JP4232567B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4232567B2
JP4232567B2 JP2003279022A JP2003279022A JP4232567B2 JP 4232567 B2 JP4232567 B2 JP 4232567B2 JP 2003279022 A JP2003279022 A JP 2003279022A JP 2003279022 A JP2003279022 A JP 2003279022A JP 4232567 B2 JP4232567 B2 JP 4232567B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
throttle opening
throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003279022A
Other languages
Japanese (ja)
Other versions
JP2004301491A (en
Inventor
義貴 戸松
雅之 竹内
和寛 梅谷
琴培 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003279022A priority Critical patent/JP4232567B2/en
Publication of JP2004301491A publication Critical patent/JP2004301491A/en
Application granted granted Critical
Publication of JP4232567B2 publication Critical patent/JP4232567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、車両用空調装置や電気式温水器に使用される冷凍サイクル装置に関するもので、特にノズル径を負荷変動に応じて変更することが可能なエジェクタを備えた冷凍サイクル装置に関わる。   The present invention relates to a refrigeration cycle apparatus used in a vehicle air conditioner and an electric water heater, and particularly relates to a refrigeration cycle apparatus including an ejector capable of changing a nozzle diameter according to a load variation.

従来、図14に示したように、コンプレッサ101、ガスクーラ102、エジェクタ103および気液分離器104を冷媒配管により環状に連結すると共に、気液分離器104で分離された液相冷媒を固定絞り105等の減圧装置、エバポレータ106を設置したバイパス配管を経てエジェクタ103の低圧入口部108に吸引させるようにしたエジェクタサイクルが提案されている(例えば、特許文献1参照)。このエジェクタ103には、ノズル出口部径(開口面積)が冷煤の循環流量に拘わらず常に一定のノズル出口部径となる固定ノズル107が設けられている。   Conventionally, as shown in FIG. 14, the compressor 101, the gas cooler 102, the ejector 103, and the gas-liquid separator 104 are connected in a ring shape by refrigerant piping, and the liquid-phase refrigerant separated by the gas-liquid separator 104 is fixed to the fixed throttle 105. An ejector cycle has been proposed in which suction is performed by the low pressure inlet 108 of the ejector 103 via a decompression device such as the above and a bypass pipe provided with the evaporator 106 (see, for example, Patent Document 1). The ejector 103 is provided with a fixed nozzle 107 whose nozzle outlet diameter (opening area) is always a constant nozzle outlet diameter regardless of the circulating flow rate of the cooling.

ここで、上記のエジェクタサイクルを例えば車両用空調装置の冷凍サイクルとして用いる場合には、夏場の急速冷房等の高負荷から冬場の除湿等の低負荷まで使用環境の負荷変動範囲が非常に大きく、固定ノズル107では負荷変動に充分に対応することができない。そこで、絞り径を負荷変動に応じて、つまりノズル出口部径を冷媒の循環流量に応じて最適に制御する可変絞り機構として、図15に示したように、ニードル弁によりノズル出口部径(絞り径)を可変できる可変ノズル109を設けたエジェクタ103を備えたエジェクタサイクルも提案されている。(例えば、特許文献2参照)。   Here, when the above ejector cycle is used as a refrigeration cycle of a vehicle air conditioner, for example, the load fluctuation range of the use environment is very large from a high load such as rapid cooling in summer to a low load such as dehumidification in winter. The fixed nozzle 107 cannot sufficiently cope with the load fluctuation. Therefore, as shown in FIG. 15, as a variable throttle mechanism that optimally controls the throttle diameter according to the load fluctuation, that is, the nozzle outlet diameter according to the refrigerant circulation flow rate, the needle outlet diameter (throttle throttle) is controlled by a needle valve. An ejector cycle provided with an ejector 103 provided with a variable nozzle 109 capable of varying the diameter) has also been proposed. (For example, refer to Patent Document 2).

そして、可変エジェクタを用いた冷凍サイクルでの通常制御は、図4のグラフに示す関係となるよう最適高圧制御圧力に制御を行っている。図4は、ガスクーラ出口冷媒温度Tgcに対する最適吐出圧力制御線(エジェクタサイクルの成績係数COPが最大となる制御ライン)を示すグラフである。
特開平11−37577号公報(第2−4頁、図1) 特開平5−312421号公報(第2−3頁、図1−図2)
And the normal control in the refrigerating cycle using a variable ejector is controlling to the optimal high-pressure control pressure so that it may become the relationship shown in the graph of FIG. FIG. 4 is a graph showing an optimum discharge pressure control line (control line with the maximum coefficient of performance COP of the ejector cycle) with respect to the gas cooler outlet refrigerant temperature Tgc.
Japanese Patent Laid-Open No. 11-37577 (page 2-4, FIG. 1) Japanese Patent Laid-Open No. 5-31421 (page 2-3, FIG. 1 to FIG. 2)

車両用空調装置に適用した冷凍サイクルにおいて、外気温度が低く車速が速いような条件では高圧側冷媒圧力が低くなり、更に冷媒蒸発器の負荷が高い(吸い込み空気温度が高い、もしくは風量が多い)ような条件が加わると低圧側冷媒圧力が高くなり、結果的に冷凍サイクルとして高低圧の冷媒圧力差が小さくなるような状態となる(以後、この状態を低温内気モードという)。図16は、膨張弁サイクルにおける絞り径と吹き出し温度との関係を示すグラフであり、図17は、エジェクタサイクルにおける絞り径(ノズル径)と吹き出し温度との関係を示すグラフである。   In a refrigeration cycle applied to a vehicle air conditioner, under conditions where the outside air temperature is low and the vehicle speed is high, the high-pressure side refrigerant pressure is low, and the load on the refrigerant evaporator is high (the intake air temperature is high or the air volume is large). When such a condition is applied, the low-pressure side refrigerant pressure increases, and as a result, the refrigerant pressure difference between the high and low pressures becomes small in the refrigeration cycle (hereinafter, this state is referred to as a low-temperature inside air mode). FIG. 16 is a graph showing the relationship between the throttle diameter and the blowing temperature in the expansion valve cycle, and FIG. 17 is a graph showing the relation between the throttle diameter (nozzle diameter) and the blowing temperature in the ejector cycle.

膨張弁サイクルの場合、このような状態となっても、適当な膨張弁絞り径とし、電動コンプレッサの場合ならコンプレッサ回転数を上げるとか、可変容量コンプレッサの場合ならコンプレッサ容量を上げるとかによって、容易に所望の蒸発器吹き出し温度(例えば、除湿暖房時なら3℃程度)をつくることが可能である。しかしながら、エジェクタサイクルの場合はエジェクタ絞り(ノズル)の減圧時の損失エネルギーを回収して冷媒蒸発器側の冷媒を吸引することで冷媒蒸発器に流れる冷媒流量を確保することで冷房を行っている。   In the case of an expansion valve cycle, even if it becomes such a state, it is easy to set an appropriate expansion valve throttle diameter and increase the compressor speed for an electric compressor or increase the compressor capacity for a variable capacity compressor. It is possible to create a desired evaporator blowing temperature (for example, about 3 ° C. during dehumidifying heating). However, in the case of the ejector cycle, cooling is performed by collecting the energy lost when the ejector throttle (nozzle) is depressurized and sucking the refrigerant on the refrigerant evaporator side to ensure the flow rate of refrigerant flowing through the refrigerant evaporator. .

従って、上記のように高低圧差が小さくなるような状態では、回収できるエネルギーの絶対量が不足し、冷媒蒸発器の流量が確保できない状態となる。すなわち、吹き出し温度が上昇し、冷房能力が確保できなくなる。その結果、例えば、除湿暖房時に吹き出し温度3℃を確保できなくなり、窓曇りを速やかに晴らすことができない等の問題が生じている。本発明は、上記従来技術の問題点に鑑みて成されたものであり、その目的は、エジェクタサイクルの低負荷時(低温内気モード時)に冷媒流量不足による性能低下を防止することのできる冷凍サイクル装置を提供することにある。   Therefore, in the state where the high-low pressure difference becomes small as described above, the absolute amount of energy that can be recovered is insufficient, and the flow rate of the refrigerant evaporator cannot be secured. That is, the blowing temperature rises and the cooling capacity cannot be secured. As a result, for example, the blowing temperature of 3 ° C. cannot be secured at the time of dehumidifying heating, and there is a problem that window fogging cannot be cleared quickly. The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a refrigeration capable of preventing performance deterioration due to insufficient refrigerant flow at a low load of the ejector cycle (in a low temperature inside air mode). To provide a cycle device.

本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、後述の第1参考例では、制御手段(10)は、吐出圧力検知手段(8)で検知した吐出圧力(Ph)が、高低圧差が非常に小さくなるためエジェクタ(3)で回収できる減圧損失エネルギーが小さくなり通常制御によると可変絞り手段(7)が絞り過ぎの状態となり駆動流側の流量が減少し結果的に吸引流側の流量が全く不足することとなって冷媒蒸発器(6)では必要な能力を下回ってしまうような低負荷状態にあることを示す第1所定圧力(P1)以下の場合、駆動流の減少が少なく回収できる減圧損失エネルギーもそこそこ確保できるため吸引流側も充分な流量を流すことが可能になり成績係数(COP)は最大ではなくとも冷媒蒸発器(6)では必要な能力を確保できるように可変絞り手段(7)を通常制御による最適高圧制御状態よりも開く側に制御し、吐出圧力(Ph)が第2所定圧力(P2)以上となったら通常制御に復帰させるようにしている。 In order to achieve the above object, the present invention employs the following technical means. That is, in the first reference example to be described later, the control means (10) allows the discharge pressure (Ph) detected by the discharge pressure detection means (8) to be reduced by the ejector (3) because the high-low pressure difference becomes very small. When the loss energy is reduced and the normal control is performed, the variable throttle means (7) is excessively throttled and the flow rate on the drive flow side is reduced, resulting in a shortage of the flow rate on the suction flow side. ), If the pressure is lower than the first predetermined pressure (P1) indicating that the load is lower than the necessary capacity, the reduction in driving flow is small and the recoverable pressure loss energy can be secured. The variable throttle means (7) is optimally controlled by normal control so that a sufficient flow rate can be flowed and the required coefficient of performance can be secured in the refrigerant evaporator (6) even if the coefficient of performance (COP) is not maximum. Controls on the side opened than the control state, the discharge pressure (Ph) is so as to return to the normal control After a second predetermined pressure (P2) higher.

図4は、冷媒放熱器(2)出口の冷媒温度(Tgc)に対する最適吐出圧力制御線(エジェクタサイクルの成績係数COPが最大となる制御ライン)を示すグラフである。つまり、吐出圧力(Ph)が第1所定圧力(P1)以上ならば通常制御モードとして、冷媒温度検知手段(9)にて冷媒放熱器(2)出口の冷媒温度(Tgc)を検知し、その冷媒温度(Tgc)に対応する最適高圧(Pe)と実際の吐出圧力(Ph)とを比較し、吐出圧力(Ph)が最適高圧(Pe)と同じとなるようにエジェクタ(3)の可変絞り手段(7)にて絞り開度を調整するものである。   FIG. 4 is a graph showing an optimum discharge pressure control line (control line that maximizes the coefficient of performance COP of the ejector cycle) with respect to the refrigerant temperature (Tgc) at the outlet of the refrigerant radiator (2). That is, if the discharge pressure (Ph) is equal to or higher than the first predetermined pressure (P1), the refrigerant temperature detecting means (9) detects the refrigerant temperature (Tgc) at the outlet of the refrigerant radiator (2) as the normal control mode, The optimum high pressure (Pe) corresponding to the refrigerant temperature (Tgc) is compared with the actual discharge pressure (Ph), and the variable throttle of the ejector (3) is set so that the discharge pressure (Ph) is the same as the optimum high pressure (Pe). The throttle opening is adjusted by means (7).

しかしながら、この第1参考例によれば、吐出圧力(Ph)が第1所定圧力(P1)以下ならば、冷凍サイクルが低負荷状態にあると判断して、エジェクタ(3)の可変絞り手段(7)を開く側(全開、もしくは略全開に近い所定開度)に制御、いわゆる最適高圧制御状態よりも絞り開度が大きい状態にする。そして、吐出圧力検知手段(8)の出力が第2所定圧力(P2)以上と上がったら上記通常制御モードへと復帰させるものである。具体的にはエジェクタ(3)に図2に示すような電磁比例タイプの差圧式パイロット弁を用い、制御電流を調整して絞り開度を調整するものである。 However, according to the first reference example , if the discharge pressure (Ph) is equal to or lower than the first predetermined pressure (P1), it is determined that the refrigeration cycle is in a low load state, and the variable throttle means ( 7) The throttle opening is set to be larger than the so-called optimum high-pressure control state, which is controlled to open side (full opening or a predetermined opening close to substantially full opening). Then, when the output of the discharge pressure detection means (8) rises above the second predetermined pressure (P2), the normal control mode is restored. Specifically, an electromagnetic proportional type differential pressure type pilot valve as shown in FIG. 2 is used for the ejector (3), and the throttle opening is adjusted by adjusting the control current.

図5は、エジェクタ(3)の絞り開度と、成績係数(COP)および冷房能力との関係を示すグラフである。吐出圧力(Ph)が第1所定圧力(P1)以下の場合、高低圧差が非常に小さくなるため、エジェクタ(3)で回収できる減圧損失エネルギーが小さくなる。このような状態で、通常制御としてエジェクタ(3)の可変絞り手段(7)により吐出圧力(Ph)を図4に示した最適高圧制御ラインに制御すると、成績係数(COP)が最大となる高圧を維持しようとするために絞り過ぎの状態(図5中のa位置)となり、駆動流側の流量が減少し、結果的に吸引流側(冷媒蒸発器(6)側)の流量が全く不足することとなって冷媒蒸発器(6)では必要な冷房能力を下回ってしまうこととなる。   FIG. 5 is a graph showing the relationship between the throttle opening of the ejector (3), the coefficient of performance (COP), and the cooling capacity. When the discharge pressure (Ph) is equal to or lower than the first predetermined pressure (P1), the high-low pressure difference is very small, and the pressure loss energy that can be recovered by the ejector (3) is small. In this state, when the discharge pressure (Ph) is controlled to the optimum high pressure control line shown in FIG. 4 by the variable throttle means (7) of the ejector (3) as a normal control, the high pressure at which the coefficient of performance (COP) is maximized. In order to maintain the flow rate, the throttle flow becomes too narrow (position a in FIG. 5), the flow rate on the driving flow side decreases, and as a result, the flow rate on the suction flow side (refrigerant evaporator (6) side) is completely insufficient. As a result, the refrigerant evaporator (6) will fall below the required cooling capacity.

しかしながら、上記のように吐出圧力(Ph)が第1所定圧力(P1)以下になった場合に、可変絞り手段(7)を全開、もしくは略全開に近い所定開度に制御(図5中のb位置)すると駆動流の減少がないため、回収できる減圧損失エネルギーもそこそこ確保できるため吸引流側も充分な流量を流すことが可能になる。すなわち、成績係数(COP)は最大ではなくとも、冷媒蒸発器(6)では必要な冷房能力を確保できることとなる(図5参照)。   However, when the discharge pressure (Ph) is equal to or lower than the first predetermined pressure (P1) as described above, the variable throttle means (7) is controlled to be fully opened or to a predetermined opening close to substantially fully opened (in FIG. (position b), since there is no decrease in the driving flow, the recoverable decompression loss energy can be secured reasonably, so that the suction flow side can also flow a sufficient flow rate. That is, even if the coefficient of performance (COP) is not the maximum, the refrigerant evaporator (6) can ensure the necessary cooling capacity (see FIG. 5).

また、後述の第2参考例では、制御手段(10)は、冷媒温度検知手段(9)で検知した冷媒温度(Tgc)が第1所定温度(T1)以下の場合、可変絞り手段(7)を開く側に制御し、冷媒温度(Tgc)が第2所定温度(T2)以上となったら通常制御に復帰させるようにしている。これは、上記した第1参考例では、吐出圧力(Ph)にて通常制御と駆動流増加の作動との切り換えを判定していたのに対して、この第2参考例によれば、冷媒放熱器(2)出口の冷媒温度(Tgc)にて判定するようにしたものである。これによっても、上記した第1参考例と同様の作用効果を得ることができる。 Further, in the second reference example described later, the control means (10) is configured such that the variable throttle means (7) when the refrigerant temperature (Tgc) detected by the refrigerant temperature detection means (9) is equal to or lower than the first predetermined temperature (T1). controls on the side to open the refrigerant temperature (Tgc) is so as to return to the normal control When a second predetermined temperature (T2) or more. In the first reference example described above, the switching between the normal control and the driving flow increase operation is determined based on the discharge pressure (Ph), whereas according to the second reference example , the refrigerant heat dissipation. This is determined by the refrigerant temperature (Tgc) at the outlet of the vessel (2). Also by this, the same effect as the first reference example can be obtained.

そこで、請求項に記載の発明では、制御手段(10)は、冷媒温度検知手段(9)で検知した冷媒温度(Tgc)が第1所定温度(T1)以下の場合、可変絞り手段(7)を開く側に制御し、冷媒温度(Tgc)が第2所定温度(T2)以上となったら通常制御に復帰させるうえで、可変絞り手段(7)を冷媒封入温度式の機械式可変絞り機構としたうえ、感温部(51)に絞り開度を閉じる方向に付勢する形状記憶部材(51a)を設置し、冷媒放熱器(2)から流出して感温部(51)周りを流通する冷媒温度(Tgc)が所定温度(T1)以下の場合、形状記憶部材(51a)による付勢力を低下させることで絞り開度が開く方向に作動することを特徴としている。 Therefore , in the first aspect of the present invention, when the refrigerant temperature (Tgc) detected by the refrigerant temperature detecting means (9) is equal to or lower than the first predetermined temperature (T1), the control means (10) can adjust the variable throttle means (7). ) Is opened, and when the refrigerant temperature (Tgc) becomes equal to or higher than the second predetermined temperature (T2), the variable throttle means (7) is made into a refrigerant-filled temperature type mechanical variable throttle mechanism. In addition, a shape memory member (51a) for energizing the throttle opening in the direction to close the throttle opening is installed in the temperature sensing part (51), and flows out from the refrigerant radiator (2) to circulate around the temperature sensing part (51). When the refrigerant temperature (Tgc) to be performed is equal to or lower than the predetermined temperature (T1), the squeezing opening is opened by reducing the urging force by the shape memory member (51a).

この請求項に記載の発明によれば、冷媒封入温度式の機械式可変絞り機構によって、制御を機械的に行なうものである。冷媒放熱器(2)出口の冷媒温度(Tgc)を感温する感温部(51)内部に形状記憶部材(51a)、具体的には例えば形状記憶ばねを設置し、冷媒温度(Tgc)が所定温度(T1)以上の時は、形状記憶ばねの付勢力が働いた状態で絞りを閉じる方向に作用させておき、その状態で通常制御ができるように感温部(51)への冷媒封入密度をセットしておく。 According to the invention described in claim 1, by a mechanical variable throttle mechanism of the refrigerant sealed thermostatic, and performs control to mechanically. A shape memory member (51a), specifically a shape memory spring, for example, is installed inside the temperature sensing part (51) for sensing the refrigerant temperature (Tgc) at the outlet of the refrigerant radiator (2), and the refrigerant temperature (Tgc) is When the temperature is equal to or higher than the predetermined temperature (T1), the diaphragm is closed in the direction in which the diaphragm is closed while the urging force of the shape memory spring is applied. Set the density.

そして、冷媒温度(Tgc)が所定温度(T1)以下になると形状記憶ばねの付勢力が無くなり、絞りが開く方向に作用するものである。このように、機械式として構成することにより、冷媒温度検知手段(9)、および制御手段(10)での制御が不要となる。   When the refrigerant temperature (Tgc) becomes equal to or lower than the predetermined temperature (T1), the urging force of the shape memory spring disappears and acts in the direction of opening the throttle. Thus, by configuring as a mechanical type, control by the refrigerant temperature detection means (9) and the control means (10) becomes unnecessary.

また、請求項に記載の発明では、冷媒封入温度式の機械式可変絞り機構をキャピラリ感温式としたうえ、感温部(51b)に加熱冷却手段(31)を設け、感温部(51b)を加熱冷却手段(31)にて加熱もしくは冷却することにより絞り開度を制御することを特徴としている。この請求項に記載の発明によれば、キャピラリ先端の感温部(51b)は図9、図10に示すように冷媒放熱器(2)出口の冷媒配管に密着させ、その感温部(51b)に加熱冷却手段(31)、具体的には例えばペルチェ素子を同時に密着させる。 In the second aspect of the present invention, the mechanical variable throttle mechanism of the refrigerant-filled temperature type is a capillary temperature sensing type, and the heating and cooling means (31) is provided in the temperature sensing part (51b), and the temperature sensing part ( The throttle opening degree is controlled by heating or cooling 51b) by the heating / cooling means (31). According to the second aspect of the present invention, as shown in FIGS . 9 and 10, the temperature sensing portion (51b) at the capillary tip is brought into close contact with the refrigerant pipe at the outlet of the refrigerant radiator (2), and the temperature sensing portion ( The heating / cooling means (31), specifically, for example, a Peltier element is brought into close contact with 51b) at the same time.

そして、ペルチェ素子に電圧を印可することでペルチェ素子を冷却させて感温部(51b)の内圧を下げることで絞り開度を開方向に制御する。また、急速冷房の時には、逆極性で電圧を印可することでペルチェ素子を加熱させて感温部(51b)の内圧を上げることで絞り開度を閉方向に制御する。このようにして上記した請求項1に記載の発明での制御を行なうものである。これにより、冷媒温度検知手段(9)は不要となる。 Then, by applying a voltage to the Peltier element, the Peltier element is cooled to lower the internal pressure of the temperature sensing part (51b), thereby controlling the throttle opening in the opening direction. In rapid cooling, the throttle opening is controlled in the closing direction by applying a voltage with a reverse polarity to heat the Peltier element and increase the internal pressure of the temperature sensing part (51b). Thus, the control according to the first aspect of the present invention is performed. Thereby, a refrigerant temperature detection means (9) becomes unnecessary.

また、請求項に記載の発明では、制御手段(10)は、吐出圧力(Ph)を最適高圧(Pe)とするための可変絞り手段(7)の第1絞り開度(S1)を算出すると共に、内部に記憶保持した冷媒温度(Tgc)に対する所定絞り開度マップに基づき冷媒温度(Tgc)から可変絞り手段(7)の第2絞り開度(S2)を算出し、第1第2絞り開度(S1S2)を比較して大きい方の開度を選択して実行することを特徴としている。 In the invention according to claim 3 , the control means (10) calculates the first throttle opening (S1) of the variable throttle means (7) for setting the discharge pressure (Ph) to the optimum high pressure (Pe). And calculating the second throttle opening (S2) of the variable throttle means (7) from the refrigerant temperature (Tgc) based on the predetermined throttle opening map with respect to the refrigerant temperature (Tgc) stored and held therein , Compared with the two throttle openings (S1 , S2), the larger opening is selected and executed.

上述した請求項1に記載の発明では、吐出圧力(Ph)もしくは冷媒温度(Tgc)から低負荷状態にあるか否かを判断して、低負荷の状態なら絞り開度を開くように制御しているが、この請求項に記載の発明によれば、冷房能力を確保するための冷媒温度(Tgc)に対する所定絞り開度マップを制御手段(10)内部に記憶保持しておくと共に、通常制御での最適吐出圧力制御線での最適高圧(Pe)とするための絞り開度(S1)と、前記所定絞り開度マップから導き出される絞り開度(S2)とを比較して大きい方の開度を選択して実行するものである。これにより、常により冷房能力が出る状態が選択されることとなる。 In the first aspect of the invention described above, it is determined whether or not the engine is in a low load state from the discharge pressure (Ph) or the refrigerant temperature (Tgc), and if the load is low, the throttle opening is controlled to open. However, according to the third aspect of the present invention, the predetermined throttle opening degree map for the refrigerant temperature (Tgc) for ensuring the cooling capacity is stored and held in the control means (10). Comparing the throttle opening (S1) for setting the optimum high pressure (Pe) at the optimum discharge pressure control line in the control with the throttle opening (S2) derived from the predetermined throttle opening map, the larger one The opening is selected and executed. As a result, a state in which the cooling capacity is always higher is selected.

また、請求項に記載の発明では、冷媒蒸発器(6)へ空調用空気を送風する送風手段(67)を備えると共に、制御手段(10)は、送風手段(67)の駆動電圧が所定値より高い場合は所定絞り開度マップを絞り開度の大きくなる方向へ可変し、駆動電圧が所定値より低い場合は所定絞り開度マップを絞り開度の小さくなる方向へ可変することを特徴としている。 In the invention according to claim 4 , the air-conditioning air is blown to the refrigerant evaporator (6), and the control means (10) has a predetermined driving voltage for the air-blowing means (67). When the driving voltage is lower than the predetermined value, the predetermined throttle opening map is changed in the direction of decreasing the throttle opening. It is said.

この請求項に記載の発明によれば、送風手段(67)の駆動電圧が所定値よりも高いか低いかによって冷媒蒸発器(6)の負荷が高いか低いかが判断できるため、負荷の高低に応じて所定絞り開度マップを絞り開度の大きくなる方向、もしくは絞り開度の小さくなる方向へ補正するものである。これにより、更に負荷の高低に応じた冷房能力が設定されることとなる。 According to the fourth aspect of the present invention, it can be determined whether the load of the refrigerant evaporator (6) is high or low depending on whether the drive voltage of the blower means (67) is higher or lower than a predetermined value. Accordingly, the predetermined throttle opening map is corrected in the direction in which the throttle opening increases or the throttle opening decreases. Thereby, the cooling capacity according to the level of load is further set.

また、請求項に記載の発明では、車室内空気の温度を検出する内気温検出手段(83)と車室外空気の温度を検出する外気温検出手段(84)とを備えた車両用空調装置(61)に冷凍サイクル装置を適用すると共に、制御手段(10)は、内気温検出手段(83)もしくは外気温検出手段(84)で検出する冷媒蒸発器(6)への送風空気温度が所定値より高い場合は所定絞り開度マップを絞り開度の大きくなる方向へ可変し、送風空気温度が所定値より低い場合は所定絞り開度マップを絞り開度の小さくなる方向へ可変することを特徴としている。 According to the fifth aspect of the present invention, the vehicle air conditioner includes the inside air temperature detecting means (83) for detecting the temperature of the passenger compartment air and the outside air temperature detecting means (84) for detecting the temperature of the air outside the passenger compartment. In addition to applying the refrigeration cycle apparatus to (61), the control means (10) has a predetermined air temperature to the refrigerant evaporator (6) detected by the inside air temperature detecting means (83) or the outside air temperature detecting means (84). If it is higher than the value, the predetermined throttle opening map is changed in the direction of increasing the throttle opening, and if the blown air temperature is lower than the predetermined value, the predetermined throttle opening map is changed in the direction of decreasing the throttle opening. It is a feature.

この請求項に記載の発明によれば、冷媒蒸発器(6)への送風空気温度が所定値より高いか低いかによっても冷媒蒸発器(6)の負荷が高いか低いかが判断できるため、負荷の高低に応じて所定絞り開度マップを絞り開度の大きくなる方向、もしくは絞り開度の小さくなる方向へ補正するものである。これによっても、更に負荷の高低に応じた冷房能力が設定されることとなる。尚、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。 According to the fifth aspect of the present invention, it can be determined whether the load on the refrigerant evaporator (6) is high or low depending on whether the temperature of the blown air to the refrigerant evaporator (6) is higher or lower than a predetermined value. The predetermined throttle opening map is corrected in the direction in which the throttle opening increases or the throttle opening decreases in accordance with the level of the load. This also sets the cooling capacity according to the load level. In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

(第1参考例
以下、本発明の実施の形態について図面を用いて説明する。図1および図2は本発明の第1参考例に関わるもので、図1は車両用空調装置における冷凍サイクルの概略構成を示す回路図であり、図2はエジェクタ3の構造例を示す断面図である。
(First Reference Example )
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 relate to a first reference example of the present invention, FIG. 1 is a circuit diagram showing a schematic configuration of a refrigeration cycle in a vehicle air conditioner, and FIG. 2 is a cross-sectional view showing a structural example of an ejector 3. It is.

参考例の車両用空調装置の冷凍サイクルは、コンプレッサ1、ガスクーラ2、エジェクタ3および気液分離器4を冷媒配管によって環状に連結したエジェクタサイクルである。そして、このエジェクタサイクルには更に、気液分離器4の液冷媒出口部とエジェクタ3の低圧入口部とをバイパス配管によって連結しており、そのバイパス配管の途中には、減圧装置5およびエバポレータ(冷媒蒸発器)6を設置している。 The refrigeration cycle of the vehicle air conditioner of the present reference example is an ejector cycle in which the compressor 1, the gas cooler 2, the ejector 3, and the gas-liquid separator 4 are connected in a ring shape by a refrigerant pipe. Further, in this ejector cycle, the liquid refrigerant outlet portion of the gas-liquid separator 4 and the low pressure inlet portion of the ejector 3 are connected by a bypass pipe, and in the middle of the bypass pipe, a decompressor 5 and an evaporator ( (Refrigerant evaporator) 6 is installed.

ここで、本参考例の冷凍サイクルは、例えば臨界温度の低い二酸化炭素(CO2)を主成分とする冷媒を使用し、冷媒の高圧圧力が冷媒の臨界圧力以上となる超臨界蒸気圧縮式エジェクタサイクルにより構成されている。この超臨界蒸気圧縮式エジェクタサイクルでは、高圧側の冷媒圧力の上昇によりガスクーラ2の入口部の冷媒温度、つまりコンプレッサ1の吐出口部より吐出される冷媒の吐出温度を150℃程度まで高めることができる。尚、ガスクーラ2内に流入する冷媒は、コンプレッサ1で臨界圧力以上に加圧される場合は、ガスクーラ2で放熱しても凝縮液化することはない。 Here, the refrigeration cycle of the present reference example uses, for example, a refrigerant mainly composed of carbon dioxide (CO2) having a low critical temperature, and the high pressure of the refrigerant is equal to or higher than the critical pressure of the refrigerant. It is comprised by. In this supercritical vapor compression ejector cycle, the refrigerant temperature at the inlet of the gas cooler 2, that is, the discharge temperature of the refrigerant discharged from the outlet of the compressor 1 is increased to about 150 ° C. by increasing the refrigerant pressure on the high pressure side. it can. When the refrigerant flowing into the gas cooler 2 is pressurized to a critical pressure or higher by the compressor 1, the refrigerant does not liquefy even if the heat is radiated by the gas cooler 2.

コンプレッサ1は、車両のエンジシルームに搭載された図示しないエンジンまたは図示しない電動モータ等の駆動源により回転駆動されて、内部に吸入した冷媒ガスを圧縮して高温高圧の冷媒ガスをガスクーラ2側に吐出する冷媒圧縮機で、気液分離器4の冷媒ガス出口部より吸入した冷媒ガスを一時的に使用条件において臨界圧力以上まで高温高圧に圧縮して吐出する。また、ガスクーラ2は、車両のエンジンルーム内の走行風を受け易い場所に設置されて、コンプレッサ1の吐出口部より吐出された冷媒ガスと図示しない冷却ファン等により送り込まれた車外空気とを熱交換して冷媒ガスを放熱させる冷媒放熱器である。   The compressor 1 is rotationally driven by a driving source such as an engine (not shown) or an electric motor (not shown) mounted in an engine room of the vehicle, compresses the refrigerant gas sucked into the compressor 1, and converts the high-temperature and high-pressure refrigerant gas to the gas cooler 2 side. In the refrigerant compressor, the refrigerant gas sucked from the refrigerant gas outlet of the gas-liquid separator 4 is temporarily compressed to a high temperature and high pressure up to a critical pressure or higher under the use conditions and discharged. In addition, the gas cooler 2 is installed in a place where it is easy to receive traveling wind in the engine room of the vehicle, and heats the refrigerant gas discharged from the discharge port of the compressor 1 and the outside air sent by a cooling fan or the like (not shown). This is a refrigerant radiator that exchanges heat to dissipate refrigerant gas.

エジェクタ3は、高圧入口部11・低圧入口部12・ノズル13・混合部14およびディフューザ部15等によって構成されている。エジェクタ3は、高圧入口部11より流入した冷媒がノズル13を通過する際に、ノズル13から高速で噴出する冷媒回りの圧力低下を利用して、エジェクタ3の低圧入口部12から冷媒が吸引される。   The ejector 3 includes a high-pressure inlet portion 11, a low-pressure inlet portion 12, a nozzle 13, a mixing portion 14, a diffuser portion 15, and the like. When the refrigerant flowing in from the high pressure inlet 11 passes through the nozzle 13, the ejector 3 draws the refrigerant from the low pressure inlet 12 of the ejector 3 by using the pressure drop around the refrigerant jetted from the nozzle 13 at a high speed. The

これにより、低圧入口部12から吸引された冷媒とノズル13から吹き出された冷媒とが混合部14内で混合し、ディフューザ部15内で拡散し昇圧した後に、エジェクタ3の吐出口部(出口部)より気液分離器4へ吐出される。尚、本参考例のエジェクタ3には、負荷変動に応じて絞り径(ノズル出口部径)を変更する可変絞り機構7が一体的に設けられている。 As a result, the refrigerant sucked from the low pressure inlet 12 and the refrigerant blown from the nozzle 13 are mixed in the mixing unit 14, diffused in the diffuser unit 15 and increased in pressure, and then discharged from the discharge port (outlet part) of the ejector 3. ) To the gas-liquid separator 4. The ejector 3 of this reference example is integrally provided with a variable throttle mechanism 7 that changes the throttle diameter (nozzle outlet diameter) in accordance with load fluctuations.

気液分離器4は、エジェクタ3により減圧された冷媒を気液分離するアキュームレータである。また、減圧装置5は、気液分離器4の液冷媒出口部から流入した液冷媒を減圧して気液二相状態の冷媒にするキャピラリチューブやオリフィス等の固定絞り、または温度式や電気式の可変絞りである。また、エバポレータ6は、減圧装置5で減圧された冷媒を図示しない送風ファンによって送風される車室外空気または車室内空気との熱交換によって蒸発気化させ、エジェクタ3を介してコンプレッサ1に冷媒ガスを供給する冷媒蒸発器である。   The gas-liquid separator 4 is an accumulator that gas-liquid separates the refrigerant decompressed by the ejector 3. Further, the decompression device 5 is a fixed throttle such as a capillary tube or an orifice that reduces the pressure of the liquid refrigerant flowing from the liquid refrigerant outlet portion of the gas-liquid separator 4 to form a gas-liquid two-phase refrigerant, or a temperature type or electric type. This is a variable aperture. The evaporator 6 evaporates and evaporates the refrigerant decompressed by the decompression device 5 by heat exchange with outside air or inside air that is blown by a blower fan (not shown), and causes the refrigerant gas to be supplied to the compressor 1 via the ejector 3. It is a refrigerant evaporator to supply.

エジェクタ3の高圧入口部11よりも上流側から分岐するバイパス流路21、このバイパス流路21の分岐点側に設けられたオリフィス22、このオリフィス22よりもバイパス流路21の合流点側に設けられた電磁式アクチュエータとしての圧力制御弁(以下制御弁と略す)23、バイパス流路21内の冷媒圧力とエジェクタ3の高圧入口部11内の冷媒圧力との圧力差に応じてエジェクタ3のノズル13の絞り径(ノズル出口部径)を変更するニードル弁18等により構成されている。   A bypass passage 21 that branches from the upstream side of the high-pressure inlet 11 of the ejector 3, an orifice 22 provided on the branch point side of the bypass passage 21, and a junction point side of the bypass passage 21 relative to the orifice 22. A pressure control valve (hereinafter abbreviated as a control valve) 23 as an electromagnetic actuator, and the nozzle of the ejector 3 according to the pressure difference between the refrigerant pressure in the bypass passage 21 and the refrigerant pressure in the high-pressure inlet 11 of the ejector 3 13 includes a needle valve 18 or the like that changes the throttle diameter (nozzle outlet diameter).

尚、オリフィス22は、制御弁23との間で、高圧と低圧との間の中間圧を形成するための固定絞りである。バイパス流路21は、図2に示したように、エジェクタ3の高圧入口部11上流の冷媒流路(高圧側冷媒流路20)を分岐させ、オリフィス22と制御弁23を通過して、エバポレータ6の出口部とエジェクタ3の低圧入口部12との間で合流する冷媒流路である。   The orifice 22 is a fixed throttle for forming an intermediate pressure between the control valve 23 and a high pressure and a low pressure. As shown in FIG. 2, the bypass flow path 21 branches the refrigerant flow path (high pressure side refrigerant flow path 20) upstream of the high pressure inlet 11 of the ejector 3, passes through the orifice 22 and the control valve 23, and the evaporator. 6 is a refrigerant flow path that merges between the outlet portion 6 and the low pressure inlet portion 12 of the ejector 3.

このバイパス流路21は、エジェクタ3の高圧入口部11よりも上流側の分岐点より分岐する高圧導入路24、エジェクタ3の低圧入口部12よりも上流側の合流点に合流する低圧導入路25、およびオリフィス22と制御弁23との問に中間圧部26を有し、これらはエジェクタ3のハウジング16・17内に形成されている。尚、高圧導入路24全体または一部に、上記のオリフィス22が設けられている。   The bypass passage 21 has a high-pressure introduction path 24 that branches from a branch point upstream of the high-pressure inlet portion 11 of the ejector 3 and a low-pressure introduction path 25 that joins a junction point upstream of the low-pressure inlet portion 12 of the ejector 3. And an intermediate pressure portion 26 between the orifice 22 and the control valve 23, which are formed in the housings 16 and 17 of the ejector 3. The orifice 22 is provided in the whole or a part of the high pressure introduction path 24.

参考例では、バイパス流路21の分岐点を、ガスクーラ2より流出した冷媒をエジェクタ3の高圧入口部11に送るための高圧側冷媒流路20の途中に設け、且つバイパス流路21の合流点を、エバポレータ6の出口部より流出した冷媒をエジェクタ3の低圧入口部12に送るための低圧側冷媒流路27の途中に設けている。これにより、バイパス流路21の高圧導入路24内に導入する高圧は高圧側冷媒流路20から導入され、且つバイパス流路21の低圧導入路25内に導入する低圧は、低圧側冷媒流路27から導入される。 In this reference example , a branch point of the bypass channel 21 is provided in the middle of the high-pressure side refrigerant channel 20 for sending the refrigerant flowing out of the gas cooler 2 to the high-pressure inlet 11 of the ejector 3, and the bypass channel 21 is joined. The point is provided in the middle of the low-pressure side refrigerant flow path 27 for sending the refrigerant flowing out from the outlet of the evaporator 6 to the low-pressure inlet 12 of the ejector 3. Thereby, the high pressure introduced into the high pressure introduction passage 24 of the bypass passage 21 is introduced from the high pressure side refrigerant passage 20, and the low pressure introduced into the low pressure introduction passage 25 of the bypass passage 21 is reduced to the low pressure side refrigerant passage. 27.

制御弁23は、ニードル弁18を図示左右方向に駆動するアクチュエータを構成するもので、図2に示したように、バイパス流路21の低圧導入路25の開口面積(弁開度)を調整するためのパイロット弁23a、このパイロット弁23aを閉弁方向に駆動する電磁コイル23b、およびパイロット弁23aを開弁方向に付勢するスプリング等の図示しないパイロット弁付勢手段等を有している。そして、制御弁23は、後記する制御装置(制御手段)10から電磁コイル23bに印加される電気信号に応じてパイロット弁23aの開度が変更されるように構成されている。   The control valve 23 constitutes an actuator that drives the needle valve 18 in the left-right direction in the drawing, and adjusts the opening area (valve opening) of the low-pressure introduction passage 25 of the bypass passage 21 as shown in FIG. A pilot valve 23a for driving, an electromagnetic coil 23b for driving the pilot valve 23a in the valve closing direction, and a pilot valve biasing means (not shown) such as a spring for biasing the pilot valve 23a in the valve opening direction. And the control valve 23 is comprised so that the opening degree of the pilot valve 23a may be changed according to the electrical signal applied to the electromagnetic coil 23b from the control apparatus (control means) 10 mentioned later.

ニードル弁18は、エジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)を変更することで、エジェクタ3のノズル13を可変ノズルとするもので、エジェクタ3の高圧入口部11より高圧が導入される第1圧力室28内の冷媒圧力と、オリフィス22と制御弁23のパイロット弁23aとの間に形成される第2圧力室26内の冷媒圧力(中間圧)との圧力差に応じて、エジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)を変更する比例差圧弁である。   The needle valve 18 changes the throttle diameter (nozzle outlet portion diameter, opening area) of the nozzle 13 of the ejector 3 to change the nozzle 13 of the ejector 3 to a variable nozzle. The needle valve 18 has a higher pressure than the high pressure inlet portion 11 of the ejector 3. The pressure difference between the refrigerant pressure in the first pressure chamber 28 into which the refrigerant is introduced and the refrigerant pressure (intermediate pressure) in the second pressure chamber 26 formed between the orifice 22 and the pilot valve 23a of the control valve 23 Accordingly, the proportional differential pressure valve changes the throttle diameter (nozzle outlet diameter, opening area) of the nozzle 13 of the ejector 3.

また、ニードル弁18は、外径の小さい径小部、およびこの径小部よりも外径の大きい鍔状の径大部を有し、内部にエジェクタ3の高圧入口部11側の通路孔29と第2圧力室26とを連通する上記のオリフィス22が形成されている。尚、第1・第2圧力室28・26は、エジェクタ3のハウジング17の図示左端面とハウジング16の図示右端面に形成された凹状部との間に形成され、その凹状部は、ニードル弁18の径大部によって区画されて、ニードル弁18の径大部よりも図示右側が第1圧力室28とされ、ニードル弁18の径大部よりも図示左側が第2圧力室26とされている。   Further, the needle valve 18 has a small diameter portion having a small outer diameter and a bowl-shaped large diameter portion having an outer diameter larger than the small diameter portion, and a passage hole 29 on the high pressure inlet portion 11 side of the ejector 3 inside. The orifice 22 communicating with the second pressure chamber 26 is formed. The first and second pressure chambers 28 and 26 are formed between the illustrated left end surface of the housing 17 of the ejector 3 and the recessed portion formed on the illustrated right end surface of the housing 16. The first pressure chamber 28 is defined on the right side of the large diameter portion of the needle valve 18 and the second pressure chamber 26 is illustrated on the left side of the large diameter portion of the needle valve 18. Yes.

そして、ニードル弁18は、第1・第2圧力室28・26内の冷媒圧力の圧力差(差圧)と、ニードル弁18をノズル出口部径を絞る(開口面積を小さくする)方向に付勢するリターンスプリング19のバネカとによって、ハウジング16・17内を図示左右方向に摺動可能で、このニードル弁18の図示左右方向の位置に応じて、エジェクタ3のノズル13の絞り径(ノズル出口部径)が変更される。   The needle valve 18 is attached to the pressure difference (differential pressure) of the refrigerant pressure in the first and second pressure chambers 28 and 26 and the needle valve 18 in the direction of narrowing the nozzle outlet diameter (reducing the opening area). The spring 16 of the return spring 19 is slidable in the left and right directions in the housings 16 and 17, and the throttle diameter (nozzle outlet) of the nozzle 13 of the ejector 3 depends on the position of the needle valve 18 in the left and right direction in the figure. The diameter is changed.

ここで、冷凍サイクルの各冷凍機器、特に制御弁23の電磁コイル23bを制御する制御装置10(以下ECUと呼ぶ。)は、CPU、ROM、RAM、I/Oポート等の機能を含んで構成され、それ自体は周知の構造を持つマイクロコンピュータを内蔵している。   Here, the refrigeration equipment of the refrigeration cycle, in particular, the control device 10 (hereinafter referred to as ECU) that controls the electromagnetic coil 23b of the control valve 23 includes functions such as a CPU, ROM, RAM, and I / O port. The microcomputer itself has a well-known structure.

尚、コンプレッサ1の吐出口部より吐出されガスクーラ2に流入する冷媒の吐出圧力Phを検出する吐出圧力センサ(吐出圧力検知手段)8、およびガスクーラ2の出口部より流出する冷媒温度Tgcを検出する冷媒温度センサ(冷媒温度検知手段)9からのセンサ信号は、図示しない入力回路(A/D変換回路)によってA/D変換された後に、マイクロコンピュータに入力されるように構成されている。   A discharge pressure sensor (discharge pressure detecting means) 8 for detecting the discharge pressure Ph of the refrigerant discharged from the discharge port of the compressor 1 and flowing into the gas cooler 2 and the refrigerant temperature Tgc flowing out from the outlet of the gas cooler 2 are detected. The sensor signal from the refrigerant temperature sensor (refrigerant temperature detection means) 9 is A / D converted by an input circuit (A / D conversion circuit) (not shown) and then input to the microcomputer.

そして、ECU10は通常運転として、吐出圧力センサ8によって検出された冷媒圧力Phと冷媒温度センサ9によって検出された冷媒温度Tgcとから、冷凍サイクルの負荷変動または負荷状態を算出し、この算出した負荷変動または負荷状態に応じた駆動信号を制御弁23の電磁コイル23bに印加するように構成されている。   Then, as a normal operation, the ECU 10 calculates the load fluctuation or load state of the refrigeration cycle from the refrigerant pressure Ph detected by the discharge pressure sensor 8 and the refrigerant temperature Tgc detected by the refrigerant temperature sensor 9, and the calculated load A drive signal corresponding to the fluctuation or load state is applied to the electromagnetic coil 23 b of the control valve 23.

参考例では、ECU10は、吐出圧力センサ8によって検出された冷媒圧力Ph、あるいは冷媒温度センサ9によって検出された冷媒温度Tgcが大きい値である程、負荷が大きいと判定し、負荷が大きい程、エジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)が大きくなるように、つまりパイロット弁23aが左方へ移動し中間圧が下がるように、駆動信号を制御弁23の電磁コイル23bに印加する。 In this reference example , the ECU 10 determines that the load is larger as the refrigerant pressure Ph detected by the discharge pressure sensor 8 or the refrigerant temperature Tgc detected by the refrigerant temperature sensor 9 is larger, and the larger the load is. The drive signal is sent to the electromagnetic coil of the control valve 23 so that the throttle diameter (nozzle outlet portion diameter, opening area) of the nozzle 13 of the ejector 3 is increased, that is, the pilot valve 23a is moved to the left and the intermediate pressure is lowered. 23b.

次に、本参考例の冷凍サイクルの作用を図1および図2に基づいて簡単に説明する。コンプレッサ1で圧縮されて高温高圧となった冷媒ガスは、ガスクーラ2の入口部からガスクーラ2内に流入する。そして、ガスクーラ2を通過する際に車外空気に熱を奪われて冷却される。 Next, the operation of the refrigeration cycle of this reference example will be briefly described with reference to FIGS. 1 and 2. The refrigerant gas that has been compressed by the compressor 1 and has become high-temperature and high-pressure flows into the gas cooler 2 from the inlet of the gas cooler 2. And when passing through the gas cooler 2, the outside air is deprived of heat and cooled.

そして、ガスクーラ2の出口部より流出した冷媒は、高圧側冷媒流路20を通ってエジェクタ3の高圧入口部11からニードル弁18の径小部に形成された通路孔29等を通ってノズル13内に流入する。ノズル13内に流入した冷媒は、ノズル13内を通過する際に減圧されてノズル13の噴出口部から混合部14内に吹き出される。そして、混合部14およびディフューザ部15を通過する際に昇圧される。   The refrigerant flowing out from the outlet of the gas cooler 2 passes through the high-pressure side refrigerant flow path 20, passes through the passage hole 29 formed in the small diameter portion of the needle valve 18 from the high-pressure inlet 11 of the ejector 3, and the nozzle 13. Flows in. The refrigerant that has flowed into the nozzle 13 is reduced in pressure when passing through the nozzle 13, and is blown into the mixing unit 14 from the outlet of the nozzle 13. The pressure is increased when passing through the mixing unit 14 and the diffuser unit 15.

この時、ノズル13から高速で噴出する冷媒回りの圧力低下を利用して、エジェクタ3の低圧入口部12にエバポレータ6の出口部からガス冷媒が吸引される。これにより、ノズル13から高速で噴出する冷媒と低圧入口部12から流入した冷媒とが効率良く混合部14内で混合した後に、ディフューザ部15内で拡散する。そして、ディフューザ部15より流出した気液二相状態の冷媒は、気液分離器4内に流入して気液分離する。その後に、気液分離器4内のガス冷媒は、ガス冷媒出口部よりコンプレッサ1の吸入力によってコンプレッサ1に吸入される。   At this time, the gas refrigerant is sucked from the outlet portion of the evaporator 6 to the low pressure inlet portion 12 of the ejector 3 by utilizing the pressure drop around the refrigerant jetted from the nozzle 13 at high speed. As a result, the refrigerant ejected from the nozzle 13 at high speed and the refrigerant flowing in from the low-pressure inlet portion 12 are efficiently mixed in the mixing portion 14 and then diffused in the diffuser portion 15. The gas-liquid two-phase refrigerant that has flowed out of the diffuser section 15 flows into the gas-liquid separator 4 and is gas-liquid separated. Thereafter, the gas refrigerant in the gas-liquid separator 4 is sucked into the compressor 1 by the suction input of the compressor 1 from the gas refrigerant outlet portion.

また、気液分離器4の底部に溜まっている液冷媒は、エジェクタ3の低圧入口部12の吸引作用により、気液分離器4の液冷媒出口部より流出して減圧装置5に流入し、その減圧装置5を通過する際に減圧膨張されて気液二相状態の冷媒となってエバポレータ6の入口部からエバポレータ6内に流入する。エバポレータ6内に流入した冷媒は、車両用空調装置の例えば空調ダクト内を流れる空気と熱交換して蒸発気化された後に、エジェクタ3の低圧入口部12に吸引されて、上述したように、エジェクタ3の混合部14内でノズル13の噴出口部から吹き出した冷媒と混合する。   Also, the liquid refrigerant accumulated at the bottom of the gas-liquid separator 4 flows out from the liquid refrigerant outlet of the gas-liquid separator 4 by the suction action of the low-pressure inlet 12 of the ejector 3 and flows into the decompressor 5. When passing through the decompression device 5, it is decompressed and expanded to become a gas-liquid two-phase refrigerant and flows into the evaporator 6 from the inlet of the evaporator 6. The refrigerant flowing into the evaporator 6 is evaporated and evaporated by exchanging heat with, for example, air flowing in the air conditioning duct of the vehicle air conditioner, and then sucked into the low pressure inlet 12 of the ejector 3, as described above. 3 is mixed with the refrigerant blown out from the outlet of the nozzle 13 in the mixing section 14.

ここで、エジェクタ3の高圧入口部11の上流側より分岐するバイパス流路21内に流入する一部の冷媒は、オリフィス22を通過する際に減圧する。この冷媒は、制御弁23のパイロット弁23aの設定位置に応じて、更にエジェクタ3の低圧入口部12と同一の圧力まで減圧され、エジェクタ3の低圧入口部12へと導出される。このようなバイパス流路21内を流れる冷媒流によって、オリフィス22と制御弁23のパイロット弁23aとの間の第2圧力室26内で、エジェクタ3の高圧入口部11側の冷媒圧力(高圧)とエジェクタ3の低圧入口部12側の冷媒圧力(低圧)との間の中間圧が作られる。   Here, a part of the refrigerant flowing into the bypass flow path 21 branched from the upstream side of the high-pressure inlet 11 of the ejector 3 is decompressed when passing through the orifice 22. This refrigerant is further depressurized to the same pressure as the low pressure inlet 12 of the ejector 3 according to the set position of the pilot valve 23 a of the control valve 23, and is led out to the low pressure inlet 12 of the ejector 3. The refrigerant flow (high pressure) on the high pressure inlet 11 side of the ejector 3 in the second pressure chamber 26 between the orifice 22 and the pilot valve 23a of the control valve 23 is caused by the refrigerant flow flowing in the bypass passage 21. And the refrigerant pressure (low pressure) on the low pressure inlet 12 side of the ejector 3 is created.

尚、制御弁23のパイロット弁23aの開度が小さくなる程、すなわち、パイロット弁23aの位置が図示右方に移動する程、第2圧力室26内の冷媒圧力である中間圧が上昇する。逆に、制御弁23のパイロット弁23aの開度が大きくなる程、すなわち、パイロット弁23aの位置が図示左方に移動する程、第2圧力室26内の冷媒圧力である中間圧が下降する。   The intermediate pressure, which is the refrigerant pressure in the second pressure chamber 26, increases as the opening of the pilot valve 23a of the control valve 23 decreases, that is, as the position of the pilot valve 23a moves to the right in the figure. Conversely, as the opening of the pilot valve 23a of the control valve 23 increases, that is, as the position of the pilot valve 23a moves to the left in the figure, the intermediate pressure, which is the refrigerant pressure in the second pressure chamber 26, decreases. .

そして、ニードル弁18には、第1圧力室28から高圧(エジェクタ3の高圧入口部11内の冷媒圧力)が作用し、第2圧力室26から背圧(中間圧)が作用するため、ニードル弁18の径大部の図示左右に圧力差(差圧)が生じる。この差圧とリターンスプリング19のパネカとによって、ニードル弁18の制御位置(移動量、リフト量)、つまりエジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)が決定される。   The needle valve 18 is subjected to high pressure (refrigerant pressure in the high-pressure inlet 11 of the ejector 3) from the first pressure chamber 28 and back pressure (intermediate pressure) from the second pressure chamber 26. A pressure difference (differential pressure) is generated on the right and left sides of the large diameter portion of the valve 18. The control position (movement amount, lift amount) of the needle valve 18, that is, the throttle diameter (nozzle outlet portion diameter, opening area) of the nozzle 13 of the ejector 3 is determined by this differential pressure and the panel spring of the return spring 19.

尚、ニードル弁18の制御位置は、制御弁23のパイロット弁23aの弁開度を、負荷変動または負荷状態に応じて変更して、エジェクタ3の高圧入口部11側の冷媒圧力(高圧)とエジェクタ3の低圧入口部12側の冷媒圧力(低圧)との間の中間圧を変化させることにより、任意の制御位置とすることができる。   Note that the control position of the needle valve 18 is such that the opening degree of the pilot valve 23a of the control valve 23 is changed according to the load fluctuation or load state, and the refrigerant pressure (high pressure) on the high pressure inlet 11 side of the ejector 3 is changed. By changing the intermediate pressure between the refrigerant pressure (low pressure) on the low pressure inlet 12 side of the ejector 3, an arbitrary control position can be obtained.

従って、夏場の急速冷房等の高負荷時、つまり冷凍サイクルの負荷が大きい場合には、制御弁23のパイロット弁23aが図示左方に移動して開度が大きくなり、第2圧力室26内の冷媒圧力である中間圧が下がる。これにより、ニードル弁18が図示左方に移動し、エジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)が大きくなり、冷凍サイクルの冷媒循環量が多くなる。   Therefore, at the time of high load such as rapid cooling in summer, that is, when the load of the refrigeration cycle is large, the pilot valve 23a of the control valve 23 moves to the left in the figure and the opening degree becomes large, and the inside of the second pressure chamber 26 increases. The intermediate pressure, which is the refrigerant pressure, decreases. As a result, the needle valve 18 moves to the left in the figure, the throttle diameter (nozzle outlet diameter, opening area) of the nozzle 13 of the ejector 3 increases, and the amount of refrigerant circulating in the refrigeration cycle increases.

また、冬場の除湿等の低負荷時、つまり冷凍サイクルの負荷が小さい場合には制御弁23のパイロット弁23aが図示右方に移動し開度が小さくなり、第2圧力室26内の冷媒圧力である中間圧が上がる。これにより、ニードル弁18が図示右方に移動し、エジェクタ3のノズル13の絞り径(ノズル出口部径、開口面積)が小さくなり、冷凍サイクルの冷媒循環量が少なくなる。   In addition, when the load is low such as dehumidification in winter, that is, when the load of the refrigeration cycle is small, the pilot valve 23a of the control valve 23 moves to the right in the drawing and the opening degree decreases, and the refrigerant pressure in the second pressure chamber 26 decreases. The intermediate pressure is increased. Thereby, the needle valve 18 moves to the right in the drawing, the throttle diameter (nozzle outlet portion diameter, opening area) of the nozzle 13 of the ejector 3 is reduced, and the refrigerant circulation amount in the refrigeration cycle is reduced.

次に、本第参考例におけるエジェクタの絞り制御を、図3のフローチャートに基づいて説明する。まず、ステップS1で、吐出圧力センサ8で検知するコンプレッサ1からの冷媒吐出圧力Phを取り込む。そして、ステップS2で、その吐出圧力Phが予め設定してある第1所定圧力P1以下であるか否かを判定する。 Next, the ejector aperture control in the first reference example will be described based on the flowchart of FIG. First, in step S1, the refrigerant discharge pressure Ph from the compressor 1 detected by the discharge pressure sensor 8 is taken. In step S2, it is determined whether or not the discharge pressure Ph is equal to or lower than a preset first predetermined pressure P1.

その判定結果がYESで、吐出圧力Phが第1所定圧力P1より低い場合は、以下で説明するステップS3〜5のノズル13の絞り径を開いて駆動流を増加させる作動を行なってから、後で説明するステップS6〜10の通常制御の最適高圧制御を行ない、ステップS2での判定結果がNOで、吐出圧力Phが第1所定圧力P1より高い場合は、後で説明するステップS6〜10の通常制御の最適高圧制御のみを行なうものである。   If the determination result is YES and the discharge pressure Ph is lower than the first predetermined pressure P1, the operation of increasing the drive flow by opening the throttle diameter of the nozzle 13 in steps S3 to S5 described below is performed. When the optimum high pressure control of the normal control in steps S6 to 10 described in Step S6 is performed and the determination result in Step S2 is NO and the discharge pressure Ph is higher than the first predetermined pressure P1, the steps S6 to S10 described later are performed. Only the optimum high-pressure control of normal control is performed.

駆動流を増加させる作動としては、まずステップS3で絞り可変機構7に制御信号を送ってノズル13の絞り径を全開、もしくは略全開の所定開度とする。これにより、駆動流側の流量が増えて、エジェクタ3で回収できる減圧損失エネルギーも増加するため、吸引流側も充分な流量を流すことが可能になる。この状態で、ステップS4にて再度吐出圧力センサ8で検知するコンプレッサ1からの冷媒吐出圧力Phを取り込む。そして、ステップS5で、その吐出圧力Phが予め設定してある第2所定圧力P2以上であるか否かを判定する。   As an operation for increasing the driving flow, first, in step S3, a control signal is sent to the variable aperture mechanism 7 so that the aperture diameter of the nozzle 13 is fully opened or substantially opened. As a result, the flow rate on the drive flow side increases and the decompression loss energy that can be recovered by the ejector 3 also increases, so that a sufficient flow rate can also flow on the suction flow side. In this state, the refrigerant discharge pressure Ph from the compressor 1 detected by the discharge pressure sensor 8 is again taken in step S4. In step S5, it is determined whether or not the discharge pressure Ph is equal to or higher than a preset second predetermined pressure P2.

その判定結果がNOで、吐出圧力Phがまだ第2所定圧力P2より低い場合は、ステップS3〜5の作動を繰り返す。そして、車両冷房負荷が変化するなどして、ステップS5での判定結果がYESで、吐出圧力Phが第2所定圧力P2より高くなった場合は、次のステップS6〜10の、通常制御の最適高圧制御を行なうものである。   If the determination result is NO and the discharge pressure Ph is still lower than the second predetermined pressure P2, the operations of steps S3 to S5 are repeated. Then, when the vehicle cooling load is changed or the like, the determination result in step S5 is YES, and the discharge pressure Ph becomes higher than the second predetermined pressure P2, the optimum of normal control in the next steps S6 to 10 High pressure control is performed.

通常制御の最適高圧制御としては、まずステップS6で、冷媒温度センサ9で検知するガスクーラ2出口の冷媒温度Tgcを取り込む。そして、ステップS7では、制御装置10の内部に記憶保持した最適高圧制御マップに基づき、取り込んだ冷媒温度Tgcから最適高圧Peを算出する。次のステップS8では、再度吐出圧力Phを取り込み、ステップS9で算出した最適高圧Peと同じであるか否かを判定する。   As the optimum high pressure control of the normal control, first, in step S6, the refrigerant temperature Tgc at the outlet of the gas cooler 2 detected by the refrigerant temperature sensor 9 is taken. In step S7, the optimum high pressure Pe is calculated from the taken-in refrigerant temperature Tgc based on the optimum high pressure control map stored and held in the control device 10. In the next step S8, the discharge pressure Ph is taken in again, and it is determined whether or not it is the same as the optimum high pressure Pe calculated in step S9.

その判定結果がNOで、吐出圧力Phがまだ最適高圧Peより高い場合は、ステップS10aに進んでノズル13の絞り径を開いて吐出圧力Phを下げる作動を行なう。また、判定結果が同じNOでも、吐出圧力Phが最適高圧Peより低い場合は、ステップS10bに進んでノズル13の絞り径を閉じて吐出圧力Phを上げる作動を行なう。そして、ステップS6〜10の作動を繰り返し、ステップS9での判定結果がYESで、吐出圧力Phが最適高圧Peとなるよう可変絞り機構7を制御するものである。   If the determination result is NO and the discharge pressure Ph is still higher than the optimum high pressure Pe, the operation proceeds to step S10a to open the throttle diameter of the nozzle 13 and lower the discharge pressure Ph. Further, even if the determination result is the same NO, when the discharge pressure Ph is lower than the optimum high pressure Pe, the operation proceeds to step S10b to perform an operation of closing the throttle diameter of the nozzle 13 and increasing the discharge pressure Ph. Then, the operations in steps S6 to S10 are repeated, and the variable throttle mechanism 7 is controlled so that the determination result in step S9 is YES and the discharge pressure Ph becomes the optimum high pressure Pe.

次に、本参考例での特徴を説明する。制御装置10は、吐出圧力センサ8で検知した吐出圧力Phが第1所定圧力P1以下の場合は可変絞り機構7を開く側に制御し、吐出圧力Phが第2所定圧力P2以上となったら通常制御に復帰させている。 Next, features of this reference example will be described. When the discharge pressure Ph detected by the discharge pressure sensor 8 is equal to or lower than the first predetermined pressure P1, the control device 10 controls the variable throttle mechanism 7 to open, and normally when the discharge pressure Ph becomes equal to or higher than the second predetermined pressure P2. Return to control.

図4は、ガスクーラ2出口の冷媒温度Tgcに対する最適吐出圧力制御線(エジェクタサイクルの成績係数COPが最大となる制御ライン)を示すグラフである。つまり、吐出圧力Phが第1所定圧力P1以上ならば通常制御モードとして、冷媒温度センサ9にてガスクーラ2出口の冷媒温度Tgcを検知し、その冷媒温度Tgcに対応する最適高圧Peと実際の吐出圧力Phとを比較し、吐出圧力Phが最適高圧Peと同じとなるようにエジェクタ3の可変絞り機構7にて絞り開度を調整するものである。   FIG. 4 is a graph showing an optimum discharge pressure control line (control line that maximizes the coefficient of performance COP of the ejector cycle) with respect to the refrigerant temperature Tgc at the gas cooler 2 outlet. That is, if the discharge pressure Ph is equal to or higher than the first predetermined pressure P1, the refrigerant temperature sensor 9 detects the refrigerant temperature Tgc at the outlet of the gas cooler 2 as the normal control mode, and the optimum high pressure Pe corresponding to the refrigerant temperature Tgc and the actual discharge The throttle opening is adjusted by the variable throttle mechanism 7 of the ejector 3 so that the discharge pressure Ph is equal to the optimum high pressure Pe.

しかしながら、本参考例では、吐出圧力Phが第1所定圧力P1以下ならば、冷凍サイクルが低負荷状態にあると判断して、エジェクタ3の可変絞り機構7を開く側(全開、もしくは略全開に近い所定開度)に制御する。いわゆる最適高圧制御状態よりも絞り開度が大きい状態にする。そして、吐出圧力センサ8の出力が第2所定圧力P2以上に上がったら通常制御モードへと復帰させるものである。具体的にはエジェクタ3に図2に示すような電磁比例タイプの差圧式パイロット弁を用い、制御電流を調整して絞り開度を調整するものである。 However, in this reference example , if the discharge pressure Ph is equal to or lower than the first predetermined pressure P1, it is determined that the refrigeration cycle is in a low load state, and the variable throttle mechanism 7 side of the ejector 3 is opened (fully opened or substantially fully opened). To a close predetermined opening). The throttle opening is set to be larger than the so-called optimum high pressure control state. When the output of the discharge pressure sensor 8 rises to the second predetermined pressure P2 or higher, the normal control mode is restored. Specifically, an electromagnetic proportional type differential pressure type pilot valve as shown in FIG. 2 is used for the ejector 3, and the throttle opening is adjusted by adjusting the control current.

図5は、エジェクタ3の絞り開度と、成績係数COPおよび冷房能力との関係を示すグラフである。吐出圧力Phが所定圧力P1以下の場合、高低圧差が非常に小さくなるため、エジェクタ3で回収できる減圧損失エネルギーが小さくなる。このような状態で、通常制御としてエジェクタ3の可変絞り機構7により吐出圧力Phを図4に示した最適高圧制御ラインに制御すると、成績係数COPが最大となる高圧を維持しようとするために絞り過ぎの状態(図5中のa位置)となり、駆動流側の流量が減少し、結果的に吸引流側(エバポレータ6側)の流量が全く不足することとなってエバポレータ6では必要な冷房能力を下回ってしまうこととなる。   FIG. 5 is a graph showing the relationship between the throttle opening of the ejector 3, the coefficient of performance COP, and the cooling capacity. When the discharge pressure Ph is equal to or lower than the predetermined pressure P1, the high-low pressure difference is very small, and thus the pressure loss energy that can be recovered by the ejector 3 is small. In such a state, when the discharge pressure Ph is controlled to the optimum high pressure control line shown in FIG. 4 by the variable throttle mechanism 7 of the ejector 3 as normal control, the throttle is set to maintain the high pressure at which the coefficient of performance COP is maximized. 5 (position a in FIG. 5), the flow rate on the drive flow side decreases, and as a result, the flow rate on the suction flow side (evaporator 6 side) becomes completely insufficient, and the evaporator 6 has a necessary cooling capacity. It will be less than.

しかしながら上記のように、吐出圧力Phが所定圧力P1以下になった場合に、可変絞り機構7を全開、もしくは略全開に近い所定開度に制御(図5中のb位置)すると駆動流の減少がないため、回収できる減圧損失エネルギーもそこそこ確保できるため吸引流側も充分な流量を流すことが可能になる。すなわち、成績係数COPは最大ではなくとも、エバポレータ6では必要な冷房能力を確保できることとなる(図5参照)。   However, as described above, when the discharge pressure Ph becomes equal to or lower than the predetermined pressure P1, if the variable throttle mechanism 7 is fully opened or controlled to a predetermined opening degree that is almost fully open (position b in FIG. 5), the driving flow is reduced. Therefore, since the decompression loss energy that can be recovered can be secured, the suction flow side can also flow a sufficient flow rate. That is, even if the coefficient of performance COP is not the maximum, the evaporator 6 can ensure the necessary cooling capacity (see FIG. 5).

(第2参考例
図6は、本発明の第2参考例におけるエジェクタ絞り制御のフローチャート図である。まず、ステップS11で、冷媒温度センサ9で検知するガスクーラ2出口の冷媒温度Tgcを取り込む。そして、ステップS12で、その冷媒温度Tgcが予め設定してある第1所定温度T1以下であるか否かを判定する。
(Second reference example )
FIG. 6 is a flowchart of ejector aperture control in the second reference example of the present invention. First, in step S11, the refrigerant temperature Tgc at the outlet of the gas cooler 2 detected by the refrigerant temperature sensor 9 is taken. In step S12, it is determined whether or not the refrigerant temperature Tgc is equal to or lower than a preset first predetermined temperature T1.

その判定結果がYESで、冷媒温度Tgcが第1所定温度T1より低い場合は、以下で説明するステップS13〜15のノズル13の絞り径を開いて駆動流を増加させる作動を行なってから、第1参考例で説明したステップS6〜10の通常制御の最適高圧制御を行ない、ステップS13での判定結果がNOで、冷媒温度Tgcが第1所定温度T1より高い場合は、第1参考例と同様にステップS6〜10の通常制御の最適高圧制御のみを行なうものである。 If the determination result is YES and the refrigerant temperature Tgc is lower than the first predetermined temperature T1, the operation of increasing the drive flow by opening the throttle diameter of the nozzle 13 in steps S13 to S15 described below is performed. When the optimum high pressure control of the normal control in steps S6 to S10 described in the first reference example is performed, the determination result in step S13 is NO, and the refrigerant temperature Tgc is higher than the first predetermined temperature T1, the same as in the first reference example Further, only the optimum high pressure control of the normal control in steps S6 to S10 is performed.

駆動流を増加させる作動としては、まずステップS13で絞り可変機構7に制御信号を送ってノズル13の絞り径を全開、もしくは略全開の所定開度とする。これにより、駆動流側の流量が増えて、エジェクタ3で回収できる減圧損失エネルギーも増加するため、吸引流側も充分な流量を流すことが可能になる。この状態で、ステップS14にて再度冷媒温度センサ9で検知するガスクーラ2出口の冷媒温度Tgcを取り込む。そして、ステップS15で、その冷媒温度Tgcが予め設定してある第2所定温度T2以上であるか否かを判定する。   As an operation for increasing the driving flow, first, in step S13, a control signal is sent to the variable aperture mechanism 7 so that the throttle diameter of the nozzle 13 is fully opened or substantially opened. As a result, the flow rate on the drive flow side increases and the decompression loss energy that can be recovered by the ejector 3 also increases, so that a sufficient flow rate can also flow on the suction flow side. In this state, the refrigerant temperature Tgc at the outlet of the gas cooler 2 detected by the refrigerant temperature sensor 9 is again taken in step S14. In step S15, it is determined whether or not the refrigerant temperature Tgc is equal to or higher than a preset second predetermined temperature T2.

その判定結果がNOで、冷媒温度Tgcがまだ第2所定温度T2より低い場合は、ステップS13〜15の作動を繰り返す。そして、車両冷房負荷が変化するなどして、ステップS15での判定結果がYESで、冷媒温度Tgcが第2所定温度T2より高くなった場合は、次のステップS6〜10の、通常制御の最適高圧制御を行なうものである。これについては第1参考例で説明したため、ここでの説明は省略する。 If the determination result is NO and the refrigerant temperature Tgc is still lower than the second predetermined temperature T2, the operations of steps S13 to S15 are repeated. Then, when the vehicle cooling load is changed, for example, when the determination result in step S15 is YES and the refrigerant temperature Tgc is higher than the second predetermined temperature T2, the optimum normal control in the next steps S6 to 10 is performed. High pressure control is performed. Since this has been described in the first reference example , description thereof is omitted here.

次に、本参考例での特徴を説明する。制御装置10は、冷媒温度センサ9で検知した冷媒温度Tgcが第1所定温度T1以下の場合、可変絞り機構7を開く側に制御し、冷媒温度Tgcが第2所定温度T2以上となったら通常制御に復帰させている。これは、上述した第1参考例では、吐出圧力Phにて通常制御と駆動流増加の作動との切り換えを判定していたのに対して、本参考例ではガスクーラ2出口の冷媒温度Tgcにて判定するようにしたものである。これによっても、上述した第1参考例と同様の作用効果を得ることができる。 Next, features of this reference example will be described. When the refrigerant temperature Tgc detected by the refrigerant temperature sensor 9 is equal to or lower than the first predetermined temperature T1, the control device 10 controls the variable throttle mechanism 7 to open, and normally when the refrigerant temperature Tgc becomes equal to or higher than the second predetermined temperature T2. Return to control. In the first reference example described above, switching between the normal control and the driving flow increase operation is determined based on the discharge pressure Ph, whereas in the present reference example , the refrigerant temperature Tgc at the outlet of the gas cooler 2 is determined. Judgment is made. Also by this, the same effect as the first reference example described above can be obtained.

(第実施形態)
図7および図8は本発明の第実施形態を示したもので、図7は車両用空調装置における冷凍サイクルの概略構成を示した回路図であり、図8はエジェクタ3の構造例を示した断面図である。上述の第1第2参考例で前提とした図1の冷凍サイクルとは、コンプレッサ1に吸入される冷媒とガスクーラ2を流出した冷媒とを熱交換する内部熱交換器30を持った構成となっている点が異なる。また、エジェクタ3は、可変絞り機構として機械式の圧力制御弁50が一体化されている。
(First Embodiment)
7 and 8 show a first embodiment of the present invention, FIG. 7 is a circuit diagram showing a schematic configuration of a refrigeration cycle in a vehicle air conditioner, and FIG. 8 shows a structural example of the ejector 3. FIG. The refrigeration cycle in FIG. 1 assumed in the first and second reference examples described above has a configuration having an internal heat exchanger 30 for exchanging heat between the refrigerant sucked into the compressor 1 and the refrigerant flowing out of the gas cooler 2. Is different. Further, the ejector 3 is integrated with a mechanical pressure control valve 50 as a variable throttle mechanism.

圧力制御弁50は、冷媒封入温度式となっており、その構造は、薄膜状のダイヤフラム52にて構成された密閉空間である感温部51内に、所定の液密度にて冷媒(この場合は、二酸化炭素)を封入すると共に、感温部51をガスクーラ2から流出した高温冷媒中に晒し、且つ、ダイヤフラム52のうち密閉空間と反対側の面に高圧冷媒の圧力Phを作用させることにより、感温部51内、つまり密閉空間内の圧力と高圧冷媒の圧力Phとの差圧を利用して針状の弁体53を稼動させるものである。   The pressure control valve 50 is a refrigerant-filled temperature type, and the structure thereof is a refrigerant (in this case) at a predetermined liquid density in a temperature-sensing part 51 that is a sealed space composed of a thin-film diaphragm 52. Is enclosed with carbon dioxide), the temperature sensing part 51 is exposed to the high-temperature refrigerant flowing out of the gas cooler 2, and the pressure Ph of the high-pressure refrigerant acts on the surface of the diaphragm 52 opposite to the sealed space. The needle-like valve element 53 is operated by utilizing the pressure difference between the pressure in the temperature sensing part 51, that is, in the sealed space, and the pressure Ph of the high-pressure refrigerant.

この時、弁体53は、軸方向に変位(稼動)することによりノズル13の冷媒入口部13aでの絞り開度を調節して高圧冷媒圧力Ph、つまりコンプレッサ1の吐出圧Phを制御する。尚、感温部51内には、冷媒の温度がO℃での飽和液密度から冷媒の臨界点での飽和液密度に至る範囲の密度(本実施形態では約550kg/m3)の冷媒と窒素ガス等の不活性ガスを封入してある。   At this time, the valve body 53 is displaced (operated) in the axial direction to adjust the throttle opening at the refrigerant inlet portion 13a of the nozzle 13 to control the high-pressure refrigerant pressure Ph, that is, the discharge pressure Ph of the compressor 1. In the temperature sensing part 51, the refrigerant and nitrogen having a density in the range from the saturated liquid density at O ° C. to the saturated liquid density at the critical point of the refrigerant (about 550 kg / m 3 in this embodiment) An inert gas such as a gas is enclosed.

これにより、高圧冷媒圧力Phが超臨界領域にある時は、550kg/m3の等密度線に沿うように、ガスクーラ2出口側の冷媒温度Tgcに基づいて高圧冷媒の圧力Phを制御し、高圧冷媒圧力Phが凝縮域にある時には、ガスクーラ2出口側の冷媒の過冷却度が所定値となるように高圧冷媒の圧力Phを制御する。   Thus, when the high-pressure refrigerant pressure Ph is in the supercritical region, the pressure Ph of the high-pressure refrigerant is controlled based on the refrigerant temperature Tgc on the outlet side of the gas cooler 2 so as to follow the isodensity line of 550 kg / m3. When the pressure Ph is in the condensation region, the pressure Ph of the high-pressure refrigerant is controlled so that the degree of supercooling of the refrigerant on the outlet side of the gas cooler 2 becomes a predetermined value.

この時、超臨界域においては、COP(成績係数)が最大となる高圧側の冷媒温度Tgcと高圧冷媒圧力Phとの関係が550kg/m3の等密度線と略一致するので、エジェクタサイクルは、高いCOPが維持されるように制御される。   At this time, in the supercritical region, the relationship between the high-pressure side refrigerant temperature Tgc at which the COP (coefficient of performance) is maximum and the high-pressure refrigerant pressure Ph substantially coincides with the isodensity line of 550 kg / m3. Controlled to maintain high COP.

次に、本実施形態での特徴を述べる。本実施形態では、上記冷媒封入温度式の機械式圧力制御弁50の基本構造に加えて、感温部51内にダイヤフラム52を介して弁体53を絞り開度が閉じる方向に付勢する形状記憶ばね(形状記憶部材)51aを有している。そして、ガスクーラ2から流出して感温部51周りを流通する冷媒温度Tgcが所定温度T1以下の場合、形状記憶ばね51aによる付勢力を低下させることで絞り開度が開く方向に作動するようにしている。   Next, features of this embodiment will be described. In the present embodiment, in addition to the basic structure of the refrigerant-filled temperature type mechanical pressure control valve 50, the valve body 53 is urged in the temperature sensing portion 51 via the diaphragm 52 in the direction in which the throttle opening is closed. A memory spring (shape memory member) 51a is provided. When the refrigerant temperature Tgc flowing out from the gas cooler 2 and circulating around the temperature sensing unit 51 is equal to or lower than the predetermined temperature T1, the biasing force by the shape memory spring 51a is reduced so that the throttle opening is opened. ing.

本実施形態は、冷媒封入温度式の機械式可変絞り機構によって、上述の第2参考例と同様の制御を機械的に行なうものである。ガスクーラ2出口の冷媒温度Tgcを感温する感温部51内部に形状記憶ばね51aを設置し、冷媒温度Tgcが所定温度T1以上の時は、形状記憶ばね51aの付勢力が働いた状態で絞りを閉じる方向に作用させておき、その状態で通常制御ができるように感温部51への冷媒封入密度をセットしておく。 In the present embodiment, the same control as that of the second reference example described above is mechanically performed by a mechanical variable throttle mechanism of a refrigerant filling temperature type. A shape memory spring 51a is installed inside the temperature sensing portion 51 for sensing the refrigerant temperature Tgc at the outlet of the gas cooler 2, and when the refrigerant temperature Tgc is equal to or higher than the predetermined temperature T1, the shape memory spring 51a is urged with the urging force working. Is set in the direction of closing the refrigerant, and the density of the refrigerant sealed in the temperature sensing portion 51 is set so that normal control can be performed in this state.

そして、冷媒温度Tgcが所定温度T1以下になると形状記憶ばねの付勢力が無くなり、絞りが開く方向に作用するものである。このように、機械式として構成することにより、冷媒温度センサ9、および制御装置10での制御が不要となる。尚、感温部51は必ずしも圧力制御弁50と一体である必要はなく、図7に示すように別体の感温部51を接続した構造であっても良い。   When the refrigerant temperature Tgc becomes equal to or lower than the predetermined temperature T1, the urging force of the shape memory spring disappears, and the throttle operates. Thus, by configuring as a mechanical type, control by the refrigerant temperature sensor 9 and the control device 10 becomes unnecessary. The temperature sensing part 51 does not necessarily have to be integrated with the pressure control valve 50, and may have a structure in which a separate temperature sensing part 51 is connected as shown in FIG.

(第実施形態)
図9および図10は本発明の第実施形態を示したもので、図9は車両用空調装置における冷凍サイクルの概略構成を示した回路図であり、図10はエジェクタ3の構造例を示した断面図である。図9、図10に示すように、上述の第実施形態と同様に冷媒封入温度式の機械式圧力制御弁50を構成しているが、キャピラリ感温式とした点が異なる。
( Second Embodiment)
9 and 10 show a second embodiment of the present invention. FIG. 9 is a circuit diagram showing a schematic configuration of a refrigeration cycle in a vehicle air conditioner. FIG. 10 shows a structural example of the ejector 3. FIG. As shown in FIGS . 9 and 10, the refrigerant pressure temperature type mechanical pressure control valve 50 is configured in the same manner as in the first embodiment described above, but differs in that it is a capillary temperature sensitive type.

更に、そのキャピラリ先端の感温部51bに、加熱冷却手段としてのペルチェ素子31を設けている。そして、感温部51bをこのペルチェ素子31にて加熱もしくは冷却することにより絞り開度を制御するようにしている。具体的には、キャピラリ先端の感温部51bは、ガスクーラ2出口の冷媒配管に密着させており、その感温部51bにペルチェ素子31を同時に密着させている。   Further, a Peltier element 31 as a heating / cooling means is provided in the temperature sensing part 51b at the tip of the capillary. The throttle opening is controlled by heating or cooling the temperature sensing portion 51b with the Peltier element 31. Specifically, the temperature sensing part 51b at the tip of the capillary is in close contact with the refrigerant pipe at the outlet of the gas cooler 2, and the Peltier element 31 is in close contact with the temperature sensing part 51b at the same time.

そして、ペルチェ素子31に制御装置10から電圧を印可することで、ペルチェ素子31を冷却させて感温部51bの内圧を下げることで絞り開度を開方向に制御する。また、急速冷房の時には、逆極性で電圧を印可することでペルチェ素子31を加熱させて感温部51bの内圧を上げることで絞り開度を閉方向に制御する。このようにして上述の第1第2参考例と同様の制御を行なうものである。これにより、冷媒温度センサ9は不要となる。 Then, by applying a voltage from the control device 10 to the Peltier element 31, the Peltier element 31 is cooled to lower the internal pressure of the temperature sensing portion 51b, thereby controlling the throttle opening in the opening direction. In rapid cooling, the throttle opening is controlled in the closing direction by applying a voltage with a reverse polarity to heat the Peltier element 31 and increase the internal pressure of the temperature sensing part 51b. In this way, the same control as in the first and second reference examples described above is performed. Thereby, the refrigerant temperature sensor 9 becomes unnecessary.

(第実施形態)
図11は、本発明の第実施形態におけるエジェクタ絞り制御のフローチャート図である。まずステップS21で、冷媒温度センサ9で検知するガスクーラ2出口の冷媒温度Tgcを取り込む。次のステップS22では、制御装置10の内部に記憶保持した最適高圧制御マップに基づき、取り込んだ冷媒温度Tgcから最適高圧Peを算出する。更にステップS23では、吐出圧力センサ8で検知するコンプレッサ1からの冷媒吐出圧力Phを取り込み、次のステップS24ではその吐出圧力PhをステップS23で算出した最適高圧Peとするための第1絞り開度S1を算出する。
( Third embodiment)
FIG. 11 is a flowchart of ejector aperture control according to the third embodiment of the present invention. First, in step S21, the refrigerant temperature Tgc at the outlet of the gas cooler 2 detected by the refrigerant temperature sensor 9 is taken. In the next step S22, the optimum high pressure Pe is calculated from the taken-in refrigerant temperature Tgc based on the optimum high pressure control map stored and held in the control device 10. Further, in step S23, the refrigerant discharge pressure Ph from the compressor 1 detected by the discharge pressure sensor 8 is taken in, and in the next step S24, the first throttle opening for setting the discharge pressure Ph to the optimum high pressure Pe calculated in step S23. S1 is calculated.

一方制御装置10は、内部に冷媒温度Tgcに対する所定絞り開度マップを記憶保持している。これは、冷房能力を確保するため冷媒温度Tgcに対する所定の絞り開度を決めたもので、図12はその冷媒温度Tgcに対する第2絞り開度S2の設定例を示すグラフである。ステップS25では、ステップS21で取り込んだ冷媒温度Tgcから内部に記憶保持した所定絞り開度マップに基づき第2絞り開度S2を算出する。   On the other hand, the control device 10 stores therein a predetermined throttle opening degree map for the refrigerant temperature Tgc. This is to determine a predetermined throttle opening with respect to the refrigerant temperature Tgc in order to ensure the cooling capacity, and FIG. 12 is a graph showing a setting example of the second throttle opening S2 with respect to the refrigerant temperature Tgc. In step S25, the second throttle opening S2 is calculated from the refrigerant temperature Tgc taken in step S21 based on a predetermined throttle opening map stored and held therein.

そして、ステップS26では、先の第1絞り開度S1が今の第2絞り開度S2よりも大きいか否かを判定する。その判定結果がYESで第1絞り開度S1が大きくならばステップS27aに進んで第1絞り開度S1を実行する。また、ステップS26での判定結果がNOで第2絞り開度S2の方が大きいならばステップS27bに進んで第2絞り開度S2を実行するものである。   In step S26, it is determined whether the previous first throttle opening S1 is larger than the current second throttle opening S2. If the determination result is YES and the first throttle opening S1 is large, the process proceeds to step S27a to execute the first throttle opening S1. Further, if the determination result in step S26 is NO and the second throttle opening S2 is larger, the process proceeds to step S27b to execute the second throttle opening S2.

次に、本実施形態での特徴を述べる。本実施形態の制御装置10は、吐出圧力Phを最適高圧Peとするための可変絞り機構7の第1絞り開度S1を算出すると共に、内部に記憶保持した冷媒温度Tgcに対する所定絞り開度マップに基づき冷媒温度Tgcから可変絞り機構7の第2絞り開度S2を算出し、第1・第2絞り開度S1・S2を比較して大きい方の開度を選択して実行するようにしている。   Next, features of this embodiment will be described. The control device 10 according to the present embodiment calculates a first throttle opening S1 of the variable throttle mechanism 7 for setting the discharge pressure Ph to the optimum high pressure Pe, and a predetermined throttle opening map for the refrigerant temperature Tgc stored and held therein. Based on the refrigerant temperature Tgc, the second throttle opening S2 of the variable throttle mechanism 7 is calculated, the first throttle opening S1 and the second throttle opening S1 are compared, and the larger opening is selected and executed. Yes.

上述した第1参考例では、吐出圧力Phもしくは冷媒温度Tgcから低負荷状態にあるか否かを判断して、低負荷の状態なら絞り開度を開くように制御しているが、本実施形態によれば、冷房能力を確保するための冷媒温度Tgcに対する所定絞り開度マップを制御装置10内部に記憶保持しておくと共に、通常制御での最適吐出圧力制御線での最適高圧Peとするための絞り開度S1と、前記所定絞り開度マップから導き出される絞り開度S2とを比較して大きい方の開度を選択して実行するものである。これにより、常により冷房能力が出る状態が選択されることとなる。 In the first and second reference examples described above, it is determined from the discharge pressure Ph or the refrigerant temperature Tgc whether or not it is in a low load state, and if the load is low, control is performed to open the throttle opening. According to the embodiment, a predetermined throttle opening degree map with respect to the refrigerant temperature Tgc for ensuring the cooling capacity is stored in the control device 10 and the optimum high pressure Pe in the optimum discharge pressure control line in the normal control is The larger opening is selected and executed by comparing the opening S1 for opening and the opening S2 derived from the predetermined opening map. As a result, a state in which the cooling capacity is always higher is selected.

(第実施形態)
図13は、本発明の第実施形態における本冷凍サイクル装置を適用した車両用空調装置61の概略構成を示す模式図であり、車両用空調装置61を水冷エンジン搭載の車両に搭載したものである。まず、空気流路をなす空調ケーシング62の空気上流部位には、車室内空気を吸入するための内気吸入口63と、車室外空気を吸入するための外気吸入口64とが形成されると共に、これらの吸入口6364を選択的に開閉する吸入口切換ドア65が設けられている。また、この吸入口切換ドア65は、サーボモータ66等の駆動手段によって切換開閉される。
( Fourth embodiment)
FIG. 13 is a schematic diagram showing a schematic configuration of a vehicle air conditioner 61 to which the present refrigeration cycle apparatus according to the fourth embodiment of the present invention is applied. The vehicle air conditioner 61 is mounted on a vehicle equipped with a water-cooled engine. is there. First, in the air upstream portion of the air-conditioning casing 62 that forms the air flow path, an inside air inlet 63 for sucking air in the passenger compartment and an outside air inlet 64 for sucking air outside the passenger compartment are formed. A suction port switching door 65 for selectively opening and closing the suction ports 63 and 64 is provided. The suction port switching door 65 is switched open and closed by driving means such as a servo motor 66.

この吸入口切換ドア65の下流側部位には、送風ブロワ67(送風手段)が配設されており、この送風ブロワ7により両吸入口63・64から吸入された空気が、後述する各吹出口74〜76に向けて送風されている。送風ブロワ67の空気下流側には、空気冷却手段を成し本冷凍サイクル装置の1つであるエバポレータ6が配設されており、送風ブロワ67により送風された空気は全てこのエバポレータ6を通過する。   A blower blower 67 (blower unit) is disposed at a downstream side portion of the suction port switching door 65, and air sucked from both the suction ports 63 and 64 by the blower blower 7 is supplied to each blower port described later. Air is blown toward 74-76. An evaporator 6 that is an air cooling unit and is one of the refrigeration cycle apparatuses is disposed on the air downstream side of the blower blower 67, and all of the air blown by the blower blower 67 passes through the evaporator 6. .

エバポレータ6の空気下流側には、空気加熱手段を成すヒータコア70が配設されており、このヒータコア70は、図示しない先のエンジンの冷却水を熱源として空気を加熱している。また、空調ケーシング62には、ヒータコア70をバイパスするバイパス通路72が形成されており、ヒータコア70の空気上流側には、ヒータコア70を通る風量とバイパス通路72を通る風量との風量割合を調節するエアミックスドア73が配設されている。そして、サーボモータ86等の駆動手段にてこのエアミックスドア73の開度を調節して風量割合を調節し、吹出空気温度を調節している。   A heater core 70 constituting air heating means is disposed on the air downstream side of the evaporator 6, and the heater core 70 heats air by using the cooling water of the engine (not shown) as a heat source. In addition, a bypass passage 72 that bypasses the heater core 70 is formed in the air conditioning casing 62, and the air volume ratio between the air volume passing through the heater core 70 and the air volume passing through the bypass passage 72 is adjusted on the air upstream side of the heater core 70. An air mix door 73 is provided. The opening ratio of the air mix door 73 is adjusted by a driving means such as a servo motor 86 to adjust the air volume ratio, thereby adjusting the blown air temperature.

また、空調ケーシング2の最下流側部位には、車室内乗員の上半身に空調空気を吹き出すためのフェイス吹出口74と、車室内乗員の足元に空気を吹き出すためのフット吹出口75と、フロントガラスの内面に向かって空気を吹き出すためのデフロスタ吹出口76と、複数の吹出口が形成されている。そして、上記各吹出口74〜76の空気上流側部位には、モード切換ドアとしてのフェイスドア78・フットドア79・デフロスタドア80が配設されていて、サーボモータ77等の駆動手段によって連動駆動され、それぞれの吹出口を開閉することにより、吹出モードが切り換えられる。   Further, at the most downstream part of the air conditioning casing 2, a face outlet 74 for blowing air-conditioned air to the upper body of the passenger in the vehicle interior, a foot outlet 75 for blowing air to the feet of the passenger in the passenger compartment, and the windshield A defroster outlet 76 and a plurality of outlets are formed for blowing air toward the inner surface. Further, a face door 78, a foot door 79, and a defroster door 80 as mode switching doors are disposed on the upstream side of the air outlets 74 to 76, and are driven in conjunction by driving means such as a servo motor 77. The air outlet mode is switched by opening and closing each air outlet.

制御装置10は、先の冷凍サイクルの制御に加えて、電磁クラッチ・送風ブロワ67及びサーボモータ66・77・86等の駆動手段等を制御する。この制御装置10には、所望の車室内温度を設定する温度設定手段82と、車室内の温度を検出する内気温センサ(内気温検出手段)83と、外気の温度を検出する外気温センサ(外気温検出手段)84と、車室内に侵入する日射量を検出する日射センサ85と、エバポレータ6の後流温度を検出する温度センサ69と、エンジン冷却水の温度を検出する水温センサ71と、サーボモータ86に付いていてエアミックスドア73の開度を検出するポテンションメーター87が入力接続されている。   In addition to the control of the refrigeration cycle, the control device 10 controls the electromagnetic clutch / blower blower 67, the drive means such as the servo motors 66, 77, 86, and the like. The control device 10 includes a temperature setting means 82 for setting a desired vehicle interior temperature, an internal air temperature sensor (internal air temperature detection means) 83 for detecting the temperature in the vehicle interior, and an external air temperature sensor (for detecting the temperature of the outside air). An outside air temperature detecting means) 84, a solar radiation sensor 85 for detecting the amount of solar radiation entering the vehicle interior, a temperature sensor 69 for detecting the downstream temperature of the evaporator 6, a water temperature sensor 71 for detecting the temperature of the engine cooling water, A potentiometer 87 that is attached to the servo motor 86 and detects the opening degree of the air mix door 73 is connected to the input.

制御装置10は、これらセンサ群88からの入力信号に基づいて所定の手順により、コンプレッサをON−OFFさせる電磁クラッチや、送風ブロワ67を駆動する図示しないモータコントローラや、吸入口切換ドア65を駆動するサーボモータ66や、エアミックスドア73を駆動するサーボモータ86や、モード切換ドア78〜80を駆動するサーボモータ77に制御信号を出力する。   The control device 10 drives an electromagnetic clutch that turns the compressor on and off, a motor controller (not shown) that drives the blower blower 67, and an inlet switching door 65 according to a predetermined procedure based on the input signals from the sensor group 88. A control signal is output to the servo motor 66 that drives the air mix door 73 and the servo motor 77 that drives the mode switching doors 78 to 80.

次に、本実施形態での特徴を述べる。まず、本実施形態では、エバポレータ6へ空調用空気を送風する送風ブロワ67を備えると共に、制御装置10は、送風ブロワ67の駆動電圧が所定値より高い場合は所定絞り開度マップを絞り開度の大きくなる方向(図12で実線から破線方向)へ可変し、駆動電圧が所定値より低い場合は所定絞り開度マップを絞り開度の小さくなる方向(図12で実線から一点鎖線方向)へ可変するものである。   Next, features of this embodiment will be described. First, in the present embodiment, a blower 67 that blows air for air conditioning to the evaporator 6 is provided, and the control device 10 displays a predetermined throttle opening map when the drive voltage of the blower 67 is higher than a predetermined value. When the drive voltage is lower than a predetermined value, the predetermined throttle opening map is changed in the direction of decreasing the throttle opening (from the solid line to the one-dot chain line direction in FIG. 12). It is variable.

これは、送風ブロワ67の駆動電圧が所定値よりも高いか低いかによってエバポレータ6の負荷が高いか低いかが判断できるため、負荷の高低に応じて所定絞り開度マップを絞り開度の大きくなる方向、もしくは絞り開度の小さくなる方向へ補正するものである。これにより、更に負荷の高低に応じた冷房能力が設定されることとなる。
また、本実施形態では、車室内空気の温度を検出する内気温センサ83と車室外空気の温度を検出する外気温センサ84とを備えた車両用空調装置61に本冷凍サイクル装置を適用すると共に、制御装置10は、内気温センサ83もしくは外気温センサ84で検出するエバポレータ6への送風空気温度が所定値より高い場合は所定絞り開度マップを絞り開度の大きくなる方向(図12で実線から破線方向)へ可変し、送風空気温度が所定値より低い場合は所定絞り開度マップを絞り開度の小さくなる方向(図12で実線から一点鎖線方向)へ可変するものである。
Since it can be determined whether the load on the evaporator 6 is high or low depending on whether the drive voltage of the blower blower 67 is higher or lower than a predetermined value, the predetermined opening degree map is increased in the predetermined opening degree map according to the level of the load. The direction is corrected in the direction in which the throttle opening is reduced. Thereby, the cooling capacity according to the level of load is further set.
In the present embodiment, the refrigeration cycle apparatus is applied to a vehicle air conditioner 61 that includes an inside air temperature sensor 83 that detects the temperature of the passenger compartment air and an outside air temperature sensor 84 that detects the temperature of the air outside the passenger compartment. When the temperature of the blown air to the evaporator 6 detected by the inside air temperature sensor 83 or the outside air temperature sensor 84 is higher than a predetermined value, the control device 10 displays the predetermined throttle opening map in the direction in which the throttle opening increases (solid line in FIG. 12). When the temperature of the blown air is lower than a predetermined value, the predetermined throttle opening map is changed in the direction of decreasing the throttle opening (from the solid line to the one-dot chain line in FIG. 12).

これは、エバポレータ6への送風空気温度が所定値より高いか低いかによってもエバポレータ6の負荷が高いか低いかが判断できるため、負荷の高低に応じて所定絞り開度マップを絞り開度の大きくなる方向、もしくは絞り開度の小さくなる方向へ補正するものである。これによっても、更に負荷の高低に応じた冷房能力が設定されることとなる。   This is because whether the load on the evaporator 6 is high or low can be determined also depending on whether the temperature of the blown air to the evaporator 6 is higher or lower than a predetermined value. Or a direction in which the throttle opening is reduced. This also sets the cooling capacity according to the load level.

(その他の実施形態)
本発明は、二酸化炭素等を冷媒とした超臨界サイクルのみならず、フロン、その他の冷媒を用いた冷凍サイクル(エジェクタサイクル)にも適用できる。また、使用用途も、自動車等の車両用空調装置の冷凍サイクル(エジェクタサイクル)のみならず、電気式温水器(ヒートポンプ式給湯器)等、その他のあらゆる分野に用いられる冷凍サイクル(エジェクタサイクル)に適用できる。尚、上述の参考例での第1所定圧力P1と第2所定圧力P2、もしくは第1所定温度T1と第2所定温度T2は、同じ圧力同じ温度としても良い。
(Other embodiments)
The present invention can be applied not only to a supercritical cycle using carbon dioxide or the like as a refrigerant, but also to a refrigeration cycle (ejector cycle) using chlorofluorocarbon or other refrigerants. In addition, it is used for refrigeration cycles (ejector cycles) used not only in refrigeration cycles (ejector cycles) of vehicle air conditioners such as automobiles but also in electric water heaters (heat pump water heaters). Applicable. The first predetermined pressure P1 and the second predetermined pressure P2 or the first predetermined temperature T1 and the second predetermined temperature T2 in the reference example described above may be the same pressure and the same temperature.

また、上述の第1第2参考例では、ニードル弁18を駆動するアクチュエータとして電磁式の制御弁23を、パイロット弁23a電磁コイル23bおよびスプリング等のパイロット弁付勢手段等によって構成しているが、ニードル弁18を駆動するアクチュエータとしてステッピングモータ等によって駆動されるモータ駆動式の制御弁、あるいは圧電式の制御弁、あるいは機械式の構造を持つ弁を用いても良い。 In the first and second reference examples described above, the electromagnetic control valve 23 as an actuator for driving the needle valve 18 is constituted by a pilot valve urging means such as a pilot valve 23a , an electromagnetic coil 23b and a spring. However, a motor-driven control valve driven by a stepping motor or the like, a piezoelectric control valve, or a valve having a mechanical structure may be used as an actuator for driving the needle valve 18.

本発明の第1参考例に関わる冷凍サイクルの概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the refrigerating cycle in connection with the 1st reference example of this invention. 本発明の第1参考例に関わるエジェクタ3の構造例を示す断面図である。It is sectional drawing which shows the structural example of the ejector 3 in connection with the 1st reference example of this invention. 本発明の第1参考例におけるエジェクタ絞り制御のフローチャート図である。It is a flowchart figure of ejector aperture control in the 1st reference example of this invention. ガスクーラ出口冷媒温度Tgcに対する最適吐出圧力制御線(エジェクタサイクルの成績係数COPが最大となる制御ライン)を示すグラフである。It is a graph which shows the optimal discharge pressure control line (control line in which the coefficient of performance COP of an ejector cycle becomes the maximum) with respect to gas cooler exit refrigerant | coolant temperature Tgc. エジェクタ3の絞り開度と、成績係数(COP)および冷房能力との関係を示すグラフである。It is a graph which shows the relationship between the throttle opening degree of the ejector 3, a coefficient of performance (COP), and cooling capacity. 本発明の第2参考例におけるエジェクタ絞り制御のフローチャート図である。It is a flowchart figure of ejector aperture control in the 2nd reference example of this invention. 本発明の第実施形態に関わる冷凍サイクルの概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the refrigerating cycle in connection with 1st Embodiment of this invention. 本発明の第実施形態に関わるエジェクタ3の構造例を示す断面図である。It is sectional drawing which shows the structural example of the ejector 3 in connection with 1st Embodiment of this invention. 本発明の第実施形態に関わる冷凍サイクルの概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the refrigerating cycle in connection with 2nd Embodiment of this invention. 本発明の第実施形態に関わるエジェクタ3の構造例を示す断面図である。It is sectional drawing which shows the structural example of the ejector 3 in connection with 2nd Embodiment of this invention. 本発明の第実施形態におけるエジェクタ絞り制御のフローチャート図である。It is a flowchart figure of ejector aperture control in 3rd Embodiment of this invention. ガスクーラ出口冷媒温度Tgcに対する第2絞り開度S2の設定例を示すグラフである。It is a graph which shows the example of a setting of 2nd aperture opening S2 with respect to gas cooler exit refrigerant | coolant temperature Tgc. 本発明の第実施形態における本冷凍サイクル装置を適用した車両用空調装置61の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the vehicle air conditioner 61 to which this refrigeration cycle apparatus in 4th Embodiment of this invention is applied. 従来の冷凍サイクルの概略構成を示す回路図である。It is a circuit diagram which shows schematic structure of the conventional refrigerating cycle. 従来のエジェクタ103の構造例を示す断面図である。It is sectional drawing which shows the structural example of the conventional ejector 103. FIG. 膨張弁サイクルにおける絞り径と吹き出し温度との関係を示すグラフである。It is a graph which shows the relationship between the aperture diameter and blowing temperature in an expansion valve cycle. エジェクタサイクルにおける絞り径と吹き出し温度との関係を示すグラフである。It is a graph which shows the relationship between the aperture diameter and blowing temperature in an ejector cycle.

符号の説明Explanation of symbols

1…コンプレッサ(冷媒圧縮機)
2…ガスクーラ(冷媒放熱器)
3…エジェクタ
4…気液分離器
6…エバポレータ(冷媒蒸発器)
7…可変絞り機構(可変絞り手段)
8…吐出圧力センサ(吐出圧力検知手段)
9…冷媒温度センサ(冷媒温度検知手段)
10…制御装置(制御手段)
11…高圧入口部
12…低圧入口部
13…ノズル
31…ペルチェ素子(加熱冷却手段)
51…感温部
51a…形状記憶部材(形状記憶ばね)
67…送風ブロワ(送風手段)
83…内気温センサ(内気温検出手段)
84…外気温センサ(外気温検出手段)
Ph…吐出圧力
Pe…最適高圧
Tgc…冷媒温度
P1…第1所定圧力
P2…第2所定圧力
T1…第1所定温度、所定温度
T2…第2所定温度
S1…第1絞り開度
S2…第2絞り開度
1 ... Compressor (refrigerant compressor)
2 ... Gas cooler (refrigerant radiator)
3 ... Ejector 4 ... Gas-liquid separator 6 ... Evaporator (refrigerant evaporator)
7. Variable aperture mechanism (variable aperture means)
8. Discharge pressure sensor (discharge pressure detection means)
9. Refrigerant temperature sensor (refrigerant temperature detection means)
10 ... Control device (control means)
DESCRIPTION OF SYMBOLS 11 ... High pressure inlet part 12 ... Low pressure inlet part 13 ... Nozzle 31 ... Peltier device (heating-cooling means)
51 ... temperature sensing part 51a ... shape memory member (shape memory spring)
67 ... Blower (blower)
83. Inside air temperature sensor (inside air temperature detecting means)
84 ... Outside air temperature sensor (outside air temperature detecting means)
Ph: Discharge pressure Pe: Optimal high pressure Tgc: Refrigerant temperature P1: First predetermined pressure P2: Second predetermined pressure T1: First predetermined temperature, predetermined temperature T2: Second predetermined temperature S1: First throttle opening S2: Second Aperture opening

Claims (5)

冷媒を気液分離する気液分離器(4)と、
前記気液分離器(4)より吸入した冷媒を圧縮して吐出する冷媒圧縮機(1)と、
前記冷媒圧縮機(1)より吐出された高温高圧の冷媒を放熱させる冷媒放熱器(2)と、
前記気液分離器(4)より流入した低温低圧の冷媒を蒸発させる冷媒蒸発器(6)と、
前記冷媒放熱器(2)よりも冷媒の流れ方向下流側に接続された高圧入口部(11)、前記冷媒蒸発器(6)よりも冷媒の流れ方向下流側に接続された低圧入口部(12)、および前記高圧入口部(11)より流入した冷媒を噴出するノズル(13)を有し、前記ノズル(13)から噴出する冷媒回りの圧力低下を利用して、前記ノズル(13)から噴出する冷媒と前記低圧入口部(12)から吸引した冷媒とを混合させながら昇圧させて前記気液分離器(4)へ吐出するエジェクタ(3)と、
前記冷媒圧縮機(1)の吐出冷媒回路に設けられ、絞り開度を制御することにより高圧冷媒の圧力を制御する可変絞り手段(7)と、
前記冷媒圧縮機(1)が吐出する吐出圧力(Ph)を検知する吐出圧力検知手段(8)と、
前記冷媒放熱器(2)から流出する冷媒温度(Tgc)を検知する冷媒温度検知手段(9)と、
これらの冷凍サイクル機器の作動を制御する制御手段(10)とを備え、
前記制御手段(10)は通常制御として、前記冷媒温度検知手段(9)にて前記冷媒温度(Tgc)を検知し、内部に記憶保持した最適高圧制御マップに基づき前記吐出圧力(Ph)が最適高圧(Pe)となるよう前記可変絞り手段(7)を制御する冷凍サイクル装置において、
前記制御手段(10)は、前記冷媒温度検知手段(9)で検知した前記冷媒温度(Tgc)が第1所定温度(T1)以下の場合、前記可変絞り手段(7)を開く側に制御し、前記冷媒温度(Tgc)が第2所定温度(T2)以上となったら前記通常制御に復帰させるうえで、前記可変絞り手段(7)を冷媒封入温度式の機械式可変絞り機構としたうえ、感温部(51)に絞り開度を閉じる方向に付勢する形状記憶部材(51a)を設置し、前記冷媒放熱器(2)から流出して前記感温部(51)周りを流通する冷媒温度(Tgc)が所定温度(T1)以下の場合、前記形状記憶部材(51a)による付勢力を低下させることで前記絞り開度が開く方向に作動することを特徴とする冷凍サイクル装置。
A gas-liquid separator (4) for gas-liquid separation of the refrigerant;
A refrigerant compressor (1) for compressing and discharging the refrigerant sucked from the gas-liquid separator (4);
A refrigerant radiator (2) for radiating the high-temperature and high-pressure refrigerant discharged from the refrigerant compressor (1);
A refrigerant evaporator (6) for evaporating the low-temperature and low-pressure refrigerant flowing from the gas-liquid separator (4);
A high-pressure inlet (11) connected downstream of the refrigerant radiator (2) in the refrigerant flow direction, and a low-pressure inlet (12) connected downstream of the refrigerant evaporator (6) in the refrigerant flow direction. ), And a nozzle (13) that ejects the refrigerant flowing in from the high-pressure inlet (11), and is ejected from the nozzle (13) by utilizing the pressure drop around the refrigerant ejected from the nozzle (13). An ejector (3) for increasing the pressure while mixing the refrigerant to be sucked and the refrigerant sucked from the low-pressure inlet (12) and discharging the refrigerant to the gas-liquid separator (4);
Variable throttle means (7) provided in the discharge refrigerant circuit of the refrigerant compressor (1) for controlling the pressure of the high-pressure refrigerant by controlling the throttle opening;
A discharge pressure detecting means (8) for detecting a discharge pressure (Ph) discharged by the refrigerant compressor (1);
Refrigerant temperature detecting means (9) for detecting the refrigerant temperature (Tgc) flowing out from the refrigerant radiator (2);
Control means (10) for controlling the operation of these refrigeration cycle equipment,
As the normal control, the control means (10) detects the refrigerant temperature (Tgc) by the refrigerant temperature detection means (9), and the discharge pressure (Ph) is optimum based on the optimum high-pressure control map stored in the inside. In the refrigeration cycle apparatus for controlling the variable throttle means (7) to be high pressure (Pe),
The control means (10) controls the variable throttle means (7) to open when the refrigerant temperature (Tgc) detected by the refrigerant temperature detection means (9) is equal to or lower than a first predetermined temperature (T1). When the refrigerant temperature (Tgc) is equal to or higher than the second predetermined temperature (T2), when returning to the normal control, the variable throttle means (7) is a mechanical variable throttle mechanism of a refrigerant sealed temperature type, The shape memory member (51a) that urges the temperature sensing portion (51) in the direction to close the throttle opening is installed, and the refrigerant flows out of the refrigerant radiator (2) and circulates around the temperature sensing portion (51). when the temperature (Tgc) of the predetermined temperature (T1) or less, the shape-memory member (51a) refrigeration cycle apparatus characterized that you operate in the direction of opening said throttle opening degree by decreasing the biasing force by.
前記冷媒封入温度式の機械式可変絞り機構をキャピラリ感温式としたうえ、感温部(51b)に加熱冷却手段(31)を設け、前記感温部(51b)を前記加熱冷却手段(31)にて加熱もしくは冷却することにより前記絞り開度を制御する請求項1に記載の冷凍サイクル装置。 The refrigerant enclosing temperature type mechanical variable throttle mechanism is a capillary temperature sensing type, a heating / cooling means (31) is provided in the temperature sensing part (51b), and the temperature sensing part (51b) is provided in the heating / cooling means (31). The refrigeration cycle apparatus according to claim 1, wherein the throttle opening is controlled by heating or cooling in step (1) . 冷媒を気液分離する気液分離器(4)と、
前記気液分離器(4)より吸入した冷媒を圧縮して吐出する冷媒圧縮機(1)と、
前記冷媒圧縮機(1)より吐出された高温高圧の冷媒を放熱させる冷媒放熱器(2)と、
前記気液分離器(4)より流入した低温低圧の冷媒を蒸発させる冷媒蒸発器(6)と、
前記冷媒放熱器(2)よりも冷媒の流れ方向下流側に接続された高圧入口部(11)、前記冷媒蒸発器(6)よりも冷媒の流れ方向下流側に接続された低圧入口部(12)、および前記高圧入口部(11)より流入した冷媒を噴出するノズル(13)を有し、前記ノズル(13)から噴出する冷媒回りの圧力低下を利用して、前記ノズル(13)から噴出する冷媒と前記低圧入口部(12)から吸引した冷媒とを混合させながら昇圧させて前記気液分離器(4)へ吐出するエジェクタ(3)と、
前記冷媒圧縮機(1)の吐出冷媒回路に設けられ、絞り開度を制御することにより高圧冷媒の圧力を制御する可変絞り手段(7)と、
前記冷媒圧縮機(1)が吐出する吐出圧力(Ph)を検知する吐出圧力検知手段(8)と、
前記冷媒放熱器(2)から流出する冷媒温度(Tgc)を検知する冷媒温度検知手段(9)と、
これらの冷凍サイクル機器の作動を制御する制御手段(10)とを備え、
前記制御手段(10)は通常制御として、前記冷媒温度検知手段(9)にて前記冷媒温度(Tgc)を検知し、内部に記憶保持した最適高圧制御マップに基づき前記吐出圧力(Ph)が最適高圧(Pe)となるよう前記可変絞り手段(7)を制御する冷凍サイクル装置において、
前記制御手段(10)は、前記吐出圧力(Ph)を前記最適高圧(Pe)とするための前記可変絞り手段(7)の第1絞り開度(S1)を算出すると共に、内部に記憶保持した前記冷媒温度(Tgc)に対する所定絞り開度マップに基づき前記冷媒温度(Tgc)から前記可変絞り手段(7)の第2絞り開度(S2)を算出し、前記第1、第2絞り開度(S1、S2)を比較して大きい方の開度を選択して実行することを特徴とする冷凍サイクル装置。
A gas-liquid separator (4) for gas-liquid separation of the refrigerant;
A refrigerant compressor (1) for compressing and discharging the refrigerant sucked from the gas-liquid separator (4);
A refrigerant radiator (2) for radiating the high-temperature and high-pressure refrigerant discharged from the refrigerant compressor (1);
A refrigerant evaporator (6) for evaporating the low-temperature and low-pressure refrigerant flowing from the gas-liquid separator (4);
A high-pressure inlet (11) connected downstream of the refrigerant radiator (2) in the refrigerant flow direction, and a low-pressure inlet (12) connected downstream of the refrigerant evaporator (6) in the refrigerant flow direction. ), And a nozzle (13) that ejects the refrigerant flowing in from the high-pressure inlet (11), and is ejected from the nozzle (13) by utilizing the pressure drop around the refrigerant ejected from the nozzle (13). An ejector (3) for increasing the pressure while mixing the refrigerant to be sucked and the refrigerant sucked from the low-pressure inlet (12) and discharging the refrigerant to the gas-liquid separator (4);
Variable throttle means (7) provided in the discharge refrigerant circuit of the refrigerant compressor (1) for controlling the pressure of the high-pressure refrigerant by controlling the throttle opening;
A discharge pressure detecting means (8) for detecting a discharge pressure (Ph) discharged by the refrigerant compressor (1);
Refrigerant temperature detecting means (9) for detecting the refrigerant temperature (Tgc) flowing out from the refrigerant radiator (2);
Control means (10) for controlling the operation of these refrigeration cycle equipment,
As the normal control, the control means (10) detects the refrigerant temperature (Tgc) by the refrigerant temperature detection means (9), and the discharge pressure (Ph) is optimum based on the optimum high-pressure control map stored in the inside. In the refrigeration cycle apparatus for controlling the variable throttle means (7) to be high pressure (Pe),
The control means (10) calculates the first throttle opening (S1) of the variable throttle means (7) for setting the discharge pressure (Ph) to the optimum high pressure (Pe), and stores it in the memory. The second throttle opening (S2) of the variable throttle means (7) is calculated from the refrigerant temperature (Tgc) based on the predetermined throttle opening map with respect to the refrigerant temperature (Tgc), and the first and second throttle openings are calculated. A refrigeration cycle apparatus characterized in that the degree of opening (S1, S2) is compared and the larger opening is selected and executed .
前記冷媒蒸発器(6)へ空調用空気を送風する送風手段(67)を備えると共に、
前記制御手段(10)は、前記送風手段(67)の駆動電圧が所定値より高い場合は前記所定絞り開度マップを絞り開度の大きくなる方向へ可変し、前記駆動電圧が所定値より低い場合は前記所定絞り開度マップを絞り開度の小さくなる方向へ可変することを特徴とする請求項3に記載の冷凍サイクル装置。
While provided with a blowing means (67) for blowing air for air conditioning to the refrigerant evaporator (6),
When the drive voltage of the air blowing means (67) is higher than a predetermined value, the control means (10) varies the predetermined throttle opening map in a direction in which the throttle opening increases, and the drive voltage is lower than the predetermined value. 4. The refrigeration cycle apparatus according to claim 3, wherein the predetermined throttle opening map is varied in a direction in which the throttle opening is reduced . 5.
車室内空気の温度を検出する内気温検出手段(83)と車室外空気の温度を検出する外気温検出手段(84)とを備えた車両用空調装置(61)に前記冷凍サイクル装置を適用すると共に、
前記制御手段(10)は、前記内気温検出手段(83)もしくは前記外気温検出手段(84)で検出する前記冷媒蒸発器(6)への送風空気温度が所定値より高い場合は前記所定絞り開度マップを絞り開度の大きくなる方向へ可変し、前記送風空気温度が所定値より低い場合は前記所定絞り開度マップを絞り開度の小さくなる方向へ可変することを特徴とする請求項3に記載の冷凍サイクル装置。
The refrigeration cycle apparatus is applied to a vehicle air conditioner (61) having an inside air temperature detecting means (83) for detecting the temperature of the passenger compartment air and an outside air temperature detecting means (84) for detecting the temperature of the air outside the passenger compartment. With
The control means (10) is configured to reduce the predetermined throttle when the temperature of air blown to the refrigerant evaporator (6) detected by the internal air temperature detection means (83) or the external air temperature detection means (84) is higher than a predetermined value. claim varied in the direction of increase of the throttle opening degree of the opening degree map, wherein if the blowing air temperature is lower than a predetermined value, characterized in that the variable to decrease direction of throttle opening degree of the predetermined throttle opening degree map 3. The refrigeration cycle apparatus according to 3 .
JP2003279022A 2003-03-20 2003-07-24 Refrigeration cycle equipment Expired - Fee Related JP4232567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279022A JP4232567B2 (en) 2003-03-20 2003-07-24 Refrigeration cycle equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003078877 2003-03-20
JP2003279022A JP4232567B2 (en) 2003-03-20 2003-07-24 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2004301491A JP2004301491A (en) 2004-10-28
JP4232567B2 true JP4232567B2 (en) 2009-03-04

Family

ID=33421985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279022A Expired - Fee Related JP4232567B2 (en) 2003-03-20 2003-07-24 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4232567B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745176B2 (en) * 2006-09-04 2011-08-10 富士電機リテイルシステムズ株式会社 Refrigerant cycle equipment
JP4530056B2 (en) * 2008-02-11 2010-08-25 株式会社デンソー Heat pump type heating device
JP5625610B2 (en) * 2010-08-18 2014-11-19 株式会社デンソー TECHNICAL FIELD The present invention relates to an ejector refrigeration cycle including an ejector.
WO2016035330A1 (en) * 2014-09-04 2016-03-10 株式会社デンソー Fluid injection ejector and ejector refrigeration cycle
JP6287890B2 (en) * 2014-09-04 2018-03-07 株式会社デンソー Liquid jet ejector and ejector refrigeration cycle
CN117249558B (en) * 2023-11-20 2024-01-26 珠海格力电器股份有限公司 Air conditioner control method and device, air conditioner and storage medium

Also Published As

Publication number Publication date
JP2004301491A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4075530B2 (en) Refrigeration cycle
US20190111756A1 (en) Refrigeration cycle device
US20220032732A1 (en) Battery heating device for vehicle
JP6079397B2 (en) Flow control valve for refrigeration cycle
US20070125106A1 (en) Supercritical refrigeration cycle
WO2013128899A1 (en) Air conditioning device for vehicle
KR20130116325A (en) Heat pump cycle
JP4285060B2 (en) Vapor compression refrigerator
KR100364686B1 (en) Vehicular air conditioner
WO2016075897A1 (en) Refrigeration cycle device
JP4042220B2 (en) Refrigeration cycle equipment
US6880362B2 (en) Refrigerating cycle apparatus
JP2000283577A (en) Refrigeration cycle for refrigerating plant
JP4232567B2 (en) Refrigeration cycle equipment
JP2008082637A (en) Supercritical refrigerating cycle
JP2005233535A (en) Air conditioner
KR100845847B1 (en) Control Metheod for Airconditioner
JP2019105422A (en) Joint block for vehicle
JP2006313050A (en) Supercritical refrigeration cycle and vehicular air conditioner
JP6167891B2 (en) Heat pump cycle device.
JP2006341784A (en) Air conditioner for vehicle
JP6049339B2 (en) Air conditioner for vehicles
JP2006145170A (en) Refrigerating cycle
JP5209412B2 (en) Vapor compression refrigeration cycle
JP2001322421A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4232567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees