JP5209412B2 - Vapor compression refrigeration cycle - Google Patents

Vapor compression refrigeration cycle Download PDF

Info

Publication number
JP5209412B2
JP5209412B2 JP2008213698A JP2008213698A JP5209412B2 JP 5209412 B2 JP5209412 B2 JP 5209412B2 JP 2008213698 A JP2008213698 A JP 2008213698A JP 2008213698 A JP2008213698 A JP 2008213698A JP 5209412 B2 JP5209412 B2 JP 5209412B2
Authority
JP
Japan
Prior art keywords
refrigerant
differential pressure
valve
refrigeration cycle
expansion mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008213698A
Other languages
Japanese (ja)
Other versions
JP2010048474A (en
Inventor
謙一 鈴木
雄一 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2008213698A priority Critical patent/JP5209412B2/en
Publication of JP2010048474A publication Critical patent/JP2010048474A/en
Application granted granted Critical
Publication of JP5209412B2 publication Critical patent/JP5209412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蒸気圧縮式冷凍サイクルに関し、とくに、自然系冷媒である二酸化炭素を用いた冷凍サイクルを有する車両用空調装置に好適な蒸気圧縮式冷凍サイクルに関する。   The present invention relates to a vapor compression refrigeration cycle, and particularly to a vapor compression refrigeration cycle suitable for a vehicle air conditioner having a refrigeration cycle using carbon dioxide, which is a natural refrigerant.

車両用空調装置における蒸気圧縮式冷凍サイクルについて、その冷媒として自然系冷媒である二酸化炭素を用いている場合においては、外部からの制御信号によって膨張装置の弁開度を制御することで、冷媒の高圧側ラインの圧力を調節するものが知られている(例えば、特許文献1)。   In the case of a vapor compression refrigeration cycle in a vehicle air conditioner, when carbon dioxide, which is a natural refrigerant, is used as the refrigerant, the valve opening of the expansion device is controlled by an external control signal. One that adjusts the pressure of the high-pressure side line is known (for example, Patent Document 1).

このような冷凍サイクルにおいては、冷凍サイクルの高圧側冷媒温度などを参照することにより冷凍サイクルの成績係数(COP:Coefficient of Performance)が最適となる高圧側圧力を演算し、高圧側圧力が最適となるように膨張装置の弁開度などを制御するようにしている。   In such a refrigeration cycle, the high pressure side pressure at which the coefficient of performance (COP) of the refrigeration cycle is optimal is calculated by referring to the high pressure side refrigerant temperature of the refrigeration cycle, and the high pressure side pressure is optimal. Thus, the valve opening degree of the expansion device is controlled.

また、ガスクーラ出口冷媒の圧力、温度に応じてオリフィスの通路断面積を可変できるようにして冷凍サイクルを効率よく運転するようにしたものも提案されている。これは、ガスクーラ出口側における冷媒の圧力および温度は、ガスクーラ出口側における冷媒の温度と成績係数が最大となる圧力とから求めた最適制御線上に沿って制御されるようになり、二酸化炭素使用した冷凍サイクルの効率よい運転を可能にしている。
特開平7−294033号公報
In addition, there has been proposed a system in which the refrigeration cycle is operated efficiently by changing the passage cross-sectional area of the orifice in accordance with the pressure and temperature of the gas cooler outlet refrigerant. This is because the pressure and temperature of the refrigerant on the gas cooler outlet side are controlled along the optimal control line obtained from the refrigerant temperature on the gas cooler outlet side and the pressure that maximizes the coefficient of performance, and carbon dioxide was used. It enables efficient operation of the refrigeration cycle.
Japanese Patent Laid-Open No. 7-294033

前述のようにガスクーラ出口冷媒の温度を参照することにより演算される最適な高圧側圧力となるように、電気制御式膨張機構を制御する方法や、圧力、温度に応じてオリフィスの通路断面積が可変する機械式の膨張機構などが提案されている。前者は、ガスクーラ出口冷媒温度および圧力を検知し、その検知量に応じて電気式の膨張弁を制御するものであるため、装置が複雑で大型化、制御方法が複雑になり、コストも上昇するとされている。後者は、ガスクーラ出口冷媒温度、圧力に応じてそのオリフィスの通路断面積を可変させるものであり、ガスクーラ出口冷媒温度を感知するため、冷凍サイクルの配管接続が複雑化し、締結部の増加も懸念され、コストも上昇すると考えられる。一般的に二酸化炭素を用いた蒸気圧縮式冷凍サイクルは、高圧側冷媒と低圧側冷媒を熱交換する内部熱交換器を備えている。そのため、ガスクーラから流出した冷媒を前記内部熱交換器に流通させた後、膨張機構へと流入させる構成となっている。その結果、ガスクーラ出口冷媒を検知した後、再度内部熱交換器を流通させてから膨張機構へと流入する構成となることから、前述の機械式の膨張機構では、適用する上で長所に比べて欠点が大きいと考えられる。   As described above, the method of controlling the electrically controlled expansion mechanism so as to obtain the optimum high-pressure side pressure calculated by referring to the temperature of the refrigerant at the gas cooler outlet, and the passage cross-sectional area of the orifice depends on the pressure and temperature. A variable mechanical expansion mechanism has been proposed. The former detects the refrigerant temperature and pressure at the gas cooler outlet, and controls the electric expansion valve according to the detected amount, so that the device becomes complicated and large, the control method becomes complicated, and the cost increases. Has been. The latter makes the passage cross-sectional area of the orifice variable according to the gas cooler outlet refrigerant temperature and pressure, and because the gas cooler outlet refrigerant temperature is sensed, the piping connection of the refrigeration cycle becomes complicated, and there is a concern that the number of fastening parts will increase. Costs are also expected to rise. In general, a vapor compression refrigeration cycle using carbon dioxide includes an internal heat exchanger for exchanging heat between a high-pressure side refrigerant and a low-pressure side refrigerant. For this reason, the refrigerant that has flowed out of the gas cooler is circulated through the internal heat exchanger and then flows into the expansion mechanism. As a result, after detecting the refrigerant at the outlet of the gas cooler, the internal heat exchanger is circulated again and then flows into the expansion mechanism. Therefore, in the mechanical expansion mechanism described above, compared to the advantages in terms of application It is thought that there are major drawbacks.

図1に、ガスクーラ出口冷媒温度に関して、冷媒圧力と冷凍サイクルの成績係数(COP)との関係を示す。図1より、ガスクーラ出口冷媒温度が臨界温度(約31℃)以下では、高圧側冷媒圧力の値が低いほど成績係数が向上する。また、臨界温度以上では、成績係数が最大となるある高圧側冷媒圧力(図1中の点線上の箇所)が存在し、ガスクーラ出口冷媒温度の上昇に伴って、成績係数が極大となる高圧側圧力がより上昇することがわかる。また、ガスクーラ出口冷媒温度が、ある所定温度(約40℃)を超えると、高圧側圧力の変化による成績係数の優劣が小さくなることが確認できる。これらのことから、ガスクーラ出口冷媒温度が30℃〜40℃程度の範囲で、高圧側冷媒圧力(圧力制御範囲として約8〜10MPa)を積極的に制御することが重要であると考えられる。   FIG. 1 shows the relationship between the refrigerant pressure and the coefficient of performance (COP) of the refrigeration cycle with respect to the gas cooler outlet refrigerant temperature. From FIG. 1, when the gas cooler outlet refrigerant temperature is equal to or lower than the critical temperature (about 31 ° C.), the coefficient of performance improves as the value of the high-pressure side refrigerant pressure decreases. In addition, there is a certain high-pressure refrigerant pressure (location on the dotted line in FIG. 1) at which the coefficient of performance is maximum above the critical temperature, and the coefficient of performance is maximized as the gas cooler outlet refrigerant temperature rises. It can be seen that the pressure rises more. In addition, when the gas cooler outlet refrigerant temperature exceeds a certain predetermined temperature (about 40 ° C.), it can be confirmed that the superiority or inferiority of the coefficient of performance due to the change in the high-pressure side pressure becomes small. From these things, it is thought that it is important to positively control the high-pressure side refrigerant pressure (the pressure control range is about 8 to 10 MPa) when the gas cooler outlet refrigerant temperature is in the range of about 30 ° C to 40 ° C.

しかしながら、上述の温度範囲では、成績係数が極大になる高圧側冷媒圧力に制御することができれば成績係数は向上するものの、最適な高圧側冷媒圧力より低い圧力で制御した場合には、成績係数の低下が著しいことがわかる。このことから、上記ガスクーラ出口冷媒温度により高圧側冷媒圧力を制御する方法においては、その効果が期待できるのはある特定の温度帯(30℃〜40℃程度の範囲)で、かつ、そのときの高圧側制御圧力は最適圧力以上(例えば、図1に示すAの領域)で制御する必要があると考えられる。   However, in the above temperature range, although the coefficient of performance improves if it can be controlled to the high-pressure side refrigerant pressure at which the coefficient of performance is maximized, when the control is performed at a pressure lower than the optimum high-pressure side refrigerant pressure, the coefficient of performance of It can be seen that the decrease is significant. Therefore, in the method of controlling the high-pressure side refrigerant pressure by the gas cooler outlet refrigerant temperature, the effect can be expected in a specific temperature range (a range of about 30 ° C. to 40 ° C.) and at that time It is considered that the high-pressure side control pressure needs to be controlled above the optimum pressure (for example, the region A shown in FIG. 1).

また、前述のような膨張機構では、全体的に高圧側圧力を最適高圧に制御することを目的とした膨張機構および制御方法であるため、その装置(冷凍サイクル)の複雑さ、制御の困難さ、コスト高、等のそれぞれの課題が大きい。そのため、ガスクーラ出口冷媒温度を検知して、高圧側冷媒圧力を制御することによる成績係数の向上効果と、冷凍サイクルの配管構成の簡便さ及び制御の簡便さ等とのトレードオフが存在すると考えられる。そのため、冷凍サイクルの配管構成を簡便とし、成績係数向上を狙える膨張機構の開発が望まれている。   Further, since the expansion mechanism as described above is an expansion mechanism and a control method for the purpose of controlling the high-pressure side pressure to the optimum high pressure as a whole, the complexity of the apparatus (refrigeration cycle) and the difficulty of control are limited. There are major issues such as high costs. Therefore, it is considered that there is a trade-off between the effect of improving the coefficient of performance by detecting the refrigerant temperature at the gas cooler outlet and controlling the refrigerant pressure on the high pressure side, the simplicity of the piping configuration of the refrigeration cycle, the simplicity of control, etc. . Therefore, it is desired to develop an expansion mechanism that simplifies the piping configuration of the refrigeration cycle and aims to improve the coefficient of performance.

このような要望に対し、未だ出願未公開の段階にあるが、先に本出願人により、冷媒圧力に応じて膨張機構通過前後の差圧を制御することのできる膨張機構等が提案されており、また、膨張機構通過後の冷媒温度により、膨張機構通過前後の差圧制御の特性を変更することができる膨張機構等についても提案されている(特願2007−115368号)。具体的には冷媒圧力に応じて膨張機構通過前後の差圧を制御する膨張機構において、蒸気圧縮式冷凍サイクルの成績係数向上を狙えるような最小の冷媒通路径、差圧制御特性を設定することで、冷凍サイクルとしては、簡便な上、成績係数の向上も達成することができる膨張機構が得られた。   In response to such a request, the application is still unpublished, but the applicant has previously proposed an expansion mechanism that can control the differential pressure before and after passing through the expansion mechanism according to the refrigerant pressure. In addition, an expansion mechanism that can change the characteristics of differential pressure control before and after passing through the expansion mechanism is also proposed according to the refrigerant temperature after passing through the expansion mechanism (Japanese Patent Application No. 2007-115368). Specifically, in the expansion mechanism that controls the differential pressure before and after passage through the expansion mechanism according to the refrigerant pressure, the minimum refrigerant passage diameter and differential pressure control characteristics that can improve the coefficient of performance of the vapor compression refrigeration cycle should be set Thus, an expansion mechanism capable of achieving an improvement in the coefficient of performance as well as a simple refrigeration cycle was obtained.

しかしながら、上記のような膨張機構をさまざまな条件にて検討していたところ、下記のような問題点が残されていることが明らかになった。すなわち、この膨張機構を用いた冷凍サイクルにおいて熱負荷が小さい条件では、蒸発器の出口空気温度の温度分布にばらつきが大きくなることがわかった。これは、膨張機構を通過して蒸発器へ流入した冷媒が不足したため、蒸発器内部に適切に冷媒が流れることができず、蒸発器の出口空気温度の温度分布にばらつきが生じていると考えられる。つまり、冷媒が不足した状態となってしまったと考えられる。また、本発明者らにより、冷媒が不足したこのような状態は、膨張機構の冷媒通路の最小径を大きくすることで解消されることは確認されている。しかしながら、前述の通り蒸気圧縮式冷凍サイクルの成績係数向上を狙って膨張機構の冷媒流路の最小径を決定していることから、冷媒流路の最小径を拡大することは成績係数の低下につながってしまう。また、上述の通り、成績係数の向上を狙った上記膨張機構の仕様では、低負荷条件では冷媒が(通過冷媒量が)不足した状態になってしまう。さらに、低圧が下がることで低負荷での冷凍サイクルの起動が困難になることも想定されるため、蒸気圧縮式冷凍サイクルとしての機能を損なうことも懸念される。   However, when the above expansion mechanism was examined under various conditions, it became clear that the following problems remained. In other words, it has been found that the variation in the temperature distribution of the outlet air temperature of the evaporator increases under the condition that the heat load is small in the refrigeration cycle using this expansion mechanism. This is because the refrigerant flowing through the expansion mechanism and flowing into the evaporator is insufficient, so that the refrigerant cannot properly flow inside the evaporator, and the temperature distribution of the outlet air temperature of the evaporator is uneven. It is done. That is, it is considered that the refrigerant has become insufficient. Further, it has been confirmed by the present inventors that such a state where the refrigerant is insufficient is solved by increasing the minimum diameter of the refrigerant passage of the expansion mechanism. However, as described above, since the minimum diameter of the refrigerant flow path of the expansion mechanism is determined with the aim of improving the coefficient of performance of the vapor compression refrigeration cycle, increasing the minimum diameter of the refrigerant flow path reduces the coefficient of performance. It will be connected. In addition, as described above, in the specification of the expansion mechanism that aims to improve the coefficient of performance, the refrigerant (passing refrigerant amount) becomes insufficient under low load conditions. Furthermore, since it is assumed that it is difficult to start the refrigeration cycle at a low load due to a decrease in low pressure, there is a concern that the function as the vapor compression refrigeration cycle may be impaired.

そこで本発明の課題は、冷媒の圧力に応じて膨張機構通過前後の差圧を最適に制御することができるようにするとともに、負荷状態を膨張機構を通過する冷媒の温度により検知し、その冷媒の温度に応じて、膨張機構通過前後の差圧制御状態を変更可能とし、負荷状態に応じた最適な制御、とくに低負荷での冷媒不足や起動困難性の問題を解消可能な蒸気圧縮式冷凍サイクルを提供することにある。   Accordingly, an object of the present invention is to make it possible to optimally control the differential pressure before and after passing through the expansion mechanism in accordance with the pressure of the refrigerant, and to detect the load state based on the temperature of the refrigerant passing through the expansion mechanism. Vapor compression type refrigeration that can change the differential pressure control state before and after passing through the expansion mechanism according to the temperature of the compressor, and that can optimally control the load state, especially the problem of refrigerant shortage and start-up difficulty at low loads To provide a cycle.

上記課題を解決するために、本発明に係る蒸気圧縮式冷凍サイクルは、冷媒の超臨界作動領域を有する蒸気圧縮式の冷凍サイクル中に、該冷凍サイクル中を循環する冷媒を膨張機構により断熱膨張することができ、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧に応じて膨張機構を通過する冷媒の量を調節することのできる差圧式膨張手段を備えており、該差圧式膨張手段は、前記差圧が予め設定された開弁開始圧以上になったとき開弁を開始し、前記差圧の増加に伴い開弁量を増大していく差圧弁を備えており、該差圧弁は、該差圧弁を貫通して延び、膨張機構に流入した冷媒が常時差圧弁を通過して断熱膨張することのできる冷媒連通路を備えており、前記差圧弁の閉弁位置は該差圧弁の先端部が膨張機構の躯体の係止部に係止されることによって決められるとともに、該膨張機構の躯体の前記係止部以外の差圧弁の先端部部位には冷媒が常時流通可能な弁先端部流路が形成されており、該弁先端部流路は、膨張機構に流入されてくる冷媒の温度に応じて変位可能な可動体を備えた温度補正手段により、該流入されてくる冷媒の温度に応じて流路断面積が可変されるように構成されていることを特徴とするものからなる。   In order to solve the above-described problems, a vapor compression refrigeration cycle according to the present invention includes an expansion mechanism that adiabatically expands a refrigerant circulating in the refrigeration cycle during a vapor compression refrigeration cycle having a supercritical operating region of the refrigerant. Differential pressure type expansion means capable of adjusting the amount of refrigerant passing through the expansion mechanism in accordance with the differential pressure between the inlet side refrigerant pressure and the outlet side refrigerant pressure of the expansion mechanism. The expansion means includes a differential pressure valve that starts valve opening when the differential pressure becomes equal to or higher than a preset valve opening start pressure, and increases the valve opening amount as the differential pressure increases. The differential pressure valve includes a refrigerant communication path that extends through the differential pressure valve and allows the refrigerant that has flowed into the expansion mechanism to constantly pass through the differential pressure valve and adiabatically expand, and the closed position of the differential pressure valve is The tip of the differential pressure valve is locked to the locking part of the expansion mechanism housing. In addition, a valve tip portion flow passage through which refrigerant can always flow is formed at the tip portion of the differential pressure valve other than the locking portion of the casing of the expansion mechanism. Is configured so that the flow path cross-sectional area can be varied according to the temperature of the refrigerant flowing in by the temperature correction means including a movable body that can be displaced according to the temperature of the refrigerant flowing into the expansion mechanism. It consists of what is characterized by being.

このような本発明に係る蒸気圧縮式冷凍サイクルにおいては、差圧式膨張手段によって、膨張機構を通過する冷媒の量が調節されるが、この冷媒量は、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧(膨張機構通過前後差圧)が予め設定された開弁開始圧以上になったとき開弁を開始し、前記差圧の増加に伴い開弁量を増大していく差圧弁の動作と、膨張機構に流入されてくる冷媒の温度に応じて変位可能な温度補正手段の可動体の動作とによって制御される。すなわち、差圧弁部位を冷媒が通過するための冷媒流路断面積は、差圧弁中に形成された冷媒が常時差圧弁を通過する冷媒連通路(固定オリフィス)の流路断面積と、差圧弁の閉弁位置(差圧弁の先端部が膨張機構の躯体の係止部に係止される位置)からの開弁量に応じた流路断面積と、前記係止部以外の差圧弁の先端部部位に形成された冷媒が常時流通可能な弁先端部流路の流路断面積とによって決められるが、このうち、差圧弁の開弁量に応じた流路断面積は、冷媒の膨張機構通過前後差圧が開弁開始圧以上になったときの該差圧の増加に伴って増大されていき、弁先端部流路の流路断面積は、冷媒の温度に応じた可動体の変位によって可変される。換言すれば、膨張機構通過前後差圧に応じて差圧弁の開弁量が適切に可変制御され、さらに、その差圧弁の開弁量に応じた流路断面積が、冷媒の温度に応じた可動体の変位によってより最適な流路断面積に温度補正制御されることになる。したがって、膨張機構通過前後の差圧の適切な制御とともに、その時の負荷を冷媒温度で検知して負荷に応じた補正、とくに低負荷時の冷媒流量増大が可能になり、冷凍サイクルの効率的な運転と低負荷時における確実な起動の確保が可能になる。   In such a vapor compression refrigeration cycle according to the present invention, the amount of refrigerant passing through the expansion mechanism is adjusted by the differential pressure expansion means. The refrigerant amount is determined by the inlet side refrigerant pressure and the outlet side of the expansion mechanism. When the differential pressure from the refrigerant pressure (differential pressure before and after passing through the expansion mechanism) is equal to or higher than a preset valve opening start pressure, valve opening is started, and the valve opening amount is increased as the differential pressure increases. It is controlled by the operation of the pressure valve and the operation of the movable body of the temperature correction means that can be displaced according to the temperature of the refrigerant flowing into the expansion mechanism. That is, the refrigerant flow path cross-sectional area for allowing the refrigerant to pass through the differential pressure valve portion is equal to the flow path cross-sectional area of the refrigerant communication path (fixed orifice) through which the refrigerant formed in the differential pressure valve always passes through the differential pressure valve. The valve cross-sectional area according to the valve opening amount from the valve closing position (the position where the tip of the differential pressure valve is locked to the locking portion of the housing of the expansion mechanism), and the tip of the differential pressure valve other than the locking portion The flow path cross-sectional area corresponding to the valve opening amount of the differential pressure valve is determined by the refrigerant expansion mechanism. When the differential pressure before and after passage becomes equal to or higher than the valve opening start pressure, the differential pressure increases as the differential pressure increases. It is variable by. In other words, the valve opening amount of the differential pressure valve is appropriately variably controlled according to the differential pressure before and after passing through the expansion mechanism, and the flow path cross-sectional area corresponding to the valve opening amount of the differential pressure valve is in accordance with the temperature of the refrigerant. Temperature correction control is performed to a more optimal flow path cross-sectional area by the displacement of the movable body. Therefore, along with appropriate control of the differential pressure before and after passing through the expansion mechanism, it is possible to detect the load at that time based on the refrigerant temperature and to make corrections according to the load, in particular, to increase the refrigerant flow rate at low loads. It is possible to ensure reliable start-up during operation and low load.

上記本発明に係る蒸気圧縮式冷凍サイクルにおいては、上記差圧弁の閉弁時において、上記流入されてくる冷媒の温度が予め定めた所定値以上の場合、上記弁先端部流路の流路断面積が予め定めた所定の流路断面積に保たれるように構成されていることが好ましい。つまり、差圧弁の閉弁時においては、弁先端部流路の流路断面積はそのときの可動体の位置によって決められることになるが、冷媒の温度が予め定めた所定値以上の場合には、可動体の位置が所定の定位置になるように設定され、それによって弁先端部流路の流路断面積が予め定めた所定の流路断面積に保たれるように構成されていることが好ましい。このような構成とすることにより、冷媒の温度が予め定めた所定値よりも低くなると、可動体を所定の定位置から変位させて弁先端部流路の流路断面積を拡大し、それによって低負荷時の冷媒流量を増大させることが可能になる。可動体を所定の定位置に位置決めするためには、例えば、可動体を膨張機構の躯体の適切な部位に係止させるようにすればよい。   In the vapor compression refrigeration cycle according to the present invention, when the differential pressure valve is closed, if the temperature of the inflowing refrigerant is equal to or higher than a predetermined value, the valve tip portion flow path is disconnected. It is preferable that the area is maintained at a predetermined flow path cross-sectional area. That is, when the differential pressure valve is closed, the flow passage cross-sectional area of the valve tip portion flow passage is determined by the position of the movable body at that time, but when the refrigerant temperature is equal to or higher than a predetermined value. Is configured such that the position of the movable body is set to a predetermined fixed position, whereby the flow path cross-sectional area of the valve tip portion flow path is maintained at a predetermined flow path cross-sectional area determined in advance. It is preferable. By adopting such a configuration, when the temperature of the refrigerant is lower than a predetermined value, the movable body is displaced from a predetermined fixed position, and the flow path cross-sectional area of the valve tip portion flow path is expanded, thereby It becomes possible to increase the refrigerant flow rate at the time of low load. In order to position the movable body at a predetermined fixed position, for example, the movable body may be locked to an appropriate part of the housing of the expansion mechanism.

したがって、上記温度補正手段の可動体は、上記流入されてくる冷媒の温度が低くなるに従い、上記弁先端部流路の流路断面積が大きくなるように変位されることが好ましい。これは、とくに低負荷時の冷凍サイクルの効率的な運転と、低負荷時における確実な起動の両方を確保するためである。   Therefore, it is preferable that the movable body of the temperature correcting means is displaced so that the flow passage cross-sectional area of the valve tip portion flow passage becomes larger as the temperature of the refrigerant flowing in becomes lower. This is to ensure both efficient operation of the refrigeration cycle particularly at low loads and reliable start-up at low loads.

上記弁先端部流路の、上記流入されてくる冷媒の温度が予め定めた上記所定値よりも低くなったときの流路断面積が、流路相当直径にて0.5mm以上0.8mm以下の範囲内に設定されていることが好ましい。ただし、この範囲はある実験系における結果から適切な範囲として導かれたものであるので、蒸気圧縮式冷凍サイクルの仕様によっては、この範囲に拘束されない。   The flow path cross-sectional area of the valve tip flow path when the temperature of the inflowing refrigerant is lower than the predetermined value set in advance is 0.5 mm or more and 0.8 mm or less in the flow path equivalent diameter. It is preferable to set within the range. However, since this range is derived as an appropriate range from the results in a certain experimental system, it is not restricted to this range depending on the specifications of the vapor compression refrigeration cycle.

また上記において、上記温度補正手段の可動体は、上記流入されてくる冷媒の温度が低くなるに従い、前記弁先端部流路の流路断面積が前記差圧弁の冷媒連通路の流路断面積よりも大きくなるように変位されることが好ましい。差圧弁の冷媒連通路(固定オリフィス)の流路断面積よりも大きくなるように変位されることより、低負荷時においてより確実に冷凍サイクルを起動させることができる。   Further, in the above, the movable body of the temperature correction means is configured such that the flow passage cross-sectional area of the valve tip portion flow passage becomes the flow passage cross-sectional area of the refrigerant communication passage of the differential pressure valve as the temperature of the refrigerant flowing in decreases. It is preferable to be displaced so as to be larger than that. The refrigeration cycle can be started more reliably at low loads by being displaced so as to be larger than the flow path cross-sectional area of the refrigerant communication passage (fixed orifice) of the differential pressure valve.

本発明に係る蒸気圧縮式冷凍サイクルは、とくに車両用空調装置の冷凍サイクルとして用いて好適なものであり、中でも、使用される冷媒が自然系冷媒である二酸化炭素からなる場合に好適なものである。   The vapor compression refrigeration cycle according to the present invention is particularly suitable for use as a refrigeration cycle for a vehicle air conditioner, and is particularly suitable when the refrigerant used is made of carbon dioxide, which is a natural refrigerant. is there.

本発明に係る蒸気圧縮式冷凍サイクルによれば、とくに蒸気圧縮式冷凍サイクルの冷媒として自然系冷媒である二酸化炭素を用いた車両用空調装置において、冷媒の圧力に応じて膨張機構通過前後の差圧を適切に制御することができるようになるとともに、その制御状態を冷媒の温度に応じて最適に補正することができるようになり、差圧式膨張手段の最適な設計が可能となって、冷凍サイクルの効率的な運転と起動の安定性を確保することができる。   According to the vapor compression refrigeration cycle according to the present invention, in particular, in a vehicle air conditioner that uses carbon dioxide, which is a natural refrigerant, as a refrigerant in the vapor compression refrigeration cycle, the difference between before and after passing through the expansion mechanism according to the refrigerant pressure. The pressure can be appropriately controlled, and the control state can be optimally corrected according to the temperature of the refrigerant, so that the optimum design of the differential pressure type expansion means can be realized. Efficient operation and start-up stability of the cycle can be ensured.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図2は、車両用空調装置に、本発明の一実施態様に係る、自然系冷媒である二酸化炭素を用いた蒸気圧縮式冷凍サイクルを組み込んだ場合の機械的な構成部分全体を示しており、通風回路と冷凍回路(冷凍サイクル)が設けられている。冷凍サイクルには、駆動源としての車両のエンジン1(但し、電動モータ等、他の駆動源も可能である)により、プーリ2、3を介したベルト12の駆動によって駆動される固定容量式または容量可変式圧縮機4と、圧縮機4から吐出される高圧冷媒の圧力を検出する高圧側圧力検出手段5と、圧縮機4からの高圧冷媒と外部空気との熱交換により冷媒を冷却する放熱器6(ガスクーラ)と、放熱器冷却ファン7と、放熱器6から流出した高圧冷媒と気液分離器11(アキュームレータ)から流出した低圧冷媒との間で熱交換する内部熱交換器8と、放熱器6から内部熱交換器8を通して送られてくる冷媒を断熱膨張させる膨張機構9を備えており、本発明では、この膨張機構9が、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧に応じて膨張機構を通過する冷媒の量を調節することのできる差圧式膨張手段を備えている。膨張機構9からの冷媒は蒸発器10に送られて空調風を冷却し、蒸発器10から流出した冷媒は、気液分離器11で気液分離され、液冷媒が貯留されるとともに気冷媒が流出され、流出された気冷媒は内部熱交換器8を通して圧縮機4に送られ、再び圧縮される。このように冷凍サイクル13が構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows an entire mechanical component when a vapor compression refrigeration cycle using carbon dioxide, which is a natural refrigerant, is incorporated into a vehicle air conditioner according to an embodiment of the present invention. A ventilation circuit and a refrigeration circuit (refrigeration cycle) are provided. In the refrigeration cycle, a fixed capacity type driven by the driving of the belt 12 via the pulleys 2 and 3 by the engine 1 of the vehicle as a driving source (however, another driving source such as an electric motor is also possible) Variable capacity compressor 4, high pressure side pressure detecting means 5 for detecting the pressure of the high pressure refrigerant discharged from the compressor 4, and heat radiation for cooling the refrigerant by heat exchange between the high pressure refrigerant from the compressor 4 and external air A heat exchanger 6 (gas cooler), a radiator cooling fan 7, an internal heat exchanger 8 for exchanging heat between the high-pressure refrigerant flowing out of the radiator 6 and the low-pressure refrigerant flowing out of the gas-liquid separator 11 (accumulator); An expansion mechanism 9 for adiabatically expanding the refrigerant sent from the radiator 6 through the internal heat exchanger 8 is provided. In the present invention, the expansion mechanism 9 includes an inlet side refrigerant pressure and an outlet side refrigerant pressure of the expansion mechanism. Depending on the differential pressure And a differential pressure type expansion means capable of adjusting the amount of refrigerant passing through the expansion mechanism Te. The refrigerant from the expansion mechanism 9 is sent to the evaporator 10 to cool the conditioned air, and the refrigerant that has flowed out of the evaporator 10 is separated into gas and liquid by the gas-liquid separator 11 so that the liquid refrigerant is stored and the gas refrigerant is stored. The discharged refrigerant is sent to the compressor 4 through the internal heat exchanger 8 and is compressed again. Thus, the refrigeration cycle 13 is configured.

蒸発器10は、車室内へと空調風を送る通風ダクト14内に配置されている。通風ダクト14には、外気導入口15と内気導入口16から、内外気切替ダンパ17を介して空気が導入され、内外気切替ダンパ17は内外気切替ダンパアクチュエータ18によって作動が制御される。導入された空気はブロワファン19によって吸入され下流側の蒸発器10に向けて圧送される。蒸発器10の出口側には、蒸発器出口空気温度センサ20が設けられており、蒸発器10の下流側には、加熱器としてのヒータコア21が設けられている。このヒータコア21を通過する空気とバイパスする空気の割合がエアミックスダンパ22によって調節され、エアミックスダンパ22の開度はエアミックスダンパアクチュエータ23によって制御される。温調された空気は、各ダンパ24、25、26を介して各吹き出し口27、28、29から車室内に向けて吹き出される。   The evaporator 10 is arrange | positioned in the ventilation duct 14 which sends an air conditioned wind into a vehicle interior. Air is introduced into the ventilation duct 14 from the outside air introduction port 15 and the inside air introduction port 16 via the inside / outside air switching damper 17, and the operation of the inside / outside air switching damper 17 is controlled by the inside / outside air switching damper actuator 18. The introduced air is sucked by the blower fan 19 and is pumped toward the evaporator 10 on the downstream side. An evaporator outlet air temperature sensor 20 is provided on the outlet side of the evaporator 10, and a heater core 21 as a heater is provided on the downstream side of the evaporator 10. The ratio of the air passing through the heater core 21 and the bypassing air is adjusted by the air mix damper 22, and the opening degree of the air mix damper 22 is controlled by the air mix damper actuator 23. The temperature-adjusted air is blown out from the outlets 27, 28, 29 through the dampers 24, 25, 26 toward the vehicle interior.

31は、空調制御装置を示しており、空調制御装置31には、外気温度センサ32からの外気温度信号、日射センサ33からの日射量信号、車室内温度センサ34からの車内温度信号、高圧側圧力検出手段5の高圧側冷媒圧力信号35、蒸発器出口空気温度センサ20からの蒸発器出口空気温度信号が、それぞれ入力される。空調制御装置31からは、圧縮機4の駆動を制御するクラッチコントローラ36へクラッチ制御信号37が、圧縮機4へ圧縮機容量制御信号38が、エアミックスダンパアクチュエータ23へエアミックスダンパ制御信号39が、内外気切替ダンパアクチュエータ18へ内外気切替ダンパ制御信号40が、それぞれ出力される。   Reference numeral 31 denotes an air conditioning control device. The air conditioning control device 31 includes an outside air temperature signal from the outside air temperature sensor 32, a solar radiation amount signal from the solar radiation sensor 33, a vehicle interior temperature signal from the vehicle interior temperature sensor 34, and a high pressure side. The high pressure side refrigerant pressure signal 35 of the pressure detection means 5 and the evaporator outlet air temperature signal from the evaporator outlet air temperature sensor 20 are input. From the air conditioning controller 31, a clutch control signal 37 is sent to the clutch controller 36 that controls the drive of the compressor 4, a compressor capacity control signal 38 is sent to the compressor 4, and an air mix damper control signal 39 is sent to the air mix damper actuator 23. The inside / outside air switching damper control signal 40 is output to the inside / outside air switching damper actuator 18.

図3に、差圧式膨張手段を備えた膨張機構41の基本形態(本発明の前提となる形態)の一例を示す(矢印は、冷媒の流れ方向を示している。以下の図においても同じである。)。但し、図3は機構の概念図を示したものであり、図示された構造に限定されるものではない。図3における差圧式の膨張機構41は、常時冷媒が流通する冷媒連通路としての固定オリフィス部42を有し、膨張機構冷媒流入口43における膨張機構41の入口側冷媒圧力と膨張機構冷媒流出口44における膨張機構41の出口側冷媒圧力との差圧に応じて膨張機構41を通過する冷媒の量を調節することでき、該差圧の増加に伴い開弁していく差圧弁45を備えており、差圧弁45は、ばね46によって閉弁方向に付勢されている。   3 shows an example of a basic form (form which is a premise of the present invention) of an expansion mechanism 41 provided with a differential pressure type expansion means (the arrow indicates the flow direction of the refrigerant. The same applies to the following figures. is there.). However, FIG. 3 is a conceptual diagram of the mechanism, and is not limited to the illustrated structure. The differential pressure type expansion mechanism 41 in FIG. 3 has a fixed orifice portion 42 as a refrigerant communication path through which refrigerant always flows, and the inlet side refrigerant pressure of the expansion mechanism 41 and the expansion mechanism refrigerant outlet at the expansion mechanism refrigerant inlet 43. The amount of refrigerant passing through the expansion mechanism 41 can be adjusted according to the pressure difference between the outlet side refrigerant pressure of the expansion mechanism 41 at 44 and the differential pressure valve 45 is opened as the differential pressure increases. The differential pressure valve 45 is urged in the valve closing direction by a spring 46.

差圧式膨張機構41の上流側より流入した冷媒は、差圧弁45に設けられた冷媒連通路としての固定オリフィス部42を通過し、膨張機構冷媒流出口44から蒸発器10に送られる。固定オリフィス部42を持つ差圧弁45は、上流側からの冷媒により圧力を受けており、その圧力は、差圧弁45に連結されているばね46に対して、開弁方向の力として働く。また、ばね46は、上流側に向けての力、すなわち閉弁方向の力として働く。この2種類の力関係が、開弁方向の力より閉弁方向の力の方が強い場合には、固定オリフィス部42を持つ差圧弁45は開弁せず、冷媒流路断面積として固定オリフィス部42の流路断面積を持つ膨張機構となる。一方、開弁方向の力が閉弁方向の力より強い場合には、差圧弁45が開弁され、固定オリフィス部42の流路断面積に加えて、その差圧弁45と膨張機構41の躯体との隙間を加えた冷媒流路断面積を持つ膨張機構となる。このような作動原理により、固定オリフィス部42前後の差圧により冷媒流路断面積が変化し、その前後差圧、または、高圧側圧力を制御するようにしている。   The refrigerant that has flowed in from the upstream side of the differential pressure type expansion mechanism 41 passes through the fixed orifice portion 42 as a refrigerant communication path provided in the differential pressure valve 45 and is sent to the evaporator 10 from the expansion mechanism refrigerant outlet 44. The differential pressure valve 45 having the fixed orifice portion 42 receives pressure from the refrigerant from the upstream side, and the pressure acts as a force in the valve opening direction on the spring 46 connected to the differential pressure valve 45. The spring 46 acts as a force toward the upstream side, that is, a force in the valve closing direction. When the force relationship in the valve closing direction is stronger than the force in the valve opening direction, the differential pressure valve 45 having the fixed orifice portion 42 does not open, and the fixed orifice is used as the refrigerant channel cross-sectional area. The expansion mechanism has the flow path cross-sectional area of the portion 42. On the other hand, when the force in the valve opening direction is stronger than the force in the valve closing direction, the differential pressure valve 45 is opened, and the housing of the differential pressure valve 45 and the expansion mechanism 41 is added to the cross-sectional area of the fixed orifice portion 42. Thus, the expansion mechanism has a refrigerant flow path cross-sectional area to which a gap is added. According to such an operating principle, the refrigerant flow passage cross-sectional area is changed by the differential pressure across the fixed orifice portion 42, and the differential pressure across the front or back side or the high-pressure side pressure is controlled.

上記のような基本形態に係る差圧式膨張機構41に対し、本発明では、以下のような温度補正手段としての温度補正機構が付加される。図4は、温度補正機構を付加した実施例1に係る差圧式膨張機構51を示しており、冷媒連通路としての固定オリフィス部42、膨張機構冷媒流入口43、膨張機構冷媒流出口44、差圧弁45、ばね46の構造は、図3に示したものと同等あるいは同一であるので、図3に付したのと同一の符号を付すことにより説明を省略する。この実施例1においては、差圧弁45の閉弁位置は該差圧弁45の先端部45aが膨張機構の躯体の係止部52に係止されることによって決められるようになっている。この膨張機構の躯体の係止部52以外の部位に対応する差圧弁45の先端部部位45bには冷媒が常時流通可能な弁先端部流路53が形成されており、該弁先端部流路53は、膨張機構51に流入されてくる冷媒の温度に応じて変位可能な可動体54を備えた温度補正手段により、該流入されてくる冷媒の温度に応じて流路断面積が可変されるように構成されている。この可動体54は、本実施例では、形状記憶合金からなるばね55によって付勢されている。形状記憶合金からなるばね55は、温度が(流入されてくる冷媒の温度が)予め定めた所定値よりも低くなると、ばね長が短くなる方向に縮み、それに伴って可動体54が図4の右方向に変位されるようになっている。可動体54は、本実施例では、変位前には、上記係止部52と該係止部52とは別の膨張機構の躯体の係止部56に係止されるので、差圧弁45の閉弁時においては、弁先端部流路53の流路断面積は予め定めた所定の流路断面積に保たれる。しかし、流入されてくる冷媒の温度が上記所定値よりも低くなるに従い、可動体54は図4の右方向に変位され、弁先端部流路53の流路断面積が、上記予め定めた所定の流路断面積から増大される。この弁先端部流路53の流路断面積の増大により、とくに低負荷時の冷媒流量増大が可能になり、前述の差圧弁45による冷凍サイクルの効率的な運転に加えて、低負荷時における確実な起動の確保が可能になる。なお、上記可動体54は、より具体的な形状として、例えば図5に示すように、環状体に対し舌部57が設けられた形状に形成できる。   In the present invention, a temperature correction mechanism as a temperature correction means as described below is added to the differential pressure type expansion mechanism 41 according to the basic form as described above. FIG. 4 shows the differential pressure type expansion mechanism 51 according to the first embodiment to which a temperature correction mechanism is added. The fixed orifice portion 42 as the refrigerant communication path, the expansion mechanism refrigerant inlet 43, the expansion mechanism refrigerant outlet 44, and the difference Since the structures of the pressure valve 45 and the spring 46 are the same as or the same as those shown in FIG. 3, the description thereof is omitted by giving the same reference numerals as those shown in FIG. In the first embodiment, the valve closing position of the differential pressure valve 45 is determined by the distal end portion 45a of the differential pressure valve 45 being locked to the locking portion 52 of the housing of the expansion mechanism. A valve tip portion flow path 53 through which refrigerant can always flow is formed at a tip portion 45b of the differential pressure valve 45 corresponding to a portion other than the locking portion 52 of the casing of the expansion mechanism. Reference numeral 53 is a temperature correction means having a movable body 54 that can be displaced according to the temperature of the refrigerant flowing into the expansion mechanism 51, and the flow path cross-sectional area is varied according to the temperature of the flowing refrigerant. It is configured as follows. In this embodiment, the movable body 54 is biased by a spring 55 made of a shape memory alloy. When the temperature of the spring 55 made of a shape memory alloy is lower than a predetermined value (the temperature of the refrigerant flowing in), the spring length is shortened. It is displaced in the right direction. In this embodiment, the movable body 54 is locked to the locking portion 52 and the locking portion 56 of the casing of the expansion mechanism different from the locking portion 52 before displacement. When the valve is closed, the flow path cross-sectional area of the valve front end flow path 53 is maintained at a predetermined flow path cross-sectional area. However, as the temperature of the refrigerant flowing in becomes lower than the predetermined value, the movable body 54 is displaced in the right direction in FIG. 4, and the flow path cross-sectional area of the valve tip end flow path 53 becomes the predetermined value. It is increased from the flow path cross-sectional area. This increase in the flow passage cross-sectional area of the valve tip portion flow passage 53 makes it possible to increase the refrigerant flow rate particularly at low loads. In addition to efficient operation of the refrigeration cycle by the differential pressure valve 45 described above, Secure start-up can be ensured. In addition, the said movable body 54 can be formed in the shape provided with the tongue part 57 with respect to the cyclic | annular body as a more concrete shape, for example, as shown in FIG.

図6は、温度補正機構を付加した実施例2に係る差圧式膨張機構61を示しており、冷媒連通路としての固定オリフィス部42、膨張機構冷媒流入口43、膨張機構冷媒流出口44、差圧弁45、ばね46の構造は、図3に示したものと同等あるいは同一であるので、図3に付したのと同一の符号を付すことにより説明を省略する。この実施例2においても、差圧弁45の閉弁位置は該差圧弁45の先端部45aが膨張機構の躯体の係止部52に係止されることによって決められるようになっている。この膨張機構の躯体の係止部52以外の部位に対応する差圧弁45の先端部部位45bには冷媒が常時流通可能な弁先端部流路62が形成されており、該弁先端部流路62は、膨張機構61に流入されてくる冷媒の温度に応じて変位可能な可動体63を備えた温度補正手段により、該流入されてくる冷媒の温度に応じて流路断面積が可変されるように構成されている。この可動体63は、本実施例では、図7にも示すように、円筒体の長手方向中央部外周に、環状フランジ部64が設けられた形状に形成され、差圧弁45側先端部には、図5に示した形態と同様の舌部65が設けられている。環状フランジ部64の各側には、ばね66、67が配置されて可動体63は両ばね66、67のばね力のバランスした位置に決められる。本実施例においては、ばね66、67の少なくとも一方が形状記憶合金からなるばねに構成されており、流入されてくる冷媒の温度が予め定めた所定値よりも低くなると、形状記憶合金からなるばねの伸縮により可動体63が図6の右方向に変位されるようになっている。この可動体63の変位により、弁先端部流路62の流路断面積が、予め定めた所定の流路断面積から増大される。この弁先端部流路62の流路断面積の増大により、とくに低負荷時の冷媒流量増大が可能になり、前述の差圧弁45による冷凍サイクルの効率的な運転に加えて、低負荷時における確実な起動の確保が可能になる。   FIG. 6 shows a differential pressure type expansion mechanism 61 according to the second embodiment to which a temperature correction mechanism is added. The fixed orifice portion 42 as the refrigerant communication path, the expansion mechanism refrigerant inlet 43, the expansion mechanism refrigerant outlet 44, and the difference Since the structures of the pressure valve 45 and the spring 46 are the same as or the same as those shown in FIG. 3, the description thereof is omitted by giving the same reference numerals as those shown in FIG. Also in the second embodiment, the valve closing position of the differential pressure valve 45 is determined by the front end portion 45a of the differential pressure valve 45 being locked to the locking portion 52 of the housing of the expansion mechanism. A valve tip portion flow path 62 through which refrigerant can always flow is formed at a tip portion 45b of the differential pressure valve 45 corresponding to a portion other than the locking portion 52 of the casing of the expansion mechanism. Reference numeral 62 denotes a temperature correction means including a movable body 63 that can be displaced according to the temperature of the refrigerant flowing into the expansion mechanism 61, and the flow path cross-sectional area is varied according to the temperature of the flowing refrigerant. It is configured as follows. In this embodiment, as shown in FIG. 7, the movable body 63 is formed in a shape in which an annular flange portion 64 is provided on the outer periphery of the central portion in the longitudinal direction of the cylindrical body. A tongue 65 similar to that shown in FIG. 5 is provided. On each side of the annular flange portion 64, springs 66 and 67 are arranged, and the movable body 63 is determined at a position where the spring forces of both the springs 66 and 67 are balanced. In the present embodiment, at least one of the springs 66 and 67 is configured as a spring made of a shape memory alloy, and when the temperature of the refrigerant flowing in becomes lower than a predetermined value, the spring made of a shape memory alloy The movable body 63 is displaced in the right direction in FIG. Due to the displacement of the movable body 63, the flow path cross-sectional area of the valve tip end flow path 62 is increased from a predetermined flow path cross-sectional area. This increase in the flow passage cross-sectional area of the valve tip portion flow passage 62 makes it possible to increase the refrigerant flow rate particularly at low loads. In addition to the efficient operation of the refrigeration cycle by the differential pressure valve 45 described above, Secure start-up can be ensured.

上記のように可動体54、63を有する温度補正機構を付加した実施例においては、可動体54、63をを持たない比較例(つまり、図3に示した差圧式膨張機構41に比べ、図8に示すような特性を発揮できる。図8における横軸は、固定オリフィス42の前後差圧を示しており、縦軸は、弁先端部流路の流路断面積の流路相当直径を示している。図示の如く、とくに差圧弁45が開弁する前の低負荷時において、冷媒温度に応じて弁先端部流路の流路断面積を適切に増大させ、冷媒を流れ易くして、冷凍サイクル起動に十分な冷媒流量を確保することができる。この弁先端部流路の流路断面積は、図示の如く、流路相当直径にて、0.5〜0.8mmの範囲内にあることが好ましい。   In the embodiment in which the temperature correction mechanism having the movable bodies 54 and 63 is added as described above, the comparative example without the movable bodies 54 and 63 (that is, compared with the differential pressure type expansion mechanism 41 shown in FIG. The horizontal axis in Fig. 8 indicates the differential pressure across the fixed orifice 42, and the vertical axis indicates the channel equivalent diameter of the channel cross-sectional area of the valve tip channel. As shown in the drawing, particularly at the time of low load before the differential pressure valve 45 is opened, the flow passage cross-sectional area of the valve tip portion flow passage is appropriately increased according to the refrigerant temperature to facilitate the flow of the refrigerant, The flow rate of the refrigerant sufficient for starting the refrigeration cycle can be ensured, and the flow passage cross-sectional area of the valve tip flow passage is within the range of 0.5 to 0.8 mm at the equivalent flow passage diameter as shown in the figure. Preferably there is.

本発明に係る蒸気圧縮式冷凍サイクルにおける差圧式膨張機構の構造は、あらゆる蒸気圧縮式冷凍サイクルに適用可能であり、とくに二酸化炭素冷媒を用いた車両用空調装置の冷凍サイクルに好適なものである。   The structure of the differential pressure type expansion mechanism in the vapor compression refrigeration cycle according to the present invention can be applied to any vapor compression refrigeration cycle, and is particularly suitable for a refrigeration cycle of a vehicle air conditioner using a carbon dioxide refrigerant. .

ガスクーラ出口冷媒温度に関する、冷媒圧力と冷凍サイクルの成績係数(COP)との関係図である。It is a relationship figure of the refrigerant | coolant pressure and the coefficient of performance (COP) of a refrigerating cycle regarding a gas cooler exit | outlet refrigerant | coolant temperature. 本発明の一実施態様に係る蒸気圧縮式冷凍サイクルを組み込んだ車両用空調装置の機器系統図である。It is an equipment distribution diagram of a vehicle air conditioner incorporating a vapor compression refrigeration cycle according to an embodiment of the present invention. 差圧式膨張機構の基本形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the basic form of a differential pressure type expansion mechanism. 本発明の実施例1に係る差圧式膨張機構の概略断面図である。It is a schematic sectional drawing of the differential pressure type | formula expansion mechanism which concerns on Example 1 of this invention. 図4における可動体の斜視図である。It is a perspective view of the movable body in FIG. 本発明の実施例2に係る差圧式膨張機構の概略断面図である。It is a schematic sectional drawing of the differential pressure | voltage type expansion mechanism which concerns on Example 2 of this invention. 図6における可動体の斜視図である。It is a perspective view of the movable body in FIG. 本発明において温度補正機構を付加した差圧式膨張機構の実施例における作動の一例を示す特性図である。It is a characteristic view which shows an example of the action | operation in the Example of the differential pressure | voltage type expansion mechanism which added the temperature correction mechanism in this invention.

符号の説明Explanation of symbols

1 エンジン
2、3 プーリ
4 圧縮機
5 高圧側圧力検出手段
6 放熱器(ガスクーラ)
7 放熱器冷却ファン
8 内部熱交換器
9 差圧式膨張機構
10 蒸発器
11 気液分離器(アキュームレータ)
12 ベルト
13 冷凍サイクル
14 通風ダクト
15 外気導入口
16 内気導入口
17 内外気切替ダンパ
18 内外気切替ダンパアクチュエータ
19 ブロワファン
20 蒸発器出口空気温度センサ
21 ヒータコア
22 エアミックスダンパ
23 エアミックスダンパアクチュエータ
24、25、26 ダンパ
27、28、29 吹き出し口
31 空調制御装置
32 外気温度センサ
33 日射センサ
34 車室内温度センサ
35 高圧側冷媒圧力信号
36 クラッチコントローラ
37 クラッチ制御信号
38 圧縮機容量制御信号
39 エアミックスダンパ制御信号
40 内外気切替ダンパ制御信号
41、51、61 差圧式膨張機構
42 冷媒連通路としての固定オリフィス部
43 膨張機構冷媒流入口
44 膨張機構冷媒流出口
45 差圧弁
45a、45b 差圧弁先端部
46 ばね
52、56 係止部
53、62 弁先端部流路
54、63 可動体
55、66、67 ばね(形状記憶合金ばね)
57、65 舌部
64 環状フランジ部
DESCRIPTION OF SYMBOLS 1 Engine 2, 3 Pulley 4 Compressor 5 High pressure side pressure detection means 6 Radiator (gas cooler)
7 Radiator Cooling Fan 8 Internal Heat Exchanger 9 Differential Pressure Type Expansion Mechanism 10 Evaporator 11 Gas-Liquid Separator (Accumulator)
12 Belt 13 Refrigeration cycle 14 Ventilation duct 15 Outside air inlet 16 Inside air inlet 17 Inside / outside air switching damper 18 Inside / outside air switching damper actuator 19 Blower fan 20 Evaporator outlet air temperature sensor 21 Heater core 22 Air mix damper 23 Air mix damper actuator 24 25, 26 Dampers 27, 28, 29 Air outlet 31 Air conditioning control device 32 Outside air temperature sensor 33 Solar radiation sensor 34 Car interior temperature sensor 35 High pressure side refrigerant pressure signal 36 Clutch controller 37 Clutch control signal 38 Compressor capacity control signal 39 Air mix damper Control signal 40 Inside / outside air switching damper control signals 41, 51, 61 Differential pressure type expansion mechanism 42 Fixed orifice part 43 as refrigerant communication passage Expansion mechanism refrigerant inlet 44 Expansion mechanism refrigerant outlet 45 Differential pressure valve 45a, 45b Tip of differential pressure valve 46 spring 52, 56 engaging portions 53 and 62 valve tip channel 54,63 movable member 55,66,67 spring (shape memory alloy spring)
57, 65 tongue 64 annular flange

Claims (7)

冷媒の超臨界作動領域を有する蒸気圧縮式の冷凍サイクル中に、該冷凍サイクル中を循環する冷媒を膨張機構により断熱膨張することができ、膨張機構の入口側冷媒圧力と出口側冷媒圧力との差圧に応じて膨張機構を通過する冷媒の量を調節することのできる差圧式膨張手段を備えており、該差圧式膨張手段は、前記差圧が予め設定された開弁開始圧以上になったとき開弁を開始し、前記差圧の増加に伴い開弁量を増大していく差圧弁を備えており、該差圧弁は、該差圧弁を貫通して延び、膨張機構に流入した冷媒が常時差圧弁を通過して断熱膨張することのできる冷媒連通路を備えており、前記差圧弁の閉弁位置は該差圧弁の先端部が膨張機構の躯体の係止部に係止されることによって決められるとともに、該膨張機構の躯体の前記係止部以外の差圧弁の先端部部位には冷媒が常時流通可能な弁先端部流路が形成されており、該弁先端部流路は、膨張機構に流入されてくる冷媒の温度に応じて変位可能な可動体を備えた温度補正手段により、該流入されてくる冷媒の温度に応じて流路断面積が可変されるように構成されていることを特徴とする蒸気圧縮式冷凍サイクル。   During the vapor compression refrigeration cycle having the supercritical operating region of the refrigerant, the refrigerant circulating in the refrigeration cycle can be adiabatically expanded by the expansion mechanism, and the inlet side refrigerant pressure and the outlet side refrigerant pressure of the expansion mechanism Differential pressure type expansion means capable of adjusting the amount of refrigerant passing through the expansion mechanism according to the differential pressure, wherein the differential pressure type expansion means has the differential pressure equal to or higher than a preset valve opening start pressure. A differential pressure valve that starts valve opening and increases the valve opening amount as the differential pressure increases. The differential pressure valve extends through the differential pressure valve and flows into the expansion mechanism. Is provided with a refrigerant communication passage that can always pass through the differential pressure valve and adiabatically expand, and the closed position of the differential pressure valve is locked by the locking portion of the expansion mechanism housing at the tip of the differential pressure valve. And the locking portion of the housing of the expansion mechanism The tip portion of the outer differential pressure valve is formed with a valve tip passage that allows the refrigerant to always flow, and the valve tip passage can be displaced according to the temperature of the refrigerant flowing into the expansion mechanism. A vapor compression refrigeration cycle, characterized in that the flow path cross-sectional area is varied according to the temperature of the inflowing refrigerant by a temperature correction means including a movable body. 前記差圧弁の閉弁時において、前記流入されてくる冷媒の温度が予め定めた所定値以上の場合、前記弁先端部流路の流路断面積が予め定めた所定の流路断面積に保たれるように構成されている、請求項1に記載の蒸気圧縮式冷凍サイクル。   When the differential pressure valve is closed, if the temperature of the refrigerant flowing in is equal to or higher than a predetermined value, the flow path cross-sectional area of the valve tip end flow path is maintained at a predetermined flow path cross-sectional area. The vapor compression refrigeration cycle according to claim 1, wherein the vapor compression refrigeration cycle is configured to lean. 前記温度補正手段の可動体は、前記流入されてくる冷媒の温度が低くなるに従い、前記弁先端部流路の流路断面積が大きくなるように変位される、請求項1または2に記載の蒸気圧縮式冷凍サイクル。   The movable body of the temperature correction means is displaced so that a flow passage cross-sectional area of the valve tip portion flow passage becomes larger as the temperature of the inflowing refrigerant becomes lower. Vapor compression refrigeration cycle. 前記弁先端部流路の、前記流入されてくる冷媒の温度が予め定めた前記所定値よりも低くなったときの流路断面積が、流路相当直径にて0.5mm以上0.8mm以下の範囲内に設定されている、請求項2または3に記載の蒸気圧縮式冷凍サイクル。   The flow passage cross-sectional area of the valve tip portion flow passage when the temperature of the inflowing refrigerant becomes lower than the predetermined value is 0.5 mm or more and 0.8 mm or less in the flow passage equivalent diameter. The vapor compression refrigeration cycle according to claim 2 or 3, which is set within a range of. 前記温度補正手段の可動体は、前記流入されてくる冷媒の温度が低くなるに従い、前記弁先端部流路の流路断面積が前記差圧弁の冷媒連通路の流路断面積よりも大きくなるように変位される、請求項3または4に記載の蒸気圧縮式冷凍サイクル。   In the movable body of the temperature correction means, the flow passage cross-sectional area of the valve tip portion flow passage becomes larger than the flow passage cross-sectional area of the refrigerant communication passage of the differential pressure valve as the temperature of the refrigerant flowing in becomes lower. The vapor compression refrigeration cycle according to claim 3 or 4, which is displaced as follows. 車両用空調装置の冷凍サイクルとして用いられる、請求項1〜5のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 5, which is used as a refrigeration cycle for a vehicle air conditioner. 使用される冷媒が二酸化炭素からなる、請求項1〜6のいずれかに記載の蒸気圧縮式冷凍サイクル。   The vapor compression refrigeration cycle according to any one of claims 1 to 6, wherein the refrigerant used is made of carbon dioxide.
JP2008213698A 2008-08-22 2008-08-22 Vapor compression refrigeration cycle Expired - Fee Related JP5209412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213698A JP5209412B2 (en) 2008-08-22 2008-08-22 Vapor compression refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213698A JP5209412B2 (en) 2008-08-22 2008-08-22 Vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2010048474A JP2010048474A (en) 2010-03-04
JP5209412B2 true JP5209412B2 (en) 2013-06-12

Family

ID=42065702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213698A Expired - Fee Related JP5209412B2 (en) 2008-08-22 2008-08-22 Vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP5209412B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2545332B1 (en) 2010-03-08 2019-12-25 Carrier Corporation Refrigerant distribution apparatus and methods for transport refrigeration system
JP5971548B2 (en) * 2012-02-27 2016-08-17 パナソニックIpマネジメント株式会社 Refrigeration equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266660A (en) * 2004-11-19 2006-10-05 Tgk Co Ltd Expansion device
JP2007033021A (en) * 2005-05-11 2007-02-08 Tgk Co Ltd Temperature and differential pressure sensing valve
JP2007240138A (en) * 2006-02-07 2007-09-20 Tgk Co Ltd Expansion device
JP5292537B2 (en) * 2006-08-25 2013-09-18 株式会社テージーケー Expansion device

Also Published As

Publication number Publication date
JP2010048474A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
US20190111756A1 (en) Refrigeration cycle device
US11718156B2 (en) Refrigeration cycle device
US10427497B2 (en) Air conditioner for vehicle
US9878595B2 (en) Control means for the compressor of a vehicle air conditioner based on target high pressure
JP4075530B2 (en) Refrigeration cycle
JP4522641B2 (en) Vapor compression refrigerator
JP6011507B2 (en) Refrigeration cycle equipment
CN109642756B (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
WO2017022512A1 (en) Air conditioning device for vehicle
WO2019235412A1 (en) Air conditioner
WO2014054229A1 (en) Heat pump cycle and integration valve for heat pump cycle
US20210190389A1 (en) Refrigeration cycle device
JP5209412B2 (en) Vapor compression refrigeration cycle
JP2019105422A (en) Joint block for vehicle
JP2008082637A (en) Supercritical refrigerating cycle
JP6167891B2 (en) Heat pump cycle device.
JP2006313050A (en) Supercritical refrigeration cycle and vehicular air conditioner
JP4232567B2 (en) Refrigeration cycle equipment
JP5043496B2 (en) Vapor compression refrigeration cycle
JP6714864B2 (en) Refrigeration cycle equipment
JP2016008792A (en) Heat pump cycle device
JP6228263B2 (en) Air conditioner for vehicles
JP2013193673A (en) Vehicle air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5209412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees