the latent heat of evaporation from the air and cool it. Thereby, the intake air introduced into the unit of the air conditioner is cooled, and is blown out into the passenger compartment, thereby cooling the passenger compartment. The carbon dioxide refrigerant that has passed through the evaporator 4 is gas-liquid separated by the accumulator 5, and only the refrigerant in a gaseous state is sucked into the compressor 1 again. In the pressure reduction process of CD in the Mollier diagram, the following control is executed according to the heat load on the evaporator 4. That is, when the heat load is high (when a large amount of cooling is required), such as in summer, it is necessary to supply a large amount of refrigerant from the pressure reducing device 3 to the evaporator 4. Is reduced, the duty ratio of the back pressure control valve 17 is reduced (the open time ratio is reduced). As a result, the high-pressure refrigerant is introduced into the space on the top surface side of the piston 12 through the back pressure line 20 and the differential pressure increases.
Is pressed downward, as a result, the valve body 19 also moves downward via the stem 14, and the pressure reducing hole 13 is opened. On the other hand, when the heat load is not so large, the back pressure control valve 1
By increasing the duty ratio of 7 and increasing the pressure of the refrigerant outlet 22, the piston 12 moves upward, and accordingly, the valve element 19 also moves upward, and the opening degree of the pressure reducing hole 13 decreases. . When the piston 12 moves upward from the lower position, the refrigerant introduced into the space above the piston 12 is released to the refrigerant outlet 22 via the control pressure release pipe 16, so that the operation of the piston 12 can be performed smoothly. Done. In addition, as shown in FIG. 5, a conventional refrigerant inlet (point A),
The piston 12 was moved up and down by adjusting the pressure difference gradient with the space above the piston (point C).
In the present invention, by providing the back pressure control valve 17 on the control pressure release pipe 16, the space above the piston 12 (point C)
The piston 12 is moved up and down by valve-adjusting a pressure difference gradient between a space below the piston 12 (point E) connected to the refrigerant outlet and the refrigerant outlet. At this time, when the valve element 19 opens the pressure reducing hole 13, high-pressure refrigerant flows from the radiator 2 into the refrigerant inlet 15 of the pressure reducing device, and the dynamic pressure accompanying the flow velocity of the refrigerant collides with the valve element 19, Since the movement of the piston may be unstable, in the first embodiment, an unstable element due to the dynamic pressure of the refrigerant is eliminated by installing the protection wall 21. As described above, the first embodiment employs a structure in which the piston back pressure pipe does not need to be provided outside the control valve as in the related art, so that the pressure reducing device can be downsized. An air-conditioning system using carbon dioxide refrigerant can be directly installed in the system mounting space. (Embodiment 2) In Embodiment 1, the protective wall 2
Although a pipe for sending the refrigerant to the back pressure line 20 was provided at the center of 1, the configuration is not limited to this.
As shown in FIG. 4 (a), a ball valve 28 is used as a valve body, and a protective wall 27 (see FIG. 4 (b)) having a disk corresponding to the projected area of the ball valve 28 at the center is provided. This may be configured to collide with the ball portion and disperse the force due to the dynamic pressure of the refrigerant pushed up from below. Thereby, stable valve operation can be performed with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷房サイクル用減圧装置を示すクレー
ム対応図である。
FIG. 1 is a diagram corresponding to claims showing a pressure reducing device for a cooling cycle according to the present invention.

【図2】実施の形態1,2の減圧装置が適用された冷凍
サイクルの一例を示す全体回路図である。
FIG. 2 is an overall circuit diagram illustrating an example of a refrigeration cycle to which the pressure reducing devices of Embodiments 1 and 2 are applied.

【図3】実施の形態1の冷房サイクル用減圧装置を示す
端面図である。
FIG. 3 is an end view showing the cooling cycle decompression device of the first embodiment.

【図4】実施の形態2の冷房サイクル用減圧装置を示す
端面図である。
FIG. 4 is an end view showing a pressure reducing device for a cooling cycle according to a second embodiment.

【図5】パイロット式減圧装置の各部圧力を示した図で
ある。
FIG. 5 is a diagram showing pressures at various parts of the pilot pressure reducing device.

【図6】二酸化炭素を冷媒とする冷房サイクルを説明す
るためのモリエル線図である。
FIG. 6 is a Mollier diagram for explaining a cooling cycle using carbon dioxide as a refrigerant.

【図7】従来のパイロット式減圧装置を示す端面図であ
る。
FIG. 7 is an end view showing a conventional pilot pressure reducing device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱器 3 減圧装置 4 蒸発器 5 アキュムレータ 6 クーリングファン 7 ファン 8 冷媒配管 11 シリンダ室 12 ピストン 13 減圧孔 14 ステム 15 冷媒入り口 16 制御圧抜き管 17 背圧制御弁 18 コイルスプリング 19 弁体 20 背圧ライン 21 防護壁 22 冷媒出口 23 パワートレイン 23a パワートレイン 24 コイルスプリング 25 リングシール 26 オイルシール 27 防護壁 28 ボール弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Decompression device 4 Evaporator 5 Accumulator 6 Cooling fan 7 Fan 8 Refrigerant piping 11 Cylinder chamber 12 Piston 13 Decompression hole 14 Stem 15 Refrigerant inlet 16 Control pressure release pipe 17 Back pressure control valve 18 Coil spring 19 Valve Body 20 Back pressure line 21 Protective wall 22 Refrigerant outlet 23 Powertrain 23a Powertrain 24 Coil spring 25 Ring seal 26 Oil seal 27 Protective wall 28 Ball valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒入り口(9)と冷媒出口(10)と
の間の冷媒流路に形成された減圧孔(1)と、 前記冷媒流路に連通するシリンダ室(2)と、 前記シリンダ室(2)と前記冷媒出口(10)との間を
連通する制御圧抜き管(11)と、 前記シリンダ室(2)内に設けられたピストン(3)
と、 このピストン(3)に連結され前記減圧孔(1)を開閉
する弁体(4)と、 前記ピストン(3)と前記弁体(4)とこれらを連結す
るステム(5)とから構成されるパワーエレメント
(6)とを備え、 二酸化炭素を冷媒とし、前記ピストン(3)の一端面に
作用する流体圧と前記ピストン(3)の他端面に作用す
る冷媒圧との差圧により、前記弁体(4)による減圧孔
(1)の開度を制御する冷房サイクル用減圧装置におい
て、 前記パワーエレメント(6)の軸心に、冷媒入り口
(9)とシリンダ室(2)との間を連通する背圧ライン
(7)を設け、 かつ、前記制御圧抜き管(11)に背圧制御弁(8)を
設けたことを特徴とする冷房サイクル用減圧装置。
1. A pressure reducing hole (1) formed in a refrigerant channel between a refrigerant inlet (9) and a refrigerant outlet (10); a cylinder chamber (2) communicating with the refrigerant channel; A control pressure release pipe (11) communicating between the chamber (2) and the refrigerant outlet (10); and a piston (3) provided in the cylinder chamber (2).
A valve element (4) connected to the piston (3) for opening and closing the pressure reducing hole (1); and a stem (5) connecting the piston (3), the valve element (4), and these elements. And a power element (6), which uses carbon dioxide as a refrigerant, and has a differential pressure between a fluid pressure acting on one end of the piston (3) and a refrigerant pressure acting on the other end of the piston (3). In a pressure reducing device for a cooling cycle, which controls an opening degree of a pressure reducing hole (1) by a valve body (4), between a refrigerant inlet (9) and a cylinder chamber (2) at an axis of the power element (6). And a back pressure control valve (8) provided in the control pressure release pipe (11).
【請求項2】 請求項1に記載の冷房サイクル用減圧装
置において、 前記冷媒入り口(9)に、冷媒の背圧ライン(7)への
流通を確保しつつ、弁体(4)に作用する動圧を排除す
るための防護壁を設けたことを特徴とする冷房サイクル
用減圧装置。
2. The pressure reducing device for a cooling cycle according to claim 1, wherein the refrigerant acts on the valve element (4) while ensuring the flow of the refrigerant to the back pressure line (7) at the refrigerant inlet (9). A pressure reducing device for a cooling cycle, comprising a protective wall for eliminating dynamic pressure.
JP11148549A 1999-05-27 1999-05-27 Pressure reducer for air cooling cycle Pending JP2000337735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148549A JP2000337735A (en) 1999-05-27 1999-05-27 Pressure reducer for air cooling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148549A JP2000337735A (en) 1999-05-27 1999-05-27 Pressure reducer for air cooling cycle

Publications (1)

Publication Number Publication Date
JP2000337735A true JP2000337735A (en) 2000-12-08

Family

ID=15455255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148549A Pending JP2000337735A (en) 1999-05-27 1999-05-27 Pressure reducer for air cooling cycle

Country Status (1)

Country Link
JP (1) JP2000337735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267766A (en) * 2007-04-25 2008-11-06 Sanden Corp Vapor compression refrigeration cycle
WO2009060465A2 (en) * 2007-07-18 2009-05-14 Vijay Appa Kasar Energy saving expansion device for refrigeration & other industries
CN104180566A (en) * 2013-05-21 2014-12-03 浙江三花股份有限公司 Thermal expansion valve with functions of one-way valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267766A (en) * 2007-04-25 2008-11-06 Sanden Corp Vapor compression refrigeration cycle
WO2009060465A2 (en) * 2007-07-18 2009-05-14 Vijay Appa Kasar Energy saving expansion device for refrigeration & other industries
WO2009060465A3 (en) * 2007-07-18 2009-08-27 Vijay Appa Kasar Energy saving expansion device for refrigeration & other industries
CN104180566A (en) * 2013-05-21 2014-12-03 浙江三花股份有限公司 Thermal expansion valve with functions of one-way valve
CN104180566B (en) * 2013-05-21 2018-06-19 浙江三花制冷集团有限公司 A kind of heating power expansion valve with non-return valve function

Similar Documents

Publication Publication Date Title
JP3858297B2 (en) Pressure control valve and vapor compression refrigeration cycle
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
JP2002130849A (en) Cooling cycle and its control method
US20100037641A1 (en) Refrigeration device
US7536872B2 (en) High pressure control valve
JP3467989B2 (en) Vapor compression refrigeration cycle
JPH10288411A (en) Vapor pressure compression type refrigerating cycle
JP2001071741A (en) Air conditioning device for vehicle
JP2000337735A (en) Pressure reducer for air cooling cycle
JPH11351680A (en) Cooling equipment
JP4015171B2 (en) Refrigerant condenser
JP3528433B2 (en) Vapor compression refrigeration cycle
JP2007046808A (en) Expansion device
JP3411676B2 (en) Cold heat transfer equipment
JP2001324246A (en) Expansion valve and freezing cycle using it
JPH0960986A (en) Refrigerating cycle device
JPH11148576A (en) Pressure control valve
JP3879301B2 (en) Refrigeration cycle equipment
JP2007101043A (en) Heat cycle
JP2000346498A (en) Pressure control valve for vapor compression type refrigerating cycle
KR100308374B1 (en) Compressor protection device of air conditioner
JPH09118128A (en) On-vehicle refrigerating device
JP4235868B2 (en) Air conditioner with automatic temperature expansion valve
JP2005201484A (en) Refrigerating cycle
KR200336451Y1 (en) Structure of a receiver-drier and opening and closing-valve and receiver-tank in the bus-cooler

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051114