JP2008267766A - Vapor compression refrigeration cycle - Google Patents

Vapor compression refrigeration cycle Download PDF

Info

Publication number
JP2008267766A
JP2008267766A JP2007115368A JP2007115368A JP2008267766A JP 2008267766 A JP2008267766 A JP 2008267766A JP 2007115368 A JP2007115368 A JP 2007115368A JP 2007115368 A JP2007115368 A JP 2007115368A JP 2008267766 A JP2008267766 A JP 2008267766A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
differential pressure
refrigeration cycle
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007115368A
Other languages
Japanese (ja)
Other versions
JP5043496B2 (en
Inventor
Kenichi Suzuki
謙一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2007115368A priority Critical patent/JP5043496B2/en
Publication of JP2008267766A publication Critical patent/JP2008267766A/en
Application granted granted Critical
Publication of JP5043496B2 publication Critical patent/JP5043496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor compression refrigeration cycle, constituted so as to optimally control differential pressure before and after passing through an expansion mechanism according to the pressure of a refrigerant. <P>SOLUTION: The vapor compression refrigeration cycle having a supercritical operation region of the refrigerant comprises a differential pressure type expansion means capable of adiabatically expanding the refrigerant circulating in the refrigeration cycle and adjusting the amount of refrigerant passing through the expansion mechanism, according to the differential pressure between the inlet side refrigerant pressure and outlet-side refrigerant pressure of the expansion mechanism. The differential pressure expansion means comprises a differential pressure valve which is opened with the increase in the differential pressure, and the differential pressure valve is constituted so as to satisfy 5 MPa≤Po≤6 MPa condition, when the pressure for starting the opening the valve is set as the valve-opening pressure Po. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蒸気圧縮式冷凍サイクルに関し、とくに、自然系冷媒である二酸化炭素を用いた冷凍サイクルを有する車両用空調装置に好適な蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and particularly to a vapor compression refrigeration cycle suitable for a vehicle air conditioner having a refrigeration cycle using carbon dioxide, which is a natural refrigerant.

車両用空調装置における蒸気圧縮式冷凍サイクルについて、その冷媒として自然系冷媒である二酸化炭素を用いている場合においては、外部からの制御信号によって膨張装置の弁開度を制御することで、冷媒の高圧側ラインの圧力を調節するものが知られている(例えば、特許文献1)。   In the case of a vapor compression refrigeration cycle in a vehicle air conditioner, when carbon dioxide, which is a natural refrigerant, is used as the refrigerant, the valve opening of the expansion device is controlled by an external control signal. One that adjusts the pressure of the high-pressure side line is known (for example, Patent Document 1).

このような冷凍サイクルにおいては、冷凍サイクルの高圧側冷媒温度などを参照することにより冷凍サイクルの成績係数(COP:Coefficient of Performance)が最適となる高圧側圧力を演算し、高圧側圧力が最適となるように膨張装置の弁開度などを制御するようにしている。   In such a refrigeration cycle, the high pressure side pressure at which the coefficient of performance (COP) of the refrigeration cycle is optimal is calculated by referring to the high pressure side refrigerant temperature of the refrigeration cycle, and the high pressure side pressure is optimal. Thus, the valve opening degree of the expansion device is controlled.

また、冷凍サイクルにおける放熱器(ガスクーラ)の出口冷媒の圧力、温度に応じて膨張装置のオリフィスの通路断面積を可変できるようにして冷凍サイクルを効率よく運転するようにしたものも提案されており、また、内部に形状記憶合金ばねによって付勢された弁を有する膨張装置も提案されている(例えば、特許文献2)。このような構成では、ガスクーラ出口側における冷媒の圧力および温度は、ガスクーラ出口側における冷媒の温度と成績係数が最大となる圧力とから求めた最適制御線上に沿って制御されるようになり、二酸化炭素を使用した冷凍サイクルの効率の良い運転を可能にしている。
特開平7−294033号公報 特開2007−46808号公報
In addition, there has also been proposed a system in which the refrigeration cycle is efficiently operated by changing the passage cross-sectional area of the orifice of the expansion device according to the pressure and temperature of the refrigerant at the outlet of the radiator (gas cooler) in the refrigeration cycle. An expansion device having a valve biased by a shape memory alloy spring is also proposed (for example, Patent Document 2). In such a configuration, the refrigerant pressure and temperature at the gas cooler outlet side are controlled along the optimal control line obtained from the refrigerant temperature and the pressure at which the coefficient of performance is maximized at the gas cooler outlet side. This enables efficient operation of the refrigeration cycle using carbon.
Japanese Patent Laid-Open No. 7-294033 JP 2007-46808 A

上述のようにガスクーラ出口冷媒の温度を参照することにより演算される最適な高圧側圧力となるように制御するための膨張装置としては、電気制御式膨張機構を制御する方式や、圧力、温度に応じてオリフィスの通路断面積が可変する機械式の膨張機構などが知られている。前者は、ガスクーラ出口冷媒温度及び圧力を検知し、その検知量に応じて電気式の膨張弁を制御するものであるため、装置が複雑で大型化するとともに、制御方法が複雑になり、コストも上昇するとされている。後者は、ガスクーラ出口冷媒温度、圧力に応じてそのオリフィスの通路断面積を可変させるものであり、ガスクーラ出口冷媒温度を感知するため、とくに冷凍サイクルの配管接続構造が複雑化し、締結部の増加も懸念され、コストも上昇すると考えられる。一般的に二酸化炭素を用いた蒸気圧縮式冷凍サイクルは、高圧側冷媒と低圧側冷媒を熱交換する内部熱交換器を備えている。そのため、ガスクーラから流出した冷媒を内部熱交換器に流通させた後、膨張装置へと流入させる構成となっている。その結果、ガスクーラ出口冷媒を検知した後、再度内部熱交換器を流通させてから膨張装置へと流入する構造となることから、前述の機械式の膨張機構では、適用する上で長所に比べて欠点が大きいと考えられる。   As described above, as an expansion device for controlling the pressure to be the optimum high-pressure side pressure calculated by referring to the temperature of the gas cooler outlet refrigerant, a method for controlling an electrically controlled expansion mechanism, pressure, and temperature are used. A mechanical expansion mechanism in which the passage cross-sectional area of the orifice is changed accordingly is known. The former detects the gas cooler outlet refrigerant temperature and pressure, and controls the electric expansion valve according to the detected amount, so that the apparatus becomes complicated and large, the control method becomes complicated, and the cost is also increased. It is supposed to rise. In the latter, the passage cross-sectional area of the orifice is varied according to the gas cooler outlet refrigerant temperature and pressure, and since the refrigerant temperature of the gas cooler outlet is sensed, the piping connection structure of the refrigeration cycle is particularly complicated and the number of fastening parts is also increased. There are concerns and the cost is expected to rise. In general, a vapor compression refrigeration cycle using carbon dioxide includes an internal heat exchanger for exchanging heat between a high-pressure side refrigerant and a low-pressure side refrigerant. Therefore, the refrigerant that has flowed out of the gas cooler is circulated through the internal heat exchanger and then flows into the expansion device. As a result, after detecting the refrigerant at the outlet of the gas cooler, the internal heat exchanger is circulated again and then flows into the expansion device. Therefore, in the mechanical expansion mechanism described above, compared to the advantages in terms of application It is thought that there are major drawbacks.

図1に、ガスクーラ出口冷媒温度に関して、冷媒圧力と冷凍サイクルの成績係数(COP)との関係を示す。図1より、ガスクーラ出口冷媒温度が臨界温度(約31℃)以下では、高圧側冷媒圧力の値が低いほど成績係数が向上する。また、臨界温度以上では、成績係数が最大となるある高圧側冷媒圧力(図1中の点線上の箇所)が存在し、ガスクーラ出口冷媒温度の上昇に伴って、成績係数が極大となる高圧側圧力がより上昇することがわかる。また、ガスクーラ出口冷媒温度が、ある所定温度(約40℃)を超えると、高圧側圧力の変化による成績係数の優劣が小さくなることが確認できる。これらのことから、ガスクーラ出口冷媒温度が30℃〜40℃程度の範囲で、高圧側冷媒圧力(圧力制御範囲として約8〜10MPa)を積極的に制御することが重要であると考えられる。   FIG. 1 shows the relationship between the refrigerant pressure and the coefficient of performance (COP) of the refrigeration cycle with respect to the gas cooler outlet refrigerant temperature. From FIG. 1, when the gas cooler outlet refrigerant temperature is equal to or lower than the critical temperature (about 31 ° C.), the coefficient of performance improves as the value of the high-pressure side refrigerant pressure decreases. In addition, there is a certain high-pressure refrigerant pressure (location on the dotted line in FIG. 1) at which the coefficient of performance is maximum above the critical temperature, and the coefficient of performance is maximized as the gas cooler outlet refrigerant temperature rises. It can be seen that the pressure rises more. In addition, when the gas cooler outlet refrigerant temperature exceeds a predetermined temperature (about 40 ° C.), it can be confirmed that the superiority or inferiority of the coefficient of performance due to the change in the high-pressure side pressure becomes small. From these facts, it is considered important to actively control the high-pressure side refrigerant pressure (about 8 to 10 MPa as the pressure control range) when the gas cooler outlet refrigerant temperature is in the range of about 30 ° C to 40 ° C.

しかしながら、上述の温度範囲では、成績係数が極大になる高圧側冷媒圧力に制御することができれば成績係数は向上するものの、最適な高圧側冷媒圧力より低い圧力で制御した場合には、成績係数の低下が著しいことがわかる。このことから、上記ガスクーラ出口冷媒温度により高圧側冷媒圧力を制御する方法においては、その効果が期待できるのはある特定の温度帯(30℃〜40℃程度の範囲)で、かつ、そのときの高圧側制御圧力は最適圧力以上(例えば、図1に示すAの領域)で制御する必要があると考えられる。   However, in the above temperature range, although the coefficient of performance improves if it can be controlled to the high-pressure side refrigerant pressure at which the coefficient of performance is maximized, when the control is performed at a pressure lower than the optimum high-pressure side refrigerant pressure, the coefficient of performance of It can be seen that the decrease is significant. Therefore, in the method of controlling the high-pressure side refrigerant pressure by the gas cooler outlet refrigerant temperature, the effect can be expected in a specific temperature range (a range of about 30 ° C. to 40 ° C.) and at that time It is considered that the high-pressure side control pressure needs to be controlled above the optimum pressure (for example, the region A shown in FIG. 1).

ところが、前述のような膨張機構では、全体的に高圧側圧力を最適高圧に制御することを目的とした膨張機構及び制御方法であるため、その装置や冷凍サイクルの複雑さ、制御の困難さ、コスト高、等のそれぞれの問題が大きい。そのため、ガスクーラ出口冷媒温度を検知して、高圧側冷媒圧力を制御することによる成績係数の向上効果と、冷凍サイクルの配管構成の簡便さや制御の簡便さ等との間には、トレードオフの関係が存在すると考えられる。そのため、冷凍サイクルの配管構成等を簡便にし、成績係数向上を狙える膨張機構の開発が望まれている。   However, the expansion mechanism as described above is an expansion mechanism and a control method for the purpose of controlling the high-pressure side pressure to an optimal high pressure as a whole, so the complexity of the apparatus and the refrigeration cycle, the difficulty of control, Each problem such as high cost is large. Therefore, there is a trade-off between the effect of improving the coefficient of performance by detecting the refrigerant temperature at the gas cooler outlet and controlling the refrigerant pressure on the high pressure side, the simplicity of the piping configuration of the refrigeration cycle, the simplicity of control, etc. Is considered to exist. Therefore, it is desired to develop an expansion mechanism that simplifies the piping configuration of the refrigeration cycle and aims to improve the coefficient of performance.

そこで本発明の課題は、上記のような要望に応えるために、冷媒の圧力に応じて膨張機構通過前後の差圧を最適に制御することができるようにした蒸気圧縮式冷凍サイクルを提供することにある。   Accordingly, an object of the present invention is to provide a vapor compression refrigeration cycle in which the differential pressure before and after passing through the expansion mechanism can be optimally controlled according to the pressure of the refrigerant in order to meet the above demand. It is in.

また、本発明の課題は、膨張機構通過後の冷媒温度により、膨張機構通過前後の差圧制御を変更することができ、そのときの条件に応じて差圧をより適切に制御することができるようにした蒸気圧縮式冷凍サイクルを提供することにある。   Moreover, the subject of this invention can change differential pressure control before and behind expansion mechanism according to the refrigerant | coolant temperature after expansion mechanism passage, and can control differential pressure more appropriately according to the conditions at that time. An object of the present invention is to provide a vapor compression refrigeration cycle.

上記課題を解決するために、本発明に係る蒸気圧縮式冷凍サイクルは、冷媒の超臨界作動領域を有する蒸気圧縮式の冷凍サイクル中に、該冷凍サイクル中を循環する冷媒を断熱膨張することができ、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧に応じて膨張機構を通過する冷媒の量を調節することのできる差圧式膨張手段を備えており、該差圧式膨張手段は、前記差圧の増加に伴い開弁していく差圧弁を備えており、該差圧弁が、開弁を開始する圧力を開弁圧「Po」とした場合、5MPa≦Po≦6MPaとなるように構成されていることを特徴とするものからなる。   In order to solve the above-described problems, the vapor compression refrigeration cycle according to the present invention may adiabatically expand the refrigerant circulating in the refrigeration cycle during the vapor compression refrigeration cycle having a supercritical operating region of the refrigerant. And a differential pressure type expansion means capable of adjusting the amount of refrigerant passing through the expansion mechanism in accordance with a differential pressure between the inlet side refrigerant pressure and the outlet side refrigerant pressure of the expansion mechanism. A differential pressure valve that opens as the differential pressure increases, and when the pressure at which the differential pressure valve starts to open is set to “Po”, 5 MPa ≦ Po ≦ 6 MPa It consists of what is characterized by comprising.

このような蒸気圧縮式冷凍サイクルにおいては、差圧式膨張手段の膨張機構前後差圧は、差圧弁の開弁による冷媒流路断面積の変化により変化されるが、その冷媒流路断面積が変化し始める時の膨張機構前後差圧が開弁圧とされる。後述の図4に示すように、種々の条件にて最適な成績係数が得られる冷媒流路断面積(図4では、後述の如くオリフィス径)を調査したところ、その開弁圧の設定値を図4に示すような最適な開弁圧「Po」に設定することにより、つまり、5MPa≦Po≦6MPaとなるように設定することにより、成績係数(COP)の低下を抑えることができるようになることがわかった。   In such a vapor compression refrigeration cycle, the differential pressure across the expansion mechanism of the differential pressure expansion means is changed by a change in the refrigerant flow path cross-sectional area due to the opening of the differential pressure valve, but the refrigerant flow path cross-sectional area changes. The differential pressure before and after the expansion mechanism when starting to start is taken as the valve opening pressure. As shown in FIG. 4 to be described later, when the refrigerant flow passage cross-sectional area (in FIG. 4, the orifice diameter as will be described later) in which an optimum coefficient of performance is obtained under various conditions, the set value of the valve opening pressure is determined. By setting the optimum valve opening pressure “Po” as shown in FIG. 4, that is, by setting so as to satisfy 5 MPa ≦ Po ≦ 6 MPa, it is possible to suppress the decrease in the coefficient of performance (COP). I found out that

この本発明に係る蒸気圧縮式冷凍サイクルにおいては、上記差圧式膨張手段は、流入した冷媒が常時流通して断熱膨張することのできる冷媒連通路を備え(例えば、後述の実施形態に示すような差圧弁を貫通して延びる冷媒連通路(つまり、固定オリフィス)を備え)、該連通路の通路断面相当直径を「Dp」とした場合、0.4mm≦Dp≦0.6mmを満足するように構成されていることが好ましい。この範囲も、後述の図5に示すように、種々の条件にて最適な成績係数が得られる冷媒連通路の径(固定オリフィス径)を調査した結果求められたものである。   In the vapor compression refrigeration cycle according to the present invention, the differential pressure type expansion means includes a refrigerant communication passage through which the refrigerant flowing in can constantly flow and adiabatically expand (for example, as shown in an embodiment described later). A refrigerant communication passage (that is, a fixed orifice) that extends through the differential pressure valve is provided. When the equivalent cross-sectional diameter of the communication passage is “Dp”, 0.4 mm ≦ Dp ≦ 0.6 mm is satisfied. It is preferable. This range is also obtained as a result of investigating the diameter (fixed orifice diameter) of the refrigerant communication passage that provides the optimum coefficient of performance under various conditions, as shown in FIG. 5 described later.

また、上記差圧が予め定めた開弁圧を超え、上記差圧弁が開弁された際の、上記膨張機構を通過する冷媒の流路の最大流路断面相当直径を「Dx」とした場合、1.0mm≦Dx≦2.0mmを満足するように構成されていることが好ましい。すなわち、差圧弁が開弁されると、膨張機構を通過する冷媒の流路の断面積が拡大されることになるが、その流路断面積の最大値を最大流路断面相当直径「Dx」にて好ましい範囲を規定したものである。例えば、熱負荷が高いときなど極度な高圧上昇が生じたときに、最大流路断面相当直径「Dx」を適切な範囲内に納めることで、冷凍サイクルの確実な保護が可能となる。   In addition, when the differential pressure exceeds a predetermined valve opening pressure and the differential pressure valve is opened, the maximum equivalent cross-sectional diameter of the refrigerant flow path passing through the expansion mechanism is “Dx”. , 1.0 mm ≦ Dx ≦ 2.0 mm is preferably satisfied. That is, when the differential pressure valve is opened, the cross-sectional area of the flow path of the refrigerant passing through the expansion mechanism is enlarged. The maximum value of the cross-sectional area of the flow path is set to the maximum flow path cross-section equivalent diameter “Dx”. The preferred range is defined by. For example, when an extremely high pressure rise occurs such as when the heat load is high, the maximum flow path cross-section equivalent diameter “Dx” is set within an appropriate range, so that the refrigeration cycle can be reliably protected.

また、上記膨張機構から流出した冷媒の温度に応じて、上記差圧弁の開弁圧を変更する開弁圧温度補正手段を備えた構成とすることもできる。この開弁圧温度補正手段は、上記膨張機構から流出した冷媒の温度が高くなるに従い、上記開弁圧を予め定めた設定値より低下させる特性を有し、該予め定めた設定値を「Po」とし、補正された開弁圧を「Poc」とし(但し、Pocは0以上とする)、予め定めた定数を「Kx」とし、前記膨張機構から流出した冷媒の温度を「Txo」とし、補正係数を「S」とし、補正開始温度を「Txc」とした場合、
Poc=Po−Kx×S
S=Txo−Txc(Txo>Txc〔℃〕の場合)
S=0(Txo≦Txc〔℃〕の場合)
0≦Txc≦20
0.2 ≦Kx≦0.8
を満足するように構成されていることが好ましい。この開弁圧温度補正手段による開弁圧変更例については、後述の図7に示す。このような制御により、冷凍サイクルのスムーズな起動とより効率的な運転が実現できる。
Moreover, it can also be set as the structure provided with the valve opening pressure temperature correction | amendment means which changes the valve opening pressure of the said differential pressure valve according to the temperature of the refrigerant | coolant which flowed out from the said expansion mechanism. The valve opening pressure temperature correcting means has a characteristic of lowering the valve opening pressure from a predetermined set value as the temperature of the refrigerant flowing out of the expansion mechanism increases. ”, The corrected valve opening pressure is“ Poc ”(where Poc is 0 or more), the predetermined constant is“ Kx ”, the temperature of the refrigerant flowing out of the expansion mechanism is“ Txo ”, When the correction coefficient is “S” and the correction start temperature is “Txc”,
Poc = Po−Kx × S
S = Txo-Txc (when Txo> Txc [° C])
S = 0 (when Txo ≤ Txc [° C])
0 ≦ Txc ≦ 20
0.2 ≦ Kx ≦ 0.8
It is preferable to be configured to satisfy the above. An example of changing the valve opening pressure by the valve opening pressure temperature correcting means is shown in FIG. By such control, smooth start-up of the refrigeration cycle and more efficient operation can be realized.

また、上記膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧が予め定めた開弁圧を超えた場合、上記差圧[MPa] の変化量と、上記膨張機構における冷媒流路の流路断面相当直径[mm]の変化量との関係を「K」とした場合、0.1mm/MPa≦K≦0.3mm/MPaを満足するように構成されていることが好ましい。このKは冷凍サイクルの発生能力等により変更する必要があるが、後述の図6に示すように、上記範囲内に設定することにより、冷凍サイクルの成績係数の向上を図ることが可能になる。   Further, when the differential pressure between the inlet side refrigerant pressure and the outlet side refrigerant pressure of the expansion mechanism exceeds a predetermined valve opening pressure, the amount of change in the differential pressure [MPa] and the refrigerant flow path in the expansion mechanism When the relationship between the change amount of the channel cross-section equivalent diameter [mm] and “K” is “K”, it is preferably configured to satisfy 0.1 mm / MPa ≦ K ≦ 0.3 mm / MPa. This K needs to be changed depending on the generation capacity of the refrigeration cycle, etc., but as shown in FIG. 6 described later, by setting it within the above range, it is possible to improve the coefficient of performance of the refrigeration cycle.

さらに、上記差圧式膨張手段の外部の温度(例えば、外気温度)に応じて、上記差圧弁の開弁圧を変更する開弁圧外部温度補正手段を備えた構成とすることもできる。この開弁圧外部温度補正手段は、上記差圧式膨張手段の外部温度が高くなるに従い、上記開弁圧を予め定めた設定値より低下させる特性を有するものである。このような制御によって、例えば、高熱負荷時の起動初期時において、冷凍サイクルの高圧上昇を避けることが可能となり、スムーズな起動特性が得られるようになる。   Further, it may be configured to include a valve opening pressure external temperature correcting means for changing the valve opening pressure of the differential pressure valve in accordance with the temperature outside the differential pressure type expansion means (for example, the outside air temperature). The valve opening pressure external temperature correcting means has a characteristic that the valve opening pressure is lowered from a predetermined set value as the external temperature of the differential pressure type expansion means increases. By such control, for example, it is possible to avoid a high pressure increase in the refrigeration cycle at the initial start-up time under a high heat load, and a smooth start-up characteristic can be obtained.

本発明に係る蒸気圧縮式冷凍サイクルは、とくに車両用空調装置の冷凍サイクルとして用いて好適なものであり、中でも、使用される冷媒が二酸化炭素からなる場合に好適なものである。   The vapor compression refrigeration cycle according to the present invention is particularly suitable for use as a refrigeration cycle for a vehicle air conditioner, and is particularly suitable when the refrigerant used is made of carbon dioxide.

本発明に係る蒸気圧縮式冷凍サイクルによれば、とくに蒸気圧縮式冷凍サイクルの冷媒として自然系冷媒である二酸化炭素を用いた車両用空調装置において、冷媒の圧力に応じて膨張機構通過前後の差圧を最適に制御することができるようになり、差圧式膨張手段の最適な設計が可能となって、冷凍サイクルの効率的な運転と安全性を確保することができる。   According to the vapor compression refrigeration cycle according to the present invention, in particular, in a vehicle air conditioner that uses carbon dioxide, which is a natural refrigerant, as a refrigerant in the vapor compression refrigeration cycle, the difference between before and after passing through the expansion mechanism according to the refrigerant pressure. The pressure can be optimally controlled, the optimum design of the differential pressure type expansion means is enabled, and the efficient operation and safety of the refrigeration cycle can be ensured.

また、開弁圧に関して温度補正手段を設ければ、そのときの条件に応じて差圧をより適切に制御することができるようになる。   Further, if a temperature correction means is provided for the valve opening pressure, the differential pressure can be more appropriately controlled according to the conditions at that time.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図2は、車両用空調装置に、本発明の一実施態様に係る、自然系冷媒である二酸化炭素を用いた蒸気圧縮式冷凍サイクルを組み込んだ場合の機械的な構成部分全体を示している。冷凍サイクルには、駆動源としての車両のエンジン1(但し、電動モータ等、他の駆動源も可能である)により、プーリ2、3を介したベルト12駆動によって駆動される固定容量式または容量可変式圧縮機4と、圧縮機4から吐出される高圧冷媒の圧力を検出する高圧側圧力検出手段5と、圧縮機4からの高圧冷媒と外部空気との熱交換により冷媒を冷却する放熱器6(ガスクーラ)と、放熱器冷却ファン7と、放熱器6から流出した高圧冷媒と気液分離器11(アキュームレータ)から流出した低圧冷媒との間で熱交換する内部熱交換器8と、放熱器6から内部熱交換器8を通して送られてくる冷媒を断熱膨張させる膨張手段9を備えており、本発明では、この膨張手段9が、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧に応じて膨張機構を通過する冷媒の量を調節することができ、かつ、該差圧の増加に伴い開弁していく差圧弁を備えており、該差圧弁が、開弁を開始する圧力を開弁圧「Po」とした場合、5MPa≦Po≦6MPaとなるように構成された差圧式膨張手段9からなる。差圧式膨張手段9からの冷媒は蒸発器10に送られて空調風を冷却し、蒸発器10から流出した冷媒は、気液分離器11で気液分離され、液冷媒が貯留されるとともに気冷媒が流出され、流出された気冷媒は内部熱交換器8を通して圧縮機4に送られ、再び圧縮される。このように冷凍サイクル13が構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the entire mechanical components when a vapor compression refrigeration cycle using carbon dioxide, which is a natural refrigerant, is incorporated in a vehicle air conditioner according to an embodiment of the present invention. In the refrigeration cycle, a fixed capacity type or capacity driven by a belt 12 driven by pulleys 2 and 3 by a vehicle engine 1 as a driving source (however, another driving source such as an electric motor is also possible). Variable compressor 4, high pressure side pressure detecting means 5 for detecting the pressure of the high pressure refrigerant discharged from compressor 4, and radiator for cooling the refrigerant by heat exchange between the high pressure refrigerant from compressor 4 and external air 6 (gas cooler), a radiator cooling fan 7, an internal heat exchanger 8 for exchanging heat between the high-pressure refrigerant flowing out of the radiator 6 and the low-pressure refrigerant flowing out of the gas-liquid separator 11 (accumulator), and heat radiation Expansion means 9 for adiabatic expansion of the refrigerant sent from the vessel 6 through the internal heat exchanger 8 is provided, and in the present invention, the expansion means 9 is provided with an inlet side refrigerant pressure and an outlet side refrigerant pressure of the expansion mechanism. According to differential pressure An amount of refrigerant passing through the expansion mechanism can be adjusted, and a differential pressure valve that opens as the differential pressure increases is provided. The differential pressure valve opens the pressure at which the valve starts to open. When the pressure is “Po”, the pressure differential expansion means 9 is configured so as to satisfy 5 MPa ≦ Po ≦ 6 MPa. The refrigerant from the differential pressure expansion means 9 is sent to the evaporator 10 to cool the conditioned air, and the refrigerant that has flowed out of the evaporator 10 is separated into gas and liquid by the gas-liquid separator 11, and the liquid refrigerant is stored and vaporized. The refrigerant flows out, and the discharged gas refrigerant is sent to the compressor 4 through the internal heat exchanger 8 and is compressed again. Thus, the refrigeration cycle 13 is configured.

蒸発器10は、車室内へと空調風を送る通風ダクト14内に配置されている。通風ダクト14には、外気導入口15と内気導入口16から、内外気切替ダンパ17を介して空気が導入され、内外気切替ダンパ17は内外気切替ダンパアクチュエータ18によって作動が制御される。導入された空気はブロワファン19によって吸入され下流側の蒸発器10に向けて圧送される。蒸発器10の出口側には、蒸発器出口空気温度センサ20が設けられており、蒸発器10の下流側には、加熱器としてのヒータコア21が設けられている。このヒータコア21を通過する空気とバイパスする空気の割合がエアミックスダンパ22によって調節され、エアミックスダンパ22の開度はエアミックスダンパアクチュエータ23によって制御される。温調された空気は、各ダンパ24、25、26を介して各吹き出し口27、28、29から車室内に向けて吹き出される。   The evaporator 10 is arrange | positioned in the ventilation duct 14 which sends an air conditioned wind into a vehicle interior. Air is introduced into the ventilation duct 14 from the outside air introduction port 15 and the inside air introduction port 16 via the inside / outside air switching damper 17, and the operation of the inside / outside air switching damper 17 is controlled by the inside / outside air switching damper actuator 18. The introduced air is sucked by the blower fan 19 and is pumped toward the evaporator 10 on the downstream side. An evaporator outlet air temperature sensor 20 is provided on the outlet side of the evaporator 10, and a heater core 21 as a heater is provided on the downstream side of the evaporator 10. The ratio of the air passing through the heater core 21 and the bypassing air is adjusted by the air mix damper 22, and the opening degree of the air mix damper 22 is controlled by the air mix damper actuator 23. The temperature-adjusted air is blown out from the outlets 27, 28, 29 through the dampers 24, 25, 26 toward the vehicle interior.

31は、空調制御装置を示しており、空調制御装置31には、外気温度センサ32からの外気温度信号、日射センサ33からの日射量信号、車室内温度センサ34からの車内温度信号、高圧側圧力検出手段5の高圧側冷媒圧力信号35、蒸発器出口空気温度センサ20からの蒸発器出口空気温度信号が、それぞれ入力される。空調制御装置31からは、圧縮機4の駆動を制御するクラッチコントローラ36へクラッチ制御信号37が、圧縮機4へ圧縮機容量制御信号38が、エアミックスダンパアクチュエータ23へエアミックスダンパ制御信号39が、内外気切替ダンパアクチュエータ18へ内外気切替ダンパ制御信号40が、それぞれ出力される。   Reference numeral 31 denotes an air conditioning control device. The air conditioning control device 31 includes an outside air temperature signal from the outside air temperature sensor 32, a solar radiation amount signal from the solar radiation sensor 33, a vehicle interior temperature signal from the vehicle interior temperature sensor 34, and a high pressure side. The high pressure side refrigerant pressure signal 35 of the pressure detection means 5 and the evaporator outlet air temperature signal from the evaporator outlet air temperature sensor 20 are input. From the air conditioning controller 31, a clutch control signal 37 is sent to the clutch controller 36 that controls the drive of the compressor 4, a compressor capacity control signal 38 is sent to the compressor 4, and an air mix damper control signal 39 is sent to the air mix damper actuator 23. The inside / outside air switching damper control signal 40 is output to the inside / outside air switching damper actuator 18.

図3に、差圧式膨張手段9の膨張機構41の一例を示す(矢印は、冷媒の流れ方向を示している)。但し、図3は機構の概念図を示したものであり、図示された構造に限定されるものではない。図3における差圧式の膨張機構41は、常時冷媒が流通する冷媒連通路としての固定オリフィス部42を有し、膨張機構冷媒流入口43における膨張機構41の入口側冷媒圧力と膨張機構冷媒流出口44における膨張機構41の出口側冷媒圧力との差圧に応じて膨張機構41を通過する冷媒の量を調節することでき、該差圧の増加に伴い開弁していく差圧弁45を備えており、差圧弁45は、ばね46によって閉弁方向に付勢されている。   FIG. 3 shows an example of the expansion mechanism 41 of the differential pressure type expansion means 9 (the arrow indicates the flow direction of the refrigerant). However, FIG. 3 is a conceptual diagram of the mechanism, and is not limited to the illustrated structure. The differential pressure type expansion mechanism 41 in FIG. 3 has a fixed orifice portion 42 as a refrigerant communication path through which refrigerant always flows, and the inlet side refrigerant pressure of the expansion mechanism 41 and the expansion mechanism refrigerant outlet at the expansion mechanism refrigerant inlet 43. The amount of refrigerant passing through the expansion mechanism 41 can be adjusted according to the pressure difference between the outlet side refrigerant pressure of the expansion mechanism 41 at 44 and the differential pressure valve 45 is opened as the differential pressure increases. The differential pressure valve 45 is urged in the valve closing direction by a spring 46.

差圧式膨張機構41の上流側より流入した冷媒は、差圧弁45に設けられた冷媒連通路としての固定オリフィス部42を通過し、膨張機構冷媒流出口44から蒸発器10に送られる。固定オリフィス部42を持つ差圧弁45は、上流側からの冷媒により圧力を受けており、その圧力は、差圧弁45に連結されているばね46に対して、開弁方向の力として働く。また、ばね46は、上流側に向けての力、すなわち閉弁方向の力として働く。この2種類の力関係が、開弁方向の力より閉弁方向の力の方が強い場合には、固定オリフィス部42を持つ差圧弁45は開弁せず、冷媒流路断面積として固定オリフィス部42の流路断面積を持つ膨張機構となる。一方、開弁方向の力が閉弁方向の力より強い場合には、差圧弁45が開弁され、固定オリフィス部42の流路断面積に加えて、その差圧弁45と膨張機構41の筐体との隙間を加えた冷媒流路断面積を持つ膨張機構となる。このような作動原理により、固定オリフィス部42前後の差圧により冷媒流路断面積が変化し、その前後差圧、または、高圧側圧力を制御するようにしている。このような差圧式膨張機構41の設計のための条件値について以下のように規定することで、最適な成績係数またはそれに近い高圧圧力制御が達成される。   The refrigerant that has flowed in from the upstream side of the differential pressure type expansion mechanism 41 passes through the fixed orifice portion 42 as a refrigerant communication path provided in the differential pressure valve 45 and is sent to the evaporator 10 from the expansion mechanism refrigerant outlet 44. The differential pressure valve 45 having the fixed orifice portion 42 receives pressure from the refrigerant from the upstream side, and the pressure acts as a force in the valve opening direction on the spring 46 connected to the differential pressure valve 45. The spring 46 acts as a force toward the upstream side, that is, a force in the valve closing direction. When the force relationship in the valve closing direction is stronger than the force in the valve opening direction, the differential pressure valve 45 having the fixed orifice portion 42 does not open, and the fixed orifice is used as the refrigerant channel cross-sectional area. The expansion mechanism has the flow path cross-sectional area of the portion 42. On the other hand, when the force in the valve opening direction is stronger than the force in the valve closing direction, the differential pressure valve 45 is opened, and in addition to the flow path cross-sectional area of the fixed orifice portion 42, the housing of the differential pressure valve 45 and the expansion mechanism 41 is opened. The expansion mechanism has a refrigerant flow path cross-sectional area to which a gap with the body is added. According to such an operating principle, the refrigerant flow passage cross-sectional area is changed by the differential pressure across the fixed orifice portion 42, and the differential pressure across the front or back side or the high-pressure side pressure is controlled. By defining the condition values for the design of the differential pressure type expansion mechanism 41 as follows, an optimum coefficient of performance or high pressure control close thereto is achieved.

まず、差圧式膨張機構41において、固定オリフィス部42前後の差圧により、差圧弁45の開弁により冷媒流路断面積が変化する場合においては、その冷媒流路断面積が変化し始める時のオリフィス部前後差圧を開弁圧と呼ぶ。種々の条件について最適な成績係数が得られる固定オリフィス部42のオリフィス径(つまり、冷媒連通路の通路断面相当直径としてのオリフィス径)を調査した結果から、その開弁圧の設定値を図4に示すような最適な開弁圧「Po」に設定することととした。設定した最適な開弁圧は以下のような範囲となった。
5MPa≦Po≦6MPa
このとき、圧力の制御精度は0.5MPa以内とすることが望ましい。この圧力の制御精度は、機械的な精度によって達成可能である。
First, in the differential pressure type expansion mechanism 41, when the refrigerant flow path cross-sectional area changes due to the opening of the differential pressure valve 45 due to the differential pressure across the fixed orifice portion 42, the refrigerant flow cross-sectional area starts to change. The differential pressure across the orifice is called the valve opening pressure. From the result of investigating the orifice diameter of the fixed orifice portion 42 (that is, the diameter equivalent to the passage cross section of the refrigerant communication passage) from which the optimum coefficient of performance can be obtained for various conditions, the set value of the valve opening pressure is shown in FIG. It was decided to set the optimal valve opening pressure “Po” as shown in FIG. The set optimal valve opening pressure is in the following range.
5MPa ≦ Po ≦ 6MPa
At this time, the pressure control accuracy is desirably within 0.5 MPa. This pressure control accuracy can be achieved by mechanical accuracy.

この設定値は、上記設定範囲内で開弁することで、成績係数(COP)の低下を抑えることができる。また、図4より明らかなように、下限値(5MPa)より低い場合にはCOPの低下が著しく、上限値(6MPa)より高い場合には、COPの低下よりも高圧の上昇が懸念されることになる。その結果、上記設定値の範囲を開弁圧とすることが望ましい。   This set value can suppress a decrease in the coefficient of performance (COP) by opening the valve within the set range. As is clear from FIG. 4, when the lower limit value (5MPa) is lower than the lower limit value (5MPa), the COP decreases significantly, and when the upper limit value (6MPa) is higher, there is a concern about higher pressure than the COP decrease. become. As a result, it is desirable that the set value range be the valve opening pressure.

また、固定オリフィス部42のオリフィス径については、図5に示すように、最適な成績係数が得られる冷媒連通路の通路断面相当直径「Dp」としてのオリフィス径を調査した。その結果、比較的冷凍サイクルの熱負荷が小さい場合(Aに示す領域)では、オリフィス径が0.4mmより小さいときに成績係数(COP)の向上は見られない。また、冷凍サイクル熱負荷が大きい場合(Bで示す領域)では、オリフィス径が0.6mmより大きくなると成績係数(COP)が低下してしまうことが確認された。よって、固定オリフィス径「Dp」は以下の範囲にて設定するのが望ましい。
0.4mm≦Dp≦0.6mm
あるいは、この範囲は、最小オリフィス相当径としても適用可能である。
As for the orifice diameter of the fixed orifice portion 42, as shown in FIG. 5, the orifice diameter as a passage cross-section equivalent diameter “Dp” of the refrigerant communication passage capable of obtaining an optimum coefficient of performance was investigated. As a result, when the heat load of the refrigeration cycle is relatively small (region shown in A), the coefficient of performance (COP) is not improved when the orifice diameter is smaller than 0.4 mm. In addition, when the refrigeration cycle heat load was large (region indicated by B), it was confirmed that the coefficient of performance (COP) decreased when the orifice diameter was larger than 0.6 mm. Therefore, it is desirable to set the fixed orifice diameter “Dp” within the following range.
0.4mm ≦ Dp ≦ 0.6mm
Alternatively, this range can also be applied as the minimum orifice equivalent diameter.

さらに、差圧式膨張機構41においてオリフィス前後差圧が差圧弁45の開弁圧を超えてさらに上昇し、差圧弁45の開弁により冷媒流路断面積が拡大する場合、その最大流路断面相当直径(最大のオリフィス相当直径)「Dx」を以下のように設定した。
1.0mm≦Dx≦2.0mm
この設定は、本実施形態では、後述の図6におけるオリフィス前後差圧11MPa のときのオリフィス径の値から設定した。ここで、熱負荷が高いときなど極度な高圧上昇が生じたときに、オリフィスの最大相当直径を上記のような適切な範囲内に設定することで、冷凍サイクルの確実な保護が可能となる。
Further, in the differential pressure type expansion mechanism 41, when the differential pressure across the orifice further exceeds the valve opening pressure of the differential pressure valve 45 and the refrigerant flow passage cross-sectional area is enlarged by opening the differential pressure valve 45, it corresponds to the maximum flow passage cross section. The diameter (maximum orifice equivalent diameter) “Dx” was set as follows.
1.0mm ≦ Dx ≦ 2.0mm
In this embodiment, this setting is made from the value of the orifice diameter when the pressure across the orifice is 11 MPa in FIG. Here, when an extreme high pressure rise occurs such as when the heat load is high, the refrigeration cycle can be reliably protected by setting the maximum equivalent diameter of the orifice within the appropriate range as described above.

また、差圧式膨張機構41におけるオリフィス前後差圧が、差圧弁45の開弁圧を超えてからの、オリフィス前後差圧の変化量と、オリフィス相当直径の変化量との関係を、「K」とした場合、両変化量の最適な傾きの範囲を図6に示す結果から以下のように設定した。
0.1mm/MPa≦K≦0.3mm/MPa
この設定値はシステムの成績係数がより高くなるように設定する必要があり、図6に示すように、あるシステムでは0.15mm/MPa程度が望ましいと考えられ、別のシステムでは別の値が望ましいと考えられる場合があると予想される。つまり、このKは、システムの発生能力により変更する必要があると考えられるが、上記範囲内に設定しておきさえすれば、システムの成績係数の向上が図れる。
Further, the relationship between the change amount of the differential pressure across the orifice and the change amount of the orifice equivalent diameter after the differential pressure across the orifice in the differential pressure type expansion mechanism 41 exceeds the valve opening pressure of the differential pressure valve 45 is expressed as “K”. In this case, the range of the optimum inclination of both changes was set as follows from the results shown in FIG.
0.1mm / MPa ≦ K ≦ 0.3mm / MPa
This setting value should be set so that the coefficient of performance of the system is higher. As shown in FIG. 6, it is considered that about 0.15 mm / MPa is desirable in one system, and another value is desirable in another system. It is expected that In other words, it is considered that this K needs to be changed depending on the generation capability of the system, but if it is set within the above range, the coefficient of performance of the system can be improved.

また、差圧式膨張機構41から流出した冷媒の温度に応じて(例えば、オリフィス直後の冷媒温度を検知することにより)、差圧弁45の開弁圧を変更する開弁圧温度補正手段を備えた構成とすることもできる。この開弁圧温度補正手段は、前述の如く、膨張機構41から流出する冷媒の温度が高くなるに従い、上記開弁圧を予め定めた設定値より低下させる特性を有し、該予め定めた設定値を「Po」とし、補正された開弁圧を「Poc」とし(但し、Pocは0以上とする)、予め定めた定数を「Kx」とし、前記膨張機構から流出した冷媒の温度を「Txo」とし、補正係数を「S」とし、補正開始温度を「Txc」とした場合、 Poc=Po−Kx×S
S=Txo−Txc(Txo>Txc〔℃〕の場合)
S=0(Txo≦Txc〔℃〕の場合)
0≦Txc≦20
0.2 ≦Kx≦0.8
を満足するように構成される。この開弁圧温度補正手段による開弁圧変更例を、図7に示す。この例では、補正開始温度Txcを15℃としている。つまり、Txo=15℃以下の場合は実線で表される一定の特性線となるよう設定する一方、Txo=15℃を超えると、そのときのTxoの値に応じて点線のような特性線に補正している。このような制御による作動例として、真夏の炎天下時の冷凍サイクル起動直後においては、オリフィス直後の冷媒温度が上昇しているためこのときのオリフィスの開弁圧を通常時の開弁圧よりも低く補正することで、起動初期の高圧上昇が抑えられ、安定した起動性能が得られる。また、冷凍サイクルが起動から運転時間が数分経過してくると、徐々にオリフィス直後の冷媒温度が低下してくるため、前述の最適な成績係数を狙った開弁圧と差圧制御特性に近づく。そのため、冷凍サイクルのスムーズな起動と効率的な運転が実現できる。
Further, valve opening pressure temperature correction means for changing the valve opening pressure of the differential pressure valve 45 according to the temperature of the refrigerant flowing out from the differential pressure type expansion mechanism 41 (for example, by detecting the refrigerant temperature immediately after the orifice) is provided. It can also be configured. As described above, the valve opening pressure temperature correcting means has a characteristic of decreasing the valve opening pressure from a predetermined set value as the temperature of the refrigerant flowing out from the expansion mechanism 41 increases. The value is “Po”, the corrected valve opening pressure is “Poc” (where Poc is 0 or more), the predetermined constant is “Kx”, and the temperature of the refrigerant flowing out of the expansion mechanism is “ Toc ”, correction coefficient“ S ”, and correction start temperature“ Txc ”, Poc = Po−Kx × S
S = Txo-Txc (when Txo> Txc [° C])
S = 0 (when Txo ≤ Txc [° C])
0 ≦ Txc ≦ 20
0.2 ≦ Kx ≦ 0.8
It is configured to satisfy An example of changing the valve opening pressure by this valve opening pressure temperature correcting means is shown in FIG. In this example, the correction start temperature Txc is 15 ° C. In other words, when Txo = 15 ° C or less, it is set to be a constant characteristic line represented by a solid line, while when it exceeds Txo = 15 ° C, it becomes a characteristic line like a dotted line according to the value of Txo at that time It is corrected. As an example of operation by such control, immediately after the start of the refrigeration cycle under the hot summer heat, the refrigerant temperature immediately after the orifice rises, so the orifice opening pressure at this time is lower than the normal opening pressure. By correcting, a rise in high pressure at the start of startup is suppressed, and stable startup performance can be obtained. In addition, when the operating time has elapsed for several minutes after the start of the refrigeration cycle, the refrigerant temperature immediately after the orifice gradually decreases, so the valve opening pressure and differential pressure control characteristics aiming at the optimum coefficient of performance described above are achieved. Get closer. Therefore, smooth start-up and efficient operation of the refrigeration cycle can be realized.

また、差圧式膨張機構41においては、例えば外気温度に相当する膨張機構41の外部温度に応じて、差圧弁45の開弁圧を予め定めた特性に基づいた差圧を制御するようにすることができる。その実施例としては、膨張機構外部温度の上昇に伴い、開弁圧が低下するものとする。このことによって、前述したように、高熱負荷時の起動初期時において冷凍サイクルの高圧上昇を避けることが可能となり、スムーズな起動特性が得られるようになる。   Also, in the differential pressure type expansion mechanism 41, for example, the valve opening pressure of the differential pressure valve 45 is controlled based on a predetermined characteristic in accordance with the external temperature of the expansion mechanism 41 corresponding to the outside air temperature. Can do. In this embodiment, it is assumed that the valve opening pressure decreases as the expansion mechanism external temperature increases. As a result, as described above, it is possible to avoid an increase in the high pressure of the refrigeration cycle at the initial stage of startup under a high heat load, and smooth startup characteristics can be obtained.

温度補正式の差圧式膨張機構の例を図8に示す。図8における差圧式の膨張機構51は、常時冷媒が流通する冷媒連通路としての固定オリフィス部52を有し、膨張機構冷媒流入口53における膨張機構51の入口側冷媒圧力と膨張機構冷媒流出口54における膨張機構51の出口側冷媒圧力との差圧に応じて膨張機構51を通過する冷媒の量を調節することでき、該差圧の増加に伴い開弁していく差圧弁55を備えており、差圧弁55は、間に移動板58を挟んだばね56、57によって閉弁方向に付勢されている。ばね57は、形状記憶合金ばねで、膨張機構冷媒流出口54における膨張機構51の出口側冷媒の温度により伸縮する。ばね56は普通のばねである。通常、形状記憶合金ばねは、前述の特許文献2の〔0018〕段落に記載されているように、変態点より高い温度で伸び、低い温度で縮むものが一般的であるが、それとは逆に、例えば特開平1−125570号公報の〔作用〕の欄および公報3頁目右上欄から左下欄にかけて見られるように、変態点より高い温度で縮み、低い温度で伸びるように設定することもできる。図8に示す実施例では、後者の設定を採用する。すなわち、膨張機構冷媒流出口54における膨張機構51の出口側冷媒の温度が高くなると、ばね57は図の左方向(開弁方向)へ付勢され、開弁圧は小さくなる。このような構成によって、開弁圧の温度補正が可能になる。   An example of a temperature correction type differential pressure type expansion mechanism is shown in FIG. The differential pressure type expansion mechanism 51 in FIG. 8 has a fixed orifice portion 52 as a refrigerant communication path through which refrigerant constantly flows, and the inlet side refrigerant pressure of the expansion mechanism 51 and the expansion mechanism refrigerant outlet at the expansion mechanism refrigerant inlet 53. 54 is provided with a differential pressure valve 55 that can adjust the amount of refrigerant passing through the expansion mechanism 51 in accordance with the differential pressure with respect to the outlet side refrigerant pressure of the expansion mechanism 51 at 54, and opens as the differential pressure increases. The differential pressure valve 55 is urged in the valve closing direction by springs 56 and 57 with a moving plate 58 interposed therebetween. The spring 57 is a shape memory alloy spring and expands and contracts depending on the temperature of the refrigerant on the outlet side of the expansion mechanism 51 at the expansion mechanism refrigerant outlet 54. The spring 56 is an ordinary spring. Usually, as described in paragraph [0018] of Patent Document 2, the shape memory alloy spring is generally extended at a temperature higher than the transformation point and contracted at a lower temperature. For example, as can be seen from the [Action] column of JP-A-1-125570 and from the upper right column to the lower left column of the third publication page, it can be set to shrink at a temperature higher than the transformation point and to extend at a lower temperature. . In the embodiment shown in FIG. 8, the latter setting is adopted. That is, when the temperature of the refrigerant on the outlet side of the expansion mechanism 51 at the expansion mechanism refrigerant outlet 54 increases, the spring 57 is urged in the left direction (the valve opening direction) in the figure, and the valve opening pressure decreases. Such a configuration makes it possible to correct the temperature of the valve opening pressure.

さらに、外気温度補正式の差圧式膨張機構の例を図9に示す。図9における差圧式の膨張機構61は、常時冷媒が流通する冷媒連通路としての固定オリフィス部62を有し、膨張機構冷媒流入口63における膨張機構61の入口側冷媒圧力と膨張機構冷媒流出口64における膨張機構61の出口側冷媒圧力との差圧に応じて膨張機構61を通過する冷媒の量を調節することでき、該差圧の増加に伴い開弁していく差圧弁65を備えており、差圧弁65は、間に移動板68を挟んだばね66、67によって閉弁方向に付勢されている。ばね67は、形状記憶合金ばねで、ばね66は普通のばねである。外気温度の感温部69から、ばね67の周囲に設けられた伝熱用のスリーブ70に外気温度に起因する熱が伝わり、スリーブ70からばね67に熱が伝わって、ばね67が伸縮するようになっている。このような構成によって、開弁圧の外気温度に応じた温度補正が可能になる。   Furthermore, an example of a differential pressure type expansion mechanism of an outside air temperature correction type is shown in FIG. The differential pressure type expansion mechanism 61 in FIG. 9 has a fixed orifice portion 62 as a refrigerant communication passage through which refrigerant constantly flows, and the inlet side refrigerant pressure of the expansion mechanism 61 and the expansion mechanism refrigerant outlet at the expansion mechanism refrigerant inlet 63. 64 is provided with a differential pressure valve 65 that can adjust the amount of refrigerant passing through the expansion mechanism 61 in accordance with the differential pressure from the outlet side refrigerant pressure of the expansion mechanism 61 at 64, and opens as the differential pressure increases. The differential pressure valve 65 is urged in the valve closing direction by springs 66 and 67 with a moving plate 68 interposed therebetween. The spring 67 is a shape memory alloy spring, and the spring 66 is an ordinary spring. Heat from the outside air temperature is transmitted to the heat transfer sleeve 70 provided around the spring 67 from the temperature sensing portion 69 of the outside air temperature, and heat is transferred from the sleeve 70 to the spring 67 so that the spring 67 expands and contracts. It has become. With such a configuration, temperature correction according to the outside air temperature of the valve opening pressure becomes possible.

本発明に係る蒸気圧縮式冷凍サイクルにおける差圧式膨張機構の構造は、あらゆる蒸気圧縮式冷凍サイクルに適用可能であり、とくに二酸化炭素冷媒を用いた車両用空調装置の冷凍サイクルに好適なものである。   The structure of the differential pressure type expansion mechanism in the vapor compression refrigeration cycle according to the present invention can be applied to any vapor compression refrigeration cycle, and is particularly suitable for a refrigeration cycle of a vehicle air conditioner using a carbon dioxide refrigerant. .

ガスクーラ出口冷媒温度に関する、冷媒圧力と冷凍サイクルの成績係数(COP)との関係図である。It is a relationship figure of the refrigerant | coolant pressure and the coefficient of performance (COP) of a refrigerating cycle regarding a gas cooler exit | outlet refrigerant | coolant temperature. 本発明の一実施態様に係る蒸気圧縮式冷凍サイクルを組み込んだ車両用空調装置の機器系統図である。It is an equipment distribution diagram of a vehicle air conditioner incorporating a vapor compression refrigeration cycle according to an embodiment of the present invention. 差圧式膨張機構の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a differential pressure type expansion mechanism. 最適開弁圧の検討結果を示す、オリフィス前後差圧とオリフィス径および成績係数(COP)との関係図である。FIG. 6 is a relationship diagram between the differential pressure across the orifice, the orifice diameter, and the coefficient of performance (COP), showing the examination result of the optimum valve opening pressure. 最適オリフィス径の検討結果を示す、オリフィス前後差圧とオリフィス径および成績係数(COP)との関係図である。It is a relationship figure of an orifice front-back differential pressure, an orifice diameter, and a coefficient of performance (COP) which shows the examination result of the optimal orifice diameter. 差圧変化量とオリフィス相当径との検討結果を示す、オリフィス前後差圧とオリフィス径との関係図である。FIG. 6 is a relationship diagram between an orifice front-rear differential pressure and an orifice diameter showing a result of examination of a differential pressure change amount and an orifice equivalent diameter. 温度補正特性の一例を示す、オリフィス前後差圧とオリフィス径との関係図である。FIG. 5 is a relationship diagram between an orifice front-rear differential pressure and an orifice diameter showing an example of temperature correction characteristics. 温度補正式の差圧式膨張機構の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the temperature-correction type differential pressure type expansion mechanism. 外気温度補正式の差圧式膨張機構の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the differential pressure type expansion mechanism of an outside temperature correction type.

符号の説明Explanation of symbols

1 エンジン
2、3 プーリ
4 圧縮機
5 高圧側圧力検出手段
6 放熱器(ガスクーラ)
7 放熱器冷却ファン
8 内部熱交換器
9 差圧式膨張機構
10 蒸発器
11 気液分離器(アキュームレータ)
12 ベルト
13 冷凍サイクル
14 通風ダクト
15 外気導入口
16 内気導入口
17 内外気切替ダンパ
18 内外気切替ダンパアクチュエータ
19 ブロワファン
20 蒸発器出口空気温度センサ
21 ヒータコア
22 エアミックスダンパ
23 エアミックスダンパアクチュエータ
24、25、26 ダンパ
27、28、29 吹き出し口
31 空調制御装置
32 外気温度センサ
33 日射センサ
34 車室内温度センサ
35 高圧側冷媒圧力信号
36 クラッチコントローラ
37 クラッチ制御信号
38 圧縮機容量制御信号
39 エアミックスダンパ制御信号
40 内外気切替ダンパ制御信号
41、51、61 差圧式の膨張機構
42、52、62 冷媒連通路としての固定オリフィス部
43、53、63 膨張機構冷媒流入口
44、54、64 膨張機構冷媒流出口
45、55、65 差圧弁
46、56、66 ばね
47、57、67 形状記憶合金ばね
58、68 移動板
69 外気温度の感温部
70 スリーブ
DESCRIPTION OF SYMBOLS 1 Engine 2, 3 Pulley 4 Compressor 5 High pressure side pressure detection means 6 Radiator (gas cooler)
7 Radiator Cooling Fan 8 Internal Heat Exchanger 9 Differential Pressure Type Expansion Mechanism 10 Evaporator 11 Gas-Liquid Separator (Accumulator)
12 Belt 13 Refrigeration cycle 14 Ventilation duct 15 Outside air introduction port 16 Inside air introduction port 17 Inside / outside air switching damper 18 Inside / outside air switching damper actuator 19 Blower fan 20 Evaporator outlet air temperature sensor 21 Heater core 22 Air mix damper 23 Air mix damper actuator 24 25, 26 Dampers 27, 28, 29 Air outlet 31 Air conditioning control device 32 Outside air temperature sensor 33 Solar radiation sensor 34 Car interior temperature sensor 35 High pressure side refrigerant pressure signal 36 Clutch controller 37 Clutch control signal 38 Compressor capacity control signal 39 Air mix damper Control signal 40 Inside / outside air switching damper control signal 41, 51, 61 Differential pressure type expansion mechanism 42, 52, 62 Fixed orifice part 43, 53, 63 as refrigerant communication passage Expansion mechanism refrigerant inlet 44, 54, 64 Expansion mechanism refrigerant Outflow Ports 45, 55, 65 Differential pressure valves 46, 56, 66 Springs 47, 57, 67 Shape memory alloy springs 58, 68 Moving plate 69 Temperature sensing part 70 for outside air temperature Sleeve

Claims (8)

冷媒の超臨界作動領域を有する蒸気圧縮式の冷凍サイクル中に、該冷凍サイクル中を循環する冷媒を断熱膨張することができ、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧に応じて膨張機構を通過する冷媒の量を調節することのできる差圧式膨張手段を備えており、該差圧式膨張手段は、前記差圧の増加に伴い開弁していく差圧弁を備えており、該差圧弁が、開弁を開始する圧力を開弁圧「Po」とした場合、5MPa≦Po≦6MPaとなるように構成されていることを特徴とする蒸気圧縮式冷凍サイクル。   During the vapor compression refrigeration cycle having the supercritical operating region of the refrigerant, the refrigerant circulating in the refrigeration cycle can be adiabatically expanded, and the differential pressure between the inlet side refrigerant pressure and the outlet side refrigerant pressure of the expansion mechanism And a differential pressure expansion means capable of adjusting the amount of refrigerant passing through the expansion mechanism according to the differential pressure expansion means. The differential pressure expansion means includes a differential pressure valve that opens as the differential pressure increases. The vapor compression refrigeration cycle, wherein the differential pressure valve is configured to satisfy 5 MPa ≦ Po ≦ 6 MPa when the valve opening pressure is “Po”. 前記差圧式膨張手段は、流入した冷媒が常時流通して断熱膨張することのできる冷媒連通路を備え、該連通路の通路断面相当直径を「Dp」とした場合、0.4mm≦Dp≦0.6mmを満足するように構成されている、請求項1に記載の蒸気圧縮式冷凍サイクル。   The differential pressure type expansion means includes a refrigerant communication passage through which the flowing refrigerant can be circulated and adiabatically expanded, and when the equivalent cross-sectional diameter of the communication passage is “Dp”, 0.4 mm ≦ Dp ≦ 0.6 mm The vapor compression refrigeration cycle according to claim 1, wherein the vapor compression refrigeration cycle is configured to satisfy the following. 前記差圧が予め定めた開弁圧を超え、前記差圧弁が開弁された際の、前記膨張機構を通過する冷媒の流路の最大流路断面相当直径を「Dx」とした場合、1.0mm≦Dx≦2.0mmを満足するように構成されている、請求項1または2に記載の蒸気圧縮式冷凍サイクル。   When the differential pressure exceeds a predetermined valve opening pressure, and when the differential pressure valve is opened, the maximum flow path equivalent diameter of the flow path of the refrigerant passing through the expansion mechanism is `` Dx '', 1.0 The vapor compression refrigeration cycle according to claim 1, wherein the vapor compression refrigeration cycle is configured to satisfy mm ≦ Dx ≦ 2.0 mm. 前記膨張機構から流出した冷媒の温度に応じて、前記差圧弁の開弁圧を変更する開弁圧温度補正手段を備え、該開弁圧温度補正手段は、前記膨張機構から流出した冷媒の温度が高くなるに従い、前記開弁圧を予め定めた設定値より低下させる特性を有し、該予め定めた設定値を「Po」とし、補正された開弁圧を「Poc」とし(但し、Pocは0以上とする)、予め定めた定数を「Kx」とし、前記膨張機構から流出した冷媒の温度を「Txo」とし、補正係数を「S」とし、補正開始温度を「Txc」とした場合、
Poc=Po−Kx×S
S=Txo−Txc(Txo>Txc〔℃〕の場合)
S=0(Txo≦Txc〔℃〕の場合)
0≦Txc≦20
0.2 ≦Kx≦0.8
を満足するように構成されている、請求項1〜3のいずれかに記載の蒸気圧縮式冷凍サイクル。
Valve opening pressure temperature correcting means for changing the valve opening pressure of the differential pressure valve in accordance with the temperature of the refrigerant flowing out of the expansion mechanism, the valve opening pressure temperature correcting means being a temperature of the refrigerant flowing out of the expansion mechanism; The valve opening pressure has a characteristic of lowering from a predetermined set value as the value becomes higher. The predetermined set value is “Po”, and the corrected valve opening pressure is “Poc” (however, Poc Is a predetermined constant “Kx”, the temperature of the refrigerant flowing out of the expansion mechanism is “Txo”, the correction coefficient is “S”, and the correction start temperature is “Txc” ,
Poc = Po−Kx × S
S = Txo-Txc (when Txo> Txc [° C])
S = 0 (when Txo ≤ Txc [° C])
0 ≦ Txc ≦ 20
0.2 ≦ Kx ≦ 0.8
The vapor compression refrigeration cycle according to claim 1, wherein the vapor compression refrigeration cycle is configured to satisfy the above.
前記膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧が予め定めた開弁圧を超えた場合、前記差圧[MPa] の変化量と、前記膨張機構における冷媒流路の流路断面相当直径[mm]の変化量との関係を「K」とした場合、0.1mm/MPa≦K≦0.3mm/MPaを満足するように構成されている、請求項1〜4のいずれかに記載の蒸気圧縮式冷凍サイクル。   When the differential pressure between the inlet side refrigerant pressure and the outlet side refrigerant pressure of the expansion mechanism exceeds a predetermined valve opening pressure, the amount of change in the differential pressure [MPa] and the flow path of the refrigerant flow path in the expansion mechanism 5. The structure according to claim 1, wherein when the relationship with the amount of change in cross-sectional equivalent diameter [mm] is “K”, 0.1 mm / MPa ≦ K ≦ 0.3 mm / MPa is satisfied. The vapor compression refrigeration cycle described. 前記差圧式膨張手段の外部の温度に応じて、前記差圧弁の開弁圧を変更する開弁圧外部温度補正手段を備え、該開弁圧外部温度補正手段は、前記差圧式膨張手段の外部温度が高くなるに従い、前記開弁圧を予め定めた設定値より低下させる特性を有する、請求項1〜3、5のいずれかに記載の蒸気圧縮式冷凍サイクル。   A valve opening pressure external temperature correcting means for changing a valve opening pressure of the differential pressure valve in accordance with a temperature outside the differential pressure expansion means; and the valve opening pressure external temperature correcting means is external to the differential pressure expansion means. The vapor compression refrigeration cycle according to any one of claims 1 to 5, which has a characteristic of lowering the valve opening pressure from a preset value as the temperature increases. 車両用空調装置の冷凍サイクルとして用いられる、請求項1〜6のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 6, which is used as a refrigeration cycle of a vehicle air conditioner. 使用される冷媒が二酸化炭素からなる、請求項1〜7のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 7, wherein the refrigerant used is made of carbon dioxide.
JP2007115368A 2007-04-25 2007-04-25 Vapor compression refrigeration cycle Expired - Fee Related JP5043496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115368A JP5043496B2 (en) 2007-04-25 2007-04-25 Vapor compression refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115368A JP5043496B2 (en) 2007-04-25 2007-04-25 Vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2008267766A true JP2008267766A (en) 2008-11-06
JP5043496B2 JP5043496B2 (en) 2012-10-10

Family

ID=40047497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115368A Expired - Fee Related JP5043496B2 (en) 2007-04-25 2007-04-25 Vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP5043496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174402A (en) * 2012-02-27 2013-09-05 Panasonic Corp Refrigerating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187572A (en) * 1981-05-11 1982-11-18 Sharp Kk Refrigeration cycle
JPS63251760A (en) * 1987-04-07 1988-10-19 ダイキン工業株式会社 Refrigerator
JPH11170850A (en) * 1997-12-08 1999-06-29 Calsonic Corp Cooling device for automobile
JP2000337735A (en) * 1999-05-27 2000-12-08 Calsonic Kansei Corp Pressure reducer for air cooling cycle
JP2002005544A (en) * 2000-06-21 2002-01-09 Tgk Co Ltd Expansion valve controlling degree of supercooling
JP2002081800A (en) * 2000-04-06 2002-03-22 Denso Corp Pressure reducing device and refrigeration cycle device using the same
JP2006234207A (en) * 2005-02-22 2006-09-07 Denso Corp Refrigerating cycle pressure reducing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187572A (en) * 1981-05-11 1982-11-18 Sharp Kk Refrigeration cycle
JPS63251760A (en) * 1987-04-07 1988-10-19 ダイキン工業株式会社 Refrigerator
JPH11170850A (en) * 1997-12-08 1999-06-29 Calsonic Corp Cooling device for automobile
JP2000337735A (en) * 1999-05-27 2000-12-08 Calsonic Kansei Corp Pressure reducer for air cooling cycle
JP2002081800A (en) * 2000-04-06 2002-03-22 Denso Corp Pressure reducing device and refrigeration cycle device using the same
JP2002005544A (en) * 2000-06-21 2002-01-09 Tgk Co Ltd Expansion valve controlling degree of supercooling
JP2006234207A (en) * 2005-02-22 2006-09-07 Denso Corp Refrigerating cycle pressure reducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174402A (en) * 2012-02-27 2013-09-05 Panasonic Corp Refrigerating device

Also Published As

Publication number Publication date
JP5043496B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
CN112533782B (en) Method for operating a refrigeration system for a vehicle
US9878595B2 (en) Control means for the compressor of a vehicle air conditioner based on target high pressure
US20190111756A1 (en) Refrigeration cycle device
US10427497B2 (en) Air conditioner for vehicle
WO2013128899A1 (en) Air conditioning device for vehicle
JP6619572B2 (en) Air conditioner for vehicles
US20220234416A1 (en) Refrigeration cycle device
US11378295B2 (en) Air conditioner with heater priority mode and compressor priority mode
JP2007163074A (en) Refrigeration cycle
US11192428B2 (en) Vehicle air-conditioning device
US11506404B2 (en) Refrigeration cycle device
WO2014054229A1 (en) Heat pump cycle and integration valve for heat pump cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
JPWO2011125694A1 (en) Heat pump air conditioning system for vehicles
JP4348571B2 (en) Refrigeration cycle
JP6383854B2 (en) Air conditioner for vehicles
JP2006510540A (en) Vehicle air conditioner and operation method thereof
JP5043496B2 (en) Vapor compression refrigeration cycle
JP5209412B2 (en) Vapor compression refrigeration cycle
JP4232567B2 (en) Refrigeration cycle equipment
JP5948101B2 (en) Air conditioner for vehicles
JP2006044408A (en) Air conditioner for vehicle
JP6228263B2 (en) Air conditioner for vehicles
JP2010116033A (en) Refrigerating cycle device and air conditioner with it
JP2007071453A (en) Refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees