WO2014054229A1 - Heat pump cycle and integration valve for heat pump cycle - Google Patents

Heat pump cycle and integration valve for heat pump cycle Download PDF

Info

Publication number
WO2014054229A1
WO2014054229A1 PCT/JP2013/005450 JP2013005450W WO2014054229A1 WO 2014054229 A1 WO2014054229 A1 WO 2014054229A1 JP 2013005450 W JP2013005450 W JP 2013005450W WO 2014054229 A1 WO2014054229 A1 WO 2014054229A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
passage
pressure
evaporator
heat exchanger
Prior art date
Application number
PCT/JP2013/005450
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 哲也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014054229A1 publication Critical patent/WO2014054229A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/048Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with valve seats positioned between movable valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • This disclosure relates to a heat pump cycle and an integrated valve applied to the heat pump cycle.
  • the outdoor heat exchanger absorbs heat by switching to the refrigerant flow path connecting in parallel the evaporator and the outdoor heat exchanger that exchanges heat with the outside air on the downstream side of the radiator. It functions as a vessel.
  • heat is absorbed from the blown air by the evaporator and heat is absorbed from the outdoor air by the outdoor heat exchanger, so that a heat radiation amount of the refrigerant in the radiator can be secured and high-temperature blown air can be blown out into the room.
  • the outdoor heat exchanger is caused to function as a radiator by switching to the refrigerant flow path connecting the radiator and the outdoor heat exchanger in parallel on the downstream side of the compressor.
  • heat is radiated to the blown air by the radiator, and heat is radiated to the outside air by the outdoor heat exchanger, so that the amount of heat absorbed by the refrigerant in the evaporator can be secured, and the low-temperature blown air can be blown into the room.
  • a refrigerant flow path similar to that in Patent Document 1 is used during heating and dehumidifying operation, and a radiator, an outdoor heat exchanger, and an evaporator are disposed downstream of the compressor during weak cooling and dehumidifying operation.
  • the outdoor heat exchanger functions as a radiator. Also in this case, it is possible to secure the heat absorption amount of the refrigerant in the evaporator by dissipating the refrigerant in both the radiator and the outdoor heat exchanger.
  • the refrigerant evaporation temperature in the outdoor heat exchanger may be decreased and the heat absorption amount of the refrigerant in the outdoor heat exchanger may be increased.
  • the refrigerant evaporation temperature in the outdoor heat exchanger is lowered, the refrigerant evaporation temperature of the evaporator is also lowered, so that frost (frost) is generated in the evaporator.
  • the refrigerant evaporation temperature in the outdoor heat exchanger may be increased and the heat absorption amount of the refrigerant in the outdoor heat exchanger may be reduced.
  • the refrigerant evaporation temperature in the outdoor heat exchanger is raised, the refrigerant evaporation temperature of the evaporator also rises, so that the blown air cannot be sufficiently dehumidified.
  • the inventors of the present invention in the prior Japanese Patent Application No. 2011-82761 (hereinafter referred to as the prior application example), the serial operation in which the refrigerant flowing out from the radiator is flowed in the order of the outdoor heat exchanger and the evaporator.
  • the refrigeration cycle apparatus which switches the mode and the parallel operation mode which flows the refrigerant
  • a constant pressure adjusting unit that maintains the pressure of the refrigerant on the evaporator outlet side at a predetermined pressure is disposed, and the pressure of the refrigerant on the outdoor heat exchanger outlet side and the evaporator outlet side in the parallel operation mode are arranged.
  • a constant pressure valve composed of a bellows or the like is adopted as the constant pressure adjusting unit, but the control pressure in the constant pressure valve of the prior application example is proportional to the increase in the refrigerant flow rate on the evaporator outlet side. Tend to rise.
  • the present disclosure provides a heat pump cycle capable of appropriately changing the heat absorption amounts of the evaporator and the outdoor heat exchanger in the parallel operation mode and appropriately adjusting the cooling capacity in the series operation mode. This is the first purpose.
  • a second object is to provide a heat pump cycle integrated valve that can simplify the cycle configuration of the heat pump cycle that can achieve the first object.
  • a heat pump cycle radiates heat to a compressor that compresses and discharges a refrigerant, and blown air that blows the refrigerant discharged from the compressor to an air-conditioning target space.
  • Heat exchanger outdoor heat exchanger that exchanges heat from the refrigerant that flows out of the radiator with the outside air
  • evaporator that evaporates the refrigerant flowing in the cycle and cools the blown air before passing through the radiator, and outflow from the radiator
  • An operation mode switching unit that switches between a serial operation mode in which the refrigerant flows in the order of the outdoor heat exchanger and the evaporator, and a parallel operation mode in which the refrigerant that has flowed out of the radiator flows to both the outdoor heat exchanger and the evaporator, and an evaporator
  • a pressure adjusting unit that adjusts the pressure of the circulating refrigerant, and a function exhibiting state that exhibits a constant pressure adjusting function that maintains the pressure of the refrigerant flowing through the evaporator at a predetermined set pressure value.
  • the operation state switching unit switches the operation state of the pressure adjustment unit to the function exhibiting state during the parallel operation mode, and switches the operation state of the pressure adjustment unit to the function stop state during the series operation mode.
  • the pressure adjustment unit does not maintain the pressure of the refrigerant on the evaporator outlet side at the set pressure value, so that the control interference between the constant pressure valve and the compressor does not occur, and the evaporator outlet side It is possible to adjust the pressure of the refrigerant to a pressure required to secure the target cooling capacity.
  • the heat absorption amounts of the evaporator and the outdoor heat exchanger in the parallel operation mode can be appropriately changed, and the cooling capacity in the series operation mode can be appropriately adjusted.
  • An integrated valve for a heat pump cycle includes a radiator that dissipates heat discharged from a compressor to blown air that blows air to a space to be air-conditioned, and outdoor heat that exchanges heat between the refrigerant flowing out of the radiator and the outside air.
  • An exchanger an evaporator that evaporates the refrigerant flowing in the cycle and cools the blown air before passing through the radiator, a series operation mode in which the refrigerant flowing out of the radiator flows in the order of the outdoor heat exchanger, the evaporator, and heat dissipation
  • the present invention is applied to a heat pump cycle that can be switched to a parallel operation mode in which the refrigerant flowing out of the vessel flows to both the outdoor heat exchanger and the evaporator.
  • the integrated valve for the heat pump cycle includes a first refrigerant passage that guides the refrigerant flowing out of the outdoor heat exchanger to the evaporator side in the series operation mode, and the refrigerant flowing out of the radiator in the parallel operation mode.
  • Bypass body that bypasses the outdoor heat exchanger and leads to the evaporator side, a body in which a second refrigerant passage that guides the refrigerant that has flowed out of the evaporator to the suction side of the compressor is formed, and the bypass passage that is housed inside the body
  • the bypass opening / closing valve body By driving the bypass opening / closing valve body for opening and closing the first actuating rod connected to the bypass opening / closing valve body, the bypass opening / closing valve body is displaced to the closed position of the bypass passage in the series operation mode, A drive unit for displacing the bypass opening / closing valve element to the open position of the bypass passage in the parallel operation mode, and a preset pressure that sets the pressure of the refrigerant accommodated in the body and flowing into the second refrigerant passage A pressure adjusting valve body for maintaining the value and the second refrigerant passage when the drive unit displaces the bypass opening / closing valve body to the closed position of the bypass passage than when the drive portion is displaced to the
  • the passage opening degree of the second refrigerant passage is enlarged by the pressure adjusting valve body, and the refrigerant on the evaporator outlet side is expanded. Therefore, the refrigerant pressure at the outlet side of the evaporator is required to secure the target cooling capacity without causing control interference between the pressure adjusting valve body and the compressor. The pressure can be adjusted.
  • the integrated valve for the heat pump cycle of the present disclosure it is possible to appropriately change the heat absorption amounts of the evaporator and the outdoor heat exchanger in the parallel operation mode and appropriately adjust the cooling capacity in the series operation mode.
  • bypass opening / closing valve body and a pressure adjusting valve body are accommodated and integrated in the body in which the first and second refrigerant passages and the bypass passage are formed, and the pressure adjusting valve body is further displaced.
  • the pressure adjusting valve body is displaced by the second operating rod in conjunction with the displacement of the bypass passage to the closed position without providing a dedicated displacement portion (driving portion) for the heat pump cycle.
  • the cycle configuration can be simplified.
  • the second operating rod is connected to at least one of the bypass opening / closing valve body and the pressure adjusting valve body, and the pressure adjusting valve body is displaced in conjunction with the displacement of the bypass opening / closing valve body.
  • the pressure adjusting valve element is displaced in conjunction with the bypass opening / closing valve element, the displacement of the pressure adjusting valve element is adjusted by the drive unit, so that the evaporator outlet side Since the refrigerant pressure can be maintained at the set pressure value, the cycle configuration of the heat pump cycle can be realized with a simpler configuration.
  • bypass passage is joined to the first refrigerant passage on the downstream side of the refrigerant flow with respect to the bypass opening and closing valve body, and the drive unit places the bypass opening and closing valve body in the opening position of the bypass passage in the first refrigerant passage.
  • a backflow prevention valve is arranged to prevent the refrigerant flowing through the bypass passage from flowing out to the outdoor heat exchanger side through the first refrigerant passage.
  • the bypass opening / closing valve body, the pressure adjusting valve body, and the backflow prevention valve are housed and integrated in the body, the cycle configuration of the heat pump cycle can be realized with a simpler configuration.
  • This is applied to the vehicle air conditioner 1.
  • the heat pump cycle 10 functions in the vehicle air conditioner 1 to cool or heat the vehicle interior air blown into the vehicle interior that is the air-conditioning target space.
  • the heat pump cycle 10 includes a cooling mode (cooling operation) refrigerant flow path for cooling the vehicle interior, a dehumidification heating mode (dehumidification operation) refrigerant flow path for heating while dehumidifying the vehicle interior, and heating for heating the vehicle interior.
  • the refrigerant flow path in the mode (heating operation) can be switched.
  • a first dehumidifying heating mode that is executed during normal time and a second dehumidifying heating mode that is executed when the outside air temperature is extremely low can be executed. it can.
  • the cooling mode and the first dehumidifying and heating mode correspond to a series operation mode in which the refrigerant flowing out of the indoor condenser 12 is flowed in the order of the outdoor heat exchanger 15 and the indoor evaporator 20.
  • the second dehumidifying and heating mode corresponds to a parallel operation mode in which the refrigerant that has flowed out of the indoor condenser 12 flows to both the outdoor heat exchanger 15 and the indoor evaporator 20.
  • a normal chlorofluorocarbon refrigerant is employed as the refrigerant, and a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant is configured.
  • the compressor 11 sucks the refrigerant in the heat pump cycle 10, compresses and discharges it, and is an electric compressor that drives the compression mechanism 11b by the electric motor 11a.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed as the compression mechanism 11b.
  • the electric motor 11a is controlled in its operation (number of rotations) by a control signal output from the control device 100 described later, and may adopt either an AC motor or a DC motor. And the refrigerant
  • the inlet side of the indoor condenser 12 is connected to the discharge port side of the compressor 11.
  • the indoor condenser 12 is disposed in a casing 31 of an indoor air conditioning unit 30 described later, dissipates refrigerant discharged from the compressor 11 (high-pressure refrigerant), and passes through the indoor evaporator 20 described later. It is a radiator that heats the air.
  • a high-pressure passage 13 that guides the refrigerant flowing out of the indoor condenser 12 to an outdoor heat exchanger 15 described later is connected to the outlet side of the indoor condenser 12.
  • the high pressure side passage 13 is provided with a first expansion valve (first throttling portion) 14 configured to change the passage area (throttle opening) of the high pressure side passage 13.
  • the first expansion valve 14 includes a valve body configured to change the passage opening (throttle opening) of the high-pressure side passage 13, and a stepping motor that changes the throttle opening of the valve body. And an electric variable aperture mechanism configured to include the electric actuator.
  • the first expansion valve 14 of the present embodiment is composed of a variable throttle mechanism with a fully open function that fully opens the high-pressure side passage 13 when the throttle opening is fully opened. That is, the first expansion valve 14 can prevent the refrigerant from depressurizing by fully opening the high-pressure side passage 13.
  • the operation of the first expansion valve 14 is controlled by a control signal output from the control device 100.
  • the inlet side of the outdoor heat exchanger 15 is connected to the outlet side of the first expansion valve 14.
  • the outdoor heat exchanger 15 exchanges heat between the refrigerant circulating inside and the outside air blown from a blower fan (not shown).
  • the outdoor heat exchanger 15 functions as an evaporator that evaporates the refrigerant and exerts an endothermic effect in a heating mode, which will be described later, and functions as a radiator that radiates the refrigerant in a cooling mode.
  • the first low-pressure side passage 16 that guides the refrigerant flowing out of the outdoor heat exchanger 15 to the suction side of the compressor 11 through an accumulator 22 described later, and the outdoor heat exchanger 15.
  • a second low-pressure side passage 18 is connected to guide the discharged refrigerant to the suction side of the compressor 11 via an indoor evaporator 20 and an accumulator 22 which will be described later.
  • the first low-pressure side passage 16 is provided with a first on-off valve (first on-off portion) 17.
  • the low-pressure side opening / closing valve 17 is an electromagnetic valve that opens and closes the first low-pressure side passage 16, and its operation is controlled by a control signal output from the control device 100.
  • the control device 100 of the present embodiment closes the second low-pressure side passage 18 by the second expansion valve 19 described later.
  • the low pressure side opening / closing valve 17 and the second expansion valve 19 are controlled.
  • the first low-pressure side passage 16 is closed by the low-pressure side opening / closing valve 17
  • the low-pressure side opening / closing valve 17 and the second low-pressure side opening / closing valve 17 are opened so that the second low-pressure side passage 18 is opened by the second expansion valve 19 described later.
  • the expansion valve 19 is controlled.
  • the refrigerant flowing out of the outdoor heat exchanger 15 flows to the first low pressure side passage 16 side when the low pressure side opening / closing valve 17 is open, and when the low pressure side opening / closing valve 17 is closed, 2 Flows to the low pressure side passage 18 side.
  • the low-pressure side opening / closing valve 17 functions to switch the cycle configuration (refrigerant flow path) by opening and closing the first low-pressure side passage 16. Therefore, the low-pressure side opening / closing valve 17 constitutes a refrigerant flow switching unit that switches the refrigerant flow of the refrigerant circulating in the cycle.
  • the second low pressure side passage 18 is provided with a second expansion valve (second throttle portion) 19 configured so that the passage area (throttle opening) of the second low pressure side passage 18 can be changed. More specifically, the second expansion valve 19 changes the opening degree of the second low-pressure side passage 18 (throttle opening degree) and the throttle opening degree of the valve body.
  • This is an electric variable aperture mechanism that includes an electric actuator including a stepping motor.
  • the second expansion valve 19 of the present embodiment fully opens the second low pressure side passage 18 when the throttle opening is fully opened, and closes the second low pressure side passage 18 when the throttle opening is fully closed. It consists of a variable throttle mechanism with a fully closed function. That is, the second expansion valve 19 can prevent the refrigerant from depressurizing and can open and close the second low-pressure side passage 18. The operation of the second expansion valve 19 is controlled by a control signal output from the control device 100.
  • the inlet side of the indoor evaporator 20 is connected to the outlet side of the second expansion valve 19.
  • the indoor evaporator 20 is disposed in the casing 31 of the indoor air-conditioning unit 30 on the upstream side of the air flow in the vehicle interior of the indoor condenser 12, and the refrigerant that circulates in the interior thereof in the cooling mode, the dehumidifying heating mode, and the like.
  • the evaporator cools the air blown into the vehicle interior by exchanging heat with the air blown into the vehicle compartment before passing through the indoor condenser 12 (before passing through the radiator) and evaporating it.
  • the inlet side of the accumulator 22 is connected to the outlet side of the indoor evaporator 20 via the evaporator outlet side passage 21.
  • the accumulator 22 is a gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 22 and stores excess refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 22. Therefore, the accumulator 22 functions to prevent the liquid phase refrigerant from being sucked into the compressor 11 and prevent liquid compression in the compressor 11.
  • the refrigerant in the range from the outlet side of the indoor condenser 12 in the high-pressure side passage 13 to the inlet side of the first expansion valve 14 is supplied to the outlet side of the outdoor heat exchanger 15 in the second low-pressure side passage 18.
  • a bypass passage 41 that leads to a range from the first expansion valve 19 to the inlet side of the second expansion valve 19 is provided.
  • the bypass passage 41 is a refrigerant passage that guides the refrigerant flowing out of the indoor condenser 12 to the inlet side of the second expansion valve 19 by bypassing the first expansion valve 14 and the outdoor heat exchanger 15.
  • bypass opening / closing valve 42 is arranged in the bypass passage 41.
  • the bypass opening / closing valve 42 is an electromagnetic valve that opens and closes the bypass passage 41, and its operation is controlled by a control signal output from the control device 100.
  • the bypass opening / closing valve 42 functions to switch the cycle configuration (refrigerant flow path) by opening and closing the bypass passage 41. Therefore, the bypass opening / closing valve 42 constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle together with the low pressure side opening / closing valve 17.
  • a check valve (backflow prevention valve) 43 is provided between the outlet side of the outdoor heat exchanger 15 in the second low-pressure side passage 18 and the junction of the bypass passage 41 and the second low-pressure side passage 18. Is arranged.
  • the check valve 43 allows the refrigerant to flow from the outlet side of the outdoor heat exchanger 15 to the inlet side of the second expansion valve 19, and from the inlet side of the second expansion valve 19 to the outlet side of the outdoor heat exchanger 15.
  • the check valve 43 prevents the refrigerant that has joined the second low-pressure side passage 18 from flowing to the outdoor heat exchanger 15 side.
  • the pressure regulating valve 44 is disposed in the evaporator outlet side passage 21 between the outlet side of the indoor evaporator 20 and the joining portion of the accumulator 22 and the first low pressure side passage 16.
  • the pressure adjusting valve 44 is a pressure adjusting unit that adjusts the pressure of the refrigerant flowing through the indoor evaporator 20.
  • the pressure adjustment valve 44 of the present embodiment is in a function exhibiting state that exhibits a constant pressure adjustment function that maintains the pressure of the refrigerant flowing through the indoor evaporator 20 at a predetermined set pressure value, and a function stop state that does not exhibit the constant pressure adjustment function. It is configured to be switchable.
  • the bypass on-off valve 42, the check valve 43, the pressure adjustment valve 44, and the like surrounded by the one-dot chain line in FIG. are integrated as one.
  • FIGS. 2 and 3 are schematic cross-sectional views of the integrated valve 4 of the present embodiment.
  • the integrated valve 4 has a body 40 that forms its outer shell and is composed of a columnar metal block body.
  • the body 40 is formed with a first refrigerant passage 18a constituting the second low-pressure side passage 18, a bypass passage 41, and a second refrigerant passage 21a constituting the second low-pressure side passage.
  • a bypass passage 41, a first refrigerant passage 18a, and a second refrigerant passage 21a are formed in order from the upper side.
  • the bypass passage 41 introduces the refrigerant that has flowed out from the indoor condenser 12 through the first refrigerant introduction port 401 that opens in the side wall of the body 40, and introduces the refrigerant to the lower side of the first refrigerant introduction port 401.
  • This is a refrigerant passage that leads to the indoor evaporator 20 side (second expansion valve 19 side) through the opened first refrigerant outlet port 404.
  • the bypass passage 41 of the present embodiment includes a pair of passages extending in the radial direction (left and right direction on the paper surface) of the body 40 and a passage extending in the axial direction (up and down direction on the paper surface) of the body 40 and communicating the pair of passages.
  • the refrigerant flowing through the inside flows in a U-shape inside the body 40.
  • a disk-shaped bypass opening / closing valve body 421 for opening and closing the bypass passage 41 a first shaft (first operating rod) connected to the upper surface side of the bypass opening / closing valve body 421 422, a part of a second shaft (second operating rod) 443 connected to a pressure adjusting valve body 441 described later is disposed.
  • the bypass opening / closing valve element 421 is connected to the movable member of the drive motor 423 via the first shaft 422.
  • the drive motor 423 constitutes a drive unit that displaces the bypass opening / closing valve element 421 to the closed position and the open position of the bypass passage 41 by driving the first shaft 422 in the axial direction.
  • the drive motor 423 displaces the bypass opening / closing valve element 421 to a position in close contact with the valve seat portion 406 formed in the passage extending in the axial direction in the bypass passage 41.
  • the bypass opening / closing valve element 421 is displaced to a position away from the valve seat 406 (see FIG. 3).
  • the drive motor 423 of the present embodiment is an electric motor that can arbitrarily displace the bypass opening / closing valve element 421 in the range of the closed position and the open position of the bypass passage 41, such as a stepping motor. Thereby, the opening / closing speed of the bypass passage 41 by the bypass opening / closing valve body 421 can be made moderate.
  • the operation of the drive motor 423 is controlled by a control signal output from the control device 100.
  • annular seal member 421a is disposed at a portion that contacts the valve seat portion 406, and the seal when the seal member 421a is in close contact with the valve seat portion 406 is sealed. Is secured.
  • the first refrigerant passage 18a introduces the refrigerant that has flowed out of the outdoor heat exchanger 15 through the second refrigerant introduction port 402 that opens in the side wall of the body 40 in the serial operation mode, and the introduced refrigerant is introduced into the first refrigerant passage.
  • This is a refrigerant passage that leads to the indoor evaporator 20 side (second expansion valve 19 side) via the outlet 404.
  • the first refrigerant passage 18a of the present embodiment is configured by a passage extending in the radial direction of the body 40 (left and right direction in the drawing), and on the downstream side of the bypass opening / closing valve body 421 in the bypass passage 41, the bypass passage 41 and Have joined.
  • a check valve 43 is arranged on the second refrigerant introduction port 402 side in the first refrigerant passage 18a.
  • the check valve 43 when the drive motor 423 displaces the bypass opening / closing valve element 421 to the open position of the bypass passage 41, the refrigerant flowing through the bypass passage 41 exchanges outdoor heat through the first refrigerant passage 18a. It is a backflow prevention valve which prevents flowing out to the container 15 side.
  • the check valve 43 is configured such that when the refrigerant flowing through the bypass passage 41 flows toward the second refrigerant introduction port 402, the valve body 431 is moved to the second refrigerant introduction port by the pressure of the refrigerant.
  • the first refrigerant passage 18a is closed when the valve body 431 is brought into close contact with the valve seat portion 432 by being pressed toward the 402 side.
  • the check valve 43 is configured such that when the refrigerant flows from the second refrigerant introduction port 402 side to the first refrigerant discharge port 404 side, the valve body 431 is caused by the pressure of the refrigerant.
  • the first refrigerant passage 18a is opened when the valve body 431 is separated from the valve seat portion 432 by being pressed toward the 404 side.
  • the second refrigerant passage 21 a introduces the refrigerant that has flowed out from the indoor evaporator 20 through the third refrigerant introduction port 403 that opens to the bottom wall of the body 40, and the introduced refrigerant opens to the side wall of the body 40.
  • This is a refrigerant passage that leads to the accumulator 22 (the suction side of the compressor 11) via the refrigerant outlet 405.
  • the second refrigerant passage 21a of the present embodiment includes a passage extending in the radial direction (left and right direction on the paper surface) of the body 40 and a passage extending in the axial direction (up and down direction on the paper surface) of the body 40,
  • the inside of the body 40 flows in an L shape.
  • the refrigerant flowing through the first refrigerant passage 18a in order to promote heat exchange between the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a via the body 40, the refrigerant flowing through the first refrigerant passage 18a
  • the refrigerant flowing in the two refrigerant passages 21a is opposed to the refrigerant. That is, in the second refrigerant passage 21a of the present embodiment, the flow direction of the refrigerant flowing through at least a part of the second refrigerant passage 21a is opposite to the flow direction of the refrigerant flowing through at least a part of the first refrigerant passage 18a. It is formed to become.
  • the second refrigerant passage 21a of the present embodiment includes a second refrigerant passage 21a in which the flow direction of the refrigerant flowing through the passage extending in the radial direction of the body 40 is the first of the passages extending in the radial direction of the body 40 in the first refrigerant passage 18a. It is formed so as to be in a direction opposite to the flow direction of the refrigerant flowing through the passage on the side of the one refrigerant outlet 404.
  • a disc-shaped pressure adjusting valve body 441 In the second refrigerant passage 21a, a disc-shaped pressure adjusting valve body 441, a spring (elastic member) 442, a part of the second shaft 443, a plate member 443a, and the like are arranged.
  • the pressure adjusting valve body 441 changes the passage opening degree (passage area) of the second refrigerant passage 21a, whereby the pressure of the refrigerant flowing into the second refrigerant passage 21a (the pressure of the refrigerant flowing through the indoor evaporator 20). Is a valve body for maintaining a predetermined set pressure value.
  • the second shaft 443 is disposed so as to pass through a through hole 408 that allows the second refrigerant passage 21 a and the bypass passage 41 in the body 40 to communicate with each other, and one end side thereof is in contact with the recess of the bypass opening / closing valve body 421.
  • the pressure adjusting valve body 441 is connected.
  • the pressure adjusting valve element 441 according to the present embodiment is in contact with the bypass opening / closing valve element 421 via the second shaft 443, and is displaced in conjunction with the displacement of the bypass opening / closing valve element 421.
  • a seal member (seal portion) 408a that suppresses refrigerant leakage from a gap formed between the second shaft 443 and the through hole 408 is provided in the through hole 408 that allows the second refrigerant passage 21a and the bypass passage 41 to communicate with each other.
  • the seal member 408a of the present embodiment is configured by a resin O-ring so as to function as a vibration absorbing member that absorbs vibration of the pressure adjusting valve body 441 in addition to the function of sealing the through hole 408. ing.
  • the plate member 443a is a plate-like member disposed on the third refrigerant introduction port 403 side, and the outermost peripheral side is fixed to the second refrigerant passage 21a by a connector 45 fixed to the third refrigerant introduction port 403.
  • the plate member 443a has a plurality of through holes for circulating the refrigerant and a through hole that supports the other end of the second shaft 443.
  • the connector 45 is a member that couples refrigerant piping to the third refrigerant introduction port 403, and is fixed to the third refrigerant introduction port 403 by caulking the body 40.
  • the spring 442 is constituted by a cylindrical coil spring extending in the axial direction of the body 40, and biases the pressure adjusting valve body 441 in a direction (valve closing direction) to press against the valve seat portion 407 formed in the second refrigerant passage 21a. Is configured to do.
  • the resultant force of the load (spring force) by the spring 442 and the pressure of the refrigerant flowing through the second refrigerant passage 21a (differential pressure before and after the pressure adjustment valve body 441). Acts on the valve closing side (upper side) of the pressure adjusting valve body 441.
  • the drive motor 423 causes the motor axial force to act on the pressure adjusting valve body 441 so as to oppose (overcoming) the resultant force acting on the valve closing side (upper side) of the pressure adjusting valve body 441.
  • the drive motor 423 has a conversion mechanism (feed screw mechanism) that converts the rotational motion of the motor into the vertical motion of the shafts 422 and 443, and by adjusting the amount of rotation of the motor.
  • the lift amount (displacement amount) of the pressure adjusting valve element 441 can be controlled.
  • the pressure adjustment is performed by adjusting the rotation amount of the drive motor 423 so that the refrigerant pressure flowing into the second refrigerant passage 21a becomes a set pressure value (pressure at which frost formation on the indoor evaporator 20 does not occur).
  • the pressure adjusting valve body 441 enters a function exhibiting state that exhibits a constant pressure maintaining function of maintaining the pressure of the refrigerant flowing into the second refrigerant passage 21a within the set pressure range.
  • the pressure adjustment The valve body 441 enters a function stop state where the constant pressure maintaining function is not exhibited.
  • the indoor air-conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior, and the blower 32, the above-described indoor condenser 12, and the indoor evaporator 20 are disposed in a casing 31 that forms the outer shell of the interior air conditioning unit 30.
  • the heater core 34 and the like are accommodated.
  • the casing 31 forms an air passage for the air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • An inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is arranged on the most upstream side of the blown air flow in the casing 31.
  • the inside / outside air switching device 33 is formed with an inside air introduction port for introducing inside air into the casing 31 and an outside air introduction port for introducing outside air. Furthermore, inside / outside air switching device 33 is provided with an inside / outside air switching door that continuously adjusts the opening area of the inside air introduction port and the outside air introduction port to change the air volume ratio between the inside air volume and the outside air volume. Has been.
  • a blower 32 that blows air introduced through the inside / outside air switching device 33 toward the passenger compartment is disposed on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan 32a by an electric motor 32b, and the number of rotations (the amount of blown air) is controlled by a control signal (control voltage) output from a control device described later.
  • the centrifugal multiblade fan 32a functions as a blower that blows air into the passenger compartment.
  • the indoor evaporator 20 On the downstream side of the air flow of the blower 32, the indoor evaporator 20, the heater core 34, and the indoor condenser 12 are arranged in this order with respect to the flow of the air blown into the vehicle interior.
  • the indoor evaporator 20 is disposed upstream of the indoor condenser 12 and the heater core 34 in the flow direction of the air blown into the vehicle interior.
  • the heater core 34 is a heat exchanger for heating that exchanges heat between engine cooling water that outputs driving force for vehicle travel and air blown into the passenger compartment.
  • the heater core 34 of this embodiment is arrange
  • a cold air bypass passage 35 is formed in which the air that has passed through the indoor evaporator 20 is caused to bypass the indoor condenser 12 and the heater core 34.
  • the air after passing through the indoor evaporator 20 passes through the indoor condenser 12 and the heater core 34 on the downstream side of the indoor evaporator 20 and on the upstream side of the indoor condenser 12 and the heater core 34.
  • An air mix door 36 for adjusting the air volume ratio between the air to be passed and the air passing through the cold air bypass passage 35 is disposed. Further, on the downstream side of the air flow of the indoor condenser 12 and the downstream side of the air flow of the cold air bypass passage 35, a mixing space for mixing the air that has passed through the indoor condenser 12 and the air that has passed through the cold air bypass passage 35 is provided. ing.
  • an air outlet that blows the conditioned air mixed in the mixing space into the vehicle interior that is the air-conditioning target space is arranged.
  • the air outlet there are a face air outlet that blows air-conditioned air to the upper body of the passenger in the vehicle interior, a foot air outlet that blows air-conditioned air to the feet of the passenger, and a defroster that blows air-conditioned air to the inner side surface of the vehicle front window glass.
  • an air outlet there is an air outlet.
  • the air mix door 36 is driven by a servo motor (not shown) that operates according to a control signal output from the control device.
  • a face door (not shown) that adjusts the opening area of the face outlet
  • a foot door that adjusts the opening area of the foot outlet
  • a defroster door (not shown) for adjusting the opening area of the defroster outlet is disposed.
  • These face doors, foot doors, and defroster doors constitute a blower outlet mode switching unit that switches a blower outlet mode, and are activated by a control signal output from a control device to be described later via a link mechanism or the like. Is driven by a servo motor (not shown).
  • the control device 100 is composed of a well-known microcomputer including a CPU and memory (ROM, RAM, etc.) and its peripheral circuits, performs various calculations and processing based on a control program stored in the memory, Controls the operation of various connected control devices.
  • an inside air sensor that detects the vehicle interior temperature Tr
  • an outside air sensor that detects the outside air temperature Tam
  • a solar radiation sensor that detects the amount of solar radiation Ts in the vehicle interior
  • An evaporator temperature sensor as an evaporator blowing temperature detection unit for detecting temperature (evaporator temperature) Te
  • a discharge temperature sensor for detecting the temperature Td of the refrigerant discharged from the compressor 11, and a blown air temperature TAV to be blown into the vehicle interior
  • a sensor group for air conditioning control such as a blown air temperature sensor as a blown temperature detecting unit to be detected is connected.
  • an operation panel (not shown) disposed near the instrument panel in front of the vehicle interior is connected to the input side of the control device 100, and operation signals from various operation switches provided on the operation panel are input.
  • various operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, a temperature setting switch for setting a set temperature in the vehicle interior, and a mode selection switch for selecting an operation mode of the heat pump cycle 10. Etc. are provided.
  • control device 100 is configured such that a control unit that controls the operation of various control devices connected to the output side thereof is integrally configured.
  • the configuration (software and hardware) controls the operation of each control device.
  • operation of each control apparatus is comprised.
  • the configuration in which the operation mode in the control device 100 is switched to the cooling mode, the first dehumidifying and heating mode, the second dehumidifying and heating mode, and the heating mode constitutes the operation mode switching unit 100a.
  • a function exhibiting state in which the operating state of the pressure regulating valve 44 exhibits a constant pressure adjusting function, and a constant pressure adjusting function are provided. It is configured to switch to a function stop state that does not exhibit.
  • the structure which controls the drive motor 423 of the bypass on-off valve 42 comprises the operation state switching part 100b.
  • the vehicle air conditioner 1 of the present embodiment can be switched to the cooling mode for cooling the passenger compartment, the heating mode for heating the passenger compartment, and the dehumidifying and heating mode for heating while dehumidifying the passenger compartment.
  • the control device 100 reads the detection signal of the sensor group and the operation signal of the operation panel.
  • the control device 100 calculates a target blowing temperature TAO that is a target temperature of the blowing air blown into the vehicle interior based on the read detection signal and operation signal values based on the following formula F1.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch
  • Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor
  • Tam is the outside air temperature detected by the outside air sensor
  • Ts is detected by the solar radiation sensor.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • control device 100 determines the operating states of various control devices connected to the output side of the control device 100 according to the detection signal of the sensor group, the target blowing temperature TAO, and the operation mode selected by the mode selection switch. decide.
  • the control device 100 opens the first low-pressure side passage 16 with the low-pressure side opening / closing valve 17 and closes the second low-pressure side passage 18 with the second expansion valve 19 (fully closed). . Further, the control device 100 displaces the bypass opening / closing valve element 421 to the closed position of the bypass passage 41 by the drive motor 423 and closes the bypass passage 41 by the bypass opening / closing valve 42.
  • the pressure adjustment valve body 441 increases the passage opening of the second refrigerant passage 21a in conjunction with the displacement of the bypass opening / closing valve body 421. It is displaced to. That is, the operating state of the pressure adjustment valve 44 is a function stop state in which the constant pressure adjustment function is not exhibited.
  • the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the control signal output to the electric motor 11a of the compressor 11 is determined as follows. First, the target condenser temperature TCO of the indoor condenser 12 is determined with reference to a control map stored in advance in the memory of the control device 100 based on the target outlet temperature TAO.
  • the compressor 11 uses a feedback control method so that the temperature of the air blown into the passenger compartment approaches the target air temperature TAO.
  • a control signal to be output to the electric motor 11a is determined.
  • a predetermined target is set so that the degree of supercooling of the refrigerant flowing into the first expansion valve 14 approaches the maximum coefficient of performance (COP) of the cycle. It is determined to approach the degree of supercooling.
  • the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 20 is the heater core 34 and the indoor condensation. To pass through the air passage of the vessel 12.
  • control signals determined as described above are output to various control devices. Thereafter, a control routine such as determination of operation states of various control devices ⁇ output of control signals and the like is repeated at predetermined intervals until the operation of the vehicle air conditioner 1 is requested by an operation switch or the like. Such a control routine is repeated in the other operation modes.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the refrigerant that has flowed into the indoor condenser 12 exchanges heat with the vehicle interior blown air that has been blown from the blower 32 and passed through the indoor evaporator 20 to dissipate heat. Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13 and is decompressed and expanded by the first expansion valve 14 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan.
  • the refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the accumulator 22 through the first low-pressure side passage 16 and is separated into gas and liquid.
  • the gas-phase refrigerant separated by the accumulator 22 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
  • the liquid-phase refrigerant separated by the accumulator 22 is stored in the accumulator 22 as surplus refrigerant that is not necessary to exhibit the refrigeration capacity for which the cycle is required. Since the second low-pressure side passage 18 is closed by the second expansion valve 19, the refrigerant does not flow into the indoor evaporator 20.
  • the heat of the high-pressure refrigerant discharged from the compressor 11 by the indoor condenser 12 is radiated to the vehicle interior blown air, and the heat of the cooling water is heated by the heater core 34 in the vehicle interior blown air.
  • the heated vehicle interior blown air can be blown out into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
  • (B) Cooling Mode In the cooling mode, the control device 100 closes the first low-pressure side passage 16 with the low-pressure side opening / closing valve 17 and opens the high-pressure side passage 13 with the first expansion valve 14. Further, the control device 100 displaces the bypass opening / closing valve element 421 to the closed position of the bypass passage 41 by the drive motor 423 and closes the bypass passage 41 by the bypass opening / closing valve 42.
  • the refrigerant that has flowed out of the indoor condenser 12 is switched to the refrigerant flow path that flows in the order of the outdoor heat exchanger 15 and the indoor evaporator 20. More specifically, the refrigerant that has flowed out of the indoor condenser 12 passes through the first expansion valve 14 ⁇ the outdoor heat exchanger 15 ⁇ the second expansion valve 19 ⁇ the indoor evaporator 20 ⁇ the pressure regulating valve 44 ⁇ the accumulator 22 ⁇ the compressor 11. It flows in the order of the inhalation side. In the cooling mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in series with respect to the refrigerant flow.
  • the pressure adjustment valve body 441 increases the passage opening of the second refrigerant passage 21a in conjunction with the displacement of the bypass opening / closing valve body 421. It is displaced to. That is, the operating state of the pressure adjustment valve 44 is a function stop state in which the constant pressure adjustment function is not exhibited.
  • the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • the control signal output to the electric motor 11a of the compressor 11 is determined as follows. First, based on the target blowing temperature TAO, the target evaporator blowing temperature TEO of the blown air blown out from the indoor evaporator 20 is determined with reference to a control map stored in advance in the memory of the control device 100. Then, based on the deviation between the target evaporator blowout temperature TEO and the detected value of the evaporator temperature sensor, the temperature of the air that has passed through the indoor evaporator 20 using the feedback control method approaches the target blowout temperature TAO. A control signal output to the electric motor 11a of the compressor 11 is determined.
  • control signal output to the second expansion valve 19 is such that the degree of supercooling of the refrigerant flowing into the second expansion valve 19 approaches a target supercooling degree set in advance so that the COP approaches the maximum value. To be determined.
  • the air mix door 36 closes the air passage of the heater core 34 and the indoor condenser 12, and the total flow rate of the blown air after passing through the indoor evaporator 20. Is determined to pass through the cold air bypass passage 35.
  • the high-pressure refrigerant (a1 point) discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mix door 36 closes the air passages of the heater core 34 and the indoor condenser 12
  • the refrigerant flowing into the indoor condenser 12 slightly exchanges heat with the air blown into the vehicle interior, and the indoor condenser. 12 (point a1 ⁇ point a2 in FIG. 4).
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13.
  • the refrigerant flowing out from the indoor condenser 12 flows into the outdoor heat exchanger 15 without being depressurized by the first expansion valve 14.
  • the refrigerant flowing into the outdoor heat exchanger 15 radiates heat to the outside air blown from the blower fan in the outdoor heat exchanger 15 (point a2 ⁇ point a3 in FIG. 4).
  • the refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18, and is decompressed and expanded until it becomes a low-pressure refrigerant in the second expansion valve 19 (FIG. 4).
  • the low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20 and absorbs heat from the air blown from the vehicle interior blown from the blower 32 to evaporate (point a4 ⁇ a5 in FIG. 4). Thereby, vehicle interior blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 20 flows into the pressure adjustment valve 44.
  • the pressure adjustment valve 44 is in a function stop state in which the constant pressure adjustment function is not exhibited, the refrigerant flowing out of the indoor evaporator 20 is not adjusted to the set pressure value by the pressure adjustment valve 44.
  • the refrigerant flowing into the accumulator 22 is separated into a gas phase refrigerant and a liquid phase refrigerant, and the separated gas phase refrigerant is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
  • the pressure regulating valve 44 disposed on the outlet side of the indoor evaporator 20 does not function so as to keep the refrigerant pressure on the outlet side of the indoor evaporator 20 constant, so that the refrigerant evaporation pressure in the indoor evaporator 20 is reduced.
  • the pressure can be lowered below the set pressure value.
  • the refrigerant pressure on the outlet side of the indoor evaporator 20 can be adjusted to a pressure required for ensuring the target cooling capacity without causing control interference between the compressor 11 and the pressure regulating valve 44.
  • a high-temperature high-pressure refrigerant flows through the first refrigerant passage 18a inside the integrated valve 4, and the pressure is reduced by the second expansion valve 19 through the second refrigerant passage 21a inside the integrated valve 4.
  • a low-temperature, low-pressure refrigerant circulates.
  • the ambient temperature of the first refrigerant passage 18a in the body 40 is about 30 ° C. to 60 ° C.
  • the ambient temperature of the second refrigerant passage 21a in the body 40 is about 0 ° C. to 10 ° C.
  • the refrigerant flowing through the first refrigerant passage 18 a and the second refrigerant passage 21 a passes through the body 40. Heat exchange indirectly.
  • the degree of supercooling of the refrigerant on the outlet side of the outdoor heat exchanger 15 is increased by heat exchange between the refrigerant flowing out of the outdoor heat exchanger 15 and the refrigerant flowing out of the indoor evaporator 20. Since the enthalpy difference between the inlet and the outlet of the indoor evaporator 20 is increased, the cooling capacity is improved. As a result, since the cooling capacity can be secured with a small refrigerant flow rate, it is possible to reduce the number of revolutions of the compressor 11 in the cooling mode and to save power in the heat pump cycle 10.
  • the control device 100 closes the first low-pressure side passage 16 by the low-pressure side opening / closing valve 17 and sets the first and second expansion valves 14 and 19 to the throttle state or the fully open state. Further, the control device 100 displaces the bypass opening / closing valve element 421 to the closed position of the bypass passage 41 by the drive motor 423 and closes the bypass passage 41 by the bypass opening / closing valve 42.
  • the pressure adjustment valve body 441 increases the passage opening of the second refrigerant passage 21a in conjunction with the displacement of the bypass opening / closing valve body 421. It is displaced to. That is, the operating state of the pressure adjustment valve 44 is a function stop state in which the constant pressure adjustment function is not exhibited.
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows, as indicated by the white horizontal arrows in FIG. 1, as in the cooling mode.
  • the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in series with respect to the refrigerant flow.
  • the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • control signal output to the electric motor 11a of the compressor 11 is determined in the same manner as in the cooling mode.
  • the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 20 is the heater core 34 and the indoor condensation. To pass through the air passage of the vessel 12.
  • the first expansion valve 14 and the second expansion valve 19 are changed according to the target blowing temperature TAO that is the target temperature of the blowing air blown into the vehicle interior.
  • the control device 100 decreases the passage area of the high-pressure side passage 13 at the first expansion valve 14 as the target blowing temperature TAO, which is the target temperature of the blowing air blown into the vehicle interior, increases.
  • the second expansion valve 19 increases the passage area of the second low-pressure side passage 18.
  • the first mode is executed, for example, when the target blowing temperature TAO is equal to or lower than a predetermined first reference temperature in the first dehumidifying and heating mode.
  • the high pressure side passage 13 is fully opened by the first expansion valve 14 and the second expansion valve 19 is in the throttle state. Therefore, although the cycle configuration (refrigerant flow path) is the same refrigerant flow path as in the cooling mode, the air mix door 36 fully opens the air passage on the indoor condenser 12 and heater core 34 side.
  • the high-pressure refrigerant is dissipated by both the outdoor heat exchanger 12 and the outdoor heat exchanger 15.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12 and radiates heat by exchanging heat with the air blown into the passenger compartment after being cooled and dehumidified by the indoor evaporator 20. Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13.
  • the refrigerant flowing out from the indoor condenser 12 flows into the outdoor heat exchanger 15 without being depressurized by the first expansion valve 14.
  • the refrigerant flowing into the outdoor heat exchanger 15 radiates heat to the outside air blown from the blower fan in the outdoor heat exchanger 15.
  • the refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18 and is decompressed and expanded at the second expansion valve 19 until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20, absorbs heat from the air blown from the vehicle interior blown from the blower 32, and evaporates. Thereby, vehicle interior blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 20 flows from the pressure adjustment valve 44 to the accumulator 22 to the suction side of the compressor 11 and is compressed by the compressor 11 again, as in the cooling mode.
  • the pressure adjustment valve 44 since the pressure adjustment valve 44 is in a function stop state in which the constant pressure adjustment function is not exhibited, the refrigerant flowing out of the indoor evaporator 20 is not adjusted to the set pressure value by the pressure adjustment valve 44.
  • the vehicle interior blown air cooled and dehumidified by the indoor evaporator 20 can be heated by the indoor condenser 12 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
  • (C-2) Second Mode The second mode is when the target outlet temperature TAO is higher than the first reference temperature and lower than or equal to the second reference temperature set in advance to a value higher than the first reference temperature. Executed. In the second mode, the first expansion valve 14 is set in the throttle state, and the throttle opening degree of the second expansion valve 19 (the passage area of the second low-pressure side passage 18) is set in the throttle state increased compared to that in the first mode. Therefore, in the second mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the high-pressure refrigerant (b5 point) discharged from the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 20 and dehumidified in the vehicle interior. Heat exchange is performed to dissipate heat (b1 point ⁇ b2 point in FIG. 6). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13 and is depressurized until it becomes an intermediate-pressure refrigerant (point b2 ⁇ b3 in FIG. 6). Then, the intermediate-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and dissipates heat to the outside air blown from the blower fan (b3 point ⁇ b4 point in FIG. 6).
  • the refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18, and is decompressed and expanded until it becomes a low-pressure refrigerant in the second expansion valve 19 (FIG. 6). B4 point ⁇ b5 point).
  • the low-pressure refrigerant depressurized by the second expansion valve 19 flows into the indoor evaporator 20, absorbs heat from the air blown from the vehicle interior blown from the blower 32, and evaporates (b5 point ⁇ b6 point in FIG. 6). Thereby, vehicle interior blowing air is cooled.
  • the refrigerant flowing out of the indoor evaporator 20 flows again from the pressure regulating valve 44 ⁇ accumulator 22 ⁇ the suction side of the compressor 11 which is in a function stop state in which the constant pressure regulating function is not performed, similarly to the cooling mode. It is compressed by the compressor 11.
  • the vehicle interior blown air cooled and dehumidified by the indoor evaporator 20 is heated by the indoor condenser 12 in the same manner as in the first mode. Can be blown out. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the temperature of the refrigerant flowing into the outdoor heat exchanger 15 can be lowered compared to the first mode. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 15 can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 15 can be reduced.
  • the amount of heat released from the refrigerant in the indoor condenser 12 can be increased without increasing the refrigerant circulation flow rate that circulates the cycle in the first mode, and the refrigerant is blown out from the indoor condenser 12 than in the first mode.
  • the temperature of the blown air can be increased.
  • (C-3) Third Mode is when the target outlet temperature TAO is higher than the second reference temperature and lower than or equal to the third reference temperature set in advance to a value higher than the second reference temperature. Executed.
  • the throttle opening of the first expansion valve 14 (passage area of the high-pressure side passage 13) is made smaller than that in the second mode, and the throttle opening of the second expansion valve 19 (second low pressure)
  • the throttle area is set such that the passage area of the side passage 18 is larger than that in the second mode. Therefore, in the third mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the high-pressure refrigerant (point c1) discharged from the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 20 and dehumidified in the vehicle interior.
  • the heat is exchanged to dissipate heat (point c1 ⁇ c2 in FIG. 7). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13 and is depressurized until it becomes an intermediate-pressure refrigerant having a temperature lower than the outside air temperature (point c2 ⁇ c3 in FIG. 7). point). Then, the intermediate pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan (point c3 ⁇ point c4 in FIG. 7).
  • the refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18, and is decompressed and expanded until it becomes a low-pressure refrigerant in the second expansion valve 19 (FIG. 7).
  • the low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20 and absorbs heat from the air blown from the vehicle interior blown from the blower 32 to evaporate (point c5 ⁇ point c6 in FIG. 7). Thereby, vehicle interior blowing air is cooled.
  • the refrigerant flowing out of the indoor evaporator 20 flows again from the pressure regulating valve 44 ⁇ accumulator 22 ⁇ the suction side of the compressor 11 which is in a function stop state in which the constant pressure regulating function is not performed, similarly to the cooling mode. It is compressed by the compressor 11.
  • the vehicle interior blown air cooled by the indoor evaporator 20 and dehumidified is heated by the indoor condenser 12 in the same manner as in the first and second modes. Can be blown into the passenger compartment. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the outdoor heat exchanger 15 is caused to function as a heat absorber (evaporator) by reducing the throttle opening of the first expansion valve 14, so that the indoor condenser is more than in the second mode.
  • the temperature blown from 12 can be raised.
  • the suction refrigerant density of the compressor 11 can be increased, and the heat release amount of the refrigerant in the indoor condenser 12 without increasing the rotation speed (refrigerant discharge capacity) of the compressor 11. Can be increased, and the temperature of the blown-out air blown out from the indoor condenser 12 can be increased more than in the second mode.
  • (C-4) Fourth Mode The fourth mode is executed when the target outlet temperature TAO becomes higher than the third reference temperature.
  • the throttle opening state (passage area of the high-pressure side passage 13) of the first expansion valve 14 is made smaller than that in the third mode, and the second low-pressure side passage 18 is set by the second expansion valve 19. Is fully open. Therefore, in the fourth mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
  • the high-pressure refrigerant (point d1) discharged from the compressor 11 flows into the indoor condenser 12, and is cooled by the indoor evaporator 20 and dehumidified in the vehicle interior. Heat exchange is performed to dissipate heat (point d1 ⁇ d2 in FIG. 8). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 through the high-pressure side passage 13 and is depressurized until it becomes a low-pressure refrigerant (point d2 ⁇ point d3 in FIG. 8).
  • the low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan (point d3 ⁇ point d4 in FIG. 8).
  • the refrigerant flowing out of the outdoor heat exchanger 15 flows into the second expansion valve 19 through the second low-pressure side passage 18. At this time, since the second expansion valve 19 fully opens the second low-pressure side passage 18, the refrigerant flowing out of the outdoor heat exchanger 15 is not decompressed by the second expansion valve 19, and the indoor evaporator 20 Flow into.
  • the low-pressure refrigerant that has flowed into the indoor evaporator 20 absorbs heat from the air blown from the vehicle interior blown from the blower 32 and evaporates (point d4 ⁇ point d5 in FIG. 8). Thereby, vehicle interior blowing air is cooled. Then, the refrigerant flowing out of the indoor evaporator 20 flows again from the pressure regulating valve 44 ⁇ accumulator 22 ⁇ the suction side of the compressor 11 which is in a function stop state in which the constant pressure regulating function is not performed, similarly to the cooling mode. It is compressed by the compressor 11.
  • the vehicle interior blown air cooled and dehumidified by the indoor evaporator 20 is heated by the indoor condenser 12 as in the first to third modes. Can be blown into the passenger compartment. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the outdoor heat exchanger 15 can function as a heat absorber (evaporator), and the throttle opening degree of the first expansion valve 14 can be set higher than that in the third mode. Since it is reduced, the refrigerant evaporation temperature in the outdoor heat exchanger 15 can be lowered. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 15 can be increased more than in the third mode, and the heat absorption amount of the refrigerant in the outdoor heat exchanger 15 can be increased.
  • the suction refrigerant density of the compressor 11 can be increased, and the heat release amount of the refrigerant in the indoor condenser 12 without increasing the rotation speed (refrigerant discharge capacity) of the compressor 11. And the temperature of the air blown out from the indoor condenser 12 can be increased more than in the third mode.
  • the temperature of the blown-out air blown into the vehicle interior is changed to a low temperature range by changing the throttle opening degree of the first expansion valve 14 and the second expansion valve 19 in accordance with the target blowing temperature TAO. To a high temperature range.
  • the refrigerant in the outdoor heat exchanger 15 is changed.
  • the amount of heat release or the amount of heat absorption can be adjusted.
  • the amount of heat released from the refrigerant in the indoor condenser 12 can be adjusted in a wider range than the cycle configuration in which the outdoor heat exchanger 15 functions as either a radiator or an evaporator, and the air-conditioning target space can be adjusted during the dehumidifying operation.
  • the temperature adjustment range of the blown air blown out to can be expanded.
  • the pressure regulating valve 44 disposed on the outlet side of the indoor evaporator 20 does not function to maintain the refrigerant pressure on the outlet side of the indoor evaporator 20 constant.
  • the refrigerant evaporation pressure in the indoor evaporator 20 can be reduced to a set pressure value or less.
  • the second dehumidifying heating mode is a dehumidifying heating mode in which the temperature adjustment range is higher than the first dehumidifying heating mode.
  • the control device 100 opens the first low-pressure side passage 16 by the low-pressure side opening / closing valve 17 and sets the first and second expansion valves 14 and 19 to the throttle state. Further, as shown in FIG. 2, the control device 100 displaces the bypass opening / closing valve body 421 to the open position of the bypass passage 41 by the drive motor 423 to open the bypass passage 41 and to open the pressure adjusting valve body 441.
  • the pressure of the refrigerant flowing into the second refrigerant passage 21a (the refrigerant pressure on the outlet side of the indoor evaporator 20) is displaced so as to become the set pressure value.
  • the operating state of the pressure adjusting valve 44 becomes a function exhibiting state in which the constant pressure adjusting function is exhibited.
  • the refrigerant flowing out of the indoor condenser 12 is switched to the refrigerant flow path that flows to both the outdoor heat exchanger 15 and the indoor evaporator 20, as indicated by the white oblique arrows in FIG. 1. More specifically, the refrigerant flowing out of the indoor condenser 12 flows from the first expansion valve 14 to the outdoor heat exchanger 15 ⁇ the accumulator 22 ⁇ the suction side of the compressor 11 and at the same time, the second expansion valve 19 ⁇ the indoor evaporation. It flows in the order of the vessel 20 ⁇ the pressure regulating valve 44 ⁇ the accumulator 22 ⁇ the suction side of the compressor 11. In the second dehumidifying and heating mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in parallel to the refrigerant flow.
  • the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
  • control signal output to the electric motor 11a of the compressor 11 is determined in the same manner as in the cooling mode.
  • the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 20 is the heater core 34 and the indoor condensation. To pass through the air passage of the vessel 12.
  • control signals output to the first expansion valve 14 and the second expansion valve 19 are determined so as to have a predetermined opening for the second dehumidifying / heating mode.
  • the bypass opening / closing valve element 421 is displaced to the open position of the bypass passage 41 and the pressure adjusting valve element 441 is disposed on the outlet side of the indoor evaporator 20.
  • the refrigerant pressure is determined to be displaced so as to become a set pressure value.
  • the passage opening (passage area) of the second refrigerant passage 21a decreases (throttle opening decreases), and the outlet of the indoor evaporator 20
  • the control signal output to the drive motor 423 of the integrated valve 4 is determined so that the passage area of the second refrigerant passage 21a increases.
  • the high-pressure refrigerant (point e1) discharged from the compressor 11 flows into the indoor condenser 12 and Heat is exchanged with the air blown into the passenger compartment that has been cooled and dehumidified by the evaporator 20 to radiate heat (point e1 ⁇ point e2 in FIG. 9). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 through the high-pressure side passage 13 and flows into the second expansion valve 19 through the bypass passage 41.
  • the high-pressure refrigerant flowing into the first expansion valve 14 is depressurized until it becomes a low-pressure refrigerant (point e2 ⁇ point e3 in FIG. 9).
  • the low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan (point e3 ⁇ point e5 in FIG. 9).
  • the high-pressure refrigerant flowing into the second expansion valve 19 is depressurized until it becomes a low-pressure refrigerant so that the degree of superheat on the outlet side approaches the target degree of superheat (point e2 ⁇ point e4 in FIG. 9). Then, the low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20 and absorbs heat from the air blown from the vehicle interior blown from the blower 32 to evaporate (point e4 ⁇ point e6 in FIG. 9). ). Thereby, vehicle interior blowing air is cooled. Note that the pressure of the refrigerant in the indoor evaporator 20 is adjusted to a constant pressure by the pressure adjustment valve 44.
  • the check valve 43 is provided in the second low-pressure side passage 18, the refrigerant does not flow backward from the bypass passage 41 to the outlet side of the outdoor heat exchanger 15.
  • the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in parallel to the refrigerant flow.
  • positioned at the exit side of the indoor evaporator 20 functions so that the refrigerant
  • the refrigerant evaporation pressure in the outdoor heat exchanger 15 can be made lower than the refrigerant evaporation pressure in the indoor evaporator 20.
  • the refrigerant evaporating pressure in the indoor evaporator 20 is maintained at a predetermined value or more, and the occurrence of frost (frost) in the indoor evaporator 20 is suppressed, and the refrigerant in the outdoor heat exchanger 15 is suppressed.
  • the amount of heat absorbed can be increased to increase the amount of heat released from the refrigerant in the indoor condenser 12.
  • the temperature adjustment range can be expanded to the side that increases the temperature of the blown-out air that is blown into the vehicle interior in the second dehumidifying and heating mode.
  • the ambient temperature of the first refrigerant passage 18a in the body 40 is about 30 ° C. to 50 ° C.
  • the ambient temperature of the second refrigerant passage 21a in the body 40 is about 0 ° C. to 5 ° C.
  • the refrigerant flowing through the first refrigerant passage 18 a and the second refrigerant passage 21 a passes through the body 40. Heat exchange indirectly.
  • heat exchange between the refrigerant that has flowed out of the indoor condenser 12 and the refrigerant that has flowed out of the indoor evaporator 20 increases the amount of heat absorbed in the entire heat pump cycle 10, and thus the high pressure of the heat pump cycle 10. Side pressure rises.
  • the heating capacity can be secured with a small refrigerant flow rate, the rotational speed of the compressor 11 in the second dehumidifying and heating mode can be reduced, and the power saving of the heat pump cycle 10 can be achieved.
  • Comfortable air conditioning can be realized.
  • the heat exchange capacity (heat radiation capacity and heat absorption capacity) in the outdoor heat exchanger 15 is adjusted, and the blown air blown into the vehicle compartment extends from the low temperature range to the high temperature range. It is possible to switch between a first dehumidifying and heating mode in which the temperature can be adjusted over a wide range and a second dehumidifying and heating mode in which the temperature of the blown air blown into the vehicle compartment can be adjusted in a high temperature range as compared with the first dehumidifying and heating mode.
  • the temperature adjustable range of the air blown into the passenger compartment which is the air conditioning target space, can be expanded.
  • the first dehumidifying / heating mode and the second dehumidifying / heating mode can be switched by a simple configuration such as the low pressure side opening / closing valve 17 and the bypass opening / closing valve 42, the temperature adjustment range of the blown air into the passenger compartment is expanded.
  • the configuration to be realized can be realized concretely and easily.
  • the refrigerant pressure on the outlet side of the indoor evaporator 20 is maintained at the set pressure value by the pressure regulating valve 44 in the second dehumidifying and heating mode (parallel operation mode). Therefore, the heat absorption amount of the refrigerant in the indoor evaporator 20 and the heat absorption amount of the refrigerant in the outdoor heat exchanger 15 can be appropriately changed.
  • the refrigerant pressure on the outlet side of the indoor evaporator 20 is not maintained at the set pressure value by the pressure adjustment valve 44. Without causing control interference of the compressor 11, the refrigerant pressure on the outlet side of the indoor evaporator 20 can be adjusted to a pressure required to secure a target cooling capacity.
  • the heat absorption amounts of the indoor evaporator 20 and the outdoor heat exchanger 15 in the parallel operation mode can be appropriately changed, and the cooling capacity in the serial operation mode can be appropriately adjusted.
  • bypass opening / closing valve 42, the check valve 43, the pressure adjusting valve 44, and the like are accommodated in the common body 40, and the displacement of the bypass passage 41 of the bypass opening / closing valve body 421 is accommodated.
  • the integrated valve 4 that can displace the pressure regulating valve body 441 is employed. For this reason, simplification of the cycle configuration of the heat pump cycle 10 can be achieved.
  • the integrated valve 4 of the present embodiment is configured to displace the pressure adjusting valve element 441 in conjunction with the displacement of the bypass opening / closing valve element 421, so that a drive motor can be used without using a bellows dedicated to pressure adjustment.
  • the displacement amount of the pressure adjusting valve body 441 can be adjusted at 423, and the cycle configuration of the heat pump cycle 10 can be realized with a simpler configuration.
  • the vibration of the pressure regulating valve body 441 is absorbed by the seal member 408a provided in the through hole 408 that allows the first refrigerant passage 18a and the second refrigerant passage 21a to communicate with each other. It is said.
  • the pressure adjusting valve body 441 is displaced so that the refrigerant pressure on the outlet side of the indoor evaporator 20 is maintained at the set pressure value, a difference due to valve vibration in the low opening range of the pressure adjusting valve body 441 is obtained. Sound generation can be effectively suppressed.
  • the seal member 408a is formed of a resin O-ring
  • the present invention is not limited to this.
  • the seal member 408b has durability such as wear. You may comprise by the member (for example, bellows) excellent in.
  • the bypass opening / closing valve element 421 can be arbitrarily displaced between the closed position and the open position of the bypass passage 41 by the drive motor 423. Accordingly, when the bypass passage 41 is opened, the bypass opening / closing valve element 421 can be gradually displaced from the closed position to the open position, and the refrigerant injection sound that is likely to occur when the bypass passage 41 is opened is effective. Can be suppressed.
  • the indoor condenser 12 or the internal heat exchanger can be provided without providing a dedicated internal heat exchanger. Heat can be exchanged between the refrigerant flowing out of the outdoor heat exchanger 15 and the refrigerant flowing out of the indoor evaporator 20.
  • the refrigerant flows in a part of the first refrigerant passage 18a and the second refrigerant passage 21a so that the refrigerant flows in an opposite flow. Therefore, the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a The internal heat exchange via the body 40 can be effectively promoted.
  • the second refrigerant passage 21 a in the integrated valve 4 of the present embodiment introduces the refrigerant that has flowed out from the indoor evaporator 20 through the third refrigerant introduction port 403 that opens in the side wall of the body 40.
  • the introduced refrigerant is guided to the accumulator 22 via a second refrigerant outlet 405 that opens to the bottom wall of the body 40.
  • a pressure adjusting valve body 441 In the second refrigerant passage 21a, a pressure adjusting valve body 441, a spring 442, a part of the second shaft 443, a plate member 443a, a bellows 444 and the like are arranged.
  • the second shaft 443 of this embodiment is connected to the pressure adjusting valve body 441 in a state where one end side is located in the recess of the bypass opening / closing valve body 421, and the bypass opening / closing valve body 421 is displaced to the closed position. At this time, the pressure adjusting valve element 441 is pressed against the bypass opening / closing valve element 421 so as to increase the passage opening (passage area) of the second refrigerant passage 21a.
  • the second shaft 443 presses the pressure regulating valve body 441 when the bypass opening / closing valve body 421 is displaced to the closed position in this way, the function of not exerting the constant pressure maintaining function by the pressure regulating valve body 441. It can be in a stopped state.
  • the second shaft 443 contacts the bypass opening / closing valve element 421 when the bypass opening / closing valve element 421 is displaced to the closed position, and bypasses when the bypass opening / closing valve element 421 is displaced to the open position.
  • the length in the axial direction is set so as to be separated from the opening / closing valve body 421.
  • the bellows 444 is a hollow cylindrical member formed to be extendable and contractable in the axial direction of the body 40. One end of the bellows 444 in the axial direction is connected to the plate member 443a, and the other end in the axial direction is a pressure adjusting valve body 441. It is connected to.
  • the bellows 444 together with the spring 442 disposed in the inner space of the bellows 444, applies a load that urges the pressure adjusting valve body 441 in the direction of pressing the valve seat 407 side.
  • the load urged by the bellows 444 and the spring 442 to the pressure adjusting valve body 441 can be adjusted by an adjusting screw 445.
  • Ap is the pressure receiving surface of the pressure adjusting valve body 441
  • Ab is the cross-sectional area of the bellows 444
  • Fo is the initial load of the bellows 444 and the spring 442
  • K is the total of the bellows 444 and the spring 442. The spring constant is shown.
  • the refrigerant pressure P1 on the inlet side of the second refrigerant passage 21a and the displacement amount ⁇ L are proportional to each other. For example, when P1 decreases, ⁇ L decreases, and the decrease in P1 is suppressed. As a result, the refrigerant pressure P1 on the inlet side of the second refrigerant passage 21a can be maintained at a predetermined set pressure value.
  • the control device 100 of the present embodiment is driven so that the bypass opening / closing valve element 421 is displaced to the closed position of the bypass passage 41 as shown in FIG. 13 in the heating mode, the cooling mode, and the first dehumidifying heating mode.
  • the motor 423 is controlled.
  • the pressure adjusting valve element 441 is pressed by the second shaft 443 so that the passage opening degree of the second refrigerant passage 21a is increased, and the function stop state in which the pressure adjusting valve element 441 does not perform the constant pressure maintaining function. Become.
  • control device 100 controls the drive motor 423 so that the bypass opening / closing valve element 421 is displaced to the closed position of the bypass passage 41 in the second dehumidifying and heating mode, as shown in FIG.
  • the second shaft 443 is separated from the bypass opening / closing valve body 421, and the pressure adjusting valve body 441 enters a function exhibiting state in which a constant pressure maintaining function is exhibited.
  • bypass opening / closing valve 42, the check valve 43, and the pressure regulating valve 44 as the integrated valve 4 as in the integrated valve 4 of the present embodiment
  • the present invention is not limited to this.
  • the bypass opening / closing valve 42 and the pressure regulating valve 44 may be integrated as an integrated valve 4, and the check valve 43 may be configured separately from the integrated valve 4. This also applies to embodiments other than the present embodiment.
  • the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a may be opposed to each other. According to this, heat exchange via the body 40 between the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a can be promoted.
  • one end of the second shaft 443 is connected to the bypass opening / closing valve body 421, and the second opening / closing valve body 421 is displaced to the closed position.
  • the other end side of the shaft 443 comes into contact with the bypass opening / closing valve body 421 and presses the pressure adjusting valve body 441 so that the passage opening degree (passage area) of the second refrigerant passage 21a is enlarged.
  • the pressure adjusting valve body 441 of the present embodiment has a recess 441a that supports the other end of the second shaft 443 on the upper surface side, and vibration of the pressure adjusting valve body 441 is generated in the recess 441a.
  • a vibration absorbing member 441b (for example, an O-ring) that suppresses transmission to the second shaft 443 is provided.
  • the integrated valve 4 of the first embodiment is the same as the integrated valve 4 of the present embodiment, and the other end of the second shaft 443 is in contact with the pressure adjusting valve body 441 and the one end side is the bypass opening / closing valve body. 421 may be connected.
  • the heating mode, the cooling mode, and the dehumidifying heating mode are switched in accordance with the operation signal of the operation mode setting switch.
  • the heating mode, the cooling mode, and the dehumidifying heating mode may be switched according to the target blowing temperature TAO, the outside air temperature Tam, and the like.
  • control device 100 closes any one of the air passage of the indoor condenser 12 and the heater core 34 and the cold air bypass passage 35 in each operation mode of the heating mode, the cooling mode, and the dehumidifying heating mode.
  • the example of operating the air mix door 36 as described above has been described, but the operation of the air mix door 36 is not limited to this.
  • the air mix door 36 may open both the air passage of the indoor condenser 12 and the heater core 34 and the cold air bypass passage 35.
  • the temperature of the air blown into the vehicle interior may be adjusted by adjusting the air volume ratio between the air volume that passes through the air passages of the indoor condenser 12 and the heater core 34 and the air volume that passes through the cold air bypass passage 35. Good. Such temperature adjustment is effective in that it is easy to finely adjust the temperature of the air blown into the passenger compartment.
  • the drive motor 423 that can arbitrarily displace the bypass opening / closing valve element 421 in the range of the closed position and the opening position of the bypass opening / closing valve element 421, but is not limited thereto.
  • the bypass opening / closing valve body 421 can be appropriately adopted as long as it can be displaced to the closed position and the open position.
  • the drive motor 423 is used as the drive unit that displaces the bypass opening / closing valve body 421 .
  • the present invention is not limited thereto, and the drive unit may be an electromagnetic mechanism such as a solenoid. .
  • the heater core 34 is arranged inside the indoor air conditioning unit 30. However, when an external heat source such as an engine is insufficient, the heater core 34 is abolished or replaced with an electric heater or the like. It may be.
  • bypass on-off valve 42 and the pressure regulating valve 44 may be integrated separately.
  • the present invention is not limited thereto, and may be applied to, for example, a stationary air conditioner.

Abstract

A heat pump cycle equipped with: an operating mode switching unit (100a) that switches between a series operating mode, wherein refrigerant flowing from a heat radiator (12) flows through an outdoor heat exchanger (15) and then flows through an evaporator (20), and a parallel operating mode, wherein the refrigerant flowing from the heat radiator flows to both the outdoor heat exchanger and the evaporator; a pressure adjustment unit (44) that adjusts the pressure of the refrigerant passing through the evaporator; and an operating state switching unit (100b) that switches the operating state of the pressure adjustment unit between a function implementation state, wherein a constant pressure adjustment function is implemented to maintain the pressure of the refrigerant passing through the evaporator at a prescribed pressure setting, and a function suspension state, wherein the constant pressure adjustment function is not implemented. The operating state switching unit switches the operating state of the pressure adjustment unit to the function implementation state during the parallel operation mode, and switches the operating state of the pressure adjustment unit to the function suspension state during the series operation mode.

Description

ヒートポンプサイクルおよびヒートポンプサイクル用統合弁Heat pump cycle and integrated valve for heat pump cycle 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年10月1日に出願された日本出願番号2012-219722号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2012-219722 filed on October 1, 2012, the contents of which are incorporated herein.
 本開示は、ヒートポンプサイクルとヒートポンプサイクルに適用される統合弁に関する。 This disclosure relates to a heat pump cycle and an integrated valve applied to the heat pump cycle.
 従来、室内等の空調対象空間を除湿暖房する場合、ヒートポンプサイクルの蒸発器にて室内へ送風する送風空気を冷却して除湿し、蒸発器にて除湿された低温の空気を、ヒートポンプサイクルの放熱器(凝縮器)にて再加熱して空調対象空間へ吹き出す空調装置が知られている(例えば、特許文献1、2参照)。 Conventionally, when dehumidifying and heating an air-conditioned space such as a room, the air blown into the room is cooled and dehumidified by the evaporator of the heat pump cycle, and the low-temperature air dehumidified by the evaporator is radiated from the heat pump cycle. There is known an air conditioner that is reheated by a condenser (condenser) and blown out to an air-conditioning target space (for example, see Patent Documents 1 and 2).
 特許文献1に記載の空調装置では、ヒートポンプサイクルの冷媒流路を切り替えることで、暖房時に送風空気を除湿する暖房除湿運転と、冷房時に送風空気を除湿する弱冷房除湿運転を実行可能としている。 In the air conditioner described in Patent Literature 1, by switching the refrigerant flow path of the heat pump cycle, a heating / dehumidifying operation for dehumidifying the blown air during heating and a weak cooling / dehumidifying operation for dehumidifying the blown air during cooling can be performed.
 具体的には、暖房除湿運転時には、放熱器の下流側において蒸発器、および冷媒を外気と熱交換させる室外熱交換器を並列に接続する冷媒流路に切り替えることで、室外熱交換器を吸熱器として機能させている。この場合、蒸発器にて送風空気から吸熱するとともに、室外熱交換器にて外気から吸熱することで、放熱器における冷媒の放熱量を確保し、高温の送風空気を室内に吹き出すことができる。 Specifically, during the heating and dehumidifying operation, the outdoor heat exchanger absorbs heat by switching to the refrigerant flow path connecting in parallel the evaporator and the outdoor heat exchanger that exchanges heat with the outside air on the downstream side of the radiator. It functions as a vessel. In this case, heat is absorbed from the blown air by the evaporator and heat is absorbed from the outdoor air by the outdoor heat exchanger, so that a heat radiation amount of the refrigerant in the radiator can be secured and high-temperature blown air can be blown out into the room.
 一方、弱冷房除湿運転時には、圧縮機の下流側において放熱器、および室外熱交換器を並列に接続する冷媒流路に切り替えることで、室外熱交換器を放熱器として機能させている。この場合、放熱器にて送風空気に放熱するとともに、室外熱交換器にて外気に放熱することで、蒸発器における冷媒の吸熱量を確保し、低温の送風空気を室内へ吹き出すことができる。 On the other hand, during the weak cooling and dehumidifying operation, the outdoor heat exchanger is caused to function as a radiator by switching to the refrigerant flow path connecting the radiator and the outdoor heat exchanger in parallel on the downstream side of the compressor. In this case, heat is radiated to the blown air by the radiator, and heat is radiated to the outside air by the outdoor heat exchanger, so that the amount of heat absorbed by the refrigerant in the evaporator can be secured, and the low-temperature blown air can be blown into the room.
 また、特許文献2に記載の空調装置では、暖房除湿運転時には、特許文献1と同様の冷媒流路とし、弱冷房除湿運転時には、圧縮機の下流側において放熱器、室外熱交換器、蒸発器を直列に接続する冷媒流路に切り替えて、室外熱交換器を放熱器として機能させている。この場合も、放熱器および室外熱交換器の双方で冷媒を放熱させて蒸発器における冷媒の吸熱量を確保できる。 Further, in the air conditioner described in Patent Document 2, a refrigerant flow path similar to that in Patent Document 1 is used during heating and dehumidifying operation, and a radiator, an outdoor heat exchanger, and an evaporator are disposed downstream of the compressor during weak cooling and dehumidifying operation. Are switched to the refrigerant flow path connected in series, and the outdoor heat exchanger functions as a radiator. Also in this case, it is possible to secure the heat absorption amount of the refrigerant in the evaporator by dissipating the refrigerant in both the radiator and the outdoor heat exchanger.
特許第3645324号公報Japanese Patent No. 3645324 特開平06-341732号公報Japanese Patent Application Laid-Open No. 06-341732
 ところで、特許文献1、2の暖房除湿運転の如く、蒸発器と室外熱交換器とを並列接続する冷媒流路とし、室外熱交換器を吸熱器として機能させる場合に、室内への吹出空気の温度を変化させるために蒸発器における冷媒の吸熱量を変化させようとしても、室外熱交換器における外気からの吸熱量を適切に調整することできない。その結果、室内への吹出空気の温度調整範囲が制限されてしまう。 By the way, as in the heating and dehumidifying operation of Patent Documents 1 and 2, the refrigerant flow path connecting the evaporator and the outdoor heat exchanger in parallel, and when the outdoor heat exchanger functions as a heat absorber, Even if the endothermic amount of the refrigerant in the evaporator is changed in order to change the temperature, the endothermic amount from the outside air in the outdoor heat exchanger cannot be adjusted appropriately. As a result, the temperature adjustment range of the blown air into the room is limited.
 その理由は、特許文献1、2のように蒸発器と室外熱交換器とを並列接続する冷媒流路では、室内蒸発器における冷媒蒸発温度と室外熱交換器における冷媒蒸発温度が一致してしまうからである。 The reason is that in the refrigerant flow path in which the evaporator and the outdoor heat exchanger are connected in parallel as in Patent Documents 1 and 2, the refrigerant evaporation temperature in the indoor evaporator matches the refrigerant evaporation temperature in the outdoor heat exchanger. Because.
 例えば、室内への吹出空気の温度を上昇させるためには、室外熱交換器における冷媒蒸発温度を低下させ、室外熱交換器における冷媒の吸熱量を増加させればよい。ところが、室外熱交換器における冷媒蒸発温度を低下させてしまうと、蒸発器の冷媒蒸発温度も低下してしまうので、蒸発器に着霜(フロスト)が生じてしまう。 For example, in order to increase the temperature of the air blown into the room, the refrigerant evaporation temperature in the outdoor heat exchanger may be decreased and the heat absorption amount of the refrigerant in the outdoor heat exchanger may be increased. However, if the refrigerant evaporation temperature in the outdoor heat exchanger is lowered, the refrigerant evaporation temperature of the evaporator is also lowered, so that frost (frost) is generated in the evaporator.
 一方、室内への吹出空気の温度を低下させるためには、室外熱交換器における冷媒蒸発温度を上昇させ、室外熱交換器における冷媒の吸熱量を減少させればよい。ところが、室外熱交換器における冷媒蒸発温度を上昇させてしまうと、蒸発器の冷媒蒸発温度も上昇してしまうので、送風空気を充分に除湿することができなくなってしまう。 On the other hand, in order to lower the temperature of the air blown into the room, the refrigerant evaporation temperature in the outdoor heat exchanger may be increased and the heat absorption amount of the refrigerant in the outdoor heat exchanger may be reduced. However, if the refrigerant evaporation temperature in the outdoor heat exchanger is raised, the refrigerant evaporation temperature of the evaporator also rises, so that the blown air cannot be sufficiently dehumidified.
 これに対して、本発明者らは、先の特願2011-82761(以下、先願例と称する。)にて、放熱器から流出した冷媒を室外熱交換器、蒸発器の順に流す直列運転モード、および放熱器から流出した冷媒を室外熱交換器、および蒸発器の双方に流す並列運転モードを切り替える冷凍サイクル装置を提案している。 On the other hand, the inventors of the present invention, in the prior Japanese Patent Application No. 2011-82761 (hereinafter referred to as the prior application example), the serial operation in which the refrigerant flowing out from the radiator is flowed in the order of the outdoor heat exchanger and the evaporator. The refrigeration cycle apparatus which switches the mode and the parallel operation mode which flows the refrigerant | coolant which flowed out from the heat radiator to both an outdoor heat exchanger and an evaporator is proposed.
 さらに、先願例では、蒸発器出口側の冷媒の圧力を所定の圧力に維持する定圧調整部を配置し、並列運転モード時における室外熱交換器出口側の冷媒の圧力と蒸発器出口側の冷媒の圧力を異なる圧力に調整可能とすることで、室外熱交換器および蒸発器それぞれの吸熱量を適切に調整可能な構成としている。 Furthermore, in the prior application example, a constant pressure adjusting unit that maintains the pressure of the refrigerant on the evaporator outlet side at a predetermined pressure is disposed, and the pressure of the refrigerant on the outdoor heat exchanger outlet side and the evaporator outlet side in the parallel operation mode are arranged. By making it possible to adjust the pressure of the refrigerant to different pressures, the heat absorption amounts of the outdoor heat exchanger and the evaporator can be appropriately adjusted.
 ここで、先願例では、定圧調整部として、ベローズ等で構成される定圧弁を採用しているが、先願例の定圧弁における制御圧力は、蒸発器出口側の冷媒流量の増大に比例して上昇する傾向がある。 Here, in the prior application example, a constant pressure valve composed of a bellows or the like is adopted as the constant pressure adjusting unit, but the control pressure in the constant pressure valve of the prior application example is proportional to the increase in the refrigerant flow rate on the evaporator outlet side. Tend to rise.
 このため、先願例の如く、蒸発器出口側の冷媒の圧力を所定の設定圧力値に維持する定圧弁を配置すると、図17に示すように、冷房運転(直列運転モード)時に、サイクル内の冷媒流量が高流量、且つ、目標蒸発器温度が低い条件(冷房能力が必要とされる条件)となると、蒸発器出口側の冷媒圧力が必要以上に上昇し、狙いの冷房能力確保に必要とされる圧力(目標冷媒圧力)よりも高くなってしまう。 For this reason, when a constant pressure valve that maintains the pressure of the refrigerant at the outlet side of the evaporator at a predetermined set pressure value is arranged as in the prior application example, as shown in FIG. 17, during the cooling operation (series operation mode), When the refrigerant flow rate is high and the target evaporator temperature is low (conditions where cooling capacity is required), the refrigerant pressure on the outlet side of the evaporator rises more than necessary, and it is necessary to secure the target cooling capacity. It will become higher than the pressure (target refrigerant pressure).
 つまり、先願例では、直列運転モード時に、冷房能力を増大させるために、圧縮機の回転数を増加させたとしても、蒸発器出口側の冷媒の圧力が適切な圧力に低下しないため、冷房能力を適切に増大できず、圧縮機の動力だけが増大することとなる(これを定圧弁と圧縮機の制御干渉と称する)。 That is, in the prior application example, in order to increase the cooling capacity in the serial operation mode, even if the rotation speed of the compressor is increased, the refrigerant pressure on the evaporator outlet side does not decrease to an appropriate pressure. The capacity cannot be increased appropriately, and only the power of the compressor is increased (this is referred to as control interference between the constant pressure valve and the compressor).
 上記点に鑑みて、本開示は、並列運転モード時における蒸発器および室外熱交換器の吸熱量を適切に変化させると共に、直列運転モード時における冷房能力を適切に調整可能なヒートポンプサイクルを提供することを第1の目的とする。 In view of the above points, the present disclosure provides a heat pump cycle capable of appropriately changing the heat absorption amounts of the evaporator and the outdoor heat exchanger in the parallel operation mode and appropriately adjusting the cooling capacity in the series operation mode. This is the first purpose.
 また、第1の目的を達成可能なヒートポンプサイクルのサイクル構成の簡素化を図ることができるヒートポンプサイクル用統合弁を提供することを第2の目的とする。 Also, a second object is to provide a heat pump cycle integrated valve that can simplify the cycle configuration of the heat pump cycle that can achieve the first object.
 上記第1の目的を達成するため、本開示の一形態にかかるヒートポンプサイクルは、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を空調対象空間へ送風する送風空気に放熱する放熱器と、放熱器から流出した冷媒を外気と熱交換させる室外熱交換器と、サイクル内を流れる冷媒を蒸発させて放熱器通過前の送風空気を冷却する蒸発器と、放熱器から流出した冷媒を室外熱交換器、蒸発器の順に流す直列運転モード、および放熱器から流出した冷媒を室外熱交換器および蒸発器の双方へ流す並列運転モードに切り替える運転モード切替部と、蒸発器を流通する冷媒の圧力を調整する圧力調整部と、圧力調整部の作動状態を、蒸発器を流通する冷媒の圧力を所定の設定圧力値に維持する定圧調整機能を発揮する機能発揮状態、および定圧調整機能を発揮しない機能停止状態に切り替える作動状態切替部と、を備える。作動状態切替部は、並列運転モード時に圧力調整部の作動状態を機能発揮状態に切り替え、直列運転モード時に圧力調整部の作動状態を機能停止状態に切り替える。 In order to achieve the first object, a heat pump cycle according to an embodiment of the present disclosure radiates heat to a compressor that compresses and discharges a refrigerant, and blown air that blows the refrigerant discharged from the compressor to an air-conditioning target space. Heat exchanger, outdoor heat exchanger that exchanges heat from the refrigerant that flows out of the radiator with the outside air, evaporator that evaporates the refrigerant flowing in the cycle and cools the blown air before passing through the radiator, and outflow from the radiator An operation mode switching unit that switches between a serial operation mode in which the refrigerant flows in the order of the outdoor heat exchanger and the evaporator, and a parallel operation mode in which the refrigerant that has flowed out of the radiator flows to both the outdoor heat exchanger and the evaporator, and an evaporator A pressure adjusting unit that adjusts the pressure of the circulating refrigerant, and a function exhibiting state that exhibits a constant pressure adjusting function that maintains the pressure of the refrigerant flowing through the evaporator at a predetermined set pressure value. Provided and the operating state switching portion for switching to the function stop state not exhibiting said pressure adjusting function, a. The operation state switching unit switches the operation state of the pressure adjustment unit to the function exhibiting state during the parallel operation mode, and switches the operation state of the pressure adjustment unit to the function stop state during the series operation mode.
 これによれば、並列運転モード時において、圧力調整部にて蒸発器出口側の冷媒の圧力が設定圧力値に維持される構成としているので、蒸発器における冷媒の吸熱量および室外熱交換器における冷媒の吸熱量それぞれを適切に変化させることができる。 According to this, since the pressure of the refrigerant at the outlet side of the evaporator is maintained at the set pressure value in the parallel operation mode, the heat absorption amount of the refrigerant in the evaporator and the outdoor heat exchanger Each endothermic amount of the refrigerant can be appropriately changed.
 また、直列運転モード時において、圧力調整部にて蒸発器出口側の冷媒の圧力が設定圧力値に維持されない構成としているので、定圧弁と圧縮機の制御干渉が生ずることなく、蒸発器出口側の冷媒の圧力を、狙いの冷房能力確保に必要とされる圧力に調整可能となる。 Further, in the series operation mode, the pressure adjustment unit does not maintain the pressure of the refrigerant on the evaporator outlet side at the set pressure value, so that the control interference between the constant pressure valve and the compressor does not occur, and the evaporator outlet side It is possible to adjust the pressure of the refrigerant to a pressure required to secure the target cooling capacity.
 従って、本開示のヒートポンプサイクルによれば、並列運転モード時における蒸発器および室外熱交換器の吸熱量を適切に変化させると共に、直列運転モード時における冷房能力を適切に調整できる。 Therefore, according to the heat pump cycle of the present disclosure, the heat absorption amounts of the evaporator and the outdoor heat exchanger in the parallel operation mode can be appropriately changed, and the cooling capacity in the series operation mode can be appropriately adjusted.
 本開示の一形態にかかるヒートポンプサイクル用統合弁は、圧縮機から吐出された冷媒を空調対象空間へ送風する送風空気に放熱する放熱器、放熱器から流出した冷媒を外気と熱交換させる室外熱交換器、サイクル内を流れる冷媒を蒸発させて放熱器通過前の送風空気を冷却する蒸発器を備え、放熱器から流出した冷媒を室外熱交換器、蒸発器の順に流す直列運転モード、および放熱器から流出した冷媒を室外熱交換器および蒸発器の双方へ流す並列運転モードに切り替え可能なヒートポンプサイクルに適用される。 An integrated valve for a heat pump cycle according to an embodiment of the present disclosure includes a radiator that dissipates heat discharged from a compressor to blown air that blows air to a space to be air-conditioned, and outdoor heat that exchanges heat between the refrigerant flowing out of the radiator and the outside air. An exchanger, an evaporator that evaporates the refrigerant flowing in the cycle and cools the blown air before passing through the radiator, a series operation mode in which the refrigerant flowing out of the radiator flows in the order of the outdoor heat exchanger, the evaporator, and heat dissipation The present invention is applied to a heat pump cycle that can be switched to a parallel operation mode in which the refrigerant flowing out of the vessel flows to both the outdoor heat exchanger and the evaporator.
 上記第2の目的を達成するため、ヒートポンプサイクル用統合弁は、直列運転モード時に室外熱交換器から流出した冷媒を蒸発器側へ導く第1冷媒通路、並列運転モード時に放熱器から流出した冷媒を室外熱交換器を迂回して蒸発器側へ導くバイパス通路、蒸発器から流出した冷媒を圧縮機の吸入側へ導く第2冷媒通路が形成されたボデーと、ボデー内部に収容され、バイパス通路を開閉するためのバイパス開閉用弁体と、バイパス開閉用弁体に連結された第1作動棒を駆動することで、直列運転モード時にバイパス開閉用弁体をバイパス通路の閉鎖位置に変位させ、並列運転モード時にバイパス開閉用弁体をバイパス通路の開放位置に変位させる駆動部と、ボデー内部に収容され、第2冷媒通路に流入する冷媒の圧力を予め定めた設定圧力値に維持するための圧力調整用弁体と、駆動部がバイパス開閉用弁体をバイパス通路の閉鎖位置に変位させた際に、バイパス通路の開放位置に変位させた際よりも第2冷媒通路の通路開度が拡大するように圧力調整用弁体を変位させる第2作動棒と、を備える。 In order to achieve the second object, the integrated valve for the heat pump cycle includes a first refrigerant passage that guides the refrigerant flowing out of the outdoor heat exchanger to the evaporator side in the series operation mode, and the refrigerant flowing out of the radiator in the parallel operation mode. Bypass body that bypasses the outdoor heat exchanger and leads to the evaporator side, a body in which a second refrigerant passage that guides the refrigerant that has flowed out of the evaporator to the suction side of the compressor is formed, and the bypass passage that is housed inside the body By driving the bypass opening / closing valve body for opening and closing the first actuating rod connected to the bypass opening / closing valve body, the bypass opening / closing valve body is displaced to the closed position of the bypass passage in the series operation mode, A drive unit for displacing the bypass opening / closing valve element to the open position of the bypass passage in the parallel operation mode, and a preset pressure that sets the pressure of the refrigerant accommodated in the body and flowing into the second refrigerant passage A pressure adjusting valve body for maintaining the value and the second refrigerant passage when the drive unit displaces the bypass opening / closing valve body to the closed position of the bypass passage than when the drive portion is displaced to the open position of the bypass passage. And a second actuating rod that displaces the pressure adjusting valve element so that the passage opening degree of the second pressure adjusting valve increases.
 これによれば、並列運転モード時にバイパス開閉用弁体をバイパス通路の開放位置に変位させた際に、圧力調整用弁体にて蒸発器出口側の冷媒の圧力が設定圧力値に維持される構成となるので、並列運転モード時に、蒸発器における冷媒の吸熱量および室外熱交換器における冷媒の吸熱量それぞれを適切に変化させることができる。 According to this, when the bypass opening / closing valve element is displaced to the open position of the bypass passage in the parallel operation mode, the pressure of the refrigerant on the evaporator outlet side is maintained at the set pressure value by the pressure adjusting valve element. Since it becomes a structure, in the parallel operation mode, each of the heat absorption amount of the refrigerant in the evaporator and the heat absorption amount of the refrigerant in the outdoor heat exchanger can be appropriately changed.
 また、直列運転モード時にバイパス開閉用弁体をバイパス通路の閉鎖位置に変位させた際に、圧力調整用弁体にて第2冷媒通路の通路開度を拡大して、蒸発器出口側の冷媒の圧力が設定圧力値に維持されない構成となるので、圧力調整用弁体と圧縮機の制御干渉が生ずることなく、蒸発器出口側の冷媒の圧力を、狙いの冷房能力確保に必要とされる圧力に調整可能となる。 Further, when the bypass opening / closing valve body is displaced to the closed position of the bypass passage in the series operation mode, the passage opening degree of the second refrigerant passage is enlarged by the pressure adjusting valve body, and the refrigerant on the evaporator outlet side is expanded. Therefore, the refrigerant pressure at the outlet side of the evaporator is required to secure the target cooling capacity without causing control interference between the pressure adjusting valve body and the compressor. The pressure can be adjusted.
 従って、本開示のヒートポンプサイクル用統合弁によれば、並列運転モード時における蒸発器および室外熱交換器の吸熱量を適切に変化させると共に、直列運転モード時における冷房能力を適切に調整できる。 Therefore, according to the integrated valve for the heat pump cycle of the present disclosure, it is possible to appropriately change the heat absorption amounts of the evaporator and the outdoor heat exchanger in the parallel operation mode and appropriately adjust the cooling capacity in the series operation mode.
 さらに、第1、第2冷媒通路、およびバイパス通路が形成されたボデーの内部に、少なくともバイパス開閉用弁体、圧力調整用弁体を収容して一体化し、さらに、圧力調整用弁体を変位させるための専用の変位部(駆動部)を設けることなく、バイパス通路の閉鎖位置への変位に連動して、第2作動棒にて圧力調整用弁体を変位させる構成としているので、ヒートポンプサイクルのサイクル構成の簡素化を図ることができる。 Further, at least a bypass opening / closing valve body and a pressure adjusting valve body are accommodated and integrated in the body in which the first and second refrigerant passages and the bypass passage are formed, and the pressure adjusting valve body is further displaced. The pressure adjusting valve body is displaced by the second operating rod in conjunction with the displacement of the bypass passage to the closed position without providing a dedicated displacement portion (driving portion) for the heat pump cycle. The cycle configuration can be simplified.
 また、第2作動棒は、バイパス開閉用弁体および圧力調整用弁体の少なくとも一方の弁体に連結されており、圧力調整用弁体は、バイパス開閉用弁体の変位に連動して変位する。 The second operating rod is connected to at least one of the bypass opening / closing valve body and the pressure adjusting valve body, and the pressure adjusting valve body is displaced in conjunction with the displacement of the bypass opening / closing valve body. To do.
 このように、圧力調整用弁体をバイパス開閉用弁体と一体に連動して変位させる構成とすれば、駆動部にて圧力調整用弁体の変位量を調整することで、蒸発器出口側の冷媒の圧力を設定圧力値に維持することが可能となるので、ヒートポンプサイクルのサイクル構成をより簡素な構成で実現できる。 In this way, if the pressure adjusting valve element is displaced in conjunction with the bypass opening / closing valve element, the displacement of the pressure adjusting valve element is adjusted by the drive unit, so that the evaporator outlet side Since the refrigerant pressure can be maintained at the set pressure value, the cycle configuration of the heat pump cycle can be realized with a simpler configuration.
 また、バイパス通路は、バイパス開閉用弁体よりも冷媒流れ下流側にて第1冷媒通路と合流しており、第1冷媒通路には、駆動部がバイパス開閉用弁体をバイパス通路の開放位置に変位させた際に、バイパス通路を流れる冷媒が、第1冷媒通路を介して室外熱交換器側へ流出することを防止する逆流防止弁が配置されている。 Further, the bypass passage is joined to the first refrigerant passage on the downstream side of the refrigerant flow with respect to the bypass opening and closing valve body, and the drive unit places the bypass opening and closing valve body in the opening position of the bypass passage in the first refrigerant passage. A backflow prevention valve is arranged to prevent the refrigerant flowing through the bypass passage from flowing out to the outdoor heat exchanger side through the first refrigerant passage.
 これによれば、ボデーの内部に、バイパス開閉用弁体、圧力調整用弁体、および逆流防止弁を収容して一体化しているので、ヒートポンプサイクルのサイクル構成をより簡素な構成で実現できる。 According to this, since the bypass opening / closing valve body, the pressure adjusting valve body, and the backflow prevention valve are housed and integrated in the body, the cycle configuration of the heat pump cycle can be realized with a simpler configuration.
第1実施形態に係る車両用空調装置の概略構成図である。It is a schematic block diagram of the vehicle air conditioner which concerns on 1st Embodiment. 第1実施形態に係る統合弁の定圧調整機能を発揮する機能発揮状態の断面図である。It is sectional drawing of the function display state which exhibits the constant pressure adjustment function of the integrated valve which concerns on 1st Embodiment. 第1実施形態に係る統合弁の定圧調整機能を発揮しない機能停止状態の断面図である。It is sectional drawing of the function stop state which does not exhibit the constant pressure adjustment function of the integrated valve which concerns on 1st Embodiment. 第1実施形態に係るヒートポンプサイクルにおける冷房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the air_conditioning | cooling mode in the heat pump cycle which concerns on 1st Embodiment. 冷房モード時における統合弁内部における冷媒間の熱交換の作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of the heat exchange between the refrigerant | coolants in the integrated valve at the time of air_conditioning | cooling mode. 第1実施形態に係るヒートポンプサイクルにおける第1除湿暖房モード(第2モード)時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 1st dehumidification heating mode (2nd mode) in the heat pump cycle which concerns on 1st Embodiment. 第1実施形態に係るヒートポンプサイクルにおける第1除湿暖房モード(第3モード)時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 1st dehumidification heating mode (3rd mode) in the heat pump cycle which concerns on 1st Embodiment. 第1実施形態に係るヒートポンプサイクルにおける第1除湿暖房モード(第4モード)時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 1st dehumidification heating mode (4th mode) in the heat pump cycle which concerns on 1st Embodiment. 第1実施形態に係るヒートポンプサイクルにおける第2除湿暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 2nd dehumidification heating mode in the heat pump cycle which concerns on 1st Embodiment. 第2除湿暖房モード時における統合弁内部における冷媒間の熱交換の作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of the heat exchange between the refrigerant | coolants in the integrated valve at the time of 2nd dehumidification heating mode. 第1実施形態に係る統合弁の変形例を示す断面図である。It is sectional drawing which shows the modification of the integrated valve which concerns on 1st Embodiment. 第2実施形態に係る統合弁の定圧調整機能を発揮する機能発揮状態の断面図である。It is sectional drawing of the function display state which exhibits the constant pressure adjustment function of the integrated valve which concerns on 2nd Embodiment. 第2実施形態に係る統合弁の定圧調整機能を発揮しない機能停止状態の断面図である。It is sectional drawing of the function stop state which does not exhibit the constant pressure adjustment function of the integrated valve which concerns on 2nd Embodiment. 第2実施形態に係る統合弁の変形例を示す断面図である。It is sectional drawing which shows the modification of the integrated valve which concerns on 2nd Embodiment. 第2実施形態に係る統合弁の変形例を示す断面図である。It is sectional drawing which shows the modification of the integrated valve which concerns on 2nd Embodiment. 第3実施形態に係る統合弁の断面図である。It is sectional drawing of the integrated valve which concerns on 3rd Embodiment. 定圧弁と圧縮機の制御干渉を説明するための説明図である。It is explanatory drawing for demonstrating the control interference of a constant pressure valve and a compressor.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 まず、第1実施形態について説明する。本実施形態では、ヒートポンプサイクル10、およびヒートポンプサイクル用統合弁(以下、統合弁4と略称する。)4を内燃機関(エンジン)および走行用電動モータから車両走行用の駆動力を得るハイブリッド車両の車両用空調装置1に適用している。このヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される車室内送風空気を冷却あるいは加熱する機能を果たす。
(First embodiment)
First, the first embodiment will be described. In the present embodiment, a heat pump cycle 10 and a heat pump cycle integrated valve (hereinafter abbreviated as an integrated valve 4) 4 of a hybrid vehicle that obtains driving force for vehicle travel from an internal combustion engine (engine) and a travel electric motor. This is applied to the vehicle air conditioner 1. The heat pump cycle 10 functions in the vehicle air conditioner 1 to cool or heat the vehicle interior air blown into the vehicle interior that is the air-conditioning target space.
 このため、ヒートポンプサイクル10は、車室内を冷房する冷房モード(冷房運転)の冷媒流路、車室内を除湿しながら暖房する除湿暖房モード(除湿運転)の冷媒流路、車室内を暖房する暖房モード(暖房運転)の冷媒流路を切替可能に構成されている。 For this reason, the heat pump cycle 10 includes a cooling mode (cooling operation) refrigerant flow path for cooling the vehicle interior, a dehumidification heating mode (dehumidification operation) refrigerant flow path for heating while dehumidifying the vehicle interior, and heating for heating the vehicle interior. The refrigerant flow path in the mode (heating operation) can be switched.
 さらに、このヒートポンプサイクル10では、後述するように除湿暖房モードとして、通常時に実行される第1除湿暖房モード、および外気温が極低温時等に実行される第2除湿暖房モードを実行することができる。 Further, in the heat pump cycle 10, as described later, as the dehumidifying heating mode, a first dehumidifying heating mode that is executed during normal time and a second dehumidifying heating mode that is executed when the outside air temperature is extremely low can be executed. it can.
 なお、本実施形態では、各種運転モードのうち、冷房モードおよび第1除湿暖房モードが、室内凝縮器12から流出した冷媒を室外熱交換器15、室内蒸発器20の順に流す直列運転モードに相当し、第2除湿暖房モードが、室内凝縮器12から流出した冷媒を室外熱交換器15、および室内蒸発器20の双方に流す並列運転モードに相当している。 In the present embodiment, among the various operation modes, the cooling mode and the first dehumidifying and heating mode correspond to a series operation mode in which the refrigerant flowing out of the indoor condenser 12 is flowed in the order of the outdoor heat exchanger 15 and the indoor evaporator 20. The second dehumidifying and heating mode corresponds to a parallel operation mode in which the refrigerant that has flowed out of the indoor condenser 12 flows to both the outdoor heat exchanger 15 and the indoor evaporator 20.
 また、本実施形態のヒートポンプサイクル10では、冷媒として通常のフロン系冷媒を採用しており、高圧冷媒の圧力が冷媒の臨界圧力を越えない亜臨界冷凍サイクルを構成している。 Further, in the heat pump cycle 10 of the present embodiment, a normal chlorofluorocarbon refrigerant is employed as the refrigerant, and a subcritical refrigeration cycle in which the pressure of the high-pressure refrigerant does not exceed the critical pressure of the refrigerant is configured.
 圧縮機11は、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するもので、電動モータ11aにて圧縮機構11bを駆動する電動圧縮機である。圧縮機構11bとしては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。 The compressor 11 sucks the refrigerant in the heat pump cycle 10, compresses and discharges it, and is an electric compressor that drives the compression mechanism 11b by the electric motor 11a. Specifically, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be employed as the compression mechanism 11b.
 電動モータ11aは、後述する制御装置100から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機構11bの冷媒吐出能力が変更される。従って、本実施形態では、電動モータ11aが圧縮機構11bの吐出能力変更部を構成する。 The electric motor 11a is controlled in its operation (number of rotations) by a control signal output from the control device 100 described later, and may adopt either an AC motor or a DC motor. And the refrigerant | coolant discharge capability of the compression mechanism 11b is changed by this rotation speed control. Therefore, in this embodiment, the electric motor 11a comprises the discharge capability change part of the compression mechanism 11b.
 圧縮機11の吐出口側には、室内凝縮器12の入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されて、圧縮機11から吐出された吐出冷媒(高圧冷媒)を放熱させて、後述する室内蒸発器20を通過した車室内送風空気を加熱する放熱器である。 The inlet side of the indoor condenser 12 is connected to the discharge port side of the compressor 11. The indoor condenser 12 is disposed in a casing 31 of an indoor air conditioning unit 30 described later, dissipates refrigerant discharged from the compressor 11 (high-pressure refrigerant), and passes through the indoor evaporator 20 described later. It is a radiator that heats the air.
 室内凝縮器12の出口側には、室内凝縮器12から流出した冷媒を後述する室外熱交換器15へ導く高圧側通路13が接続されている。この高圧側通路13には、高圧側通路13の通路面積(絞り開度)を変更可能に構成された第1膨脹弁(第1絞り部)14が配置されている。 A high-pressure passage 13 that guides the refrigerant flowing out of the indoor condenser 12 to an outdoor heat exchanger 15 described later is connected to the outlet side of the indoor condenser 12. The high pressure side passage 13 is provided with a first expansion valve (first throttling portion) 14 configured to change the passage area (throttle opening) of the high pressure side passage 13.
 より具体的には、この第1膨脹弁14は、高圧側通路13の通路開度(絞り開度)を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 More specifically, the first expansion valve 14 includes a valve body configured to change the passage opening (throttle opening) of the high-pressure side passage 13, and a stepping motor that changes the throttle opening of the valve body. And an electric variable aperture mechanism configured to include the electric actuator.
 本実施形態の第1膨脹弁14は、絞り開度を全開した際に高圧側通路13を全開する全開機能付きの可変絞り機構で構成されている。つまり、第1膨脹弁14は、高圧側通路13を全開にすることで冷媒の減圧作用を発揮させないようにすることができる。また、第1膨脹弁14は、制御装置100から出力される制御信号によって、その作動が制御される。 The first expansion valve 14 of the present embodiment is composed of a variable throttle mechanism with a fully open function that fully opens the high-pressure side passage 13 when the throttle opening is fully opened. That is, the first expansion valve 14 can prevent the refrigerant from depressurizing by fully opening the high-pressure side passage 13. The operation of the first expansion valve 14 is controlled by a control signal output from the control device 100.
 第1膨脹弁14の出口側には、室外熱交換器15の入口側が接続されている。室外熱交換器15は、その内部を流通する冷媒と送風ファン(図示略)から送風された外気とを熱交換させるものである。この室外熱交換器15は、後述する暖房モード時等には、冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房モード時等には、冷媒を放熱させる放熱器として機能する。 The inlet side of the outdoor heat exchanger 15 is connected to the outlet side of the first expansion valve 14. The outdoor heat exchanger 15 exchanges heat between the refrigerant circulating inside and the outside air blown from a blower fan (not shown). The outdoor heat exchanger 15 functions as an evaporator that evaporates the refrigerant and exerts an endothermic effect in a heating mode, which will be described later, and functions as a radiator that radiates the refrigerant in a cooling mode.
 室外熱交換器15の出口側には、室外熱交換器15から流出した冷媒を後述するアキュムレータ22を介して圧縮機11の吸入側へ導く第1低圧側通路16、および室外熱交換器15から流出した冷媒を後述する室内蒸発器20およびアキュムレータ22を介して圧縮機11の吸入側へ導く第2低圧側通路18が接続されている。 On the outlet side of the outdoor heat exchanger 15, the first low-pressure side passage 16 that guides the refrigerant flowing out of the outdoor heat exchanger 15 to the suction side of the compressor 11 through an accumulator 22 described later, and the outdoor heat exchanger 15. A second low-pressure side passage 18 is connected to guide the discharged refrigerant to the suction side of the compressor 11 via an indoor evaporator 20 and an accumulator 22 which will be described later.
 この第1低圧側通路16には、第1開閉弁(第1開閉部)17が配置されている。この低圧側開閉弁17は、第1低圧側通路16を開閉する電磁弁であり、制御装置100から出力される制御信号により、その作動が制御される。 The first low-pressure side passage 16 is provided with a first on-off valve (first on-off portion) 17. The low-pressure side opening / closing valve 17 is an electromagnetic valve that opens and closes the first low-pressure side passage 16, and its operation is controlled by a control signal output from the control device 100.
 なお、本実施形態の制御装置100は、低圧側開閉弁17にて第1低圧側通路16を開放する場合、後述する第2膨脹弁19にて第2低圧側通路18を閉鎖するように、低圧側開閉弁17および第2膨脹弁19を制御する。逆に、低圧側開閉弁17にて第1低圧側通路16を閉鎖する場合、後述する第2膨脹弁19にて第2低圧側通路18を開放するように、低圧側開閉弁17および第2膨脹弁19を制御する。従って、室外熱交換器15から流出した冷媒は、低圧側開閉弁17が開いている場合には、第1低圧側通路16側に流れ、低圧側開閉弁17が閉じている場合には、第2低圧側通路18側に流れる。 When the first low-pressure side passage 16 is opened by the low-pressure side opening / closing valve 17, the control device 100 of the present embodiment closes the second low-pressure side passage 18 by the second expansion valve 19 described later. The low pressure side opening / closing valve 17 and the second expansion valve 19 are controlled. Conversely, when the first low-pressure side passage 16 is closed by the low-pressure side opening / closing valve 17, the low-pressure side opening / closing valve 17 and the second low-pressure side opening / closing valve 17 are opened so that the second low-pressure side passage 18 is opened by the second expansion valve 19 described later. The expansion valve 19 is controlled. Accordingly, the refrigerant flowing out of the outdoor heat exchanger 15 flows to the first low pressure side passage 16 side when the low pressure side opening / closing valve 17 is open, and when the low pressure side opening / closing valve 17 is closed, 2 Flows to the low pressure side passage 18 side.
 このように低圧側開閉弁17は、第1低圧側通路16を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、低圧側開閉弁17は、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。 Thus, the low-pressure side opening / closing valve 17 functions to switch the cycle configuration (refrigerant flow path) by opening and closing the first low-pressure side passage 16. Therefore, the low-pressure side opening / closing valve 17 constitutes a refrigerant flow switching unit that switches the refrigerant flow of the refrigerant circulating in the cycle.
 また、第2低圧側通路18には、第2低圧側通路18の通路面積(絞り開度)を変更可能に構成された第2膨脹弁(第2絞り部)19が配置されている。より具体的には、この第2膨脹弁19は、第2低圧側通路18の通路開度(絞り開度)を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 The second low pressure side passage 18 is provided with a second expansion valve (second throttle portion) 19 configured so that the passage area (throttle opening) of the second low pressure side passage 18 can be changed. More specifically, the second expansion valve 19 changes the opening degree of the second low-pressure side passage 18 (throttle opening degree) and the throttle opening degree of the valve body. This is an electric variable aperture mechanism that includes an electric actuator including a stepping motor.
 本実施形態の第2膨脹弁19は、絞り開度を全開した際に第2低圧側通路18を全開する全開機能、および絞り開度を全閉した際に第2低圧側通路18を閉鎖する全閉機能付きの可変絞り機構で構成されている。つまり、第2膨脹弁19は、冷媒の減圧作用を発揮させないようにすること、および第2低圧側通路18を開閉することができる。なお、第2膨脹弁19は、制御装置100から出力される制御信号によって、その作動が制御される。 The second expansion valve 19 of the present embodiment fully opens the second low pressure side passage 18 when the throttle opening is fully opened, and closes the second low pressure side passage 18 when the throttle opening is fully closed. It consists of a variable throttle mechanism with a fully closed function. That is, the second expansion valve 19 can prevent the refrigerant from depressurizing and can open and close the second low-pressure side passage 18. The operation of the second expansion valve 19 is controlled by a control signal output from the control device 100.
 第2膨脹弁19の出口側には、室内蒸発器20の入口側が接続されている。室内蒸発器20は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の車室内送風空気流れ上流側に配置され、冷房モード時および除湿暖房モード時等にその内部を流通する冷媒を、室内凝縮器12通過前(放熱器通過前)の車室内送風空気と熱交換させて蒸発させ、吸熱作用を発揮させることにより車室内送風空気を冷却する蒸発器である。 The inlet side of the indoor evaporator 20 is connected to the outlet side of the second expansion valve 19. The indoor evaporator 20 is disposed in the casing 31 of the indoor air-conditioning unit 30 on the upstream side of the air flow in the vehicle interior of the indoor condenser 12, and the refrigerant that circulates in the interior thereof in the cooling mode, the dehumidifying heating mode, and the like. The evaporator cools the air blown into the vehicle interior by exchanging heat with the air blown into the vehicle compartment before passing through the indoor condenser 12 (before passing through the radiator) and evaporating it.
 室内蒸発器20の出口側には、蒸発器出口側通路21を介してアキュムレータ22の入口側が接続されている。アキュムレータ22は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。アキュムレータ22の気相冷媒出口には、圧縮機11の吸入口側が接続されている。従って、アキュムレータ22は、圧縮機11に液相冷媒が吸入されることを抑制し、圧縮機11における液圧縮を防止する機能を果たす。 The inlet side of the accumulator 22 is connected to the outlet side of the indoor evaporator 20 via the evaporator outlet side passage 21. The accumulator 22 is a gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 22 and stores excess refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 22. Therefore, the accumulator 22 functions to prevent the liquid phase refrigerant from being sucked into the compressor 11 and prevent liquid compression in the compressor 11.
 また、本実施形態では、高圧側通路13における室内凝縮器12の出口側から第1膨脹弁14の入口側へ至る範囲の冷媒を、第2低圧側通路18における室外熱交換器15の出口側から第2膨脹弁19の入口側へ至る範囲へ導くバイパス通路41が設けられている。換言すると、このバイパス通路41は、室内凝縮器12から流出した冷媒を、第1膨脹弁14および室外熱交換器15を迂回させて第2膨脹弁19の入口側へ導く冷媒通路である。 In the present embodiment, the refrigerant in the range from the outlet side of the indoor condenser 12 in the high-pressure side passage 13 to the inlet side of the first expansion valve 14 is supplied to the outlet side of the outdoor heat exchanger 15 in the second low-pressure side passage 18. A bypass passage 41 that leads to a range from the first expansion valve 19 to the inlet side of the second expansion valve 19 is provided. In other words, the bypass passage 41 is a refrigerant passage that guides the refrigerant flowing out of the indoor condenser 12 to the inlet side of the second expansion valve 19 by bypassing the first expansion valve 14 and the outdoor heat exchanger 15.
 このバイパス通路41には、バイパス開閉弁42が配置されている。このバイパス開閉弁42は、バイパス通路41を開閉する電磁弁であり、制御装置100から出力される制御信号により、その作動が制御される。 In the bypass passage 41, a bypass opening / closing valve 42 is arranged. The bypass opening / closing valve 42 is an electromagnetic valve that opens and closes the bypass passage 41, and its operation is controlled by a control signal output from the control device 100.
 なお、バイパス開閉弁42は、バイパス通路41を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、バイパス開閉弁42は、低圧側開閉弁17とともにサイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替部を構成している。 The bypass opening / closing valve 42 functions to switch the cycle configuration (refrigerant flow path) by opening and closing the bypass passage 41. Therefore, the bypass opening / closing valve 42 constitutes a refrigerant flow path switching unit that switches the refrigerant flow path of the refrigerant circulating in the cycle together with the low pressure side opening / closing valve 17.
 また、本実施形態では、第2低圧側通路18における室外熱交換器15の出口側とバイパス通路41および第2低圧側通路18の合流部との間に、逆止弁(逆流防止弁)43が配置されている。この逆止弁43は、室外熱交換器15の出口側から第2膨脹弁19の入口側への冷媒の流れを許容し、第2膨脹弁19の入口側から室外熱交換器15の出口側への冷媒の流れを禁止するもので、この逆止弁43によってバイパス通路41から第2低圧側通路18に合流した冷媒が室外熱交換器15側へ流れることを防止することができる。 In the present embodiment, a check valve (backflow prevention valve) 43 is provided between the outlet side of the outdoor heat exchanger 15 in the second low-pressure side passage 18 and the junction of the bypass passage 41 and the second low-pressure side passage 18. Is arranged. The check valve 43 allows the refrigerant to flow from the outlet side of the outdoor heat exchanger 15 to the inlet side of the second expansion valve 19, and from the inlet side of the second expansion valve 19 to the outlet side of the outdoor heat exchanger 15. The check valve 43 prevents the refrigerant that has joined the second low-pressure side passage 18 from flowing to the outdoor heat exchanger 15 side.
 さらに、本実施形態では、室内蒸発器20出口側とアキュムレータ22および第1低圧側通路16の合流部との間の蒸発器出口側通路21に圧力調整弁44が配置されている。 Further, in the present embodiment, the pressure regulating valve 44 is disposed in the evaporator outlet side passage 21 between the outlet side of the indoor evaporator 20 and the joining portion of the accumulator 22 and the first low pressure side passage 16.
 この圧力調整弁44は、室内蒸発器20を流通する冷媒の圧力を調整する圧力調整部である。本実施形態の圧力調整弁44は、室内蒸発器20を流通する冷媒の圧力を所定の設定圧力値に維持する定圧調整機能を発揮する機能発揮状態と、定圧調整機能を発揮しない機能停止状態に切り替え可能に構成されている。 The pressure adjusting valve 44 is a pressure adjusting unit that adjusts the pressure of the refrigerant flowing through the indoor evaporator 20. The pressure adjustment valve 44 of the present embodiment is in a function exhibiting state that exhibits a constant pressure adjustment function that maintains the pressure of the refrigerant flowing through the indoor evaporator 20 at a predetermined set pressure value, and a function stop state that does not exhibit the constant pressure adjustment function. It is configured to be switchable.
 ここで、本実施形態では、ヒートポンプサイクル10のサイクル構成の簡素化を図るために、図1において一点鎖線で囲んだバイパス開閉弁42、逆止弁43、および圧力調整弁44等を統合弁4として一体化している。 Here, in this embodiment, in order to simplify the cycle configuration of the heat pump cycle 10, the bypass on-off valve 42, the check valve 43, the pressure adjustment valve 44, and the like surrounded by the one-dot chain line in FIG. Are integrated as one.
 この統合弁4の詳細については、図2、図3を用いて説明する。なお、図2、図3は、本実施形態の統合弁4の模式的な断面図である。 Details of the integrated valve 4 will be described with reference to FIGS. 2 and 3 are schematic cross-sectional views of the integrated valve 4 of the present embodiment.
 統合弁4は、その外殻を形成すると共に、柱状の金属ブロック体で構成されたボデー40を有している。このボデー40には、第2低圧側通路18を構成する第1冷媒通路18a、バイパス通路41、第2低圧側通路を構成する第2冷媒通路21aが形成されている。本実施形態のボデー40には、上方側から順にバイパス通路41、第1冷媒通路18a、第2冷媒通路21aが形成されている。 The integrated valve 4 has a body 40 that forms its outer shell and is composed of a columnar metal block body. The body 40 is formed with a first refrigerant passage 18a constituting the second low-pressure side passage 18, a bypass passage 41, and a second refrigerant passage 21a constituting the second low-pressure side passage. In the body 40 of the present embodiment, a bypass passage 41, a first refrigerant passage 18a, and a second refrigerant passage 21a are formed in order from the upper side.
 バイパス通路41は、並列運転モード時に、ボデー40の側壁に開口する第1冷媒導入口401から室内凝縮器12から流出した冷媒を導入し、導入した冷媒を第1冷媒導入口401の下方側に開口する第1冷媒導出口404を介して、室内蒸発器20側(第2膨脹弁19側)へ導く冷媒通路である。 In the parallel operation mode, the bypass passage 41 introduces the refrigerant that has flowed out from the indoor condenser 12 through the first refrigerant introduction port 401 that opens in the side wall of the body 40, and introduces the refrigerant to the lower side of the first refrigerant introduction port 401. This is a refrigerant passage that leads to the indoor evaporator 20 side (second expansion valve 19 side) through the opened first refrigerant outlet port 404.
 本実施形態のバイパス通路41は、ボデー40の径方向(紙面左右方向)に延びる一対の通路、およびボデー40の軸方向(紙面上下方向)に延び、一対の通路同士を連通させる通路で構成され、内部を流通する冷媒が、ボデー40内部をU字状に流れるようになっている。 The bypass passage 41 of the present embodiment includes a pair of passages extending in the radial direction (left and right direction on the paper surface) of the body 40 and a passage extending in the axial direction (up and down direction on the paper surface) of the body 40 and communicating the pair of passages. The refrigerant flowing through the inside flows in a U-shape inside the body 40.
 また、バイパス通路41の内部には、バイパス通路41を開閉するための円盤状のバイパス開閉用弁体421、バイパス開閉用弁体421の上面側に連結された第1シャフト(第1作動棒)422、後述する圧力調整用弁体441に連結された第2シャフト(第2作動棒)443の一部が配置されている。 Further, inside the bypass passage 41, a disk-shaped bypass opening / closing valve body 421 for opening and closing the bypass passage 41, a first shaft (first operating rod) connected to the upper surface side of the bypass opening / closing valve body 421 422, a part of a second shaft (second operating rod) 443 connected to a pressure adjusting valve body 441 described later is disposed.
 バイパス開閉用弁体421は、第1シャフト422を介して駆動モータ423の可動部材に連結されている。この駆動モータ423は、第1シャフト422を軸方向に駆動することで、バイパス開閉用弁体421をバイパス通路41の閉鎖位置および開放位置に変位させる駆動部を構成している。 The bypass opening / closing valve element 421 is connected to the movable member of the drive motor 423 via the first shaft 422. The drive motor 423 constitutes a drive unit that displaces the bypass opening / closing valve element 421 to the closed position and the open position of the bypass passage 41 by driving the first shaft 422 in the axial direction.
 具体的には、駆動モータ423は、バイパス通路41を閉鎖する際に、バイパス開閉用弁体421をバイパス通路41における軸方向に延びる通路に形成された弁座部406に密接する位置に変位させ(図2参照)、バイパス通路41を開放する際に、バイパス開閉用弁体421を弁座部406から離間する位置に変位させる(図3参照)。 Specifically, when closing the bypass passage 41, the drive motor 423 displaces the bypass opening / closing valve element 421 to a position in close contact with the valve seat portion 406 formed in the passage extending in the axial direction in the bypass passage 41. When the bypass passage 41 is opened (see FIG. 2), the bypass opening / closing valve element 421 is displaced to a position away from the valve seat 406 (see FIG. 3).
 本実施形態の駆動モータ423は、ステッピングモータ等のように、バイパス通路41の閉鎖位置および開放位置の範囲において、バイパス開閉用弁体421を任意に変位可能な電動モータで構成されている。これにより、バイパス開閉用弁体421によるバイパス通路41の開閉速度を緩やかにすることが可能となっている。なお、駆動モータ423は、制御装置100から出力される制御信号により、その作動が制御される。 The drive motor 423 of the present embodiment is an electric motor that can arbitrarily displace the bypass opening / closing valve element 421 in the range of the closed position and the open position of the bypass passage 41, such as a stepping motor. Thereby, the opening / closing speed of the bypass passage 41 by the bypass opening / closing valve body 421 can be made moderate. The operation of the drive motor 423 is controlled by a control signal output from the control device 100.
 本実施形態のバイパス開閉用弁体421には、弁座部406と当接する部位に円環状のシール部材421aが配置されており、当該シール部材421aにて弁座部406に密接した際のシール性が確保されている。なお、バイパス開閉用弁体421の下面側の中央部には、後述する第2シャフト443の一端側(上端側)を支えるための凹部が形成されている。 In the bypass opening / closing valve body 421 of the present embodiment, an annular seal member 421a is disposed at a portion that contacts the valve seat portion 406, and the seal when the seal member 421a is in close contact with the valve seat portion 406 is sealed. Is secured. A recess for supporting one end side (upper end side) of a second shaft 443, which will be described later, is formed in the central portion on the lower surface side of the bypass opening / closing valve body 421.
 続いて、第1冷媒通路18aは、直列運転モード時に、ボデー40の側壁に開口する第2冷媒導入口402から室外熱交換器15から流出した冷媒を導入し、導入した冷媒を第1冷媒導出口404を介して、室内蒸発器20側(第2膨脹弁19側)へ導く冷媒通路である。 Subsequently, the first refrigerant passage 18a introduces the refrigerant that has flowed out of the outdoor heat exchanger 15 through the second refrigerant introduction port 402 that opens in the side wall of the body 40 in the serial operation mode, and the introduced refrigerant is introduced into the first refrigerant passage. This is a refrigerant passage that leads to the indoor evaporator 20 side (second expansion valve 19 side) via the outlet 404.
 本実施形態の第1冷媒通路18aは、ボデー40の径方向(紙面左右方向)に延びる通路で構成され、バイパス通路41におけるバイパス開閉用弁体421の冷媒流れ下流側にて、バイパス通路41と合流している。 The first refrigerant passage 18a of the present embodiment is configured by a passage extending in the radial direction of the body 40 (left and right direction in the drawing), and on the downstream side of the bypass opening / closing valve body 421 in the bypass passage 41, the bypass passage 41 and Have joined.
 この第1冷媒通路18aにおける第2冷媒導入口402側には、逆止弁43が配置されている。この逆止弁43は、駆動モータ423がバイパス開閉用弁体421をバイパス通路41の開放位置に変位させた際に、バイパス通路41を流れる冷媒が、第1冷媒通路18aを介して室外熱交換器15側へ流出することを防止する逆流防止弁である。 A check valve 43 is arranged on the second refrigerant introduction port 402 side in the first refrigerant passage 18a. In the check valve 43, when the drive motor 423 displaces the bypass opening / closing valve element 421 to the open position of the bypass passage 41, the refrigerant flowing through the bypass passage 41 exchanges outdoor heat through the first refrigerant passage 18a. It is a backflow prevention valve which prevents flowing out to the container 15 side.
 具体的には、図2に示すように、逆止弁43は、バイパス通路41を流れる冷媒が第2冷媒導入口402側へ流れる際に、冷媒の圧力により弁体431が第2冷媒導入口402側に押圧され、弁体431が弁座部432に密着することで、第1冷媒通路18aが閉鎖される。 Specifically, as shown in FIG. 2, the check valve 43 is configured such that when the refrigerant flowing through the bypass passage 41 flows toward the second refrigerant introduction port 402, the valve body 431 is moved to the second refrigerant introduction port by the pressure of the refrigerant. The first refrigerant passage 18a is closed when the valve body 431 is brought into close contact with the valve seat portion 432 by being pressed toward the 402 side.
 また、図3に示すように、逆止弁43は、冷媒が第2冷媒導入口402側から第1冷媒導出口404側へ流れる際に、冷媒の圧力により弁体431が第1冷媒導出口404側へ押圧され、弁体431が弁座部432から離間することで、第1冷媒通路18aが開放される。 As shown in FIG. 3, the check valve 43 is configured such that when the refrigerant flows from the second refrigerant introduction port 402 side to the first refrigerant discharge port 404 side, the valve body 431 is caused by the pressure of the refrigerant. The first refrigerant passage 18a is opened when the valve body 431 is separated from the valve seat portion 432 by being pressed toward the 404 side.
 続いて、第2冷媒通路21aは、ボデー40の底壁に開口する第3冷媒導入口403から室内蒸発器20から流出した冷媒を導入し、導入した冷媒をボデー40の側壁に開口する第2冷媒導出口405を介して、アキュムレータ22(圧縮機11の吸入側)へ導く冷媒通路である。 Subsequently, the second refrigerant passage 21 a introduces the refrigerant that has flowed out from the indoor evaporator 20 through the third refrigerant introduction port 403 that opens to the bottom wall of the body 40, and the introduced refrigerant opens to the side wall of the body 40. This is a refrigerant passage that leads to the accumulator 22 (the suction side of the compressor 11) via the refrigerant outlet 405.
 本実施形態の第2冷媒通路21aは、ボデー40の径方向(紙面左右方向)に延びる通路、およびボデー40の軸方向(紙面上下方向)に延び通路で構成され、内部を流通する冷媒が、ボデー40内部をL字状に流れるようになっている。 The second refrigerant passage 21a of the present embodiment includes a passage extending in the radial direction (left and right direction on the paper surface) of the body 40 and a passage extending in the axial direction (up and down direction on the paper surface) of the body 40, The inside of the body 40 flows in an L shape.
 ここで、本実施形態では、第1冷媒通路18aを流れる冷媒と第2冷媒通路21aを流れる冷媒とのボデー40を介した熱交換を促進するために、第1冷媒通路18aを流れる冷媒と第2冷媒通路21aを流れる冷媒とが対向流となるようにしている。すなわち、本実施形態の第2冷媒通路21aは、第2冷媒通路21aの少なくとも一部を流れる冷媒の流れ方向が、第1冷媒通路18aの少なくとも一部を流れる冷媒の流れ方向に対して逆方向となるように形成されている。 Here, in the present embodiment, in order to promote heat exchange between the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a via the body 40, the refrigerant flowing through the first refrigerant passage 18a The refrigerant flowing in the two refrigerant passages 21a is opposed to the refrigerant. That is, in the second refrigerant passage 21a of the present embodiment, the flow direction of the refrigerant flowing through at least a part of the second refrigerant passage 21a is opposite to the flow direction of the refrigerant flowing through at least a part of the first refrigerant passage 18a. It is formed to become.
 具体的には、本実施形態の第2冷媒通路21aは、ボデー40の径方向に延びる通路を流れる冷媒の流れ方向が、第1冷媒通路18aにおけるボデー40の径方向に延びる通路のうち、第1冷媒導出口404側の通路を流れる冷媒の流れ方向と逆方向となるように形成されている。 Specifically, the second refrigerant passage 21a of the present embodiment includes a second refrigerant passage 21a in which the flow direction of the refrigerant flowing through the passage extending in the radial direction of the body 40 is the first of the passages extending in the radial direction of the body 40 in the first refrigerant passage 18a. It is formed so as to be in a direction opposite to the flow direction of the refrigerant flowing through the passage on the side of the one refrigerant outlet 404.
 第2冷媒通路21aの内部には、円盤状の圧力調整用弁体441、スプリング(弾性部材)442、第2シャフト443の一部、プレート部材443a等が配置されている。 In the second refrigerant passage 21a, a disc-shaped pressure adjusting valve body 441, a spring (elastic member) 442, a part of the second shaft 443, a plate member 443a, and the like are arranged.
 圧力調整用弁体441は、第2冷媒通路21aの通路開度(通路面積)を変更することで、第2冷媒通路21aに流入する冷媒の圧力(室内蒸発器20を流通する冷媒の圧力)を予め定めた設定圧力値に維持するための弁体である。 The pressure adjusting valve body 441 changes the passage opening degree (passage area) of the second refrigerant passage 21a, whereby the pressure of the refrigerant flowing into the second refrigerant passage 21a (the pressure of the refrigerant flowing through the indoor evaporator 20). Is a valve body for maintaining a predetermined set pressure value.
 第2シャフト443は、ボデー40内部の第2冷媒通路21aとバイパス通路41とを連通させる貫通穴408を貫通するように配置され、一端側がバイパス開閉用弁体421の凹部に当接した状態で圧力調整用弁体441に連結されている。 The second shaft 443 is disposed so as to pass through a through hole 408 that allows the second refrigerant passage 21 a and the bypass passage 41 in the body 40 to communicate with each other, and one end side thereof is in contact with the recess of the bypass opening / closing valve body 421. The pressure adjusting valve body 441 is connected.
 本実施形態の圧力調整用弁体441は、第2シャフト443を介してバイパス開閉用弁体421と当接した状態となっており、バイパス開閉用弁体421の変位に連動して変位する。 The pressure adjusting valve element 441 according to the present embodiment is in contact with the bypass opening / closing valve element 421 via the second shaft 443, and is displaced in conjunction with the displacement of the bypass opening / closing valve element 421.
 なお、第2冷媒通路21aとバイパス通路41とを連通させる貫通穴408には、第2シャフト443および貫通穴408間に形成される隙間からの冷媒漏れを抑制するシール部材(シール部)408aが配置されている。本実施形態のシール部材408aは、貫通穴408をシールする機能に加えて、圧力調整用弁体441の振動を吸収する振動吸収部材としても機能するように、樹脂製のOリングにて構成されている。 Note that a seal member (seal portion) 408a that suppresses refrigerant leakage from a gap formed between the second shaft 443 and the through hole 408 is provided in the through hole 408 that allows the second refrigerant passage 21a and the bypass passage 41 to communicate with each other. Has been placed. The seal member 408a of the present embodiment is configured by a resin O-ring so as to function as a vibration absorbing member that absorbs vibration of the pressure adjusting valve body 441 in addition to the function of sealing the through hole 408. ing.
 プレート部材443aは、第3冷媒導入口403側に配置された板状部材であり、第3冷媒導入口403に固定されたコネクタ45にて最外周側が第2冷媒通路21aに固定されている。このプレート部材443aには、冷媒を流通させるための複数の貫通穴、および第2シャフト443の他端側を支える貫通穴が形成されている。なお、コネクタ45は、第3冷媒導入口403に冷媒配管を結合する部材であり、ボデー40をかしめることで第3冷媒導入口403に固定されている。 The plate member 443a is a plate-like member disposed on the third refrigerant introduction port 403 side, and the outermost peripheral side is fixed to the second refrigerant passage 21a by a connector 45 fixed to the third refrigerant introduction port 403. The plate member 443a has a plurality of through holes for circulating the refrigerant and a through hole that supports the other end of the second shaft 443. The connector 45 is a member that couples refrigerant piping to the third refrigerant introduction port 403, and is fixed to the third refrigerant introduction port 403 by caulking the body 40.
 スプリング442は、ボデー40の軸方向に延びる円筒コイルバネで構成され、圧力調整用弁体441を、第2冷媒通路21a内に形成された弁座部407に押し付ける方向(閉弁方向)に付勢するように構成されている。 The spring 442 is constituted by a cylindrical coil spring extending in the axial direction of the body 40, and biases the pressure adjusting valve body 441 in a direction (valve closing direction) to press against the valve seat portion 407 formed in the second refrigerant passage 21a. Is configured to do.
 ここで、本実施形態の圧力調整用弁体441には、スプリング442による荷重(バネ力)、および第2冷媒通路21aを流れる冷媒の圧力(圧力調整用弁体441前後の差圧)の合力が、圧力調整用弁体441の閉弁側(上方側)に作用する。 Here, in the pressure adjustment valve body 441 of the present embodiment, the resultant force of the load (spring force) by the spring 442 and the pressure of the refrigerant flowing through the second refrigerant passage 21a (differential pressure before and after the pressure adjustment valve body 441). Acts on the valve closing side (upper side) of the pressure adjusting valve body 441.
 このため、駆動モータ423は、そのモータ軸力を、圧力調整用弁体441の閉弁側(上方側)に作用する合力に対抗する(打ち勝つ)ように圧力調整用弁体441に作用させる。なお、駆動モータ423は、図示しないが、モータの回転運動を、各シャフト422、443の上下運動に変換する変換機構(送りネジ機構)を有しており、モータの回転量を調整することで圧力調整用弁体441のリフト量(変位量)を制御可能となっている。 For this reason, the drive motor 423 causes the motor axial force to act on the pressure adjusting valve body 441 so as to oppose (overcoming) the resultant force acting on the valve closing side (upper side) of the pressure adjusting valve body 441. Although not shown, the drive motor 423 has a conversion mechanism (feed screw mechanism) that converts the rotational motion of the motor into the vertical motion of the shafts 422 and 443, and by adjusting the amount of rotation of the motor. The lift amount (displacement amount) of the pressure adjusting valve element 441 can be controlled.
 具体的には、第2冷媒通路21aに流入する冷媒圧力が設定圧力値(室内蒸発器20への着霜が生じない圧力)となるように、駆動モータ423の回転量を調整して圧力調整用弁体441のリフト量を変更する場合、圧力調整用弁体441が第2冷媒通路21aに流入する冷媒の圧力を設定圧力範囲に維持する定圧維持機能を発揮する機能発揮状態となる。 Specifically, the pressure adjustment is performed by adjusting the rotation amount of the drive motor 423 so that the refrigerant pressure flowing into the second refrigerant passage 21a becomes a set pressure value (pressure at which frost formation on the indoor evaporator 20 does not occur). When the lift amount of the valve body 441 is changed, the pressure adjusting valve body 441 enters a function exhibiting state that exhibits a constant pressure maintaining function of maintaining the pressure of the refrigerant flowing into the second refrigerant passage 21a within the set pressure range.
 一方、第2冷媒通路21aにおける圧力調整用弁体441前後の冷媒圧力が変化しないように、駆動モータ423の回転量を調整して圧力調整用弁体441のリフト量を変更する場合、圧力調整用弁体441が定圧維持機能を発揮しない機能停止状態となる。 On the other hand, when changing the lift amount of the pressure adjusting valve body 441 by adjusting the rotation amount of the drive motor 423 so that the refrigerant pressure before and after the pressure adjusting valve body 441 in the second refrigerant passage 21a does not change, the pressure adjustment The valve body 441 enters a function stop state where the constant pressure maintaining function is not exhibited.
 図1に戻り、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、上述の室内凝縮器12、および室内蒸発器20、ヒータコア34等を収容したものである。 Referring back to FIG. 1, the indoor air conditioning unit 30 will be described. The indoor air-conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior, and the blower 32, the above-described indoor condenser 12, and the indoor evaporator 20 are disposed in a casing 31 that forms the outer shell of the interior air conditioning unit 30. The heater core 34 and the like are accommodated.
 ケーシング31は、車室内送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の送風空気流れ最上流側には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が配置されている。 The casing 31 forms an air passage for the air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength. An inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is arranged on the most upstream side of the blown air flow in the casing 31.
 内外気切替装置33には、ケーシング31内に内気を導入させる内気導入口および外気を導入させる外気導入口が形成されている。さらに、内外気切替装置33の内部には、内気導入口および外気導入口の開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる内外気切替ドアが配置されている。 The inside / outside air switching device 33 is formed with an inside air introduction port for introducing inside air into the casing 31 and an outside air introduction port for introducing outside air. Furthermore, inside / outside air switching device 33 is provided with an inside / outside air switching door that continuously adjusts the opening area of the inside air introduction port and the outside air introduction port to change the air volume ratio between the inside air volume and the outside air volume. Has been.
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して導入された空気を車室内に向けて送風する送風機32が配置されている。この送風機32は、遠心式多翼ファン32aを電動モータ32bにて駆動する電動送風機であって、後述する制御装置から出力される制御信号(制御電圧)によって回転数(送風量)が制御される。なお、遠心式多翼ファン32aは、車室内へ空気を送風する送風部としての機能を果たす。 A blower 32 that blows air introduced through the inside / outside air switching device 33 toward the passenger compartment is disposed on the downstream side of the air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan 32a by an electric motor 32b, and the number of rotations (the amount of blown air) is controlled by a control signal (control voltage) output from a control device described later. . The centrifugal multiblade fan 32a functions as a blower that blows air into the passenger compartment.
 送風機32の空気流れ下流側には、室内蒸発器20、ヒータコア34、および室内凝縮器12が、車室内送風空気の流れに対して、この順に配置されている。換言すると、室内蒸発器20は、室内凝縮器12およびヒータコア34に対して、車室内送風空気の流れ方向上流側に配置されている。 On the downstream side of the air flow of the blower 32, the indoor evaporator 20, the heater core 34, and the indoor condenser 12 are arranged in this order with respect to the flow of the air blown into the vehicle interior. In other words, the indoor evaporator 20 is disposed upstream of the indoor condenser 12 and the heater core 34 in the flow direction of the air blown into the vehicle interior.
 ここで、ヒータコア34は、車両走行用の駆動力を出力するエンジンの冷却水と車室内送風空気とを熱交換させる加熱用熱交換器である。なお、本実施形態のヒータコア34は、室内凝縮器12に対して車室内送風空気の流れ方向上流側に配置されている。また、ケーシング31内には、室内蒸発器20を通過した空気を室内凝縮器12およびヒータコア34を迂回させて流す冷風バイパス通路35が形成されている。 Here, the heater core 34 is a heat exchanger for heating that exchanges heat between engine cooling water that outputs driving force for vehicle travel and air blown into the passenger compartment. In addition, the heater core 34 of this embodiment is arrange | positioned with respect to the indoor condenser 12 in the flow direction upstream of the vehicle interior ventilation air. Further, in the casing 31, a cold air bypass passage 35 is formed in which the air that has passed through the indoor evaporator 20 is caused to bypass the indoor condenser 12 and the heater core 34.
 室内蒸発器20の空気流れ下流側であって、かつ、室内凝縮器12およびヒータコア34の空気流れ上流側には、室内蒸発器20通過後の空気のうち、室内凝縮器12およびヒータコア34を通過させる空気と冷風バイパス通路35を通過させる空気との風量割合を調整するエアミックスドア36が配置されている。また、室内凝縮器12の空気流れ下流側および冷風バイパス通路35の空気流れ下流側には、室内凝縮器12を通過した空気と冷風バイパス通路35を通過した空気とを混合させる混合空間が設けられている。 The air after passing through the indoor evaporator 20 passes through the indoor condenser 12 and the heater core 34 on the downstream side of the indoor evaporator 20 and on the upstream side of the indoor condenser 12 and the heater core 34. An air mix door 36 for adjusting the air volume ratio between the air to be passed and the air passing through the cold air bypass passage 35 is disposed. Further, on the downstream side of the air flow of the indoor condenser 12 and the downstream side of the air flow of the cold air bypass passage 35, a mixing space for mixing the air that has passed through the indoor condenser 12 and the air that has passed through the cold air bypass passage 35 is provided. ing.
 さらに、ケーシング31の送風空気流れ最下流側には、混合空間にて混合された空調風を、空調対象空間である車室内へ吹き出す吹出口(図示略)が配置されている。具体的には、吹出口としては、車室内の乗員の上半身へ空調風を吹き出すフェイス吹出口、乗員の足元へ空調風を吹き出すフット吹出口、および車両前面窓ガラス内側面へ空調風を吹き出すデフロスタ吹出口が設けられている。 Furthermore, on the most downstream side of the blown air flow of the casing 31, an air outlet (not shown) that blows the conditioned air mixed in the mixing space into the vehicle interior that is the air-conditioning target space is arranged. Specifically, as the air outlet, there are a face air outlet that blows air-conditioned air to the upper body of the passenger in the vehicle interior, a foot air outlet that blows air-conditioned air to the feet of the passenger, and a defroster that blows air-conditioned air to the inner side surface of the vehicle front window glass. There is an air outlet.
 従って、エアミックスドア36が室内凝縮器12を通過させる空気と冷風バイパス通路35を通過させる空気との風量割合を調整することで、混合空間にて混合された空調風の温度が調整され、各吹出口から吹き出される空調風の温度が調整される。なお、エアミックスドア36は、制御装置から出力される制御信号によって作動するサーボモータ(図示略)によって駆動される。 Therefore, by adjusting the air volume ratio between the air that the air mix door 36 passes through the indoor condenser 12 and the air that passes through the cold air bypass passage 35, the temperature of the conditioned air mixed in the mixing space is adjusted, The temperature of the conditioned air blown out from the air outlet is adjusted. The air mix door 36 is driven by a servo motor (not shown) that operates according to a control signal output from the control device.
 さらに、フェイス吹出口、フット吹出口、およびデフロスタ吹出口の送風空気流れ上流側には、フェイス吹出口の開口面積を調整するフェイスドア(図示略)、フット吹出口の開口面積を調整するフットドア(図示略)、およびデフロスタ吹出口の開口面積を調整するデフロスタドア(図示略)が配置されている。 Further, on the upstream side of the blower air flow of the face outlet, the foot outlet, and the defroster outlet, a face door (not shown) that adjusts the opening area of the face outlet, a foot door that adjusts the opening area of the foot outlet ( A defroster door (not shown) for adjusting the opening area of the defroster outlet is disposed.
 これらのフェイスドア、フットドア、およびデフロスタドアは、吹出口モードを切り替える吹出口モード切替部を構成するものであって、リンク機構等を介して、後述する制御装置から出力される制御信号によってその作動が制御されるサーボモータ(図示略)によって駆動される。 These face doors, foot doors, and defroster doors constitute a blower outlet mode switching unit that switches a blower outlet mode, and are activated by a control signal output from a control device to be described later via a link mechanism or the like. Is driven by a servo motor (not shown).
 次に、本実施形態の電気制御部について説明する。制御装置100は、CPU、メモリ(ROM、RAM等)を含む周知のマイクロコンピュータとその周辺回路から構成され、そのメモリ内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御機器の作動を制御する。 Next, the electric control unit of this embodiment will be described. The control device 100 is composed of a well-known microcomputer including a CPU and memory (ROM, RAM, etc.) and its peripheral circuits, performs various calculations and processing based on a control program stored in the memory, Controls the operation of various connected control devices.
 また、制御装置100の入力側には、車室内温度Trを検出する内気センサ、外気温Tamを検出する外気センサ、車室内の日射量Tsを検出する日射センサ、室内蒸発器20からの吹出空気温度(蒸発器温度)Teを検出する蒸発器吹出温度検出部としての蒸発器温度センサ、圧縮機11から吐出された冷媒の温度Tdを検出する吐出温度センサ、車室内へ吹き出す吹出空気温度TAVを検出する吹出温度検出部としての吹出空気温度センサ等の空調制御用のセンサ群が接続されている。 Further, on the input side of the control device 100, an inside air sensor that detects the vehicle interior temperature Tr, an outside air sensor that detects the outside air temperature Tam, a solar radiation sensor that detects the amount of solar radiation Ts in the vehicle interior, and the air blown from the indoor evaporator 20 An evaporator temperature sensor as an evaporator blowing temperature detection unit for detecting temperature (evaporator temperature) Te, a discharge temperature sensor for detecting the temperature Td of the refrigerant discharged from the compressor 11, and a blown air temperature TAV to be blown into the vehicle interior A sensor group for air conditioning control such as a blown air temperature sensor as a blown temperature detecting unit to be detected is connected.
 さらに、制御装置100の入力側には、車室内前部の計器盤付近に配置された操作パネル(図示略)が接続され、操作パネルに設けられた各種操作スイッチからの操作信号が入力される。この操作パネルに設けられた各種操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車室内の設定温度を設定する温度設定スイッチ、ヒートポンプサイクル10の運転モードを選択するモード選択スイッチ等が設けられている。 Further, an operation panel (not shown) disposed near the instrument panel in front of the vehicle interior is connected to the input side of the control device 100, and operation signals from various operation switches provided on the operation panel are input. . Specifically, various operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, a temperature setting switch for setting a set temperature in the vehicle interior, and a mode selection switch for selecting an operation mode of the heat pump cycle 10. Etc. are provided.
 なお、制御装置100は、その出力側に接続された各種制御機器の作動を制御する制御部が一体に構成されたものであるが、それぞれ制御機器の作動を制御する構成(ソフトウェアおよびハードウェア)が、それぞれの制御機器の作動を制御する制御部を構成している。 Note that the control device 100 is configured such that a control unit that controls the operation of various control devices connected to the output side thereof is integrally configured. The configuration (software and hardware) controls the operation of each control device. However, the control part which controls the action | operation of each control apparatus is comprised.
 例えば、本実施形態では、制御装置100における運転モードを、冷房モード、第1除湿暖房モード、第2除湿暖房モード、および暖房モードに切り替える構成が、運転モード切替部100aを構成している。 For example, in the present embodiment, the configuration in which the operation mode in the control device 100 is switched to the cooling mode, the first dehumidifying and heating mode, the second dehumidifying and heating mode, and the heating mode constitutes the operation mode switching unit 100a.
 また、本実施形態では、制御装置100によるバイパス開閉弁42(駆動モータ423)の制御に連動して、圧力調整弁44の作動状態が定圧調整機能を発揮する機能発揮状態、および定圧調整機能を発揮しない機能停止状態に切り替わる構成となっている。このため、本実施形態では、バイパス開閉弁42の駆動モータ423を制御する構成が作動状態切替部100bを構成している。 Further, in the present embodiment, in conjunction with the control of the bypass opening / closing valve 42 (drive motor 423) by the control device 100, a function exhibiting state in which the operating state of the pressure regulating valve 44 exhibits a constant pressure adjusting function, and a constant pressure adjusting function are provided. It is configured to switch to a function stop state that does not exhibit. For this reason, in this embodiment, the structure which controls the drive motor 423 of the bypass on-off valve 42 comprises the operation state switching part 100b.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1では、前述の如く、車室内を冷房する冷房モード、車室内を暖房する暖房モード、車室内を除湿しながら暖房する除湿暖房モードに切り替えることができる。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described. As described above, the vehicle air conditioner 1 of the present embodiment can be switched to the cooling mode for cooling the passenger compartment, the heating mode for heating the passenger compartment, and the dehumidifying and heating mode for heating while dehumidifying the passenger compartment.
 車両用空調装置1は、操作パネルの作動スイッチが投入(ON)されると、制御装置100が上述のセンサ群の検出信号および操作パネルの操作信号を読み込む。 In the vehicle air conditioner 1, when the operation switch of the operation panel is turned on, the control device 100 reads the detection signal of the sensor group and the operation signal of the operation panel.
 そして、制御装置100は、読み込んだ検出信号および操作信号の値に基づいて車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下の数式F1に基づいて算出する。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
但し、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサによって検出された外気温、Tsは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Then, the control device 100 calculates a target blowing temperature TAO that is a target temperature of the blowing air blown into the vehicle interior based on the read detection signal and operation signal values based on the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
However, Tset is the vehicle interior set temperature set by the temperature setting switch, Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor, Tam is the outside air temperature detected by the outside air sensor, and Ts is detected by the solar radiation sensor. The amount of solar radiation. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 その後、制御装置100は、センサ群の検出信号、目標吹出温度TAO、およびモード選択スイッチにて選択された運転モードに応じて、制御装置100の出力側に接続された各種制御機器の作動状態を決定する。 Thereafter, the control device 100 determines the operating states of various control devices connected to the output side of the control device 100 according to the detection signal of the sensor group, the target blowing temperature TAO, and the operation mode selected by the mode selection switch. decide.
 以下、各運転モードにおける作動を説明する。 Hereinafter, the operation in each operation mode will be described.
 (A)暖房モード
 暖房モードでは、制御装置100が、低圧側開閉弁17にて第1低圧側通路16を開くとともに、第2膨脹弁19にて第2低圧側通路18を閉じる(全閉)。さらに、制御装置100が駆動モータ423にてバイパス開閉用弁体421をバイパス通路41の閉鎖位置に変位させて、バイパス開閉弁42にてバイパス通路41を閉じる。
(A) Heating Mode In the heating mode, the control device 100 opens the first low-pressure side passage 16 with the low-pressure side opening / closing valve 17 and closes the second low-pressure side passage 18 with the second expansion valve 19 (fully closed). . Further, the control device 100 displaces the bypass opening / closing valve element 421 to the closed position of the bypass passage 41 by the drive motor 423 and closes the bypass passage 41 by the bypass opening / closing valve 42.
 これにより、ヒートポンプサイクル10では、図1の黒塗矢印で示すように冷媒が流れる冷媒流路に切り替えられる。この際、統合弁4の内部では、図3に示すように、バイパス開閉用弁体421の変位に連動して、圧力調整用弁体441が第2冷媒通路21aの通路開度が拡大するように変位する。つまり、圧力調整弁44の作動状態が定圧調整機能を発揮しない機能停止状態となる。 Thereby, in the heat pump cycle 10, as shown by the black arrows in FIG. At this time, inside the integrated valve 4, as shown in FIG. 3, the pressure adjustment valve body 441 increases the passage opening of the second refrigerant passage 21a in conjunction with the displacement of the bypass opening / closing valve body 421. It is displaced to. That is, the operating state of the pressure adjustment valve 44 is a function stop state in which the constant pressure adjustment function is not exhibited.
 この冷媒流路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御機器へ出力する制御信号を決定する。 With the configuration of the refrigerant flow path, the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 例えば、圧縮機11の電動モータ11aに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め制御装置100のメモリに記憶された制御マップを参照して、室内凝縮器12の目標凝縮器温度TCOを決定する。 For example, the control signal output to the electric motor 11a of the compressor 11 is determined as follows. First, the target condenser temperature TCO of the indoor condenser 12 is determined with reference to a control map stored in advance in the memory of the control device 100 based on the target outlet temperature TAO.
 そして、この目標凝縮器温度TCOと吐出温度センサの検出値との偏差に基づいて、フィードバック制御手法を用いて、車室内へ吹き出される吹出空気温度が目標吹出温度TAOに近づくように圧縮機11の電動モータ11aに出力される制御信号が決定される。 Then, based on the deviation between the target condenser temperature TCO and the detected value of the discharge temperature sensor, the compressor 11 uses a feedback control method so that the temperature of the air blown into the passenger compartment approaches the target air temperature TAO. A control signal to be output to the electric motor 11a is determined.
 また、第1膨脹弁14へ出力される制御信号については、第1膨脹弁14へ流入する冷媒の過冷却度が、サイクルの成績係数(COP)を最大値に近づけるように予め定められた目標過冷却度に近づくように決定される。 As for the control signal output to the first expansion valve 14, a predetermined target is set so that the degree of supercooling of the refrigerant flowing into the first expansion valve 14 approaches the maximum coefficient of performance (COP) of the cycle. It is determined to approach the degree of supercooling.
 また、エアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36が冷風バイパス通路35を閉塞し、室内蒸発器20を通過後の送風空気の全流量がヒータコア34および室内凝縮器12の空気通路を通過するように決定される。 As for the control signal output to the servo motor of the air mix door 36, the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 20 is the heater core 34 and the indoor condensation. To pass through the air passage of the vessel 12.
 そして、上記の如く決定された制御信号等を各種制御機器へ出力する。その後、作動スイッチ等によって車両用空調装置1の作動停止が要求されるまで、所定の周期毎に各種制御機器の作動状態の決定→制御信号等の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control signals determined as described above are output to various control devices. Thereafter, a control routine such as determination of operation states of various control devices → output of control signals and the like is repeated at predetermined intervals until the operation of the vehicle air conditioner 1 is requested by an operation switch or the like. Such a control routine is repeated in the other operation modes.
 従って、暖房モード時のヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。室内凝縮器12に流入した冷媒は、送風機32から送風されて室内蒸発器20を通過した車室内送風空気と熱交換して放熱する。これにより、車室内送風空気が加熱される。 Therefore, in the heat pump cycle 10 in the heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. The refrigerant that has flowed into the indoor condenser 12 exchanges heat with the vehicle interior blown air that has been blown from the blower 32 and passed through the indoor evaporator 20 to dissipate heat. Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入し、第1膨脹弁14にて低圧冷媒となるまで減圧膨張される。そして、第1膨脹弁14にて減圧された低圧冷媒は、室外熱交換器15に流入して、送風ファンから送風された外気から吸熱する。室外熱交換器15から流出した冷媒は、第1低圧側通路16を介して、アキュムレータ22へ流入して気液分離される。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13 and is decompressed and expanded by the first expansion valve 14 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan. The refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the accumulator 22 through the first low-pressure side passage 16 and is separated into gas and liquid.
 そして、アキュムレータ22にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。なお、アキュムレータ22にて分離された液相冷媒は、サイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ22の内部に蓄えられる。なお、第2低圧側通路18は、第2膨脹弁19にて閉鎖されているため、室内蒸発器20には冷媒が流入しない。 Then, the gas-phase refrigerant separated by the accumulator 22 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11. Note that the liquid-phase refrigerant separated by the accumulator 22 is stored in the accumulator 22 as surplus refrigerant that is not necessary to exhibit the refrigeration capacity for which the cycle is required. Since the second low-pressure side passage 18 is closed by the second expansion valve 19, the refrigerant does not flow into the indoor evaporator 20.
 以上の如く、暖房モードでは、室内凝縮器12にて圧縮機11から吐出された高圧冷媒の有する熱を車室内送風空気に放熱させるとともに、ヒータコア34にて冷却水が有する熱を車室内送風空気に放熱させて、加熱された車室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。 As described above, in the heating mode, the heat of the high-pressure refrigerant discharged from the compressor 11 by the indoor condenser 12 is radiated to the vehicle interior blown air, and the heat of the cooling water is heated by the heater core 34 in the vehicle interior blown air. The heated vehicle interior blown air can be blown out into the vehicle interior. Thereby, heating of a vehicle interior is realizable.
 (B)冷房モード
 冷房モードでは、制御装置100が、低圧側開閉弁17にて第1低圧側通路16を閉じるとともに、第1膨脹弁14にて高圧側通路13を全開状態とする。さらに、制御装置100が駆動モータ423にてバイパス開閉用弁体421をバイパス通路41の閉鎖位置に変位させて、バイパス開閉弁42にてバイパス通路41を閉じる。
(B) Cooling Mode In the cooling mode, the control device 100 closes the first low-pressure side passage 16 with the low-pressure side opening / closing valve 17 and opens the high-pressure side passage 13 with the first expansion valve 14. Further, the control device 100 displaces the bypass opening / closing valve element 421 to the closed position of the bypass passage 41 by the drive motor 423 and closes the bypass passage 41 by the bypass opening / closing valve 42.
 これにより、ヒートポンプサイクル10では、図1の白抜矢印で示すように、室内凝縮器12から流出した冷媒が、室外熱交換器15、室内蒸発器20の順に流れる冷媒流路に切り替えられる。より具体的には、室内凝縮器12から流出した冷媒は、第1膨脹弁14→室外熱交換器15→第2膨脹弁19→室内蒸発器20→圧力調整弁44→アキュムレータ22→圧縮機11の吸入側の順に流れる。なお、冷房モードでは、冷媒流れに対して室外熱交換器15と室内蒸発器20とが直列に接続されることとなる。 Thereby, in the heat pump cycle 10, as indicated by the white arrow in FIG. 1, the refrigerant that has flowed out of the indoor condenser 12 is switched to the refrigerant flow path that flows in the order of the outdoor heat exchanger 15 and the indoor evaporator 20. More specifically, the refrigerant that has flowed out of the indoor condenser 12 passes through the first expansion valve 14 → the outdoor heat exchanger 15 → the second expansion valve 19 → the indoor evaporator 20 → the pressure regulating valve 44 → the accumulator 22 → the compressor 11. It flows in the order of the inhalation side. In the cooling mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in series with respect to the refrigerant flow.
 この際、統合弁4の内部では、図3に示すように、バイパス開閉用弁体421の変位に連動して、圧力調整用弁体441が第2冷媒通路21aの通路開度が拡大するように変位する。つまり、圧力調整弁44の作動状態が定圧調整機能を発揮しない機能停止状態となる。 At this time, inside the integrated valve 4, as shown in FIG. 3, the pressure adjustment valve body 441 increases the passage opening of the second refrigerant passage 21a in conjunction with the displacement of the bypass opening / closing valve body 421. It is displaced to. That is, the operating state of the pressure adjustment valve 44 is a function stop state in which the constant pressure adjustment function is not exhibited.
 この冷媒流路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御機器へ出力する制御信号を決定する。 With the configuration of the refrigerant flow path, the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 例えば、圧縮機11の電動モータ11aに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め制御装置100のメモリに記憶された制御マップを参照して、室内蒸発器20から吹き出される送風空気の目標蒸発器吹出温度TEOを決定する。そして、この目標蒸発器吹出温度TEOと蒸発器温度センサの検出値との偏差に基づいて、フィードバック制御手法を用いて室内蒸発器20を通過した空気の温度が、目標吹出温度TAOに近づくように圧縮機11の電動モータ11aに出力される制御信号が決定される。 For example, the control signal output to the electric motor 11a of the compressor 11 is determined as follows. First, based on the target blowing temperature TAO, the target evaporator blowing temperature TEO of the blown air blown out from the indoor evaporator 20 is determined with reference to a control map stored in advance in the memory of the control device 100. Then, based on the deviation between the target evaporator blowout temperature TEO and the detected value of the evaporator temperature sensor, the temperature of the air that has passed through the indoor evaporator 20 using the feedback control method approaches the target blowout temperature TAO. A control signal output to the electric motor 11a of the compressor 11 is determined.
 また、第2膨脹弁19へ出力される制御信号については、第2膨脹弁19へ流入する冷媒の過冷却度が、COPを最大値に近づくように予め定められた目標過冷却度に近づくように決定される。 Further, the control signal output to the second expansion valve 19 is such that the degree of supercooling of the refrigerant flowing into the second expansion valve 19 approaches a target supercooling degree set in advance so that the COP approaches the maximum value. To be determined.
 また、エアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36がヒータコア34および室内凝縮器12の空気通路を閉塞し、室内蒸発器20を通過後の送風空気の全流量が冷風バイパス通路35を通過するように決定される。 Regarding the control signal output to the servo motor of the air mix door 36, the air mix door 36 closes the air passage of the heater core 34 and the indoor condenser 12, and the total flow rate of the blown air after passing through the indoor evaporator 20. Is determined to pass through the cold air bypass passage 35.
 これにより、冷房モード時のヒートポンプサイクル10では、サイクルを循環する冷媒の状態が、図4のモリエル線図に示すように変化する。 Thereby, in the heat pump cycle 10 in the cooling mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 図4に示すように、圧縮機11から吐出された高圧冷媒(a1点)が室内凝縮器12に流入する。この際、エアミックスドア36がヒータコア34および室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12に流入した冷媒は、僅かに車室内送風空気と熱交換して、室内凝縮器12から流出する(図4のa1点→a2点)。 4, the high-pressure refrigerant (a1 point) discharged from the compressor 11 flows into the indoor condenser 12. At this time, since the air mix door 36 closes the air passages of the heater core 34 and the indoor condenser 12, the refrigerant flowing into the indoor condenser 12 slightly exchanges heat with the air blown into the vehicle interior, and the indoor condenser. 12 (point a1 → point a2 in FIG. 4).
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入する。この際、第1膨脹弁14が高圧側通路13を全開状態としているので、室内凝縮器12から流出した冷媒は、第1膨脹弁14にて減圧されることなく、室外熱交換器15に流入する。そして、室外熱交換器15に流入した冷媒は、室外熱交換器15にて送風ファンから送風された外気へ放熱する(図4のa2点→a3点)。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13. At this time, since the first expansion valve 14 fully opens the high-pressure side passage 13, the refrigerant flowing out from the indoor condenser 12 flows into the outdoor heat exchanger 15 without being depressurized by the first expansion valve 14. To do. Then, the refrigerant flowing into the outdoor heat exchanger 15 radiates heat to the outside air blown from the blower fan in the outdoor heat exchanger 15 (point a2 → point a3 in FIG. 4).
 室外熱交換器15から流出した冷媒は、第2低圧側通路18を介して、第2膨脹弁19へ流入して、第2膨脹弁19にて低圧冷媒となるまで減圧膨張される(図4のa3点→a4点)。第2膨脹弁19にて減圧された低圧冷媒は、室内蒸発器20に流入し、送風機32から送風された車室内送風空気から吸熱して蒸発する(図4のa4点→a5点)。これにより、車室内送風空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18, and is decompressed and expanded until it becomes a low-pressure refrigerant in the second expansion valve 19 (FIG. 4). A3 point → a4 point). The low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20 and absorbs heat from the air blown from the vehicle interior blown from the blower 32 to evaporate (point a4 → a5 in FIG. 4). Thereby, vehicle interior blowing air is cooled.
 室内蒸発器20から流出した冷媒は、圧力調整弁44に流入する。この際、圧力調整弁44は、定圧調整機能を発揮しない機能停止状態となっているので、室内蒸発器20から流出した冷媒は、圧力調整弁44にて設定圧力値に圧力調整されることなく、アキュムレータ22に流入する。そして、アキュムレータ22へ流入した冷媒は、気相冷媒および液相冷媒に分離され、分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。 The refrigerant that has flowed out of the indoor evaporator 20 flows into the pressure adjustment valve 44. At this time, since the pressure adjustment valve 44 is in a function stop state in which the constant pressure adjustment function is not exhibited, the refrigerant flowing out of the indoor evaporator 20 is not adjusted to the set pressure value by the pressure adjustment valve 44. , Flows into the accumulator 22. Then, the refrigerant flowing into the accumulator 22 is separated into a gas phase refrigerant and a liquid phase refrigerant, and the separated gas phase refrigerant is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
 以上の如く、冷房モードでは、エアミックスドア36にて室内凝縮器12およびヒータコア34の空気通路を閉塞しているので、室内蒸発器20にて冷却された車室内送風空気を車室内へ吹き出すことができる。これにより、車室内の冷房を実現することができる。 As described above, in the cooling mode, since the air passages of the indoor condenser 12 and the heater core 34 are closed by the air mix door 36, the air blown into the vehicle interior is blown out into the vehicle interior. Can do. Thereby, cooling of a vehicle interior is realizable.
 また、冷房モード時には、室内蒸発器20の出口側に配置した圧力調整弁44が室内蒸発器20出口側の冷媒圧力を一定に維持するように機能しないので、室内蒸発器20における冷媒蒸発圧力を設定圧力値以下に低下させることができる。 In the cooling mode, the pressure regulating valve 44 disposed on the outlet side of the indoor evaporator 20 does not function so as to keep the refrigerant pressure on the outlet side of the indoor evaporator 20 constant, so that the refrigerant evaporation pressure in the indoor evaporator 20 is reduced. The pressure can be lowered below the set pressure value.
 従って、圧縮機11と圧力調整弁44の制御干渉が生ずることなく、室内蒸発器20出口側の冷媒圧力を、狙いの冷房能力確保に必要とされる圧力に調整することができる。 Therefore, the refrigerant pressure on the outlet side of the indoor evaporator 20 can be adjusted to a pressure required for ensuring the target cooling capacity without causing control interference between the compressor 11 and the pressure regulating valve 44.
 ここで、冷房モード時には、統合弁4内部の第1冷媒通路18aには、高温の高圧冷媒が流通し、統合弁4内部の第2冷媒通路21aには、第2膨脹弁19にて減圧された低温の低圧冷媒が流通する。これにより、ボデー40における第1冷媒通路18aの周囲温度が30℃~60℃程度となり、ボデー40における第2冷媒通路21aの周囲温度が0℃~10℃程度となる。 Here, in the cooling mode, a high-temperature high-pressure refrigerant flows through the first refrigerant passage 18a inside the integrated valve 4, and the pressure is reduced by the second expansion valve 19 through the second refrigerant passage 21a inside the integrated valve 4. A low-temperature, low-pressure refrigerant circulates. As a result, the ambient temperature of the first refrigerant passage 18a in the body 40 is about 30 ° C. to 60 ° C., and the ambient temperature of the second refrigerant passage 21a in the body 40 is about 0 ° C. to 10 ° C.
 本実施形態では、第1冷媒通路18aおよび第2冷媒通路21aを共通のボデー40内に形成していることから、第1冷媒通路18aおよび第2冷媒通路21aを流れる冷媒同士がボデー40を介して間接的に熱交換する。 In the present embodiment, since the first refrigerant passage 18 a and the second refrigerant passage 21 a are formed in the common body 40, the refrigerant flowing through the first refrigerant passage 18 a and the second refrigerant passage 21 a passes through the body 40. Heat exchange indirectly.
 特に、本実施形態では、第1冷媒通路18aおよび第2冷媒通路21aの少なくとも一部を流れる冷媒を対向流としているので、ボデー40を介した熱交換を促進させることができる。 In particular, in the present embodiment, since the refrigerant flowing through at least a part of the first refrigerant passage 18a and the second refrigerant passage 21a is used as a counterflow, heat exchange via the body 40 can be promoted.
 これにより、図5に示すように、室外熱交換器15から流出した冷媒と、室内蒸発器20から流出した冷媒同士の熱交換によって、室外熱交換器15出口側の冷媒の過冷却度が増え、室内蒸発器20の入口および出口間のエンタルピ差が大きくなるため、冷房能力が向上する。この結果は、少ない冷媒流量で冷房能力を確保できることから、冷房モード時における圧縮機11の回転数を低下させて、ヒートポンプサイクル10の省動力化を図ることが可能となる。 As a result, as shown in FIG. 5, the degree of supercooling of the refrigerant on the outlet side of the outdoor heat exchanger 15 is increased by heat exchange between the refrigerant flowing out of the outdoor heat exchanger 15 and the refrigerant flowing out of the indoor evaporator 20. Since the enthalpy difference between the inlet and the outlet of the indoor evaporator 20 is increased, the cooling capacity is improved. As a result, since the cooling capacity can be secured with a small refrigerant flow rate, it is possible to reduce the number of revolutions of the compressor 11 in the cooling mode and to save power in the heat pump cycle 10.
 (C)第1除湿暖房モード
 第1除湿暖房モードは、温度調整範囲が低温域から高温域の広範囲となる除湿暖房モードであり、例えば、モード選択スイッチにて除湿暖房モードが選択された状態で、目標吹出温度TAOと吹出空気温度TAVとの温度差(=TAV-TAO)が所定値以下である場合に実行される。
(C) First dehumidifying and heating mode The first dehumidifying and heating mode is a dehumidifying and heating mode in which the temperature adjustment range is a wide range from a low temperature range to a high temperature range. For example, in a state where the dehumidification heating mode is selected by a mode selection switch. This is executed when the temperature difference (= TAV-TAO) between the target blowing temperature TAO and the blowing air temperature TAV is equal to or less than a predetermined value.
 この第1除湿暖房モードでは、制御装置100が低圧側開閉弁17にて第1低圧側通路16を閉じるとともに、第1、第2膨脹弁14、19を絞り状態または全開状態とする。さらに、制御装置100が駆動モータ423にてバイパス開閉用弁体421をバイパス通路41の閉鎖位置に変位させて、バイパス開閉弁42にてバイパス通路41を閉じる。 In the first dehumidifying and heating mode, the control device 100 closes the first low-pressure side passage 16 by the low-pressure side opening / closing valve 17 and sets the first and second expansion valves 14 and 19 to the throttle state or the fully open state. Further, the control device 100 displaces the bypass opening / closing valve element 421 to the closed position of the bypass passage 41 by the drive motor 423 and closes the bypass passage 41 by the bypass opening / closing valve 42.
 この際、統合弁4の内部では、図3に示すように、バイパス開閉用弁体421の変位に連動して、圧力調整用弁体441が第2冷媒通路21aの通路開度が拡大するように変位する。つまり、圧力調整弁44の作動状態が定圧調整機能を発揮しない機能停止状態となる。 At this time, inside the integrated valve 4, as shown in FIG. 3, the pressure adjustment valve body 441 increases the passage opening of the second refrigerant passage 21a in conjunction with the displacement of the bypass opening / closing valve body 421. It is displaced to. That is, the operating state of the pressure adjustment valve 44 is a function stop state in which the constant pressure adjustment function is not exhibited.
 これにより、ヒートポンプサイクル10は、冷房モードと同様に、図1の白抜横線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。なお、第1除湿暖房モードでは、冷房モードと同様に、冷媒流れに対して室外熱交換器15と室内蒸発器20とが直列に接続されることとなる。 Thereby, the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows, as indicated by the white horizontal arrows in FIG. 1, as in the cooling mode. In the first dehumidifying and heating mode, as in the cooling mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in series with respect to the refrigerant flow.
 この冷媒流路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御機器へ出力する制御信号を決定する。 With the configuration of the refrigerant flow path, the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 例えば、圧縮機11の電動モータ11aに出力される制御信号については、冷房モードと同様に決定される。また、エアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36が冷風バイパス通路35を閉塞し、室内蒸発器20を通過後の送風空気の全流量がヒータコア34および室内凝縮器12の空気通路を通過するように決定される。 For example, the control signal output to the electric motor 11a of the compressor 11 is determined in the same manner as in the cooling mode. As for the control signal output to the servo motor of the air mix door 36, the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 20 is the heater core 34 and the indoor condensation. To pass through the air passage of the vessel 12.
 また、第1膨脹弁14および第2膨脹弁19については、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOに応じて変更している。具体的には、制御装置100は、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOの上昇に伴って、第1膨脹弁14にて高圧側通路13の通路面積を減少させるとともに、第2膨脹弁19にて第2低圧側通路18の通路面積を増大させる。これにより、第1除湿暖房モードでは、第1モードから第4モードの4段階のモードを実行する。 Further, the first expansion valve 14 and the second expansion valve 19 are changed according to the target blowing temperature TAO that is the target temperature of the blowing air blown into the vehicle interior. Specifically, the control device 100 decreases the passage area of the high-pressure side passage 13 at the first expansion valve 14 as the target blowing temperature TAO, which is the target temperature of the blowing air blown into the vehicle interior, increases. The second expansion valve 19 increases the passage area of the second low-pressure side passage 18. Thereby, in the 1st dehumidification heating mode, the mode of four steps from the 1st mode to the 4th mode is performed.
 (C-1)第1モード
 第1モードは、例えば、第1除湿暖房モード時に、目標吹出温度TAOが予め定めた第1基準温度以下となった場合に実行される。
(C-1) First Mode The first mode is executed, for example, when the target blowing temperature TAO is equal to or lower than a predetermined first reference temperature in the first dehumidifying and heating mode.
 第1モードでは、第1膨脹弁14にて高圧側通路13を全開状態とし、第2膨脹弁19を絞り状態とする。従って、サイクル構成(冷媒流路)については、冷房モードと全く同じ冷媒流路となるものの、エアミックスドア36が室内凝縮器12およびヒータコア34側の空気通路を全開状態としているので、室内凝縮器12および室外熱交換器15の双方にて高圧冷媒が放熱される。 In the first mode, the high pressure side passage 13 is fully opened by the first expansion valve 14 and the second expansion valve 19 is in the throttle state. Therefore, although the cycle configuration (refrigerant flow path) is the same refrigerant flow path as in the cooling mode, the air mix door 36 fully opens the air passage on the indoor condenser 12 and heater core 34 side. The high-pressure refrigerant is dissipated by both the outdoor heat exchanger 12 and the outdoor heat exchanger 15.
 すなわち、圧縮機11から吐出された高圧冷媒は、室内凝縮器12へ流入して、室内蒸発器20にて冷却されて除湿された車室内送風空気と熱交換して放熱する。これにより、車室内送風空気が加熱される。 That is, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12 and radiates heat by exchanging heat with the air blown into the passenger compartment after being cooled and dehumidified by the indoor evaporator 20. Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入する。この際、第1膨脹弁14が高圧側通路13を全開状態としているので、室内凝縮器12から流出した冷媒は、第1膨脹弁14にて減圧されることなく、室外熱交換器15に流入する。そして、室外熱交換器15に流入した冷媒は、室外熱交換器15にて送風ファンから送風された外気へ放熱する。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13. At this time, since the first expansion valve 14 fully opens the high-pressure side passage 13, the refrigerant flowing out from the indoor condenser 12 flows into the outdoor heat exchanger 15 without being depressurized by the first expansion valve 14. To do. The refrigerant flowing into the outdoor heat exchanger 15 radiates heat to the outside air blown from the blower fan in the outdoor heat exchanger 15.
 室外熱交換器15から流出した冷媒は、第2低圧側通路18を介して、第2膨脹弁19へ流入して、第2膨脹弁19にて低圧冷媒となるまで減圧膨張される。第2膨脹弁19にて減圧された低圧冷媒は、室内蒸発器20に流入し、送風機32から送風された車室内送風空気から吸熱して蒸発する。これにより、車室内送風空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18 and is decompressed and expanded at the second expansion valve 19 until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20, absorbs heat from the air blown from the vehicle interior blown from the blower 32, and evaporates. Thereby, vehicle interior blowing air is cooled.
 そして、室内蒸発器20から流出した冷媒は、冷房モードと同様に、圧力調整弁44→アキュムレータ22→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。この際、圧力調整弁44は、定圧調整機能を発揮しない機能停止状態となっているので、室内蒸発器20から流出した冷媒が圧力調整弁44にて設定圧力値に圧力調整されない。 Then, the refrigerant that has flowed out of the indoor evaporator 20 flows from the pressure adjustment valve 44 to the accumulator 22 to the suction side of the compressor 11 and is compressed by the compressor 11 again, as in the cooling mode. At this time, since the pressure adjustment valve 44 is in a function stop state in which the constant pressure adjustment function is not exhibited, the refrigerant flowing out of the indoor evaporator 20 is not adjusted to the set pressure value by the pressure adjustment valve 44.
 以上の如く、第1除湿暖房モードの第1モード時には、室内蒸発器20にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, in the first mode of the first dehumidifying and heating mode, the vehicle interior blown air cooled and dehumidified by the indoor evaporator 20 can be heated by the indoor condenser 12 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
 (C-2)第2モード
 第2モードは、目標吹出温度TAOが第1基準温度より高く、かつ、予め第1基準温度よりも高い値に設定された第2基準温度以下となった場合に実行される。第2モードでは、第1膨脹弁14を絞り状態とし、第2膨脹弁19の絞り開度(第2低圧側通路18の通路面積)を第1モード時よりも増加させた絞り状態とする。従って、第2モードでは、サイクルを循環する冷媒の状態については、図6のモリエル線図に示すように変化する。
(C-2) Second Mode The second mode is when the target outlet temperature TAO is higher than the first reference temperature and lower than or equal to the second reference temperature set in advance to a value higher than the first reference temperature. Executed. In the second mode, the first expansion valve 14 is set in the throttle state, and the throttle opening degree of the second expansion valve 19 (the passage area of the second low-pressure side passage 18) is set in the throttle state increased compared to that in the first mode. Therefore, in the second mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図6に示すように、圧縮機11から吐出された高圧冷媒(b5点)は、室内凝縮器12へ流入して、室内蒸発器20にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図6のb1点→b2点)。これにより、車室内送風空気が加熱される。 That is, as shown in FIG. 6, the high-pressure refrigerant (b5 point) discharged from the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 20 and dehumidified in the vehicle interior. Heat exchange is performed to dissipate heat (b1 point → b2 point in FIG. 6). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入し、中間圧冷媒となるまで減圧される(図6のb2点→b3点)。そして、第1膨脹弁14にて減圧された中間圧冷媒は、室外熱交換器15に流入して、送風ファンから送風された外気へ放熱する(図6のb3点→b4点)。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13 and is depressurized until it becomes an intermediate-pressure refrigerant (point b2 → b3 in FIG. 6). Then, the intermediate-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and dissipates heat to the outside air blown from the blower fan (b3 point → b4 point in FIG. 6).
 室外熱交換器15から流出した冷媒は、第2低圧側通路18を介して、第2膨脹弁19へ流入して、第2膨脹弁19にて低圧冷媒となるまで減圧膨張される(図6のb4点→b5点)。第2膨脹弁19にて減圧された低圧冷媒は、室内蒸発器20に流入し、送風機32から送風された車室内送風空気から吸熱して蒸発する(図6のb5点→b6点)。これにより、車室内送風空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18, and is decompressed and expanded until it becomes a low-pressure refrigerant in the second expansion valve 19 (FIG. 6). B4 point → b5 point). The low-pressure refrigerant depressurized by the second expansion valve 19 flows into the indoor evaporator 20, absorbs heat from the air blown from the vehicle interior blown from the blower 32, and evaporates (b5 point → b6 point in FIG. 6). Thereby, vehicle interior blowing air is cooled.
 そして、室内蒸発器20から流出した冷媒は、冷房モードと同様に、定圧調整機能を発揮しない機能停止状態となっている圧力調整弁44→アキュムレータ22→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant flowing out of the indoor evaporator 20 flows again from the pressure regulating valve 44 → accumulator 22 → the suction side of the compressor 11 which is in a function stop state in which the constant pressure regulating function is not performed, similarly to the cooling mode. It is compressed by the compressor 11.
 以上の如く、第1除湿暖房モードの第2モード時には、第1モードと同様に、室内蒸発器20にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, during the second mode of the first dehumidifying and heating mode, the vehicle interior blown air cooled and dehumidified by the indoor evaporator 20 is heated by the indoor condenser 12 in the same manner as in the first mode. Can be blown out. Thereby, dehumidification heating of a vehicle interior is realizable.
 この際、第2モードでは、第1膨脹弁14を絞り状態としているので、第1モードに対して、室外熱交換器15へ流入する冷媒の温度を低下させることができる。従って、室外熱交換器15における冷媒の温度と外気温との温度差を縮小して、室外熱交換器15における冷媒の放熱量を減少させることができる。 At this time, since the first expansion valve 14 is in the throttle state in the second mode, the temperature of the refrigerant flowing into the outdoor heat exchanger 15 can be lowered compared to the first mode. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 15 can be reduced, and the heat radiation amount of the refrigerant in the outdoor heat exchanger 15 can be reduced.
 この結果、第1モード時に対してサイクルを循環する冷媒循環流量を増加させることなく、室内凝縮器12における冷媒の放熱量を増加させることができ、第1モードよりも室内凝縮器12から吹き出される吹出空気の温度を上昇させることができる。 As a result, the amount of heat released from the refrigerant in the indoor condenser 12 can be increased without increasing the refrigerant circulation flow rate that circulates the cycle in the first mode, and the refrigerant is blown out from the indoor condenser 12 than in the first mode. The temperature of the blown air can be increased.
 (C-3)第3モード
 第3モードは、目標吹出温度TAOが第2基準温度より高く、かつ、予め第2基準温度よりも高い値に設定された第3基準温度以下となった場合に実行される。第3モードでは、第1膨脹弁14の絞り開度(高圧側通路13の通路面積)を第2モード時よりも減少させた絞り状態とし、第2膨脹弁19の絞り開度(第2低圧側通路18の通路面積)を第2モード時よりも増加させた絞り状態とする。従って、第3モードでは、サイクルを循環する冷媒の状態については、図7のモリエル線図に示すように変化する。
(C-3) Third Mode The third mode is when the target outlet temperature TAO is higher than the second reference temperature and lower than or equal to the third reference temperature set in advance to a value higher than the second reference temperature. Executed. In the third mode, the throttle opening of the first expansion valve 14 (passage area of the high-pressure side passage 13) is made smaller than that in the second mode, and the throttle opening of the second expansion valve 19 (second low pressure) The throttle area is set such that the passage area of the side passage 18 is larger than that in the second mode. Therefore, in the third mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図7に示すように、圧縮機11から吐出された高圧冷媒(c1点)は、室内凝縮器12へ流入して、室内蒸発器20にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図7のc1点→c2点)。これにより、車室内送風空気が加熱される。 That is, as shown in FIG. 7, the high-pressure refrigerant (point c1) discharged from the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 20 and dehumidified in the vehicle interior. The heat is exchanged to dissipate heat (point c1 → c2 in FIG. 7). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入し、外気温よりも温度の低い中間圧冷媒となるまで減圧される(図7のc2点→c3点)。そして、第1膨脹弁14にて減圧された中間圧冷媒は、室外熱交換器15に流入して、送風ファンから送風された外気から吸熱する(図7のc3点→c4点)。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 via the high-pressure side passage 13 and is depressurized until it becomes an intermediate-pressure refrigerant having a temperature lower than the outside air temperature (point c2 → c3 in FIG. 7). point). Then, the intermediate pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan (point c3 → point c4 in FIG. 7).
 室外熱交換器15から流出した冷媒は、第2低圧側通路18を介して、第2膨脹弁19へ流入して、第2膨脹弁19にて低圧冷媒となるまで減圧膨張される(図7のc4点→c5点)。第2膨脹弁19にて減圧された低圧冷媒は、室内蒸発器20に流入し、送風機32から送風された車室内送風空気から吸熱して蒸発する(図7のc5点→c6点)。これにより、車室内送風空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 15 flows into the second expansion valve 19 via the second low-pressure side passage 18, and is decompressed and expanded until it becomes a low-pressure refrigerant in the second expansion valve 19 (FIG. 7). C4 point → c5 point). The low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20 and absorbs heat from the air blown from the vehicle interior blown from the blower 32 to evaporate (point c5 → point c6 in FIG. 7). Thereby, vehicle interior blowing air is cooled.
 そして、室内蒸発器20から流出した冷媒は、冷房モードと同様に、定圧調整機能を発揮しない機能停止状態となっている圧力調整弁44→アキュムレータ22→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Then, the refrigerant flowing out of the indoor evaporator 20 flows again from the pressure regulating valve 44 → accumulator 22 → the suction side of the compressor 11 which is in a function stop state in which the constant pressure regulating function is not performed, similarly to the cooling mode. It is compressed by the compressor 11.
 以上の如く、第1除湿暖房モードの第3モード時には、第1、第2モードと同様に、室内蒸発器20にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, during the third mode of the first dehumidifying and heating mode, the vehicle interior blown air cooled by the indoor evaporator 20 and dehumidified is heated by the indoor condenser 12 in the same manner as in the first and second modes. Can be blown into the passenger compartment. Thereby, dehumidification heating of a vehicle interior is realizable.
 この際、第3モードでは、第1膨脹弁14の絞り開度を減少させることによって、室外熱交換器15を吸熱器(蒸発器)として機能させているので、第2モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。 At this time, in the third mode, the outdoor heat exchanger 15 is caused to function as a heat absorber (evaporator) by reducing the throttle opening of the first expansion valve 14, so that the indoor condenser is more than in the second mode. The temperature blown from 12 can be raised.
 この結果、第2モードに対して、圧縮機11の吸入冷媒密度を上昇させることができ、圧縮機11の回転数(冷媒吐出能力)を増加させることなく、室内凝縮器12における冷媒の放熱量を増加させることができ、第2モードよりも室内凝縮器12から吹き出される吹出空気の温度を上昇させることができる。 As a result, with respect to the second mode, the suction refrigerant density of the compressor 11 can be increased, and the heat release amount of the refrigerant in the indoor condenser 12 without increasing the rotation speed (refrigerant discharge capacity) of the compressor 11. Can be increased, and the temperature of the blown-out air blown out from the indoor condenser 12 can be increased more than in the second mode.
 (C-4)第4モード
 第4モードは、目標吹出温度TAOが第3基準温度より高くなった場合に実行される。第4モードでは、第1膨脹弁14の絞り開度(高圧側通路13の通路面積)を第3モード時よりも減少させた絞り状態とし、第2膨脹弁19にて第2低圧側通路18を全開状態とする。従って、第4モードでは、サイクルを循環する冷媒の状態については、図8のモリエル線図に示すように変化する。
(C-4) Fourth Mode The fourth mode is executed when the target outlet temperature TAO becomes higher than the third reference temperature. In the fourth mode, the throttle opening state (passage area of the high-pressure side passage 13) of the first expansion valve 14 is made smaller than that in the third mode, and the second low-pressure side passage 18 is set by the second expansion valve 19. Is fully open. Therefore, in the fourth mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG.
 すなわち、図8に示すように、圧縮機11から吐出された高圧冷媒(d1点)は、室内凝縮器12へ流入して、室内蒸発器20にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図8のd1点→d2点)。これにより、車室内送風空気が加熱される。 That is, as shown in FIG. 8, the high-pressure refrigerant (point d1) discharged from the compressor 11 flows into the indoor condenser 12, and is cooled by the indoor evaporator 20 and dehumidified in the vehicle interior. Heat exchange is performed to dissipate heat (point d1 → d2 in FIG. 8). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入し、低圧冷媒となるまで減圧される(図8のd2点→d3点)。そして、第1膨脹弁14にて減圧された低圧冷媒は、室外熱交換器15に流入して、送風ファンから送風された外気から吸熱する(図8のd3点→d4点)。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 through the high-pressure side passage 13 and is depressurized until it becomes a low-pressure refrigerant (point d2 → point d3 in FIG. 8). The low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan (point d3 → point d4 in FIG. 8).
 室外熱交換器15から流出した冷媒は、第2低圧側通路18を介して、第2膨脹弁19へ流入する。この際、第2膨脹弁19が第2低圧側通路18を全開状態としているので、室外熱交換器15から流出した冷媒は、第2膨脹弁19にて減圧されることなく、室内蒸発器20に流入する。 The refrigerant flowing out of the outdoor heat exchanger 15 flows into the second expansion valve 19 through the second low-pressure side passage 18. At this time, since the second expansion valve 19 fully opens the second low-pressure side passage 18, the refrigerant flowing out of the outdoor heat exchanger 15 is not decompressed by the second expansion valve 19, and the indoor evaporator 20 Flow into.
 室内蒸発器20に流入した低圧冷媒は、送風機32から送風された車室内送風空気から吸熱して蒸発する(図8のd4点→d5点)。これにより、車室内送風空気が冷却される。そして、室内蒸発器20から流出した冷媒は、冷房モードと同様に、定圧調整機能を発揮しない機能停止状態となっている圧力調整弁44→アキュムレータ22→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 The low-pressure refrigerant that has flowed into the indoor evaporator 20 absorbs heat from the air blown from the vehicle interior blown from the blower 32 and evaporates (point d4 → point d5 in FIG. 8). Thereby, vehicle interior blowing air is cooled. Then, the refrigerant flowing out of the indoor evaporator 20 flows again from the pressure regulating valve 44 → accumulator 22 → the suction side of the compressor 11 which is in a function stop state in which the constant pressure regulating function is not performed, similarly to the cooling mode. It is compressed by the compressor 11.
 以上の如く、第1除湿暖房モードの第4モード時には、第1~第3モードと同様に、室内蒸発器20にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, in the fourth mode of the first dehumidifying and heating mode, the vehicle interior blown air cooled and dehumidified by the indoor evaporator 20 is heated by the indoor condenser 12 as in the first to third modes. Can be blown into the passenger compartment. Thereby, dehumidification heating of a vehicle interior is realizable.
 この際、第4モードでは、第3モードと同様に、室外熱交換器15を吸熱器(蒸発器)として機能させることができるとともに、第3モードよりも第1膨脹弁14の絞り開度を縮小させているので、室外熱交換器15における冷媒蒸発温度を低下させることができる。従って、第3モードよりも室外熱交換器15における冷媒の温度と外気温との温度差を拡大させて、室外熱交換器15における冷媒の吸熱量を増加させることができる。 At this time, in the fourth mode, as in the third mode, the outdoor heat exchanger 15 can function as a heat absorber (evaporator), and the throttle opening degree of the first expansion valve 14 can be set higher than that in the third mode. Since it is reduced, the refrigerant evaporation temperature in the outdoor heat exchanger 15 can be lowered. Therefore, the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 15 can be increased more than in the third mode, and the heat absorption amount of the refrigerant in the outdoor heat exchanger 15 can be increased.
 この結果、第3モードに対して、圧縮機11の吸入冷媒密度を上昇させることができ、圧縮機11の回転数(冷媒吐出能力)を増加させることなく、室内凝縮器12における冷媒の放熱量を増加させることができ、第3モードよりも室内凝縮器12から吹き出される吹出空気の温度を上昇させることができる。 As a result, with respect to the third mode, the suction refrigerant density of the compressor 11 can be increased, and the heat release amount of the refrigerant in the indoor condenser 12 without increasing the rotation speed (refrigerant discharge capacity) of the compressor 11. And the temperature of the air blown out from the indoor condenser 12 can be increased more than in the third mode.
 このように、第1除湿暖房モードでは、目標吹出温度TAOに応じて第1膨脹弁14、第2膨脹弁19の絞り開度を変更することで、車室内へ吹き出す吹出空気の温度を低温域から高温域までの広範囲に亘って調整することができる。 As described above, in the first dehumidifying and heating mode, the temperature of the blown-out air blown into the vehicle interior is changed to a low temperature range by changing the throttle opening degree of the first expansion valve 14 and the second expansion valve 19 in accordance with the target blowing temperature TAO. To a high temperature range.
 換言すると、第1除湿暖房モードでは、室外熱交換器15を、冷媒を放熱させる放熱器として機能させる状態から冷媒に吸熱させる蒸発器として機能させる状態へ切り替えながら、室外熱交換器15における冷媒の放熱量あるいは吸熱量を調整することができる。 In other words, in the first dehumidifying and heating mode, while switching the outdoor heat exchanger 15 from a state where it functions as a radiator that radiates the refrigerant to a state where it functions as an evaporator that absorbs heat from the refrigerant, the refrigerant in the outdoor heat exchanger 15 is changed. The amount of heat release or the amount of heat absorption can be adjusted.
 従って、室外熱交換器15を放熱器あるいは蒸発器のいずれか一方として機能させるサイクル構成よりも、室内凝縮器12における冷媒の放熱量を幅広い範囲で調整することができ、除湿運転時に空調対象空間へ吹き出される吹出空気の温度調整範囲を拡大させることができる。 Therefore, the amount of heat released from the refrigerant in the indoor condenser 12 can be adjusted in a wider range than the cycle configuration in which the outdoor heat exchanger 15 functions as either a radiator or an evaporator, and the air-conditioning target space can be adjusted during the dehumidifying operation. The temperature adjustment range of the blown air blown out to can be expanded.
 なお、第1除湿暖房モード時には、冷房モード時と同様に、室内蒸発器20の出口側に配置した圧力調整弁44が室内蒸発器20出口側の冷媒圧力を一定に維持するように機能しないので、室内蒸発器20における冷媒蒸発圧力を設定圧力値以下に低下させることができる。 In the first dehumidifying and heating mode, as in the cooling mode, the pressure regulating valve 44 disposed on the outlet side of the indoor evaporator 20 does not function to maintain the refrigerant pressure on the outlet side of the indoor evaporator 20 constant. Thus, the refrigerant evaporation pressure in the indoor evaporator 20 can be reduced to a set pressure value or less.
 (D)第2除湿暖房モード
 第2除湿暖房モードは、温度調整範囲が第1除湿暖房モードよりも高温域となる除湿暖房モードであり、例えば、モード選択スイッチにて除湿暖房モードが選択された状態で、目標吹出温度TAOと吹出空気温度TAVとの温度差(=TAV-TAO)が所定値より大きくなる場合に実行される。
(D) Second dehumidifying heating mode The second dehumidifying heating mode is a dehumidifying heating mode in which the temperature adjustment range is higher than the first dehumidifying heating mode. For example, the dehumidifying heating mode is selected by the mode selection switch. This is executed when the temperature difference (= TAV−TAO) between the target blowing temperature TAO and the blowing air temperature TAV is greater than a predetermined value.
 この第2除湿暖房モードでは、制御装置100が低圧側開閉弁17にて第1低圧側通路16を開くとともに、第1、第2膨脹弁14、19それぞれを絞り状態とする。さらに、制御装置100が、図2に示すように、駆動モータ423にてバイパス開閉用弁体421をバイパス通路41の開放位置に変位させてバイパス通路41を開くと共に、圧力調整用弁体441を第2冷媒通路21aに流入する冷媒の圧力(室内蒸発器20出口側の冷媒圧力)が設定圧力値となるように変位させる。これにより、圧力調整弁44の作動状態が定圧調整機能を発揮する機能発揮状態となる。 In the second dehumidifying and heating mode, the control device 100 opens the first low-pressure side passage 16 by the low-pressure side opening / closing valve 17 and sets the first and second expansion valves 14 and 19 to the throttle state. Further, as shown in FIG. 2, the control device 100 displaces the bypass opening / closing valve body 421 to the open position of the bypass passage 41 by the drive motor 423 to open the bypass passage 41 and to open the pressure adjusting valve body 441. The pressure of the refrigerant flowing into the second refrigerant passage 21a (the refrigerant pressure on the outlet side of the indoor evaporator 20) is displaced so as to become the set pressure value. Thereby, the operating state of the pressure adjusting valve 44 becomes a function exhibiting state in which the constant pressure adjusting function is exhibited.
 従って、ヒートポンプサイクル10は、図1の白抜斜線矢印に示すように、室内凝縮器12から流出した冷媒が、室外熱交換器15および室内蒸発器20の双方に流れる冷媒流路に切り替えられる。より具体的には、室内凝縮器12から流出した冷媒は、第1膨脹弁14→室外熱交換器15→アキュムレータ22→圧縮機11の吸入側に流れると同時に、第2膨脹弁19→室内蒸発器20→圧力調整弁44→アキュムレータ22→圧縮機11の吸入側の順に流れる。なお、第2除湿暖房モードでは、冷媒流れに対して室外熱交換器15と室内蒸発器20とが並列に接続されることとなる。 Therefore, in the heat pump cycle 10, the refrigerant flowing out of the indoor condenser 12 is switched to the refrigerant flow path that flows to both the outdoor heat exchanger 15 and the indoor evaporator 20, as indicated by the white oblique arrows in FIG. 1. More specifically, the refrigerant flowing out of the indoor condenser 12 flows from the first expansion valve 14 to the outdoor heat exchanger 15 → the accumulator 22 → the suction side of the compressor 11 and at the same time, the second expansion valve 19 → the indoor evaporation. It flows in the order of the vessel 20 → the pressure regulating valve 44 → the accumulator 22 → the suction side of the compressor 11. In the second dehumidifying and heating mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in parallel to the refrigerant flow.
 この冷媒流路の構成で、制御装置100が、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御機器へ出力する制御信号を決定する。 With the configuration of the refrigerant flow path, the control device 100 determines a control signal to be output to various control devices based on the target blowing temperature TAO, the detection signal of the sensor group, and the like.
 例えば、圧縮機11の電動モータ11aに出力される制御信号については、冷房モードと同様に決定される。また、エアミックスドア36のサーボモータへ出力される制御信号については、エアミックスドア36が冷風バイパス通路35を閉塞し、室内蒸発器20を通過後の送風空気の全流量がヒータコア34および室内凝縮器12の空気通路を通過するように決定される。 For example, the control signal output to the electric motor 11a of the compressor 11 is determined in the same manner as in the cooling mode. As for the control signal output to the servo motor of the air mix door 36, the air mix door 36 closes the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 20 is the heater core 34 and the indoor condensation. To pass through the air passage of the vessel 12.
 また、第1膨脹弁14および第2膨脹弁19へ出力される制御信号については、予め定めた第2除湿暖房モード用の所定開度となるように決定される。 Further, the control signals output to the first expansion valve 14 and the second expansion valve 19 are determined so as to have a predetermined opening for the second dehumidifying / heating mode.
 また、統合弁4の駆動モータ423へ出力される制御信号については、バイパス開閉用弁体421がバイパス通路41の開放位置に変位すると共に、圧力調整用弁体441が室内蒸発器20出口側の冷媒圧力が設定圧力値となるように変位するように決定される。具体的には、室内蒸発器20出口側の冷媒圧力が設定圧力値を下回ると第2冷媒通路21aの通路開度(通路面積)が減少(絞り開度を減少)し、室内蒸発器20出口側の冷媒圧力が設定圧力値を超えると第2冷媒通路21aの通路面積が増加するように、統合弁4の駆動モータ423へ出力される制御信号を決定する。 Regarding the control signal output to the drive motor 423 of the integrated valve 4, the bypass opening / closing valve element 421 is displaced to the open position of the bypass passage 41 and the pressure adjusting valve element 441 is disposed on the outlet side of the indoor evaporator 20. The refrigerant pressure is determined to be displaced so as to become a set pressure value. Specifically, when the refrigerant pressure on the outlet side of the indoor evaporator 20 falls below the set pressure value, the passage opening (passage area) of the second refrigerant passage 21a decreases (throttle opening decreases), and the outlet of the indoor evaporator 20 When the refrigerant pressure on the side exceeds the set pressure value, the control signal output to the drive motor 423 of the integrated valve 4 is determined so that the passage area of the second refrigerant passage 21a increases.
 従って、第2除湿暖房モード時のヒートポンプサイクル10では、図9のモリエル線図に示すように、圧縮機11から吐出された高圧冷媒(e1点)は、室内凝縮器12へ流入して、室内蒸発器20にて冷却されて除湿された車室内送風空気と熱交換して放熱する(図9のe1点→e2点)。これにより、車室内送風空気が加熱される。 Therefore, in the heat pump cycle 10 in the second dehumidifying heating mode, as shown in the Mollier diagram of FIG. 9, the high-pressure refrigerant (point e1) discharged from the compressor 11 flows into the indoor condenser 12 and Heat is exchanged with the air blown into the passenger compartment that has been cooled and dehumidified by the evaporator 20 to radiate heat (point e1 → point e2 in FIG. 9). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、高圧側通路13を介して第1膨脹弁14に流入するとともに、バイパス通路41を介して第2膨脹弁19に流入する。第1膨脹弁14に流入した高圧冷媒は、低圧冷媒となるまで減圧される(図9のe2点→e3点)。そして、第1膨脹弁14にて減圧された低圧冷媒は、室外熱交換器15に流入して、送風ファンから送風された外気から吸熱する(図9のe3点→e5点)。 The refrigerant that has flowed out of the indoor condenser 12 flows into the first expansion valve 14 through the high-pressure side passage 13 and flows into the second expansion valve 19 through the bypass passage 41. The high-pressure refrigerant flowing into the first expansion valve 14 is depressurized until it becomes a low-pressure refrigerant (point e2 → point e3 in FIG. 9). The low-pressure refrigerant decompressed by the first expansion valve 14 flows into the outdoor heat exchanger 15 and absorbs heat from the outside air blown from the blower fan (point e3 → point e5 in FIG. 9).
 一方、第2膨脹弁19に流入した高圧冷媒は、出口側の過熱度が目標過熱度に近づくように低圧冷媒となるまで減圧される(図9のe2点→e4点)。そして、第2膨脹弁19にて減圧された低圧冷媒は、室内蒸発器20に流入して、送風機32から送風された車室内送風空気から吸熱して蒸発する(図9のe4点→e6点)。これにより、車室内送風空気が冷却される。なお、室内蒸発器20における冷媒の圧力は、圧力調整弁44によって、一定圧力に調整される。 On the other hand, the high-pressure refrigerant flowing into the second expansion valve 19 is depressurized until it becomes a low-pressure refrigerant so that the degree of superheat on the outlet side approaches the target degree of superheat (point e2 → point e4 in FIG. 9). Then, the low-pressure refrigerant decompressed by the second expansion valve 19 flows into the indoor evaporator 20 and absorbs heat from the air blown from the vehicle interior blown from the blower 32 to evaporate (point e4 → point e6 in FIG. 9). ). Thereby, vehicle interior blowing air is cooled. Note that the pressure of the refrigerant in the indoor evaporator 20 is adjusted to a constant pressure by the pressure adjustment valve 44.
 室外熱交換器15から流出した冷媒および室内蒸発器20から流出した冷媒は、アキュムレータ22の入口側で合流し(図9のe5点→e7点、e6点→e7点)、アキュムレータ22→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。なお、第2低圧側通路18には、逆止弁43が設けられているので、バイパス通路41から室外熱交換器15の出口側へ冷媒が逆流しない。 The refrigerant flowing out of the outdoor heat exchanger 15 and the refrigerant flowing out of the indoor evaporator 20 merge on the inlet side of the accumulator 22 (e5 point → e7 point, e6 point → e7 point in FIG. 9), and the accumulator 22 → compressor. 11 flows to the suction side and is compressed again by the compressor 11. In addition, since the check valve 43 is provided in the second low-pressure side passage 18, the refrigerant does not flow backward from the bypass passage 41 to the outlet side of the outdoor heat exchanger 15.
 以上の如く、第2除湿暖房モード時には、第1除湿暖房モード時と異なり、冷媒流れに対して室外熱交換器15と室内蒸発器20とが並列接続される冷媒流路となる。 As described above, in the second dehumidifying / heating mode, unlike the first dehumidifying / heating mode, the outdoor heat exchanger 15 and the indoor evaporator 20 are connected in parallel to the refrigerant flow.
 そして、第2除湿暖房モード時には、室内蒸発器20の出口側に配置した圧力調整弁44が室内蒸発器20出口側の冷媒圧力を一定に維持するように機能するので、図9に示すように、室外熱交換器15における冷媒蒸発圧力を室内蒸発器20における冷媒蒸発圧力よりも低下させることができる。 And in the 2nd dehumidification heating mode, since the pressure regulation valve 44 arrange | positioned at the exit side of the indoor evaporator 20 functions so that the refrigerant | coolant pressure on the exit side of the indoor evaporator 20 may be maintained constant, as shown in FIG. The refrigerant evaporation pressure in the outdoor heat exchanger 15 can be made lower than the refrigerant evaporation pressure in the indoor evaporator 20.
 従って、室内蒸発器20における冷媒蒸発圧力を予め定めた所定値以上に維持して、室内蒸発器20に着霜(フロスト)が生じてしまうことを抑制しつつ、室外熱交換器15における冷媒の吸熱量を増大させて室内凝縮器12における冷媒の放熱量を増大させることができる。その結果、第2除湿暖房モード時に車室内へ吹き出す吹出空気の温度を上昇させる側に温度調整範囲を拡大させることができる。 Therefore, the refrigerant evaporating pressure in the indoor evaporator 20 is maintained at a predetermined value or more, and the occurrence of frost (frost) in the indoor evaporator 20 is suppressed, and the refrigerant in the outdoor heat exchanger 15 is suppressed. The amount of heat absorbed can be increased to increase the amount of heat released from the refrigerant in the indoor condenser 12. As a result, the temperature adjustment range can be expanded to the side that increases the temperature of the blown-out air that is blown into the vehicle interior in the second dehumidifying and heating mode.
 ここで、第2除湿暖房モード時には、統合弁4内部の第1冷媒通路18aには、高温の高圧冷媒が流通し、統合弁4内部の第2冷媒通路21aには、第2膨脹弁19にて減圧された低温の低圧冷媒が流通する。これにより、ボデー40における第1冷媒通路18aの周囲温度が30℃~50℃程度となり、ボデー40における第2冷媒通路21aの周囲温度が0℃~5℃程度となる。 Here, in the second dehumidifying and heating mode, high-temperature high-pressure refrigerant flows through the first refrigerant passage 18a inside the integrated valve 4, and the second expansion valve 19 passes through the second refrigerant passage 21a inside the integrated valve 4. A low-temperature low-pressure refrigerant whose pressure has been reduced flows. As a result, the ambient temperature of the first refrigerant passage 18a in the body 40 is about 30 ° C. to 50 ° C., and the ambient temperature of the second refrigerant passage 21a in the body 40 is about 0 ° C. to 5 ° C.
 本実施形態では、第1冷媒通路18aおよび第2冷媒通路21aを共通のボデー40内に形成していることから、第1冷媒通路18aおよび第2冷媒通路21aを流れる冷媒同士がボデー40を介して間接的に熱交換する。 In the present embodiment, since the first refrigerant passage 18 a and the second refrigerant passage 21 a are formed in the common body 40, the refrigerant flowing through the first refrigerant passage 18 a and the second refrigerant passage 21 a passes through the body 40. Heat exchange indirectly.
 特に、本実施形態では、第1冷媒通路18aおよび第2冷媒通路21aの少なくとも一部を流れる冷媒を対向流としているので、ボデー40を介した熱交換を促進させることができる。 In particular, in the present embodiment, since the refrigerant flowing through at least a part of the first refrigerant passage 18a and the second refrigerant passage 21a is used as a counterflow, heat exchange via the body 40 can be promoted.
 これにより、図10に示すように、室内凝縮器12から流出した冷媒と、室内蒸発器20から流出した冷媒同士の熱交換によって、ヒートポンプサイクル10全体における吸熱量が増えるため、ヒートポンプサイクル10の高圧側の圧力が上昇する。この結果、少ない冷媒流量で暖房能力を確保できることから、第2除湿暖房モード時における圧縮機11の回転数を低下させて、ヒートポンプサイクル10の省動力化を図ることが可能となる。 Accordingly, as shown in FIG. 10, heat exchange between the refrigerant that has flowed out of the indoor condenser 12 and the refrigerant that has flowed out of the indoor evaporator 20 increases the amount of heat absorbed in the entire heat pump cycle 10, and thus the high pressure of the heat pump cycle 10. Side pressure rises. As a result, since the heating capacity can be secured with a small refrigerant flow rate, the rotational speed of the compressor 11 in the second dehumidifying and heating mode can be reduced, and the power saving of the heat pump cycle 10 can be achieved.
 以上説明した本実施形態の車両用空調装置1では、上記の如く、ヒートポンプサイクル10の冷媒流路を切り替えることによって、車室内の適切な冷房、暖房、および除湿暖房を実行することで、車室内の快適な空調を実現することができる。 In the vehicle air conditioner 1 of the present embodiment described above, as described above, by switching the refrigerant flow path of the heat pump cycle 10, by performing appropriate cooling, heating, and dehumidification heating in the vehicle interior, Comfortable air conditioning can be realized.
 本実施形態の車両用空調装置1では、除湿暖房モードとして、室外熱交換器15における熱交換能力(放熱能力および吸熱能力)を調整して車室内へ吹き出す吹出空気を低温域から高温域に亘る広範囲で温度調整可能な第1除湿暖房モードと、第1除湿暖房モードよりも車室内へ吹き出す吹出空気を高温域で温度調整可能な第2除湿暖房モードとを切り替えることできる。 In the vehicle air conditioner 1 according to the present embodiment, as the dehumidifying and heating mode, the heat exchange capacity (heat radiation capacity and heat absorption capacity) in the outdoor heat exchanger 15 is adjusted, and the blown air blown into the vehicle compartment extends from the low temperature range to the high temperature range. It is possible to switch between a first dehumidifying and heating mode in which the temperature can be adjusted over a wide range and a second dehumidifying and heating mode in which the temperature of the blown air blown into the vehicle compartment can be adjusted in a high temperature range as compared with the first dehumidifying and heating mode.
 従って、空調対象空間である車室内への吹出空気の温度調整可能範囲を拡大させることができる。 Therefore, the temperature adjustable range of the air blown into the passenger compartment, which is the air conditioning target space, can be expanded.
 また、低圧側開閉弁17、およびバイパス開閉弁42といった簡易な構成により、第1除湿暖房モードおよび第2除湿暖房モードを切り替えることができるので、車室内への吹出空気の温度調整可能範囲を拡大させる構成を具体的かつ容易に実現することができる。 Further, since the first dehumidifying / heating mode and the second dehumidifying / heating mode can be switched by a simple configuration such as the low pressure side opening / closing valve 17 and the bypass opening / closing valve 42, the temperature adjustment range of the blown air into the passenger compartment is expanded. The configuration to be realized can be realized concretely and easily.
 特に、本実施形態のヒートポンプサイクル10では、第2除湿暖房モード(並列運転モード)時において、圧力調整弁44にて室内蒸発器20出口側の冷媒圧力が設定圧力値に維持される構成としているので、室内蒸発器20における冷媒の吸熱量および室外熱交換器15における冷媒の吸熱量それぞれを適切に変化させることができる。 In particular, in the heat pump cycle 10 of the present embodiment, the refrigerant pressure on the outlet side of the indoor evaporator 20 is maintained at the set pressure value by the pressure regulating valve 44 in the second dehumidifying and heating mode (parallel operation mode). Therefore, the heat absorption amount of the refrigerant in the indoor evaporator 20 and the heat absorption amount of the refrigerant in the outdoor heat exchanger 15 can be appropriately changed.
 また、冷房モードおよび第1除湿暖房モード(直列運転モード)時において、圧力調整弁44にて室内蒸発器20出口側の冷媒圧力が設定圧力値に維持されない構成としているので、圧力調整弁44と圧縮機11の制御干渉が生ずることなく、室内蒸発器20出口側の冷媒圧力を、狙いの冷房能力確保に必要とされる圧力に調整可能となる。 Further, in the cooling mode and the first dehumidifying and heating mode (series operation mode), the refrigerant pressure on the outlet side of the indoor evaporator 20 is not maintained at the set pressure value by the pressure adjustment valve 44. Without causing control interference of the compressor 11, the refrigerant pressure on the outlet side of the indoor evaporator 20 can be adjusted to a pressure required to secure a target cooling capacity.
 従って、並列運転モード時における室内蒸発器20および室外熱交換器15の吸熱量を適切に変化させると共に、直列運転モード時における冷房能力を適切に調整できる。 Therefore, the heat absorption amounts of the indoor evaporator 20 and the outdoor heat exchanger 15 in the parallel operation mode can be appropriately changed, and the cooling capacity in the serial operation mode can be appropriately adjusted.
 これに加えて、本実施形態では、バイパス開閉弁42、逆止弁43、および圧力調整弁44等を共通のボデー40内部に収容すると共に、バイパス開閉用弁体421のバイパス通路41の変位に連動して、圧力調整用弁体441を変位可能な統合弁4を採用している。このため、ヒートポンプサイクル10のサイクル構成の簡素化を図ることができる。 In addition to this, in the present embodiment, the bypass opening / closing valve 42, the check valve 43, the pressure adjusting valve 44, and the like are accommodated in the common body 40, and the displacement of the bypass passage 41 of the bypass opening / closing valve body 421 is accommodated. In conjunction with this, the integrated valve 4 that can displace the pressure regulating valve body 441 is employed. For this reason, simplification of the cycle configuration of the heat pump cycle 10 can be achieved.
 また、本実施形態の統合弁4は、圧力調整用弁体441をバイパス開閉用弁体421の変位に連動して変位させる構成としているので、圧力調整専用のベローズ等を用いることなく、駆動モータ423にて圧力調整用弁体441の変位量を調整でき、ヒートポンプサイクル10のサイクル構成をより簡素な構成で実現できる。 In addition, the integrated valve 4 of the present embodiment is configured to displace the pressure adjusting valve element 441 in conjunction with the displacement of the bypass opening / closing valve element 421, so that a drive motor can be used without using a bellows dedicated to pressure adjustment. The displacement amount of the pressure adjusting valve body 441 can be adjusted at 423, and the cycle configuration of the heat pump cycle 10 can be realized with a simpler configuration.
 本実施形態の統合弁4では、第1冷媒通路18a、および第2冷媒通路21aを連通させる貫通穴408の内部に設けたシール部材408aにて、圧力調整用弁体441の振動を吸収する構成としている。これにより、室内蒸発器20出口側の冷媒圧力が設定圧力値に維持されるように圧力調整用弁体441を変位させる際に、圧力調整用弁体441の低開度域における弁振動による異音発生を効果的に抑制できる。 In the integrated valve 4 according to the present embodiment, the vibration of the pressure regulating valve body 441 is absorbed by the seal member 408a provided in the through hole 408 that allows the first refrigerant passage 18a and the second refrigerant passage 21a to communicate with each other. It is said. As a result, when the pressure adjusting valve body 441 is displaced so that the refrigerant pressure on the outlet side of the indoor evaporator 20 is maintained at the set pressure value, a difference due to valve vibration in the low opening range of the pressure adjusting valve body 441 is obtained. Sound generation can be effectively suppressed.
 なお、本実施形態では、シール部材408aを樹脂製のOリングで構成する例について説明したが、これに限定されない。圧力調整用弁体441の変位量が大きく、第2シャフト443の摺動によるシール部材408aの磨耗等が懸念される場合には、図11に示すように、シール部材408bを磨耗等の耐久性に優れた部材(例えば、ベローズ)で構成してもよい。 In the present embodiment, the example in which the seal member 408a is formed of a resin O-ring has been described, but the present invention is not limited to this. In the case where the displacement amount of the pressure adjusting valve body 441 is large and there is a concern about wear of the seal member 408a due to sliding of the second shaft 443, as shown in FIG. 11, the seal member 408b has durability such as wear. You may comprise by the member (for example, bellows) excellent in.
 さらに、本実施形態の統合弁4では、駆動モータ423にて、バイパス通路41の閉鎖位置と開放位置との間でバイパス開閉用弁体421を任意に変位可能な構成としている。これによれば、バイパス通路41を開放する際に、バイパス開閉用弁体421を徐々に閉鎖位置から開放位置へ変位させることが可能となり、バイパス通路41の開放時に生じ易い冷媒の噴射音を効果的に抑制できる。 Furthermore, in the integrated valve 4 of the present embodiment, the bypass opening / closing valve element 421 can be arbitrarily displaced between the closed position and the open position of the bypass passage 41 by the drive motor 423. Accordingly, when the bypass passage 41 is opened, the bypass opening / closing valve element 421 can be gradually displaced from the closed position to the open position, and the refrigerant injection sound that is likely to occur when the bypass passage 41 is opened is effective. Can be suppressed.
 本実施形態の統合弁4では、第1冷媒通路18aおよび第2冷媒通路21aを共通のボデー40内に形成する構成としているので、専用の内部熱交換器を設けることなく、室内凝縮器12または室外熱交換器15から流出した冷媒と、室内蒸発器20から流出した冷媒同士を熱交換させることができる。 In the integrated valve 4 of the present embodiment, since the first refrigerant passage 18a and the second refrigerant passage 21a are formed in the common body 40, the indoor condenser 12 or the internal heat exchanger can be provided without providing a dedicated internal heat exchanger. Heat can be exchanged between the refrigerant flowing out of the outdoor heat exchanger 15 and the refrigerant flowing out of the indoor evaporator 20.
 これにより、ヒートポンプサイクル10の簡素化を図りつつ、冷房モード等における圧縮機11の仕事量を低減して、ヒートポンプサイクル10の省動力化を実現可能となる。この際、第1冷媒通路18aおよび第2冷媒通路21aの一部において、冷媒の流れが対向流となる構成としているので、第1冷媒通路18aを流れる冷媒と第2冷媒通路21aを流れる冷媒とのボデー40を介した内部熱交換を効果的に促進させることができる。 This makes it possible to reduce the work of the compressor 11 in the cooling mode or the like while simplifying the heat pump cycle 10 and to realize power saving of the heat pump cycle 10. At this time, the refrigerant flows in a part of the first refrigerant passage 18a and the second refrigerant passage 21a so that the refrigerant flows in an opposite flow. Therefore, the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a The internal heat exchange via the body 40 can be effectively promoted.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、第1実施形態に対して統合弁4の内部構成を変更した例について説明する。なお、本実施形態では、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Second Embodiment)
Next, a second embodiment will be described. This embodiment demonstrates the example which changed the internal structure of the integrated valve 4 with respect to 1st Embodiment. In the present embodiment, description of the same or equivalent parts as in the first embodiment will be omitted or simplified.
 図12、図13に示すように、本実施形態の統合弁4における第2冷媒通路21aは、ボデー40の側壁に開口する第3冷媒導入口403から室内蒸発器20から流出した冷媒を導入し、導入した冷媒をボデー40の底壁に開口する第2冷媒導出口405を介して、アキュムレータ22へ導くように構成されている。 As shown in FIGS. 12 and 13, the second refrigerant passage 21 a in the integrated valve 4 of the present embodiment introduces the refrigerant that has flowed out from the indoor evaporator 20 through the third refrigerant introduction port 403 that opens in the side wall of the body 40. The introduced refrigerant is guided to the accumulator 22 via a second refrigerant outlet 405 that opens to the bottom wall of the body 40.
 第2冷媒通路21aの内部には、圧力調整用弁体441、スプリング442、第2シャフト443の一部、プレート部材443aに加えて、ベローズ444等が配置されている。 In the second refrigerant passage 21a, a pressure adjusting valve body 441, a spring 442, a part of the second shaft 443, a plate member 443a, a bellows 444 and the like are arranged.
 本実施形態の第2シャフト443は、一端側がバイパス開閉用弁体421の凹部内に位置する状態で圧力調整用弁体441に連結されており、バイパス開閉用弁体421が閉鎖位置に変位した際にバイパス開閉用弁体421と当接して、圧力調整用弁体441を第2冷媒通路21aの通路開度(通路面積)が拡大するように押圧する構成となっている。 The second shaft 443 of this embodiment is connected to the pressure adjusting valve body 441 in a state where one end side is located in the recess of the bypass opening / closing valve body 421, and the bypass opening / closing valve body 421 is displaced to the closed position. At this time, the pressure adjusting valve element 441 is pressed against the bypass opening / closing valve element 421 so as to increase the passage opening (passage area) of the second refrigerant passage 21a.
 このようにバイパス開閉用弁体421が閉鎖位置に変位した際に第2シャフト443が圧力調整用弁体441を押圧する構成とすれば、圧力調整用弁体441による定圧維持機能を発揮しない機能停止状態とすることができる。 If the second shaft 443 presses the pressure regulating valve body 441 when the bypass opening / closing valve body 421 is displaced to the closed position in this way, the function of not exerting the constant pressure maintaining function by the pressure regulating valve body 441. It can be in a stopped state.
 具体的には、第2シャフト443は、バイパス開閉用弁体421が閉鎖位置に変位した際にバイパス開閉用弁体421と当接し、バイパス開閉用弁体421が開放位置に変位した際にバイパス開閉用弁体421から離間するように、軸方向の長さが設定されている。 Specifically, the second shaft 443 contacts the bypass opening / closing valve element 421 when the bypass opening / closing valve element 421 is displaced to the closed position, and bypasses when the bypass opening / closing valve element 421 is displaced to the open position. The length in the axial direction is set so as to be separated from the opening / closing valve body 421.
 ベローズ444は、ボデー40の軸方向に伸縮自在に形成された中空の筒状部材であり、ベローズ444の軸方向一端側が、プレート部材443aに連結され、軸方向他端側が圧力調整用弁体441に連結されている。 The bellows 444 is a hollow cylindrical member formed to be extendable and contractable in the axial direction of the body 40. One end of the bellows 444 in the axial direction is connected to the plate member 443a, and the other end in the axial direction is a pressure adjusting valve body 441. It is connected to.
 このベローズ444は、ベローズ444の内部空間に配置されたスプリング442と共に、圧力調整用弁体441を弁座部407側へ押しつける方向に付勢する荷重をかけている。なお、ベローズ444およびスプリング442が圧力調整用弁体441に付勢する荷重は、調整ネジ445にて調整可能となっている。 The bellows 444, together with the spring 442 disposed in the inner space of the bellows 444, applies a load that urges the pressure adjusting valve body 441 in the direction of pressing the valve seat 407 side. The load urged by the bellows 444 and the spring 442 to the pressure adjusting valve body 441 can be adjusted by an adjusting screw 445.
 従って、圧力調整用弁体441は、第2シャフト443にて押圧されていない状態、つまり、バイパス開閉用弁体421が開放位置に変位している状態において、以下の数式F2を満たすように、変位量(リフト量)ΔLが決定される。
P1×Ap=P2×(Ap-Ab)+Fo+K×ΔL…(F2)但し、「P1」は第2冷媒通路21aにおける圧力調整用弁体441の上流側の冷媒圧力(室内蒸発器20出口側の冷媒圧力)、「P2」は第2冷媒通路21aにおける圧力調整用弁体441の下流側の冷媒圧力を示している。また、「Ap」は圧力調整用弁体441の受圧面、「Ab」はベローズ444の断面積、「Fo」はベローズ444およびスプリング442の初期荷重、「K」はベローズ444およびスプリング442の総合バネ定数を示している。
Therefore, in a state where the pressure adjusting valve body 441 is not pressed by the second shaft 443, that is, in a state where the bypass opening / closing valve body 421 is displaced to the open position, the following formula F2 is satisfied. A displacement amount (lift amount) ΔL is determined.
P1 × Ap = P2 × (Ap−Ab) + Fo + K × ΔL (F2) where “P1” is the refrigerant pressure upstream of the pressure regulating valve body 441 in the second refrigerant passage 21a (on the outlet side of the indoor evaporator 20). Refrigerant pressure), “P2” indicates the refrigerant pressure downstream of the pressure adjusting valve body 441 in the second refrigerant passage 21a. “Ap” is the pressure receiving surface of the pressure adjusting valve body 441, “Ab” is the cross-sectional area of the bellows 444, “Fo” is the initial load of the bellows 444 and the spring 442, and “K” is the total of the bellows 444 and the spring 442. The spring constant is shown.
 上記数式F2から明らかなように、「Ap」と「Ab」との差を小さく設定することで、第2冷媒通路21aの入口側の冷媒圧力P1と変位量ΔLが比例する関係となる。例えば、P1が低下するとΔLが低下して、P1の低下が抑制される。これにより、第2冷媒通路21aの入口側の冷媒圧力P1を所定の設定圧力値に維持することが可能となっている。 As is clear from the above formula F2, by setting the difference between “Ap” and “Ab” to be small, the refrigerant pressure P1 on the inlet side of the second refrigerant passage 21a and the displacement amount ΔL are proportional to each other. For example, when P1 decreases, ΔL decreases, and the decrease in P1 is suppressed. As a result, the refrigerant pressure P1 on the inlet side of the second refrigerant passage 21a can be maintained at a predetermined set pressure value.
 従って、図12、図13に示す内部構成を有する統合弁4を採用したとしても、単一の駆動モータ423によるバイパス開閉用弁体421を変位に連動して、圧力調整用弁体441を変位させることが可能となる。 Therefore, even if the integrated valve 4 having the internal configuration shown in FIGS. 12 and 13 is adopted, the pressure adjusting valve body 441 is displaced in conjunction with the displacement of the bypass opening / closing valve body 421 by the single drive motor 423. It becomes possible to make it.
 なお、本実施形態の制御装置100は、暖房モード、冷房モード、第1除湿暖房モード時に、図13に示すように、バイパス開閉用弁体421がバイパス通路41の閉鎖位置に変位するように駆動モータ423を制御する。これにより、第2シャフト443にて圧力調整用弁体441が第2冷媒通路21aの通路開度が拡大するように押圧され、圧力調整用弁体441が定圧維持機能を発揮しない機能停止状態となる。 The control device 100 of the present embodiment is driven so that the bypass opening / closing valve element 421 is displaced to the closed position of the bypass passage 41 as shown in FIG. 13 in the heating mode, the cooling mode, and the first dehumidifying heating mode. The motor 423 is controlled. As a result, the pressure adjusting valve element 441 is pressed by the second shaft 443 so that the passage opening degree of the second refrigerant passage 21a is increased, and the function stop state in which the pressure adjusting valve element 441 does not perform the constant pressure maintaining function. Become.
 一方、制御装置100は、図12に示すように、第2除湿暖房モード時に、バイパス開閉用弁体421がバイパス通路41の閉鎖位置に変位するように駆動モータ423を制御する。これにより、第2シャフト443がバイパス開閉用弁体421から離間し、圧力調整用弁体441が定圧維持機能を発揮する機能発揮状態となる。 On the other hand, the control device 100 controls the drive motor 423 so that the bypass opening / closing valve element 421 is displaced to the closed position of the bypass passage 41 in the second dehumidifying and heating mode, as shown in FIG. As a result, the second shaft 443 is separated from the bypass opening / closing valve body 421, and the pressure adjusting valve body 441 enters a function exhibiting state in which a constant pressure maintaining function is exhibited.
 その他の構成および作動は、第1実施形態と同様である。従って、本実施形態で説明した内部構成を有する統合弁4を採用しても、第1実施形態と同様に、並列運転モード時における室内蒸発器20および室外熱交換器15の吸熱量を適切に変化させると共に、直列運転モード時における冷房能力を適切に調整できる。さらに、ヒートポンプサイクル10のサイクル構成の簡素化を図ることができる。 Other configurations and operations are the same as those in the first embodiment. Therefore, even if the integrated valve 4 having the internal configuration described in the present embodiment is adopted, the endothermic amounts of the indoor evaporator 20 and the outdoor heat exchanger 15 in the parallel operation mode are appropriately set as in the first embodiment. In addition, the cooling capacity in the series operation mode can be adjusted appropriately. Furthermore, the cycle configuration of the heat pump cycle 10 can be simplified.
 なお、本実施形態の統合弁4の如く、バイパス開閉弁42、逆止弁43、および圧力調整弁44を統合弁4として一体化することが望ましいが、これに限定されない。例えば、図14に示すように、バイパス開閉弁42および圧力調整弁44等を統合弁4として一体化し、逆止弁43を統合弁4と別体で構成するようにしてもよい。このことは、本実施形態以外の実施形態においても同様である。 Although it is desirable to integrate the bypass opening / closing valve 42, the check valve 43, and the pressure regulating valve 44 as the integrated valve 4 as in the integrated valve 4 of the present embodiment, the present invention is not limited to this. For example, as shown in FIG. 14, the bypass opening / closing valve 42 and the pressure regulating valve 44 may be integrated as an integrated valve 4, and the check valve 43 may be configured separately from the integrated valve 4. This also applies to embodiments other than the present embodiment.
 また、本実施形態の統合弁4において、図15に示すように、第1冷媒通路18aを流れる冷媒と第2冷媒通路21aを流れる冷媒とが対向流となるようにしてもよい。これによれば、第1冷媒通路18aを流れる冷媒と第2冷媒通路21aを流れる冷媒とのボデー40を介した熱交換を促進することができる。 Further, in the integrated valve 4 of the present embodiment, as shown in FIG. 15, the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a may be opposed to each other. According to this, heat exchange via the body 40 between the refrigerant flowing through the first refrigerant passage 18a and the refrigerant flowing through the second refrigerant passage 21a can be promoted.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、第2実施形態に対して統合弁4の内部構成を変更した例について説明する。なお、本実施形態では、第2実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Third embodiment)
Next, a third embodiment will be described. This embodiment demonstrates the example which changed the internal structure of the integrated valve 4 with respect to 2nd Embodiment. In the present embodiment, description of the same or equivalent parts as in the second embodiment will be omitted or simplified.
 図16に示すように、本実施形態の統合弁4では、第2シャフト443の一端側がバイパス開閉用弁体421に連結され、バイパス開閉用弁体421が閉鎖位置に変位した際に、第2シャフト443の他端側がバイパス開閉用弁体421と当接して、圧力調整用弁体441を第2冷媒通路21aの通路開度(通路面積)が拡大するように押圧する構成となっている。 As shown in FIG. 16, in the integrated valve 4 of this embodiment, one end of the second shaft 443 is connected to the bypass opening / closing valve body 421, and the second opening / closing valve body 421 is displaced to the closed position. The other end side of the shaft 443 comes into contact with the bypass opening / closing valve body 421 and presses the pressure adjusting valve body 441 so that the passage opening degree (passage area) of the second refrigerant passage 21a is enlarged.
 また、本実施形態の圧力調整用弁体441には、その上面側に第2シャフト443の他端側を支える凹部441aが形成されると共に、当該凹部441aに圧力調整用弁体441の振動が第2シャフト443に伝わることを抑制する振動吸収部材441b(例えば、Oリング)が設けられている。 In addition, the pressure adjusting valve body 441 of the present embodiment has a recess 441a that supports the other end of the second shaft 443 on the upper surface side, and vibration of the pressure adjusting valve body 441 is generated in the recess 441a. A vibration absorbing member 441b (for example, an O-ring) that suppresses transmission to the second shaft 443 is provided.
 このように、バイパス開閉用弁体421が閉鎖位置に変位した際に第2シャフト443が圧力調整用弁体441を押圧する構成とすれば、圧力調整用弁体441による定圧維持機能を発揮しない機能停止状態とすることができる。 Thus, if the second shaft 443 presses the pressure regulating valve body 441 when the bypass opening / closing valve body 421 is displaced to the closed position, the constant pressure maintaining function by the pressure regulating valve body 441 is not exhibited. The function can be stopped.
 その他の構成および作動は、第2実施形態と同様である。従って、本実施形態で説明した内部構成を有する統合弁4を採用しても、第1、第2実施形態と同様に、並列運転モード時における室内蒸発器20および室外熱交換器15の吸熱量を適切に変化させると共に、直列運転モード時における冷房能力を適切に調整できる。さらに、ヒートポンプサイクル10のサイクル構成の簡素化を図ることができる。 Other configurations and operations are the same as those in the second embodiment. Therefore, even if the integrated valve 4 having the internal configuration described in the present embodiment is employed, the endothermic amounts of the indoor evaporator 20 and the outdoor heat exchanger 15 in the parallel operation mode as in the first and second embodiments. It is possible to appropriately adjust the cooling capacity in the series operation mode. Furthermore, the cycle configuration of the heat pump cycle 10 can be simplified.
 なお、第1実施形態の統合弁4を本実施形態の統合弁4の如く、第2シャフト443の他端側が圧力調整用弁体441に当接した状態で、一端側をバイパス開閉用弁体421に連結するようにしてもよい。 The integrated valve 4 of the first embodiment is the same as the integrated valve 4 of the present embodiment, and the other end of the second shaft 443 is in contact with the pressure adjusting valve body 441 and the one end side is the bypass opening / closing valve body. 421 may be connected.
 (他の実施形態)
 以上、各実施形態について説明したが、本開示は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。例えば、以下のように種々変形可能である。
(Other embodiments)
While the embodiments have been described above, the present disclosure is not limited to the above-described embodiments, and can be appropriately changed within the scope described in the claims. For example, various modifications are possible as follows.
 上述の各実施形態では、暖房モード、冷房モードおよび除湿暖房モードを運転モード設定スイッチの操作信号に応じて切り替える例について説明したが、これに限定されない。例えば、目標吹出温度TAO、および外気温Tam等に応じて、暖房モード、冷房モードおよび除湿暖房モードを切り替えるようにしてもよい。 In each of the above-described embodiments, the example in which the heating mode, the cooling mode, and the dehumidifying heating mode are switched in accordance with the operation signal of the operation mode setting switch has been described. For example, the heating mode, the cooling mode, and the dehumidifying heating mode may be switched according to the target blowing temperature TAO, the outside air temperature Tam, and the like.
 上述の各実施形態では、暖房モード、冷房モード、および除湿暖房モードの各運転モード時に、制御装置100が、室内凝縮器12およびヒータコア34の空気通路、および冷風バイパス通路35のいずれか一方を閉塞するようにエアミックスドア36を作動させる例について説明したが、エアミックスドア36の作動はこれに限定されない。 In each of the above-described embodiments, the control device 100 closes any one of the air passage of the indoor condenser 12 and the heater core 34 and the cold air bypass passage 35 in each operation mode of the heating mode, the cooling mode, and the dehumidifying heating mode. The example of operating the air mix door 36 as described above has been described, but the operation of the air mix door 36 is not limited to this.
 例えば、エアミックスドア36が室内凝縮器12およびヒータコア34の空気通路、および冷風バイパス通路35の双方を開放するようにしてもよい。そして、室内凝縮器12およびヒータコア34の空気通路を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することで、車室内への吹出空気の温度を調整するようにしてもよい。このような、温度調整は、車室内送風空気の温度を微調整し易い点で有効である。 For example, the air mix door 36 may open both the air passage of the indoor condenser 12 and the heater core 34 and the cold air bypass passage 35. The temperature of the air blown into the vehicle interior may be adjusted by adjusting the air volume ratio between the air volume that passes through the air passages of the indoor condenser 12 and the heater core 34 and the air volume that passes through the cold air bypass passage 35. Good. Such temperature adjustment is effective in that it is easy to finely adjust the temperature of the air blown into the passenger compartment.
 上述の各実施形態の如く、バイパス開閉用弁体421の閉鎖位置および開放位置の範囲において、バイパス開閉用弁体421を任意に変位可能な駆動モータ423を採用することが望ましいが、これに限らず、バイパス開閉用弁体421を閉鎖位置および開放位置に変位可能な駆動部であれば適宜採用できる。 As in each of the above-described embodiments, it is desirable to employ the drive motor 423 that can arbitrarily displace the bypass opening / closing valve element 421 in the range of the closed position and the opening position of the bypass opening / closing valve element 421, but is not limited thereto. The bypass opening / closing valve body 421 can be appropriately adopted as long as it can be displaced to the closed position and the open position.
 上述の各実施形態では、バイパス開閉用弁体421を変位させる駆動部として駆動モータ423を用いる例について説明したが、これに限らず、例えば、駆動部をソレノイド等の電磁機構を用いてもよい。 In each of the above-described embodiments, the example in which the drive motor 423 is used as the drive unit that displaces the bypass opening / closing valve body 421 has been described. However, the present invention is not limited thereto, and the drive unit may be an electromagnetic mechanism such as a solenoid. .
 上述の各実施形態では、室内空調ユニット30の内部にヒータコア34を配置する構成としているが、エンジン等の外部熱源が不足するような場合には、ヒータコア34の廃止、あるいは電気ヒータ等へ置き換えるようにしてもよい。 In each of the above-described embodiments, the heater core 34 is arranged inside the indoor air conditioning unit 30. However, when an external heat source such as an engine is insufficient, the heater core 34 is abolished or replaced with an electric heater or the like. It may be.
 上述の各実施形態の如く、ヒートポンプサイクル10のサイクル構成の簡素化を図る上で、少なくともバイパス開閉弁42および圧力調整弁44を統合弁4として一体化することが望ましいが、これに限らず、バイパス開閉弁42および圧力調整弁44を別体で構成するようにしてもよい。 As in the above-described embodiments, in order to simplify the cycle configuration of the heat pump cycle 10, it is desirable to integrate at least the bypass on-off valve 42 and the pressure regulating valve 44 as the integrated valve 4, but not limited thereto, The bypass opening / closing valve 42 and the pressure adjustment valve 44 may be configured separately.
 上述の各実施形態では、車両用空調装置1に本開示のヒートポンプサイクル10を適用する例を説明したが、これに限定されず、例えば、据え置き型の空調装置等に適用してもよい。 In each of the above-described embodiments, the example in which the heat pump cycle 10 of the present disclosure is applied to the vehicle air conditioner 1 has been described. However, the present invention is not limited thereto, and may be applied to, for example, a stationary air conditioner.
 なお、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when referring to the shape, positional relationship, etc. of the component, etc., the shape, unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. The positional relationship is not limited.

Claims (8)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒を空調対象空間へ送風する送風空気に放熱する放熱器(12)と、
     前記放熱器から流出した冷媒を外気と熱交換させる室外熱交換器(15)と、
     サイクル内を流れる冷媒を蒸発させて前記放熱器通過前の前記送風空気を冷却する蒸発器(20)と、
     前記放熱器から流出した冷媒を前記室外熱交換器、前記蒸発器の順に流す直列運転モード、および前記放熱器から流出した冷媒を前記室外熱交換器および前記蒸発器の双方へ流す並列運転モードに切り替える運転モード切替部(100a)と、
     前記蒸発器を流通する冷媒の圧力を調整する圧力調整部(44)と、
     前記圧力調整部の作動状態を、前記蒸発器を流通する冷媒の圧力を所定の設定圧力値に維持する定圧調整機能を発揮する機能発揮状態、および前記定圧調整機能を発揮しない機能停止状態に切り替える作動状態切替部(100b)と、を備え、
     前記作動状態切替部は、
     前記並列運転モード時に前記圧力調整部の作動状態を前記機能発揮状態に切り替え、
     前記直列運転モード時に前記圧力調整部の作動状態を前記機能停止状態に切り替えるヒートポンプサイクル。
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) that radiates heat to the blown air that blows the refrigerant discharged from the compressor to the air-conditioning target space;
    An outdoor heat exchanger (15) for exchanging heat between the refrigerant flowing out of the radiator and outside air;
    An evaporator (20) for evaporating the refrigerant flowing in the cycle and cooling the blown air before passing through the radiator;
    A serial operation mode in which the refrigerant flowing out of the radiator flows in the order of the outdoor heat exchanger and the evaporator, and a parallel operation mode in which the refrigerant flowing out of the radiator is flowed to both the outdoor heat exchanger and the evaporator. An operation mode switching unit (100a) for switching;
    A pressure adjusting unit (44) for adjusting the pressure of the refrigerant flowing through the evaporator;
    The operating state of the pressure adjusting unit is switched between a function exhibiting state that exhibits a constant pressure adjusting function that maintains the pressure of the refrigerant flowing through the evaporator at a predetermined set pressure value, and a function halt state that does not exhibit the constant pressure adjusting function. An operating state switching part (100b),
    The operating state switching unit is
    Switch the operating state of the pressure adjusting unit to the function exhibiting state during the parallel operation mode,
    A heat pump cycle for switching the operating state of the pressure adjusting unit to the function stop state during the series operation mode.
  2.  前記室外熱交換器に流入する冷媒を減圧させると共に、絞り開度を変更可能に構成された第1絞り部(14)と、
     前記蒸発器に流入する冷媒を減圧させると共に、絞り開度を変更可能に構成された第2絞り部(19)と、をさらに備え、
     前記運転モード切替部は、
     前記直列運転モード時に、前記放熱器から流出した冷媒を前記第1絞り部、前記室外熱交換器、前記第2絞り部、前記蒸発器、前記圧力調整部、前記圧縮機の吸入側の順に流す冷媒流路に切り替え、
     前記並列運転モード時に、前記放熱器から流出した冷媒を前記第1絞り部、前記室外熱交換器、前記圧縮機の吸入側の順に流すと同時に、前記放熱器から流出した冷媒を前記第2絞り部、前記蒸発器、前記圧力調整部、前記圧縮機の吸入側の順に流す冷媒流路に切り替える請求項1に記載のヒートポンプサイクル。
    A first throttle section (14) configured to depressurize the refrigerant flowing into the outdoor heat exchanger and change the throttle opening;
    A second throttle part (19) configured to depressurize the refrigerant flowing into the evaporator and change the throttle opening; and
    The operation mode switching unit is
    In the serial operation mode, the refrigerant flowing out of the radiator is made to flow in the order of the first throttle unit, the outdoor heat exchanger, the second throttle unit, the evaporator, the pressure adjusting unit, and the suction side of the compressor. Switch to refrigerant flow path,
    In the parallel operation mode, the refrigerant flowing out of the radiator is caused to flow in the order of the first throttle part, the outdoor heat exchanger, and the suction side of the compressor, and at the same time, the refrigerant flowing out of the radiator is allowed to flow into the second throttle The heat pump cycle according to claim 1, wherein the heat pump cycle is switched to a refrigerant flow path that flows in the order of the section, the evaporator, the pressure adjusting section, and the suction side of the compressor.
  3.  圧縮機(11)から吐出された冷媒を空調対象空間へ送風する送風空気に放熱する放熱器(12)、前記放熱器から流出した冷媒を外気と熱交換させる室外熱交換器(15)、サイクル内を流れる冷媒を蒸発させて前記放熱器通過前の前記送風空気を冷却する蒸発器(20)を備え、前記放熱器から流出した冷媒を前記室外熱交換器、前記蒸発器の順に流す直列運転モード、および前記放熱器から流出した冷媒を前記室外熱交換器および前記蒸発器の双方へ流す並列運転モードに切り替え可能なヒートポンプサイクルに適用されるヒートポンプサイクル用統合弁であって、
     前記直列運転モード時に前記室外熱交換器から流出した冷媒を前記蒸発器側へ導く第1冷媒通路(18a)、前記並列運転モード時に前記放熱器から流出した冷媒を前記室外熱交換器を迂回して前記蒸発器側へ導くバイパス通路(41)、前記蒸発器から流出した冷媒を前記圧縮機の吸入側へ導く第2冷媒通路(21a)が形成されたボデー(40)と、
     前記ボデー内部に収容され、前記バイパス通路を開閉するためのバイパス開閉用弁体(421)と、
     前記バイパス開閉用弁体に連結された第1作動棒(422)を駆動することで、前記直列運転モード時に前記バイパス開閉用弁体を前記バイパス通路の閉鎖位置に変位させ、前記並列運転モード時に前記バイパス開閉用弁体を前記バイパス通路の開放位置に変位させる駆動部(423)と、
     前記ボデー内部に収容され、前記第2冷媒通路に流入する冷媒の圧力を予め定めた設定圧力値に維持するための圧力調整用弁体(441)と、
     前記駆動部が前記バイパス開閉用弁体を前記バイパス通路の閉鎖位置に変位させた際に、前記バイパス通路の開放位置に変位させた際よりも前記第2冷媒通路の通路開度が拡大するように前記圧力調整用弁体を変位させる第2作動棒(443)と、
     を備えるヒートポンプサイクル用統合弁。
    A radiator (12) that radiates the air discharged from the compressor (11) to the air-conditioning space, a heat radiator (12), an outdoor heat exchanger (15) that exchanges heat between the refrigerant flowing out of the radiator and the outside air, and a cycle A series operation that includes an evaporator (20) that evaporates the refrigerant flowing inside and cools the blown air before passing through the radiator, and flows the refrigerant flowing out of the radiator in the order of the outdoor heat exchanger and the evaporator. A heat pump cycle integrated valve applied to a heat pump cycle that can be switched to a mode and a parallel operation mode in which the refrigerant flowing out of the radiator flows to both the outdoor heat exchanger and the evaporator,
    A first refrigerant passage (18a) that guides the refrigerant flowing out of the outdoor heat exchanger to the evaporator side during the series operation mode, and bypasses the outdoor heat exchanger for refrigerant flowing out of the radiator during the parallel operation mode. A bypass passage (41) that leads to the evaporator side, and a body (40) in which a second refrigerant passage (21a) that guides the refrigerant flowing out of the evaporator to the suction side of the compressor is formed,
    A bypass opening / closing valve element (421) for opening and closing the bypass passage, housed in the body;
    By driving the first operating rod (422) connected to the bypass opening / closing valve element, the bypass opening / closing valve element is displaced to the closed position of the bypass passage in the series operation mode, and in the parallel operation mode. A drive unit (423) for displacing the bypass opening / closing valve element to an open position of the bypass passage;
    A pressure regulating valve body (441) for maintaining the pressure of the refrigerant contained in the body and flowing into the second refrigerant passage at a predetermined set pressure value;
    When the drive unit displaces the bypass opening / closing valve element to the closed position of the bypass passage, the passage opening degree of the second refrigerant passage is expanded more than when the drive portion is displaced to the open position of the bypass passage. A second actuating rod (443) for displacing the pressure adjusting valve body;
    Integrated valve for heat pump cycle.
  4.  前記第2作動棒は、前記バイパス開閉用弁体および前記圧力調整用弁体の少なくとも一方の弁体に連結されており、
     前記圧力調整用弁体は、前記バイパス開閉用弁体の変位に連動して変位する請求項3に記載のヒートポンプサイクル用統合弁。
    The second operating rod is connected to at least one of the bypass opening and closing valve body and the pressure adjusting valve body,
    The integrated valve for a heat pump cycle according to claim 3, wherein the pressure adjusting valve element is displaced in conjunction with the displacement of the bypass opening / closing valve element.
  5.  前記バイパス通路は、前記バイパス開閉用弁体よりも冷媒流れ下流側にて前記第1冷媒通路と合流しており、
     前記第1冷媒通路には、前記駆動部が前記バイパス開閉用弁体を前記バイパス通路の開放位置に変位させた際に、前記バイパス通路を流れる冷媒が、前記第1冷媒通路を介して前記室外熱交換器側へ流出することを防止する逆流防止弁(43)が配置されている請求項3または4に記載のヒートポンプサイクル用統合弁。
    The bypass passage is joined to the first refrigerant passage on the downstream side of the refrigerant flow with respect to the bypass opening and closing valve body,
    In the first refrigerant passage, when the drive unit displaces the bypass opening / closing valve element to the open position of the bypass passage, the refrigerant flowing through the bypass passage passes through the first refrigerant passage to the outdoor side. The integrated valve for a heat pump cycle according to claim 3 or 4, wherein a backflow prevention valve (43) for preventing outflow to the heat exchanger side is arranged.
  6.  前記ボデーには、前記バイパス通路と前記第2冷媒通路とを連通させる貫通穴(408)が形成されており、
     前記第2作動棒は、前記貫通穴を貫通するように配置されており、
     前記貫通穴には、前記第2作動棒および前記貫通穴間に形成される隙間からの冷媒漏れを抑制すると共に、前記圧力調整用弁体の振動を吸収するシール部(408a、408b)が配置されている請求項3ないし5のいずれか1つに記載のヒートポンプサイクル用統合弁。
    The body is formed with a through hole (408) for communicating the bypass passage and the second refrigerant passage,
    The second operating rod is disposed so as to penetrate the through hole,
    Seal parts (408a, 408b) for suppressing the leakage of the refrigerant from the gap formed between the second operating rod and the through hole and absorbing the vibration of the pressure adjusting valve body are disposed in the through hole. The integrated valve for heat pump cycles according to any one of claims 3 to 5.
  7.  前記駆動部は、前記バイパス通路の閉鎖位置および開放位置の範囲において、前記第1作動棒を介して前記バイパス開閉用弁体を任意に変位可能に構成されている請求項3ないし6のいずれか1つに記載のヒートポンプサイクル用統合弁。 7. The drive unit according to claim 3, wherein the drive unit is configured to be capable of arbitrarily displacing the bypass opening / closing valve element via the first operating rod in a range of a closed position and an open position of the bypass passage. The integrated valve for heat pump cycles as described in one.
  8.  前記第2冷媒通路は、前記第2冷媒通路の少なくとも一部を流れる冷媒の流れ方向が、前記第1冷媒通路の少なくとも一部を流れる冷媒の流れ方向に対して逆方向となっている請求項3ないし7のいずれか1つに記載のヒートポンプサイクル用統合弁。 The flow direction of the refrigerant flowing through at least a part of the second refrigerant path in the second refrigerant path is opposite to the flow direction of the refrigerant flowing through at least a part of the first refrigerant path. An integrated valve for a heat pump cycle according to any one of 3 to 7.
PCT/JP2013/005450 2012-10-01 2013-09-13 Heat pump cycle and integration valve for heat pump cycle WO2014054229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012219722A JP2014070867A (en) 2012-10-01 2012-10-01 Heat pump cycle, and combination valve for heat pump cycle
JP2012-219722 2012-10-01

Publications (1)

Publication Number Publication Date
WO2014054229A1 true WO2014054229A1 (en) 2014-04-10

Family

ID=50434575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005450 WO2014054229A1 (en) 2012-10-01 2013-09-13 Heat pump cycle and integration valve for heat pump cycle

Country Status (2)

Country Link
JP (1) JP2014070867A (en)
WO (1) WO2014054229A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022487A1 (en) * 2015-08-03 2017-02-09 株式会社デンソー Refrigeration cycle device
WO2017175727A1 (en) * 2016-04-08 2017-10-12 株式会社デンソー Integrated valve device
CN110035915A (en) * 2016-11-25 2019-07-19 株式会社电装 Air conditioner for vehicles
CN110740888A (en) * 2017-07-31 2020-01-31 株式会社电装 Heat pump cycle device and valve device
CN112351651A (en) * 2020-10-30 2021-02-09 中国移动通信集团设计院有限公司 Condenser, air conditioner special for air cooling machine room and control method of air conditioner special for air cooling machine room

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293660B2 (en) 2015-02-04 2019-05-21 Denso Corporation Integrated valve and heat pump cycle
WO2017022378A1 (en) * 2015-08-03 2017-02-09 株式会社デンソー Integrated valve
US9819063B2 (en) * 2015-08-18 2017-11-14 Ford Global Technologies, Llc Climate control system for a vehicle
JP6863131B2 (en) * 2017-06-28 2021-04-21 株式会社デンソー Air conditioner
JP7095845B2 (en) * 2018-08-27 2022-07-05 サンデン・オートモーティブクライメイトシステム株式会社 Combined valve and vehicle air conditioner using it
JP7153170B2 (en) * 2018-08-27 2022-10-14 サンデン株式会社 COMPOSITE VALVE AND VEHICLE AIR CONDITIONER USING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061911A (en) * 2010-09-15 2012-03-29 Tgk Co Ltd Air conditioner for vehicle and control valve
JP2012153347A (en) * 2011-01-28 2012-08-16 Tgk Co Ltd Vehicle cooling and heating device
JP2012176658A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning system for vehicle
JP2012225637A (en) * 2011-04-04 2012-11-15 Denso Corp Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061911A (en) * 2010-09-15 2012-03-29 Tgk Co Ltd Air conditioner for vehicle and control valve
JP2012153347A (en) * 2011-01-28 2012-08-16 Tgk Co Ltd Vehicle cooling and heating device
JP2012176658A (en) * 2011-02-25 2012-09-13 Sanden Corp Air conditioning system for vehicle
JP2012225637A (en) * 2011-04-04 2012-11-15 Denso Corp Refrigeration cycle device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022487A1 (en) * 2015-08-03 2017-02-09 株式会社デンソー Refrigeration cycle device
JPWO2017022487A1 (en) * 2015-08-03 2018-02-01 株式会社デンソー Refrigeration cycle equipment
US10391839B2 (en) 2015-08-03 2019-08-27 Denso Corporation Refrigeration cycle device
WO2017175727A1 (en) * 2016-04-08 2017-10-12 株式会社デンソー Integrated valve device
CN110035915A (en) * 2016-11-25 2019-07-19 株式会社电装 Air conditioner for vehicles
CN110035915B (en) * 2016-11-25 2022-07-08 株式会社电装 Air conditioner for vehicle
CN110740888A (en) * 2017-07-31 2020-01-31 株式会社电装 Heat pump cycle device and valve device
CN110740888B (en) * 2017-07-31 2022-10-28 株式会社电装 Heat pump cycle device and valve device
CN112351651A (en) * 2020-10-30 2021-02-09 中国移动通信集团设计院有限公司 Condenser, air conditioner special for air cooling machine room and control method of air conditioner special for air cooling machine room

Also Published As

Publication number Publication date
JP2014070867A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
WO2014054229A1 (en) Heat pump cycle and integration valve for heat pump cycle
US20190111756A1 (en) Refrigeration cycle device
US10889163B2 (en) Heat pump system
US9581370B2 (en) Refrigerant cycle device
JP5929372B2 (en) Refrigeration cycle equipment
US9683761B2 (en) Integration valve and heat pump cycle
US10293660B2 (en) Integrated valve and heat pump cycle
US8671707B2 (en) Heat pump cycle
CN107848374B (en) Air conditioner for vehicle
JP6683076B2 (en) Refrigeration cycle equipment
WO2017010289A1 (en) Heat pump cycle
US11506404B2 (en) Refrigeration cycle device
JP6394505B2 (en) Heat pump cycle
WO2016075897A1 (en) Refrigeration cycle device
JP7163799B2 (en) refrigeration cycle equipment
WO2015111379A1 (en) Freeze cycling device
WO2018096869A1 (en) Vehicle air conditioning device
JP5935714B2 (en) Refrigeration cycle equipment
JP6375796B2 (en) Refrigeration cycle equipment
JP6079474B2 (en) Differential pressure valve for heat pump
JP6601307B2 (en) Refrigeration cycle equipment
JP6369237B2 (en) Air conditioner
WO2018088033A1 (en) Refrigeration cycle device
JP6079475B2 (en) Differential pressure valve for heat pump
JP6094401B2 (en) Integrated valve for heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13843270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13843270

Country of ref document: EP

Kind code of ref document: A1