WO2015111379A1 - Freeze cycling device - Google Patents

Freeze cycling device Download PDF

Info

Publication number
WO2015111379A1
WO2015111379A1 PCT/JP2015/000094 JP2015000094W WO2015111379A1 WO 2015111379 A1 WO2015111379 A1 WO 2015111379A1 JP 2015000094 W JP2015000094 W JP 2015000094W WO 2015111379 A1 WO2015111379 A1 WO 2015111379A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
compressor
air
evaporation pressure
Prior art date
Application number
PCT/JP2015/000094
Other languages
French (fr)
Japanese (ja)
Inventor
桑原 幹治
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2015111379A1 publication Critical patent/WO2015111379A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a refrigeration cycle apparatus including an evaporation pressure adjustment valve.
  • a vapor compression type refrigeration cycle apparatus that cools blown air blown into a passenger compartment of a vehicle air conditioner that includes an evaporation pressure adjusting valve.
  • This type of evaporation pressure regulating valve is configured to reduce the refrigerant evaporation pressure (refrigerant evaporation) in the indoor evaporator in order to suppress frosting (frost) of the indoor evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant and the blown air.
  • the temperature is maintained at a predetermined reference evaporation pressure (reference evaporation temperature) or higher.
  • Patent Document 1 discloses an evaporation pressure adjusting valve that increases a valve opening (refrigerant passage area) with an increase in the flow rate of refrigerant flowing through an indoor evaporator. More specifically, the evaporating pressure adjusting valve of Patent Document 1 is connected to the refrigerant outlet side of the indoor evaporator to increase the flow rate of refrigerant flowing through the indoor evaporator (the flow rate of refrigerant flowing through the evaporating pressure adjusting valve). The set pressure increases in proportion to the accompanying increase in the displacement of the valve body.
  • the reference evaporation temperature is a constant determined to be higher than 0 ° C. in order to suppress frost formation (frost) of the indoor evaporator.
  • the set pressure of the evaporating pressure adjusting valve is the refrigerant pressure on the inlet side of the evaporating pressure adjusting valve when the evaporating pressure adjusting valve in the fully opened state starts to reduce the refrigerant passage area (refrigerant evaporation in the indoor evaporator). Pressure), which varies depending on the flow rate of the refrigerant flowing through the evaporation pressure regulating valve.
  • Patent Document 2 in addition to the indoor evaporator and the evaporation pressure regulating valve, an indoor condenser for exchanging heat between the high-pressure refrigerant discharged from the compressor and the blown air after passing through the indoor evaporator, and the indoor evaporator
  • a refrigeration cycle apparatus includes an outdoor heat exchanger in which refrigerant flows are connected in parallel to exchange heat between low-pressure refrigerant and outside air to evaporate the low-pressure refrigerant.
  • the refrigerant evaporating pressure in the outdoor heat exchanger is made lower than the refrigerant evaporating pressure in the indoor evaporator by the action of the evaporating pressure adjusting valve.
  • the target refrigerant in the indoor evaporator is used so that the refrigeration cycle apparatus exhibits a high cooling capacity as the cooling heat load increases. Reduce evaporation temperature. Then, in order to bring the actual refrigerant evaporation temperature in the indoor evaporator closer to the target refrigerant evaporation temperature, the refrigerant discharge capacity (rotation speed) of the compressor is increased.
  • the present disclosure aims to suppress an unnecessary increase in power consumption of a compressor in a refrigeration cycle apparatus including an evaporation pressure adjusting valve.
  • a refrigeration cycle apparatus includes a compressor that compresses and discharges a refrigerant, an outdoor heat exchanger that exchanges heat between the refrigerant discharged from the compressor and outside air, and a refrigerant that has flowed out of the outdoor heat exchanger
  • a decompressor for reducing the pressure, an evaporator for exchanging heat between the low-pressure refrigerant decompressed by the decompressor and the heat exchange target fluid, and evaporating the low-pressure refrigerant, and a refrigerant evaporation pressure in the evaporator is equal to or higher than a predetermined reference evaporation pressure
  • An evaporating pressure adjusting valve that adjusts the target evaporating pressure, a target evaporating pressure determining unit that determines a target evaporating pressure in the evaporator, and a discharge capacity control unit that controls the operation of the compressor.
  • the target evaporating pressure determining unit determines that the target evaporating pressure is reduced as the cooling capacity of the heat exchange target fluid required for the evaporator increases, and the evaporating pressure adjusting valve circulates the evaporator. As the refrigerant flow rate increases, the set pressure increases. The target evaporation pressure determination unit is adjusted so that the refrigerant evaporation pressure approaches the higher of the target evaporation pressure and the set pressure when the discharge capacity control unit controls the operation of the compressor.
  • the set pressure is the evaporation pressure when the evaporation pressure regulating valve in the fully open state starts to reduce the refrigerant passage area in order to maintain the refrigerant evaporation temperature in the evaporator above the reference evaporation temperature.
  • This is the refrigerant pressure at the inlet side of the regulating valve (refrigerant evaporation pressure in the evaporator).
  • this set pressure is a value that varies depending on the flow rate of the refrigerant flowing through the evaporation pressure adjusting valve.
  • the operation of the compressor is controlled so that the refrigerant evaporation pressure approaches the target evaporation pressure.
  • the cooling capacity required for the evaporator can be exhibited without unnecessarily increasing the power consumption of the compressor.
  • the operation of the compressor is controlled so that the refrigerant evaporation pressure approaches the set pressure.
  • the cooling ability of the heat exchange target fluid required for the evaporator is the ability to cool the heat exchange target fluid at a desired flow rate to a desired temperature in the evaporator, specifically, It can be defined using a value obtained by integrating the enthalpy difference (refrigeration capacity) obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the evaporator outlet side refrigerant and the flow rate (mass flow rate) of the refrigerant flowing through the evaporator. .
  • the evaporating pressure adjusting valve is configured such that the refrigerant passage area inside increases as the refrigerant evaporating pressure increases, and the refrigerant passage increases as the refrigerant evaporating pressure increases.
  • the degree of increase when the area increases may be larger than the degree of increase when the refrigerant passage area increases linearly in proportion to the increase in the refrigerant evaporation pressure.
  • the evaporator passage area of the evaporation pressure regulating valve increases linearly in proportion to the increase in the flow rate of the refrigerant flowing through the evaporator.
  • the degree of increase in the set pressure accompanying an increase in the flow rate of the refrigerant flowing through can be reduced.
  • the refrigerant flow rate range in which the target evaporation pressure becomes higher than the set pressure can be expanded, and the cooling capacity required for the evaporator can be exhibited without unnecessarily increasing the power consumption of the compressor.
  • the range of the refrigerant flow rate can be expanded.
  • the discharge capacity control unit may control the operation of the compressor so as to suppress the evaporation pressure regulating valve from decreasing the internal refrigerant passage area. According to this, when the set pressure is higher than the target evaporation pressure, the refrigerant evaporation pressure can be easily brought close to the set pressure.
  • FIG. 1 is an overall configuration diagram of a vehicle air conditioner according to a first embodiment. It is an axial sectional view of the evaporation pressure regulating valve of the first embodiment. It is a side view of the cylindrical valve body part of the evaporation pressure regulating valve of the first embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is a graph which shows the relationship between the displacement amount of the cylindrical valve body part in the evaporation pressure regulating valve of 1st Embodiment, and a refrigerant passage area. It is a graph which shows the relationship between the refrigerant
  • the refrigeration cycle apparatus 10 is applied to a vehicle air conditioner 1 for an electric vehicle that obtains a driving force for vehicle traveling from a traveling electric motor.
  • the refrigeration cycle apparatus 10 functions to cool or heat the air (blasted air) blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner 1. Accordingly, the heat exchange target fluid of this embodiment is blown air.
  • the refrigeration cycle apparatus 10 of the present embodiment is a heating mode refrigerant circuit that heats the air and heats the interior of the vehicle, and dehumidifies that dehumidifies and heats the interior of the vehicle by reheating the air that has been cooled and dehumidified.
  • the refrigerant circuit can be switched to a heating mode refrigerant circuit and a cooling mode refrigerant circuit that cools the vehicle interior by cooling the blown air.
  • the refrigerant flow in the refrigerant circuit in the heating mode is indicated by black arrows
  • the refrigerant flow in the refrigerant circuit in the dehumidifying and heating mode is indicated by hatched arrows
  • the refrigerant flow in the refrigerant circuit in the cooling mode is further indicated.
  • the flow is indicated by white arrows.
  • an HFC-based refrigerant (specifically, R134a) is adopted as the refrigerant, and a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure Pd does not exceed the critical pressure of the refrigerant. It is composed.
  • an HFO refrigerant (for example, R1234yf) or the like may be adopted as the refrigerant.
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed in the vehicle bonnet, sucks the refrigerant in the refrigeration cycle apparatus 10, compresses and discharges it, and is a fixed capacity type with a fixed discharge capacity. It is comprised as an electric compressor which drives this compression mechanism with an electric motor. Specifically, various compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism can be employed as the compression mechanism.
  • the electric motor is one whose operation (number of rotations) is controlled by a control signal output from the air conditioning control device 40 described later, and any type of an AC motor and a DC motor may be adopted. And the refrigerant
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port side of the compressor 11.
  • the indoor condenser 12 is disposed in a casing 31 of an indoor air conditioning unit 30 described later, and exchanges heat between the discharged refrigerant (high-pressure refrigerant) discharged from the compressor 11 and the blown air that has passed through the indoor evaporator 18 described later.
  • a heating heat exchanger heat radiator for heating the blown air.
  • the refrigerant outlet side of the indoor condenser 12 is connected to one refrigerant inlet / outlet of the first three-way joint 13a that branches the flow of the refrigerant flowing out of the indoor condenser 12 in the dehumidifying heating mode.
  • a three-way joint may be formed by joining pipes having different pipe diameters, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the basic configuration of second to fourth three-way joints 13b to 13d described later is the same as that of the first three-way joint 13a.
  • a first refrigerant passage 14a that guides the refrigerant flowing out of the indoor condenser 12 to the refrigerant inlet side of the outdoor heat exchanger 16 is connected to another refrigerant inlet / outlet of the first three-way joint 13a.
  • the refrigerant that has flowed out of the indoor condenser 12 is supplied to the inlet side (specifically, the second expansion valve 15b disposed in the third refrigerant passage 14c described later). Is connected to the second refrigerant passage 14b leading to one refrigerant inflow / outlet of the third three-way joint 13c.
  • a first expansion valve 15a is disposed as an outdoor unit decompression device that decompresses the refrigerant flowing out of the indoor condenser 12 during the heating mode and the dehumidifying heating mode.
  • the first expansion valve 15a is a variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body. .
  • the first expansion valve 15a is configured as a variable throttle mechanism with a fully open function that functions as a simple refrigerant passage with almost no refrigerant decompression effect by fully opening the throttle opening.
  • the operation of the first expansion valve 15a is controlled by a control signal (control pulse) output from the air conditioning control device 40.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet side of the first expansion valve 15a.
  • the outdoor heat exchanger 16 is disposed on the vehicle front side in the vehicle bonnet, and exchanges heat between the refrigerant circulating inside and the air outside the vehicle (outside air) blown from a blower fan (not shown).
  • the blower fan is an electric blower whose number of rotations (blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
  • One refrigerant inlet / outlet of the second three-way joint 13b is connected to the refrigerant outlet side of the outdoor heat exchanger 16.
  • a third refrigerant passage 14c that guides the refrigerant flowing out of the outdoor heat exchanger 16 to the refrigerant inlet side of the indoor evaporator 18 is connected to another refrigerant inlet / outlet of the second three-way joint 13b.
  • the refrigerant flowing out of the outdoor heat exchanger 16 is supplied to another refrigerant inflow / outlet of the second three-way joint 13b from the inlet side of the accumulator 20 (specifically, one refrigerant of the fourth three-way joint 13d).
  • a fourth refrigerant passage 14d leading to the inflow / outlet is connected.
  • the third refrigerant passage 14c is connected to the check valve 17 that only allows the refrigerant to flow from the second three-way joint 13b side to the indoor evaporator 18 side, and the third three-way joint 13c to which the second refrigerant passage 14b described above is connected.
  • the second expansion valve 15b serving as a decompression device that decompresses the refrigerant that flows out of the outdoor heat exchanger 16 and flows into the indoor evaporator 18 is provided with respect to the refrigerant flow. Arranged in order.
  • the basic configuration of the second expansion valve 15b is the same as that of the first expansion valve 15a. Furthermore, the second expansion valve 15b of the present embodiment not only has a fully-open function that fully opens the refrigerant passage from the outdoor heat exchanger 16 to the indoor evaporator 18 when the throttle opening is fully opened, but also fully closes the throttle opening. In this case, it is composed of a variable throttle mechanism with a fully closing function that closes the refrigerant passage.
  • the refrigerant circuit can be switched by closing the third refrigerant passage 14c with the second expansion valve 15b fully closed.
  • the second expansion valve 15b functions as a refrigerant unit decompression device and also functions as a refrigerant circuit switching unit that switches a refrigerant circuit of the refrigerant circulating in the cycle.
  • the indoor evaporator 18 is disposed in the casing 31 of the indoor air conditioning unit 30 on the upstream side of the blower air flow of the indoor condenser 12, and in the cooling mode and the dehumidifying heating mode, the low-pressure refrigerant that circulates inside the indoor evaporator 18 12 is a heat exchanger for cooling (evaporator) that cools the blown air by causing heat exchange with the blown air before passing through 12 and evaporating the refrigerant to exhibit an endothermic effect.
  • evaporator heat exchanger for cooling
  • the inlet side of the evaporation pressure adjusting valve 19 is connected to the refrigerant outlet side of the indoor evaporator 18.
  • the evaporation pressure adjusting valve 19 sets the refrigerant evaporation pressure (refrigerant evaporation temperature) in the indoor evaporator 18 to be equal to or higher than a predetermined reference evaporation pressure (reference evaporation temperature) in order to suppress frost formation (frost) of the indoor evaporator 18. It fulfills the function of maintaining.
  • R134a is used as the refrigerant, and the reference evaporation temperature is determined to be a value slightly higher than 0 ° C., so the reference evaporation pressure is a value slightly higher than 0.293 MPa.
  • the detailed configuration of the evaporation pressure adjusting valve 19 will be described later.
  • the fourth three-way joint 13d to which the above-described fourth refrigerant passage 14d is connected is connected to the outlet side of the evaporation pressure adjusting valve 19. Furthermore, the inlet side of the accumulator 20 is connected to another refrigerant inlet / outlet of the fourth three-way joint 13d.
  • a first on-off valve 21 for opening and closing the fourth refrigerant passage 14d is disposed in the fourth refrigerant passage 14d that connects the second three-way joint 13b and the fourth three-way joint 13d.
  • the first on-off valve 21 is an electromagnetic valve whose operation is controlled by a control signal output from the air-conditioning control device 40, and functions as a refrigerant circuit switching unit.
  • a second on-off valve 22 for opening and closing the second refrigerant passage 14b is disposed in the second refrigerant passage 14b connecting the first three-way joint 13a and the third three-way joint 13c.
  • the basic configuration of the second on-off valve 22 is the same as that of the first on-off valve 21.
  • the second on-off valve 22 functions as a refrigerant circuit switching unit together with the second expansion valve 15 b and the first on-off valve 21.
  • the accumulator 20 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 20. Therefore, the accumulator 20 functions to prevent liquid phase refrigerant from being sucked into the compressor 11 and prevent liquid compression in the compressor 11.
  • the evaporation pressure adjusting valve 19 is constituted by a pure mechanical mechanism. Specifically, the evaporating pressure adjusting valve 19 has a body 91 configured by combining a plurality of metal members, and a cylindrical valve body portion 92, a refrigerant passage formed inside the body 91, A bellows 93, a spring 94 and the like are arranged.
  • the body 91 forms an outer shell of the evaporation pressure regulating valve 19 and is formed in a cylindrical shape.
  • An inflow port 91a connected to the refrigerant outlet side of the indoor evaporator 18 is provided on one end side in the axial direction of the body 91 formed in a cylindrical shape, and connected to the inlet side of the accumulator 20 on the other end side in the axial direction.
  • An outlet 91b is provided.
  • a cylinder portion 91c is formed on the downstream side of the refrigerant flow of the inlet 91a of the body 91.
  • a cylindrical space is formed inside the cylinder portion 91c, and the cylindrical portion 92a of the cylindrical valve body portion 92 is fitted in the cylindrical space so as to be slidable in the axial direction. That is, the outer diameter size of the cylindrical portion 92a of the cylindrical valve body portion 92 and the inner diameter size of the cylinder portion 91c are in a dimensional relationship of the clearance fit.
  • the cylindrical valve body 92 is formed of a bottomed cylindrical (cup-shaped) metal member, and is disposed on the other axial end side (outlet 91b side). On the bottom surface is provided a flange 92b that extends perpendicular to the axial direction. The flange portion 92b is a portion that abuts on the most downstream end portion of the cylinder portion 91c and regulates the displacement of the cylindrical valve body portion 92. Furthermore, a plurality (six in this embodiment) of communication holes 92c are formed on the side surface of the cylindrical portion 92a of the cylindrical valve body portion 92 so as to communicate the inner peripheral side and the outer peripheral side thereof. For example, as shown in FIG.
  • the communication hole 92 c is a plurality of triangular openings arranged in the circumferential direction of the cylindrical valve body portion 92, and one side of each triangular opening is the same as that of the cylindrical valve body portion 92. It is provided on the circumference and is disposed closer to the inlet 91a side of the evaporation pressure regulating valve 19 than the other two sides of each triangular opening.
  • the communication hole 92c is formed in the cylinder. It is blocked by the inner peripheral wall surface of 91c, and the communication between the inflow port 91a and the outflow port 91b is blocked.
  • the cylindrical valve body portion 92 is displaced from the other end side in the axial direction to increase the displacement L, the communication hole 92c is exposed from the cylinder portion 91c, and the outflow port 91b and the outflow port 91b pass through the communication hole 92c. Communicate through.
  • the cylinder part 91c and the cylindrical valve body part 92 of the present embodiment constitute a so-called slide valve.
  • the bellows 93 is a metal hollow cylindrical member formed to be extendable and contractible in the displacement direction of the cylindrical valve body portion 92 (the axial direction of the body 91), and is disposed on the downstream side of the refrigerant flow of the cylindrical valve body portion 92. Has been. Furthermore, the axial direction one end side of the bellows 93 is connected with the cylindrical valve body part 92, and the axial direction other end side of the bellows 93 is being fixed to the body 91 side.
  • a spring 94 is disposed in the internal space of the bellows 93.
  • the spring 94 is constituted by a cylindrical coil spring that extends in the displacement direction of the cylindrical valve body 92, and urges the cylindrical valve body 92 together with the bellows 93 in the valve closing direction (direction toward the inflow port 91a). A load is applied. The load that the bellows 93 and the spring 94 urge against the cylindrical valve body 92 can be adjusted by the adjusting screw 94a.
  • the cylindrical valve body 92 of the present embodiment includes the refrigerant pressure on the inlet 91a side (refrigerant evaporation pressure in the indoor evaporator 18), the refrigerant pressure on the outlet 91b side (the suction side refrigerant pressure of the compressor 11, that is, Refrigerant pressure in the accumulator 20) and further a load by the bellows 93 and the spring 94.
  • the tubular valve body 92 is displaced to a position where these loads are balanced, so that the refrigerant passage area in the evaporation pressure adjusting valve 19 is adjusted. More specifically, the balance of the load received by the tubular valve body portion 92 can be expressed by the following formula F1.
  • P1 * A1 + P2 * A2 K * L + P2 * A1 + F0 (F1)
  • P1 is the refrigerant pressure on the inlet 91a side
  • P2 is the refrigerant pressure on the outlet 91b side
  • A1 is the pressure receiving area of the tubular valve body 92
  • A2 is the pressure receiving area of the bellows 93
  • K is the bellows 93 and
  • L is the amount of displacement of the tubular valve body 92
  • F0 is the initial load of the bellows 93 and spring 94 adjusted by the adjusting screw 94a.
  • Equation F1 can be modified as Equation F2 below.
  • P1 K / A1 ⁇ L + F0 / A1 (F2)
  • F2 Equation F2
  • the evaporation pressure adjusting valve 19 of the present embodiment increases the refrigerant pressure P1 on the inlet 91a side as the refrigerant flow rate flowing through the indoor evaporator 18 (the refrigerant flow rate flowing through the evaporation pressure adjusting valve 19) increases. It has a configuration to let you. That is, the evaporation pressure adjusting valve 19 of the present embodiment increases the displacement L in proportion to the increase of the refrigerant pressure P1 on the inlet 91a side, and adjusts the evaporation pressure with the increase of the refrigerant pressure P1 on the inlet 91a side. The refrigerant passage area in the valve 19 is increased. In this example, the refrigerant pressure P1 on the inlet 91a side corresponds to the refrigerant evaporation pressure Pe in the indoor evaporator 18.
  • the plurality of communication holes 92c of the present embodiment are each formed in an isosceles triangle shape having a vertex on the outlet 91b side. That is, the communication hole 92c is formed in a shape that gradually decreases in the valve opening direction of the cylindrical valve body portion 92 (the direction toward the outflow port 91b).
  • the length in the circumferential direction LC of the communication hole 92c in the axial vertical cross section shown in FIG. 4 gradually increases in the valve closing direction of the cylindrical valve body 92 (the direction toward the inflow port 91a). It is formed into a shape. More specifically, in the present embodiment, the shape of the communication hole 92c is determined so that the displacement amount L of the cylindrical valve body 92 and the square root of the refrigerant passage area change in proportion.
  • the refrigerant accompanying the increase in the displacement amount L of the cylindrical valve body 92 shown by the thick solid line in FIG. 5 (that is, the rise in the refrigerant pressure P1 on the inlet 91a side).
  • the increase in the passage area linearly increases the refrigerant passage area in proportion to the increase in the displacement amount L of the cylindrical valve body 92 shown by the thick broken line in FIG. 5 (hereinafter referred to as a comparative example). It is larger over the entire area than the degree.
  • the evaporating pressure adjusting valve 19 has an inner refrigerant passage area that increases as the refrigerant evaporating pressure Pe in the indoor evaporator 18 increases.
  • the degree of increase when the refrigerant passage area increases as the refrigerant evaporation pressure Pe increases is larger than the degree of increase when the refrigerant passage area increases linearly in proportion to the increase of the refrigerant evaporation pressure Pe (comparative example). Is also getting bigger. Specifically, as shown in FIG. 5, the degree of increase is set so that the refrigerant passage area becomes larger than the degree of increase when the displacement L is linearly increased with a tangential slope at the time of zero (comparative example). Is set.
  • the increase degree of the set pressure Pset accompanying the increase in the flow rate of the refrigerant flowing through the indoor evaporator 18 is indicated by the thick broken line in FIG.
  • the set pressure Pset of the present embodiment is that the evaporation pressure adjusting valve 19 in the fully opened state (the displacement amount L is the maximum displacement amount) uses the refrigerant evaporation pressure in the indoor evaporator 18 as the reference evaporation pressure.
  • the refrigerant pressure on the inlet 91a side (the refrigerant in the indoor evaporator 18) when the reduction of the refrigerant passage area is started (when the displacement of the tubular valve body 92 in the valve closing direction is started). Evaporative pressure).
  • the displacement amount L of the cylindrical valve body portion 92 becomes the maximum displacement amount immediately after the operation is started. Become.
  • the bellows 93 and the spring are adjusted so that the refrigerant pressure P1 on the inlet 91a side is maintained above the reference evaporation pressure.
  • the cylindrical valve body 92 is displaced in the valve closing direction (direction toward the inflow port 91a) by the load of 94.
  • the refrigerant pressure P1 on the inlet 91a side when the cylindrical valve body 92 starts to be displaced in the valve closing direction becomes the set pressure Pset. Further, the set pressure Pset increases as the flow rate of the refrigerant flowing through the indoor evaporator 18 increases, as shown in FIG.
  • the indoor air conditioning unit 30 shown in FIG. 1 is for blowing out the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior, and is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. Furthermore, the indoor air conditioning unit 30 is configured by housing a blower 32, the indoor evaporator 18, the indoor condenser 12, and the like in a casing 31 that forms an outer shell thereof.
  • the casing 31 forms an air passage for the blown air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • An inside / outside air switching device 33 as an inside / outside air switching unit that switches and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is arranged on the most upstream side of the blown air flow in the casing 31. ing.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 31 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door, so that the air volume of the inside air and the air volume of the outside air are adjusted.
  • the air volume ratio is continuously changed.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
  • a blower 32 that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the blowing air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
  • the indoor evaporator 18 and the indoor condenser 12 are arranged in this order with respect to the flow of the blown air.
  • the indoor evaporator 18 is disposed on the upstream side of the blown air flow with respect to the indoor condenser 12.
  • a cold air bypass passage 35 is formed in which the blown air that has passed through the indoor evaporator 18 bypasses the indoor condenser 12 and flows downstream.
  • the blast air heated by the indoor condenser 12 and the blast air not heated by the indoor condenser 12 through the cold air bypass passage 35 are mixed on the downstream side of the blast air flow of the indoor condenser 12.
  • a mixing space is provided.
  • the opening hole which blows off the ventilation air (air-conditioning wind) mixed in the mixing space to the vehicle interior which is an air-conditioning object space is arrange
  • the opening hole includes a face opening hole that blows air-conditioned air toward the upper body of the passenger in the passenger compartment, a foot opening hole that blows air-conditioned air toward the feet of the passenger, and an inner surface of the front window glass of the vehicle.
  • a defroster opening hole (both not shown) for blowing the conditioned air toward is provided. The air flow downstream of these face opening holes, foot opening holes, and defroster opening holes is connected to the face air outlet, foot air outlet, and defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. Neither is shown).
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the cold air bypass passage 35, thereby adjusting the temperature of the conditioned air mixed in the mixing space.
  • the temperature of the blast air (air conditioned air) blown out from each outlet to the vehicle interior is adjusted.
  • the air mix door 34 constitutes a temperature adjustment unit that adjusts the temperature of the conditioned air blown into the vehicle interior.
  • the air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
  • a face door for adjusting the opening area of the face opening hole a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively.
  • a defroster door (both not shown) for adjusting the opening area of the hole is disposed.
  • These face doors, foot doors, and defroster doors constitute an opening hole mode switching unit that switches the opening hole mode, and are linked to an electric actuator for driving the outlet mode door via a link mechanism or the like. And rotated.
  • the operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
  • a face mode in which the face air outlet is fully opened and air is blown out from the face air outlet toward the upper body of the passenger in the passenger compartment, the face air outlet and the foot air outlet
  • the bi-level mode that opens both of the air outlets and blows air toward the upper body and feet of passengers in the passenger compartment, fully opens the foot outlet and opens the defroster outlet by a small opening, and mainly draws air from the foot outlet.
  • the defroster mode in which the defroster blowout port is fully opened and air is blown out from the defroster blowout port to the inner surface of the front windshield of the vehicle can be set.
  • the air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the compressor 11, the first expansion valve 15a, the second expansion valve 15b, and the first on-off valve connected to the output side thereof. 21, the operation of various air conditioning control devices such as the second on-off valve 22 and the blower 32 are controlled.
  • an inside air sensor 51 as an inside air temperature detector that detects a vehicle interior temperature (inside air temperature) Tr, and an outside air temperature detector that detects a vehicle outside temperature (outside air temperature) Tam.
  • An outside air sensor 52 a solar radiation sensor 53 as a solar radiation amount detector for detecting the solar radiation amount As irradiated into the vehicle interior, a discharge temperature sensor 54 for detecting the refrigerant discharge temperature Td of the refrigerant discharged from the compressor 11, and an outlet of the indoor condenser 12
  • High pressure side pressure sensor 55 for detecting the side refrigerant pressure (high pressure side refrigerant pressure) Pd
  • the evaporator temperature sensor 56 for detecting the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18, and the outlet side refrigerant of the indoor evaporator 18
  • Air conditioning such as a low pressure side pressure sensor 57 that detects pressure (low pressure side refrigerant pressure) Pe, and a blown air temperature sensor 58 that detects a blown air temperature TAV blown from the mixed space into the vehicle interior. Detection signals of patronage groups of the sensor is input.
  • the high-pressure side refrigerant pressure Pd of the present embodiment is, for example, a high-pressure side refrigerant pressure of a cycle from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 15a in the heating mode or the like, and in the cooling mode, It becomes the high pressure side refrigerant pressure of the cycle from the discharge port side of the compressor 11 to the inlet side of the second expansion valve 15b.
  • the low-pressure side refrigerant pressure Pe of the present embodiment is a value corresponding to the actual refrigerant evaporation pressure in the indoor evaporator 18 in the cooling mode and the dehumidifying heating mode.
  • the evaporator temperature sensor 56 of this embodiment has detected the heat exchange fin temperature of the indoor evaporator 18, the temperature which detects the temperature of the other site
  • a detector may be employed, or a temperature detector that directly detects the temperature of the refrigerant itself flowing through the indoor evaporator 18 may be employed.
  • the ventilation air temperature sensor which detects blowing air temperature TAV is provided, the value calculated based on evaporator temperature Tefin, discharge refrigerant temperature Td, etc. is employ
  • operation signals from various air conditioning operation switches provided on the operation panel 60 disposed in the vicinity of the instrument panel in the front of the vehicle interior are input.
  • the various air conditioning operation switches provided on the operation panel 60 include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner 1, and a cooling switch (A / C switch), an air volume setting switch for manually setting the air volume of the blower 32, a temperature setting switch for setting the vehicle interior set temperature Tset, which is a target temperature in the vehicle interior, and a blow mode switching switch for manually setting the air discharge mode.
  • the air-conditioning control device 40 is configured integrally with a control unit that controls various air-conditioning control devices connected to the output side of the air-conditioning control device 40.
  • the configuration (hardware and hardware) controls the operation of each air-conditioning control device.
  • Software constitutes a control unit that controls the operation of each air conditioning control device.
  • the configuration for controlling the operation of the compressor 11 constitutes the discharge capacity control unit 40a, and the second expansion valve 15b, the first on-off valve 21 and the second on-off valve 22 constituting the refrigerant circuit switching unit.
  • the configuration for controlling the operation of the refrigerant circuit constitutes the refrigerant circuit control unit 40b.
  • the discharge capacity control unit, the refrigerant circuit control unit, and the like may be configured as a separate control device with respect to the air conditioning control device 40.
  • the vehicle air conditioner 1 according to the present embodiment can switch the operation in the cooling mode, the heating mode, and the dehumidifying heating mode.
  • the switching between these operation modes is performed by executing an air conditioning control program stored in the air conditioning control device 40 in advance.
  • FIG. 8 is a flowchart showing a control process as a main routine of the air conditioning control program. This control process is executed when the auto switch of the operation panel 60 is turned on.
  • each control step of the flowchart shown to FIG. 8, FIG. 9 comprises the various function implementation
  • step S1 initialization such as initialization of flags and timers configured by the storage circuit of the air-conditioning control device 40 and initial positioning of the stepping motors constituting the various electric actuators described above is performed. It should be noted that in the initialization in step S1, some of the flags and the calculated values are read out from the values stored at the previous stop of the vehicle air conditioner or the end of the vehicle system.
  • step S2 detection signals from the sensor groups 51 to 58 for air conditioning control, operation signals from the operation panel 60, and the like are read.
  • step S3 based on the detection signal and operation signal read in step S2, a target blowing temperature TAO that is a target temperature of the blown air blown into the vehicle interior is calculated.
  • the target blowing temperature TAO is calculated by the following formula F3.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C (F3)
  • Tr is the vehicle interior set temperature (inside air temperature) detected by the inside air sensor 51
  • Tam is the outside air temperature detected by the outside air sensor 52
  • As is the solar radiation sensor 53. Is the amount of solar radiation detected by.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • step S4 the operation mode is determined. More specifically, in step S4, a subroutine shown in FIG. 9 is executed.
  • step S41 it is determined whether or not the cooling switch of the operation panel 60 is turned on. When it is determined in step S41 that the cooling switch is turned on (turned on), the process proceeds to step S42.
  • step S41 when it is determined in step S41 that the cooling switch is not turned on (turned off), the process proceeds to step S45, the operation mode is determined as the heating mode, and the process proceeds to step S5.
  • step S42 if (TAO-Tam) ⁇ , the process proceeds to step S43, the operation mode is determined to be the cooling mode, and the process returns to step S5. On the other hand, if (TAO ⁇ Tam) ⁇ is not satisfied in step S42, the process proceeds to step S44, the operation mode is determined to be the dehumidifying heating mode, and the process returns to step S5.
  • step S5 the open / close state of the first and second open / close valves 21 and 22 is determined according to the operation mode determined in step 4.
  • step S6 the opening degree of the air mix door 34 is determined according to the operation mode determined in step 4.
  • step S7 the operating states of the first and second expansion valves 15a and 15b are determined according to the operation mode determined in step 4.
  • step S5 to S7 the open / close state of the first and second on-off valves 21 and 22, the opening of the air mix door 34, and the first and second The operating state of the expansion valves 15a and 15b is determined.
  • step S8 the refrigerant discharge capacity of the compressor 11 is determined as described in detail in each operation mode described later.
  • step S9 control signals or control voltages are output from the air conditioning control device 40 to the various air conditioning control devices so that the operating states of the various air conditioning control devices determined in steps S5 to S8 are obtained.
  • step S10 it waits for control period (tau), and if progress of control period (tau) is determined, it will return to step S2.
  • the operation mode is determined as described above, and the operation in each operation mode is executed.
  • the operation in each operation mode will be described below.
  • (A) Heating Mode In the heating mode, as shown in the chart of FIG. 10, the air conditioning control device 40 opens the first on-off valve 21, closes the second on-off valve 22, and exerts a pressure reducing action on the first expansion valve 15a.
  • the second expansion valve 15b is fully closed.
  • the compressor 11 in the heating mode, as indicated by the black arrow in FIG. 1, the compressor 11 ⁇ the indoor condenser 12 ⁇ the first expansion valve 15 a ⁇ the outdoor heat exchanger 16 ⁇ (the first on-off valve 21 ⁇ ) the accumulator 20 ⁇
  • a vapor compression refrigeration cycle in which refrigerant is circulated in the order of the compressor 11 is configured.
  • the air conditioning control device 40 operates the various air conditioning control devices in the heating mode (control signals output to the various air conditioning control devices). To decide.
  • the air mix door 34 fully closes the cold air bypass passage 35, and the entire blown air after passing through the indoor evaporator 18
  • the flow rate is determined so as to pass through the air passage on the indoor condenser 12 side.
  • the degree of supercooling of the refrigerant flowing into the first expansion valve 15a is such that the coefficient of performance (COP) of the cycle is substantially the maximum value. It is determined so as to approach the target subcooling degree determined to be.
  • control signal output to the electric motor of the compressor 11 determined in step S8 is determined as follows. First, the target condensing pressure PCO in the indoor condenser 12 is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance.
  • the feedback control method is used so that the high-pressure side refrigerant pressure Pd approaches the target condensation pressure PCO.
  • a control signal output to the electric motor of the compressor 11 is determined.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the refrigerant flowing into the indoor condenser 12 exchanges heat with the blown air that has been blown from the blower 32 and passed through the indoor evaporator 18 to dissipate heat. Thereby, blowing air is heated.
  • the refrigerant flowing out of the indoor condenser 12 flows out from the first three-way joint 13a toward the first refrigerant passage 14a and is decompressed until it becomes a low-pressure refrigerant at the first expansion valve 15a. Is done.
  • the low-pressure refrigerant decompressed by the first expansion valve 15a flows into the outdoor heat exchanger 16 and absorbs heat from the outside air blown from the blower fan.
  • the refrigerant flowing out of the outdoor heat exchanger 16 flows out from the second three-way joint 13b to the fourth refrigerant passage 14d side because the first on-off valve 21 is opened and the second expansion valve 15b is fully closed. It flows into the accumulator 20 and is separated into gas and liquid. The gas-phase refrigerant separated by the accumulator 20 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
  • the vehicle interior can be heated by blowing the air blown by the indoor condenser 12 into the vehicle interior.
  • (B) Dehumidification heating mode In the dehumidification heating mode, as shown in the chart of FIG. 10, the air conditioning control device 40 opens the first on-off valve 21, opens the second on-off valve 22, and restricts the first expansion valve 15a. And the second expansion valve 15b is in the throttle state.
  • the refrigerant is circulated in the order of accumulator 20 ⁇ compressor 11, and compressor 11 ⁇ indoor condenser 12 ⁇ (second on-off valve 22 ⁇ ) second expansion valve 15 b ⁇ indoor evaporator 18 ⁇ evaporation pressure regulating valve 19 ⁇
  • a vapor compression refrigeration cycle in which refrigerant is circulated in the order of accumulator 20 ⁇ compressor 11 is configured.
  • the refrigerant flowing out from the indoor condenser 12 flows in the order of the first expansion valve 15a ⁇ the outdoor heat exchanger 16 ⁇ the compressor 11, and the second expansion valve 15b ⁇ the indoor evaporator 18 ⁇ the evaporation pressure adjustment.
  • the refrigerant circuit is switched in parallel in the order of the valve 19 ⁇ the compressor 11. Therefore, the refrigerant circuit in the dehumidifying heating mode corresponds to the second refrigerant circuit described in the claims.
  • the air conditioning control device 40 determines the operating state of various air conditioning control devices in the dehumidifying heating mode, as described in steps S6 to S8 above.
  • the air mix door 34 fully closes the cold air bypass passage 35 and passes through the indoor evaporator 18 as in the heating mode.
  • the total flow rate of the subsequent blown air is determined so as to pass through the air passage on the indoor condenser 12 side.
  • the degree of supercooling of the refrigerant flowing into the first expansion valve 15a is the coefficient of performance (COP) of the cycle. ) Is determined so as to approach the target degree of subcooling determined to be substantially the maximum value.
  • control signal output to the second expansion valve 15b is determined so that the flow rate of the refrigerant flowing through the indoor evaporator 18 becomes an appropriate flow rate.
  • the throttle opening degree of the second expansion valve 15b is adjusted so that the superheat degree of the refrigerant on the outlet side of the indoor evaporator 18 becomes a predetermined reference superheat degree (for example, 5 ° C.).
  • control signal output to the electric motor of the compressor 11 determined in step S8 is determined in the same manner as in the heating mode.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 18 to be dehumidified and exchanged heat. To dissipate heat. Thereby, blowing air is heated.
  • the flow of the refrigerant flowing out of the indoor condenser 12 is branched at the first three-way joint 13a because the second on-off valve 22 is open.
  • One refrigerant branched by the first three-way joint 13a flows out to the first refrigerant passage 14a side and is depressurized until it becomes a low-pressure refrigerant by the first expansion valve 15a.
  • the low-pressure refrigerant decompressed by the first expansion valve 15a flows into the outdoor heat exchanger 16 and absorbs heat from the outside air blown from the blower fan.
  • the other refrigerant branched by the first three-way joint 13a flows out to the second refrigerant passage 14b side.
  • the refrigerant that has flowed out to the second refrigerant passage 14b side does not flow out to the outdoor heat exchanger 16 side due to the action of the check valve 17, and the second expansion is performed via the second on-off valve 22 and the third three-way joint 13c. It flows into the valve 15b.
  • the refrigerant that has flowed into the second expansion valve 15b is depressurized until it becomes a low-pressure refrigerant.
  • the low-pressure refrigerant decompressed by the second expansion valve 15 b flows into the indoor evaporator 18, absorbs heat from the blown air blown from the blower 32, and evaporates. Thereby, blowing air is cooled.
  • the refrigerant that has flowed out of the indoor evaporator 18 is decompressed by the evaporation pressure adjusting valve 19, and becomes the same pressure as the refrigerant that has flowed out of the outdoor heat exchanger 16.
  • the refrigerant that has flowed out of the evaporating pressure adjusting valve 19 flows into the fourth three-way joint 13d and merges with the refrigerant that has flowed out of the outdoor heat exchanger 16.
  • the refrigerant merged at the fourth three-way joint 13d flows from the accumulator 20 to the suction side of the compressor 11 and is compressed again by the compressor 11.
  • the vehicle interior can be heated by heating the blown air that has been cooled and dehumidified by the indoor evaporator 18 and blown out into the vehicle interior. .
  • the refrigerant evaporation temperature in the indoor evaporator 18 is maintained at or above the reference evaporation temperature (in this embodiment, a value higher than 0 ° C.) by the action of the evaporation pressure adjusting valve 19. Can be suppressed.
  • the refrigerant evaporation temperature in the outdoor heat exchanger 16 can be lower than the refrigerant evaporation temperature in the indoor evaporator 18, the temperature difference between the refrigerant evaporation temperature in the outdoor heat exchanger 16 and the outside air temperature is increased. The amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 can be increased.
  • the heating capacity of the blown air in the indoor condenser 12 is increased as compared with the cycle configuration in which the refrigerant evaporation temperature in the outdoor heat exchanger 16 becomes equal to or higher than the reference evaporation temperature similarly to the refrigerant evaporation temperature in the indoor evaporator 18. Can be made.
  • Cooling mode In the cooling mode, as shown in the chart of FIG. 10, the air conditioning control device 40 closes the first on-off valve 21, closes the second on-off valve 22, and fully opens the first expansion valve 15a. The second expansion valve 15b is brought into a throttled state.
  • the compressor 11 in the cooling mode, as indicated by the white arrow in FIG. 1, the compressor 11 ⁇ the indoor condenser 12 ⁇ (first expansion valve 15 a ⁇ ) outdoor heat exchanger 16 ⁇ (check valve 17 ⁇ ) second A vapor compression refrigeration cycle in which the refrigerant is circulated in the order of the expansion valve 15b ⁇ the indoor evaporator 18 ⁇ the evaporation pressure adjusting valve 19 ⁇ the accumulator 20 ⁇ the compressor 11 is configured.
  • the cooling mode refrigerant circuit corresponds to the first refrigerant circuit recited in the claims.
  • the air conditioning control device 40 determines the operating state of various air conditioning control devices in the cooling mode.
  • the air mix door 34 fully opens the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 18 Is determined to pass through the cold air bypass passage 35.
  • the opening degree of the air mix door 34 may be controlled so that the blown air temperature TAV approaches the target blowing temperature TAO.
  • the degree of supercooling of the refrigerant flowing into the second expansion valve 15b indicates that the coefficient of performance (COP) of the cycle is substantially the maximum value. It is determined so as to approach the target subcooling degree determined to be.
  • control signal output to the electric motor of the compressor 11 determined in step S8 is determined as follows. First, the target evaporation pressure PEO in the indoor evaporator 18 is determined based on the target outlet temperature TAO with reference to a control map stored in advance in the air conditioning controller 40.
  • control step S8 comprises the target evaporation pressure determination part described in the claim.
  • the low-pressure refrigerant pressure Pe Based on the deviation between the target evaporation pressure PEO and the low-pressure refrigerant pressure Pe detected by the low-pressure sensor 57, the low-pressure refrigerant pressure Pe approaches the target evaporation pressure PEO using a feedback control method. A control signal output to the electric motor of the compressor 11 is determined.
  • the target outlet temperature TAO described above is a value determined in order to maintain the vehicle interior temperature at the vehicle interior set temperature Tset corresponding to the desired temperature of the passenger. Therefore, in the refrigeration cycle apparatus 10 that cools the blown air by the indoor evaporator 18 as in the cooling mode of the present embodiment, the cooling heat load of the cycle increases as the target blowing temperature TAO decreases.
  • the target evaporation pressure determination unit of the present embodiment determines to decrease the target evaporation pressure PEO as the cooling capacity of the blown air required for the indoor evaporator 18 increases.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mix door 34 fully closes the air passage on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with the blown air. .
  • the refrigerant that has flowed out of the indoor condenser 12 flows out from the first three-way joint 13a toward the first refrigerant passage 14a and flows into the first expansion valve 15a.
  • the first expansion valve 15a since the first expansion valve 15a is fully opened, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 16 without being depressurized by the first expansion valve 15a.
  • the refrigerant flowing into the outdoor heat exchanger 16 dissipates heat to the outside air blown from the blower fan in the outdoor heat exchanger 16. Since the first on-off valve 21 is closed, the refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the third refrigerant passage 14c via the second three-way joint 13b, and the low-pressure refrigerant is separated from the refrigerant at the second expansion valve 15b. The pressure is reduced until
  • the low-pressure refrigerant decompressed by the second expansion valve 15 b flows into the indoor evaporator 18, absorbs heat from the blown air blown from the blower 32, and evaporates. Thereby, blowing air is cooled.
  • the refrigerant flowing out of the indoor evaporator 18 flows into the accumulator 20 through the evaporation pressure adjusting valve 19 and is separated into gas and liquid.
  • the gas-phase refrigerant separated by the accumulator 20 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
  • the vehicle interior can be cooled by blowing the blown air cooled by the indoor evaporator 18 into the vehicle interior.
  • appropriate air conditioning in the passenger compartment can be realized by switching the operation of the heating mode, the dehumidifying heating mode, and the cooling mode.
  • the indoor evaporation is performed.
  • the refrigerant discharge capacity (rotation speed) of the compressor 11 is increased with an increase in the cooling capacity of the blown air required for the compressor 18.
  • the refrigerant discharge capacity of the compressor 11 is increased and the refrigerant flow rate flowing through the indoor evaporator 18 is increased as described with reference to FIG. Since the set pressure Pset of the regulating valve 19 increases, the refrigerant evaporation pressure (low-pressure side refrigerant pressure Pe) in the indoor evaporator 18 also increases.
  • the degree of increase in the refrigerant passage area with respect to the increase in the displacement L of the cylindrical valve body 92 is compared as the evaporation pressure adjusting valve 19.
  • the one that is larger than the example is adopted.
  • the degree of increase in the set pressure Pset when the flow rate of the refrigerant flowing through the indoor evaporator 18 is increased is reduced so that the set pressure Pset becomes lower than the target evaporation pressure PEO. Yes.
  • the operation of the compressor 11 is controlled so that the refrigerant evaporation pressure Pe approaches the target evaporation pressure PEO which is the higher value of the set pressure Pset and the target evaporation pressure PEO. Therefore, the above-described control interference does not occur in the refrigeration cycle apparatus 10 of the present embodiment. As a result, the cooling capacity required for the indoor evaporator 18 can be exhibited without unnecessarily increasing the power consumption of the compressor 11.
  • an unnecessary increase in power consumption of the compressor 11 is suppressed by changing the rising characteristic of the set pressure Pset with respect to the increase in the refrigerant flow rate in the evaporation pressure adjusting valve 19. Yes.
  • the refrigerating cycle apparatus provided with the evaporation pressure regulating valve 19 comprised so that suppression of the unnecessary increase of the power consumption of the compressor 11 can be suppressed is disclosed.
  • a cylinder valve is formed by the cylinder portion 91c and the cylindrical valve body portion 92, and the shape of the communication hole 92c formed in the side surface of the cylindrical valve body portion 92 is opened. The shape is gradually reduced toward the valve direction. Therefore, the degree of increase in the refrigerant passage area as shown by the solid line in FIG. 5 can be easily realized.
  • the evaporating pressure adjusting valve 19 linearly increases the refrigerant passage area in proportion to the increase in the displacement amount L of the cylindrical valve body 92 (corresponding to a comparative example of the first embodiment). Further, the determination of the operating state of the compressor 11 in the control step S8 in the cooling mode is changed with respect to the first embodiment.
  • step S8 in the cooling mode of the present embodiment, the operation mode is determined in step S81 as shown in the flowchart of FIG. If it is determined in step S81 that the operation mode is the heating mode, the process proceeds to step S82, and the refrigerant discharge capacity (operating state) of the compressor 11 is determined as in the heating mode of the first embodiment. Then, the process proceeds to step S9.
  • step S81 when it is determined in step S81 that the operation mode is the dehumidifying heating mode, the process proceeds to step S83, and the refrigerant discharge capacity (operation) of the compressor 11 is performed as in the dehumidifying heating mode of the first embodiment. State) is determined, and the process proceeds to step S9. Further, when it is determined in step S81 that the operation mode is the cooling mode, the process proceeds to step S84.
  • step S84 the target evaporation pressure PEO is determined as in the first embodiment, and in subsequent step S85, it is determined whether or not the refrigerant evaporation pressure Pe is higher than the target evaporation pressure PEO.
  • step S85 it is determined whether or not the refrigerant evaporation pressure Pe is higher than the target evaporation pressure PEO.
  • step S86 it is determined that the refrigerant evaporation pressure Pe is not higher than the target evaporation pressure PEO. If YES, go to step S87.
  • step S86 it is determined whether or not the evaporation pressure adjusting valve 19 is operating. If it is determined in step S86 that the evaporation pressure adjusting valve 19 is operating, the process proceeds to step S87, the number of rotations of the compressor 11 is decreased by a predetermined amount, and the process proceeds to step S9. On the other hand, if it is determined in step S86 that the evaporation pressure adjusting valve 19 is not in operation, the process proceeds to step S88, the rotation speed of the compressor 11 is increased by a predetermined amount, and the process proceeds to step S9. move on.
  • the determination in the control step S86 can be realized by storing the relationship between the refrigerant flow rate and the set pressure Pset in the evaporation pressure adjusting valve 19 as shown in FIG.
  • the set pressure Pset shown by the thick solid line in FIG. 12 is the set pressure shown by the thick broken line in FIG. It is equivalent to Pset.
  • air conditioning in the vehicle compartment can be realized by switching the operation in the heating mode, the dehumidifying heating mode, and the cooling mode, as in the first embodiment.
  • the operation of the compressor 11 is controlled so that the refrigerant evaporation pressure Pe approaches the higher one of the target evaporation pressure PEO and the set pressure Pset. Unnecessary increase can be suppressed.
  • control step S85 it is determined in control step S85 that the refrigerant evaporation pressure Pe in the indoor evaporator 18 is higher than the target evaporation pressure PEO, and in control step S86.
  • the rotational speed (refrigerant discharge capacity) of the compressor 11 is increased in control step S88.
  • the operation of the compressor 11 can be controlled so that the refrigerant evaporation pressure Pe approaches the target evaporation pressure PEO. Therefore, the cooling capacity required for the indoor evaporator 18 can be exhibited without unnecessarily increasing the power consumption of the compressor 11.
  • the evaporating pressure adjusting valve 19 functions to maintain the refrigerant evaporating pressure Pe in the indoor evaporator 18 at or above the reference evaporating pressure. Therefore, under the operating conditions in which the refrigerant evaporation pressure Pe is higher than the target evaporation pressure PEO and the evaporation pressure adjustment valve 19 is operating, the set pressure Pset of the evaporation pressure adjustment valve 19 is higher than the target evaporation pressure PEO. It will be.
  • the refrigerant evaporation pressure Pe is increased by reducing the rotational speed of the compressor 11 as in the present embodiment, the flow rate of the refrigerant flowing through the indoor evaporator 18 is decreased,
  • the set pressure Pset can be reduced.
  • the refrigerant evaporating pressure Pe can be brought close to the set pressure Pset in a state where the evaporating pressure adjusting valve 19 is not operated (a state where the refrigerant passage area is maximized).
  • the evaporation pressure adjustment valve 19 when the set pressure Pset is higher than the target evaporation pressure PEO, the evaporation pressure adjustment valve 19 is deactivated, that is, the evaporation pressure adjustment valve 19 is The operation of the compressor 11 is controlled so as to suppress the reduction of the internal refrigerant passage area, and the refrigerant evaporation pressure Pe is brought close to the set pressure Pset.
  • the driving force for driving the vehicle may be applied to a vehicle air conditioner mounted on a normal vehicle that obtains from the internal combustion engine (engine), or the driving force for driving from both the driving electric motor and the internal combustion engine. You may apply to the vehicle air conditioner mounted in the hybrid vehicle which obtains.
  • a heater core that heats the blown air using the cooling water of the internal combustion engine as a heat source may be provided as an auxiliary heating device for the blown air.
  • the refrigeration cycle apparatus 10 of the present disclosure is not limited to a vehicle, and may be applied to a stationary air conditioner or the like.
  • the refrigeration cycle apparatus 10 that can be switched to the refrigerant circuit in the heating mode, the dehumidifying heating mode, and the cooling mode has been described, but at least the configuration similar to the cooling mode of the above-described embodiment, If it is a refrigeration cycle apparatus that operates in the same manner, the power consumption suppression effect of the compressor 11 can be obtained.
  • the first and second on-off valves 21 and 22 are closed and switched to the refrigerant circuit similar to that in the cooling mode, and further according to the target outlet temperature TAO. You may make it operate
  • the throttle opening of the first expansion valve 15a is decreased and the throttle opening of the second expansion valve 15b is increased as the target blowing temperature TAO increases.
  • the outdoor heat exchanger 16 may be switched from a state of functioning as a radiator to a state of functioning as an evaporator, and the heating capacity of the blown air in the indoor condenser 12 may be changed.
  • the target evaporation temperature TEO in the indoor evaporator 18 is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance, and the refrigerant evaporation detected by the evaporator temperature sensor 56 is determined.
  • the operation of the compressor may be controlled so that the temperature (evaporator temperature) Tefin approaches the target evaporation temperature TEO.
  • target evaporation temperature TEO so that it may fall with the fall of target blowing temperature TAO.
  • the relationship between the refrigerant flow rate and the set pressure Pset in the evaporating pressure adjusting valve 19 is stored in advance in the air conditioning control device 40, whereby the evaporating pressure adjusting valve 19 is activated.
  • the determination as to whether or not the evaporation pressure adjusting valve 19 is operating is not limited to this.
  • an outlet-side low pressure sensor for detecting the outlet-side refrigerant pressure Pso of the evaporation pressure adjusting valve 19 is provided, and a pressure reference (Pe ⁇ Peo) between the low-pressure side refrigerant pressure Pe and the outlet-side refrigerant pressure Pso is a predetermined reference.
  • a pressure reference Pe ⁇ Peo
  • the pressure difference is greater than or equal to the pressure difference, it may be determined that the evaporation pressure adjustment valve 19 is operating.
  • a water-refrigerant heat exchanger may be adopted as a heat radiator, and high-pressure refrigerant and blown air may be indirectly heat-exchanged via a heat medium.
  • the heat medium circulation circuit may be circulated using cooling water of the internal combustion engine as a heat medium.
  • variable capacity compressor that obtains a rotational driving force from an internal combustion engine or the like, which is an example in which an electric compressor is employed as the compressor 11, may be employed.
  • the example in which the evaporation pressure adjusting valve 19 in which each constituent member is formed of metal has been described.
  • a cylindrical valve body portion 92 formed of resin is used.
  • the bellows 93 one having a bellophram formed of a bottomed cylindrical (cup-shaped) rubber may be employed.
  • the target evaporation pressure determining unit may be configured in another control step.
  • the target evaporation pressure PEO may be determined together with the target blowing temperature TAO.
  • the target evaporation pressure determination unit is configured by the control step S3.
  • each operation mode is switched by executing the air conditioning control program.
  • the switching of each operation mode is not limited to this.
  • an operation mode setting switch for setting each operation mode may be provided on the operation panel, and the heating mode, the cooling mode, and the dehumidifying heating mode may be switched according to an operation signal of the operation mode setting switch.

Abstract

 In this freeze cycling device, there is employed as an evaporation pressure regulating valve (19) one in which the extent of increase in the refrigerant passage area with respect to increase in the amount of displacement (L) of a cylindrical valve body (92) is greater than the extent of increase that would be observed in the case of linear increase in proportion to an increase in the amount of displacement (L); and the set pressure (Pset) is lower than the target evaporation pressure (PEO). Further, the operation of the compressor (11) is controlled in such a way that the refrigerant evaporation pressure (Pe) in the evaporator is brought into approximation to the target evaporation pressure (PEO), the value of which is the higher of the set pressure (Pset) and the target evaporation pressure (PEO). In so doing, control interference occurring due to the use of the evaporation pressure regulating valve (19) is minimized, and the cooling performance required of an indoor evaporator can be produced, without unnecessarily increasing the power consumed by the compressor.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年1月21日に出願された日本特許出願2014-008372を基にしている。 This application is based on Japanese Patent Application No. 2014-008372 filed on January 21, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、蒸発圧力調整弁を備える冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle apparatus including an evaporation pressure adjustment valve.
 従来、車両用空調装置において車室内へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル装置として、蒸発圧力調整弁を備えるものが知られている。この種の蒸発圧力調整弁は、低圧冷媒と送風空気とを熱交換させて低圧冷媒を蒸発させる室内蒸発器の着霜(フロスト)を抑制するために、室内蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を予め定めた基準蒸発圧力(基準蒸発温度)以上に維持する機能を果たす。 Conventionally, a vapor compression type refrigeration cycle apparatus that cools blown air blown into a passenger compartment of a vehicle air conditioner is known that includes an evaporation pressure adjusting valve. This type of evaporation pressure regulating valve is configured to reduce the refrigerant evaporation pressure (refrigerant evaporation) in the indoor evaporator in order to suppress frosting (frost) of the indoor evaporator that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant and the blown air. The temperature is maintained at a predetermined reference evaporation pressure (reference evaporation temperature) or higher.
 例えば、特許文献1には、室内蒸発器を流通する冷媒流量の増加に伴って、弁開度(冷媒通路面積)を増加させる蒸発圧力調整弁が開示されている。より詳細には、この特許文献1の蒸発圧力調整弁は、室内蒸発器の冷媒出口側に接続されて、室内蒸発器を流通する冷媒流量(蒸発圧力調整弁を流通する冷媒流量)の増加に伴う弁体の変位量の増加に比例して、設定圧力が上昇する構成になっている。 For example, Patent Document 1 discloses an evaporation pressure adjusting valve that increases a valve opening (refrigerant passage area) with an increase in the flow rate of refrigerant flowing through an indoor evaporator. More specifically, the evaporating pressure adjusting valve of Patent Document 1 is connected to the refrigerant outlet side of the indoor evaporator to increase the flow rate of refrigerant flowing through the indoor evaporator (the flow rate of refrigerant flowing through the evaporating pressure adjusting valve). The set pressure increases in proportion to the accompanying increase in the displacement of the valve body.
 なお、基準蒸発温度とは、室内蒸発器の着霜(フロスト)を抑制するために、0℃よりも高い値に決定される定数である。また、蒸発圧力調整弁の設定圧力とは、全開状態となっている蒸発圧力調整弁が冷媒通路面積の縮小を開始させる際の蒸発圧力調整弁の入口側の冷媒圧力(室内蒸発器における冷媒蒸発圧力)であって、蒸発圧力調整弁を流通する冷媒流量によって変化する値である。 The reference evaporation temperature is a constant determined to be higher than 0 ° C. in order to suppress frost formation (frost) of the indoor evaporator. The set pressure of the evaporating pressure adjusting valve is the refrigerant pressure on the inlet side of the evaporating pressure adjusting valve when the evaporating pressure adjusting valve in the fully opened state starts to reduce the refrigerant passage area (refrigerant evaporation in the indoor evaporator). Pressure), which varies depending on the flow rate of the refrigerant flowing through the evaporation pressure regulating valve.
 また、特許文献2には、室内蒸発器および蒸発圧力調整弁に加えて、圧縮機から吐出された高圧冷媒と室内蒸発器通過後の送風空気とを熱交換させる室内凝縮器、および室内蒸発器に対して冷媒流れが並列的に接続されて低圧冷媒と外気とを熱交換させて低圧冷媒を蒸発させる室外熱交換器を備える冷凍サイクル装置が開示されている。 Further, in Patent Document 2, in addition to the indoor evaporator and the evaporation pressure regulating valve, an indoor condenser for exchanging heat between the high-pressure refrigerant discharged from the compressor and the blown air after passing through the indoor evaporator, and the indoor evaporator A refrigeration cycle apparatus is disclosed that includes an outdoor heat exchanger in which refrigerant flows are connected in parallel to exchange heat between low-pressure refrigerant and outside air to evaporate the low-pressure refrigerant.
 この特許文献2の冷凍サイクル装置では、蒸発圧力調整弁の作用によって、室外熱交換器における冷媒蒸発圧力を室内蒸発器における冷媒蒸発圧力よりも低下させている。これにより、室内蒸発器の着霜を抑制するとともに、室外熱交換器にて冷媒が外気から吸熱する吸熱量を増加させて、室内蒸発器にて冷却して除湿された送風空気を室内凝縮器にて再加熱する除湿暖房運転時の暖房能力を向上させている。 In the refrigeration cycle apparatus of Patent Document 2, the refrigerant evaporating pressure in the outdoor heat exchanger is made lower than the refrigerant evaporating pressure in the indoor evaporator by the action of the evaporating pressure adjusting valve. Thereby, while suppressing frost formation of the indoor evaporator, the amount of heat absorbed by the refrigerant from the outside air is increased in the outdoor heat exchanger, and the blown air dehumidified by cooling in the indoor evaporator is removed from the indoor condenser. The heating capacity at the time of dehumidification heating operation reheating at is improved.
実公昭57-23747号公報Japanese Utility Model Publication No.57-23747 特開2012-225637号公報JP 2012-225637 A
 本開示の発明者らの検討によれば、一般的な車両用空調装置では、冷房熱負荷が増加するに伴って、冷凍サイクル装置に高い冷房能力を発揮させるために、室内蒸発器における目標冷媒蒸発温度を低下させる。そして、室内蒸発器における実際の冷媒蒸発温度を目標冷媒蒸発温度に近づけるために、圧縮機の冷媒吐出能力(回転数)を増加させる。 According to studies by the inventors of the present disclosure, in a general vehicle air conditioner, the target refrigerant in the indoor evaporator is used so that the refrigeration cycle apparatus exhibits a high cooling capacity as the cooling heat load increases. Reduce evaporation temperature. Then, in order to bring the actual refrigerant evaporation temperature in the indoor evaporator closer to the target refrigerant evaporation temperature, the refrigerant discharge capacity (rotation speed) of the compressor is increased.
 ところが、特許文献1に開示されているような蒸発圧力調整弁を備える冷凍サイクル装置では、圧縮機の冷媒吐出能力を増加させて室内蒸発器を流通する冷媒流量を増加させると、蒸発圧力調整弁の設定圧力が上昇してしまうので、室内蒸発器における冷媒蒸発圧力(冷媒蒸発温度)も上昇してしまう。 However, in the refrigeration cycle apparatus having an evaporation pressure adjusting valve as disclosed in Patent Document 1, when the refrigerant discharge capacity of the compressor is increased to increase the flow rate of refrigerant flowing through the indoor evaporator, the evaporation pressure adjusting valve Therefore, the refrigerant evaporation pressure (refrigerant evaporation temperature) in the indoor evaporator also increases.
 その結果、圧縮機の冷媒吐出能力を増加させても蒸発器における冷媒蒸発温度を目標冷媒蒸発温度となるまで低下させることができなくなってしまうといった制御干渉が生じてしまう。さらに、このような制御干渉が生じると、室内蒸発器における冷媒蒸発温度を目標冷媒蒸発温度に近づけるために、圧縮機の回転数を不必要に上昇させてしまい、圧縮機の消費動力を増加させてしまう。 As a result, even if the refrigerant discharge capacity of the compressor is increased, a control interference occurs in which the refrigerant evaporation temperature in the evaporator cannot be lowered until the target refrigerant evaporation temperature is reached. Further, when such control interference occurs, the rotation speed of the compressor is unnecessarily increased in order to bring the refrigerant evaporation temperature in the indoor evaporator closer to the target refrigerant evaporation temperature, thereby increasing the power consumption of the compressor. End up.
 本開示は、上記点に鑑み、蒸発圧力調整弁を備える冷凍サイクル装置において、圧縮機の消費動力の不必要な増加を抑制することを目的とする。 In view of the above points, the present disclosure aims to suppress an unnecessary increase in power consumption of a compressor in a refrigeration cycle apparatus including an evaporation pressure adjusting valve.
 本開示の一態様による冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒と外気とを熱交換させる室外熱交換器と、室外熱交換器から流出した冷媒を減圧させる減圧装置と、減圧装置にて減圧された低圧冷媒と熱交換対象流体とを熱交換させて低圧冷媒を蒸発させる蒸発器と、蒸発器における冷媒蒸発圧力が予め定めた基準蒸発圧力以上となるように調整する蒸発圧力調整弁と、蒸発器における目標蒸発圧力を決定する目標蒸発圧力決定部と、圧縮機の作動を制御する吐出能力制御部と、を備える。 A refrigeration cycle apparatus according to an aspect of the present disclosure includes a compressor that compresses and discharges a refrigerant, an outdoor heat exchanger that exchanges heat between the refrigerant discharged from the compressor and outside air, and a refrigerant that has flowed out of the outdoor heat exchanger A decompressor for reducing the pressure, an evaporator for exchanging heat between the low-pressure refrigerant decompressed by the decompressor and the heat exchange target fluid, and evaporating the low-pressure refrigerant, and a refrigerant evaporation pressure in the evaporator is equal to or higher than a predetermined reference evaporation pressure An evaporating pressure adjusting valve that adjusts the target evaporating pressure, a target evaporating pressure determining unit that determines a target evaporating pressure in the evaporator, and a discharge capacity control unit that controls the operation of the compressor.
 目標蒸発圧力決定部は、蒸発器に要求される熱交換対象流体の冷却能力の増加に伴って、目標蒸発圧力を低下させるように決定するものであり、蒸発圧力調整弁は、蒸発器を流通する冷媒流量の増加に伴って、設定圧力が上昇する。また、目標蒸発圧力決定部は、吐出能力制御部が圧縮機の作動を制御した際に、冷媒蒸発圧力が目標蒸発圧力および設定圧力のうち高い方に近づくように調整される。 The target evaporating pressure determining unit determines that the target evaporating pressure is reduced as the cooling capacity of the heat exchange target fluid required for the evaporator increases, and the evaporating pressure adjusting valve circulates the evaporator. As the refrigerant flow rate increases, the set pressure increases. The target evaporation pressure determination unit is adjusted so that the refrigerant evaporation pressure approaches the higher of the target evaporation pressure and the set pressure when the discharge capacity control unit controls the operation of the compressor.
 本開示で、設定圧力とは、全開状態となっている蒸発圧力調整弁が、蒸発器における冷媒蒸発温度を基準蒸発温度以上に維持するために、冷媒通路面積の縮小を開始させる際の蒸発圧力調整弁入口側の冷媒圧力(蒸発器における冷媒蒸発圧力)である。さらに、この設定圧力は、蒸発圧力調整弁を流通する冷媒流量によって変化する値である。 In the present disclosure, the set pressure is the evaporation pressure when the evaporation pressure regulating valve in the fully open state starts to reduce the refrigerant passage area in order to maintain the refrigerant evaporation temperature in the evaporator above the reference evaporation temperature. This is the refrigerant pressure at the inlet side of the regulating valve (refrigerant evaporation pressure in the evaporator). Furthermore, this set pressure is a value that varies depending on the flow rate of the refrigerant flowing through the evaporation pressure adjusting valve.
 従って、目標蒸発圧力が設定圧力よりも高くなっている場合には、冷媒蒸発圧力が目標蒸発圧力に近づくように圧縮機の作動が制御される。これにより、圧縮機の消費動力を不必要に増加させることなく、蒸発器に要求される冷却能力を発揮させることができる。 Therefore, when the target evaporation pressure is higher than the set pressure, the operation of the compressor is controlled so that the refrigerant evaporation pressure approaches the target evaporation pressure. Thereby, the cooling capacity required for the evaporator can be exhibited without unnecessarily increasing the power consumption of the compressor.
 また、設定圧力が目標蒸発圧力よりも高くなっている場合には、冷媒蒸発圧力が設定圧力に近づくように圧縮機の作動が制御される。これにより、冷媒蒸発圧力を目標蒸発圧力に近づけようとすることによって生じる制御干渉を回避することができる。従って、圧縮機の消費動力を不必要に増加させてしまうことを抑制できる。 Also, when the set pressure is higher than the target evaporation pressure, the operation of the compressor is controlled so that the refrigerant evaporation pressure approaches the set pressure. As a result, it is possible to avoid control interference caused by trying to bring the refrigerant evaporation pressure closer to the target evaporation pressure. Therefore, it is possible to suppress an unnecessary increase in power consumption of the compressor.
 本開示において、蒸発器に要求される熱交換対象流体の冷却能力とは、蒸発器にて所望の流量の熱交換対象流体を所望の温度となるまで冷却する能力であり、具体的には、蒸発器出口側冷媒のエンタルピから入口側冷媒のエンタルピを減算したエンタルピ差(冷凍能力)と、蒸発器を流通する冷媒の流量(質量流量)とを積算した値等を用いて定義することができる。 In the present disclosure, the cooling ability of the heat exchange target fluid required for the evaporator is the ability to cool the heat exchange target fluid at a desired flow rate to a desired temperature in the evaporator, specifically, It can be defined using a value obtained by integrating the enthalpy difference (refrigeration capacity) obtained by subtracting the enthalpy of the inlet side refrigerant from the enthalpy of the evaporator outlet side refrigerant and the flow rate (mass flow rate) of the refrigerant flowing through the evaporator. .
 さらに、本開示の冷凍サイクル装置において、蒸発圧力調整弁は、冷媒蒸発圧力の上昇に伴って、その内部の冷媒通路面積が増加する構成になっており、冷媒蒸発圧力の上昇に伴って冷媒通路面積が増加する際の増加度合は、冷媒蒸発圧力の上昇に比例して線形的に冷媒通路面積が増加する際の増加度合よりも大きくなっていてもよい。 Furthermore, in the refrigeration cycle apparatus of the present disclosure, the evaporating pressure adjusting valve is configured such that the refrigerant passage area inside increases as the refrigerant evaporating pressure increases, and the refrigerant passage increases as the refrigerant evaporating pressure increases. The degree of increase when the area increases may be larger than the degree of increase when the refrigerant passage area increases linearly in proportion to the increase in the refrigerant evaporation pressure.
 これによれば、後述する実施形態に説明するように、蒸発圧力調整弁の冷媒通路面積が、蒸発器を流通する冷媒流量の増加に比例して線形的に増加する場合に対して、蒸発器を流通する冷媒流量の増加に伴う設定圧力の上昇度合を低下させることができる。 According to this, as will be described later in an embodiment, the evaporator passage area of the evaporation pressure regulating valve increases linearly in proportion to the increase in the flow rate of the refrigerant flowing through the evaporator. The degree of increase in the set pressure accompanying an increase in the flow rate of the refrigerant flowing through can be reduced.
 その結果、目標蒸発圧力が設定圧力よりも高くなる冷媒流量の範囲を拡大して、圧縮機の消費動力を不必要に増加させることなく、蒸発器に要求される冷却能力を発揮させることのできる冷媒流量の範囲を拡大することができる。 As a result, the refrigerant flow rate range in which the target evaporation pressure becomes higher than the set pressure can be expanded, and the cooling capacity required for the evaporator can be exhibited without unnecessarily increasing the power consumption of the compressor. The range of the refrigerant flow rate can be expanded.
 さらに、冷凍サイクル装置において、吐出能力制御部は、蒸発圧力調整弁が内部の冷媒通路面積を減少させることを抑制するように、圧縮機の作動を制御するものであってもよい。これによれば、設定圧力が目標蒸発圧力よりも高くなっている際に、冷媒蒸発圧力を容易に設定圧力に近づけることができる。 Furthermore, in the refrigeration cycle apparatus, the discharge capacity control unit may control the operation of the compressor so as to suppress the evaporation pressure regulating valve from decreasing the internal refrigerant passage area. According to this, when the set pressure is higher than the target evaporation pressure, the refrigerant evaporation pressure can be easily brought close to the set pressure.
第1実施形態に係る車両用空調装置の全体構成図である。1 is an overall configuration diagram of a vehicle air conditioner according to a first embodiment. 第1実施形態の蒸発圧力調整弁の軸方向断面図である。It is an axial sectional view of the evaporation pressure regulating valve of the first embodiment. 第1実施形態の蒸発圧力調整弁の筒状弁体部の側面図である。It is a side view of the cylindrical valve body part of the evaporation pressure regulating valve of the first embodiment. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 第1実施形態の蒸発圧力調整弁における筒状弁体部の変位量と冷媒通路面積との関係を示すグラフである。It is a graph which shows the relationship between the displacement amount of the cylindrical valve body part in the evaporation pressure regulating valve of 1st Embodiment, and a refrigerant passage area. 第1実施形態の蒸発圧力調整弁における冷媒流量と設定圧力との関係を示すグラフである。It is a graph which shows the relationship between the refrigerant | coolant flow volume and setting pressure in the evaporation pressure regulating valve of 1st Embodiment. 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。It is a block diagram which shows the electric control part of the vehicle air conditioner of 1st Embodiment. 第1実施形態の車両用空調装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the vehicle air conditioner of 1st Embodiment. 第1実施形態の車両用空調装置の制御処理のうち、運転モードを決定するためのフローチャートであるIt is a flowchart for determining an operation mode among control processing of the air-conditioner for vehicles of a 1st embodiment. 第1実施形態の各運転モードにおける各種空調制御機器の作動状態を示す図である。It is a figure which shows the operating state of the various air-conditioning control apparatus in each operation mode of 1st Embodiment. 第2実施形態の車両用空調装置の制御処理の要部を説明するためのフローチャートである。It is a flowchart for demonstrating the principal part of the control processing of the vehicle air conditioner of 2nd Embodiment. 第2実施形態の蒸発圧力調整弁における冷媒流量と設定圧力との関係を示すグラフである。It is a graph which shows the relationship between the refrigerant | coolant flow volume and setting pressure in the evaporation pressure regulating valve of 2nd Embodiment.
 (第1実施形態)
 図1~図10を用いて、本開示の第1実施形態について説明する。本実施形態では、本開示に係る冷凍サイクル装置10を、走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用している。この冷凍サイクル装置10は、車両用空調装置1において、空調対象空間である車室内へ送風される空気(送風空気)を冷却あるいは加熱する機能を果たす。従って、本実施形態の熱交換対象流体は、送風空気である。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 10. In the present embodiment, the refrigeration cycle apparatus 10 according to the present disclosure is applied to a vehicle air conditioner 1 for an electric vehicle that obtains a driving force for vehicle traveling from a traveling electric motor. The refrigeration cycle apparatus 10 functions to cool or heat the air (blasted air) blown into the vehicle interior, which is the air-conditioning target space, in the vehicle air conditioner 1. Accordingly, the heat exchange target fluid of this embodiment is blown air.
 さらに、本実施形態の冷凍サイクル装置10は、送風空気を加熱して車室内を暖房する暖房モードの冷媒回路、冷却して除湿された送風空気を再加熱して車室内の除湿暖房を行う除湿暖房モードの冷媒回路、および送風空気を冷却して車室内を冷房する冷房モードの冷媒回路に切替可能に構成されている。 Furthermore, the refrigeration cycle apparatus 10 of the present embodiment is a heating mode refrigerant circuit that heats the air and heats the interior of the vehicle, and dehumidifies that dehumidifies and heats the interior of the vehicle by reheating the air that has been cooled and dehumidified. The refrigerant circuit can be switched to a heating mode refrigerant circuit and a cooling mode refrigerant circuit that cools the vehicle interior by cooling the blown air.
 なお、図1では、暖房モードの冷媒回路における冷媒の流れを黒塗り矢印で示し、除湿暖房モードの冷媒回路における冷媒の流れを斜線ハッチング付き矢印で示し、さらに、冷房モードの冷媒回路における冷媒の流れを白抜き矢印で示している。 In FIG. 1, the refrigerant flow in the refrigerant circuit in the heating mode is indicated by black arrows, the refrigerant flow in the refrigerant circuit in the dehumidifying and heating mode is indicated by hatched arrows, and the refrigerant flow in the refrigerant circuit in the cooling mode is further indicated. The flow is indicated by white arrows.
 また、この冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力Pdが冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(例えば、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Further, in this refrigeration cycle apparatus 10, an HFC-based refrigerant (specifically, R134a) is adopted as the refrigerant, and a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure Pd does not exceed the critical pressure of the refrigerant. It is composed. Of course, an HFO refrigerant (for example, R1234yf) or the like may be adopted as the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、車両ボンネット内に配置されて、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型の圧縮機構を電動モータにて駆動する電動圧縮機として構成されている。この圧縮機構としては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。 Among the components of the refrigeration cycle apparatus 10, the compressor 11 is disposed in the vehicle bonnet, sucks the refrigerant in the refrigeration cycle apparatus 10, compresses and discharges it, and is a fixed capacity type with a fixed discharge capacity. It is comprised as an electric compressor which drives this compression mechanism with an electric motor. Specifically, various compression mechanisms such as a scroll type compression mechanism and a vane type compression mechanism can be employed as the compression mechanism.
 電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、空調制御装置40が電動モータの回転数を制御することによって、圧縮機構の冷媒吐出能力が変更される。従って、本実施形態では、電動モータが圧縮機構の吐出能力変更部を構成している。 The electric motor is one whose operation (number of rotations) is controlled by a control signal output from the air conditioning control device 40 described later, and any type of an AC motor and a DC motor may be adopted. And the refrigerant | coolant discharge capability of a compression mechanism is changed because the air-conditioning control apparatus 40 controls the rotation speed of an electric motor. Accordingly, in the present embodiment, the electric motor constitutes the discharge capacity changing unit of the compression mechanism.
 圧縮機11の吐出口側には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されて、圧縮機11から吐出された吐出冷媒(高圧冷媒)と後述する室内蒸発器18を通過した送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器(放熱器)である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port side of the compressor 11. The indoor condenser 12 is disposed in a casing 31 of an indoor air conditioning unit 30 described later, and exchanges heat between the discharged refrigerant (high-pressure refrigerant) discharged from the compressor 11 and the blown air that has passed through the indoor evaporator 18 described later. And a heating heat exchanger (heat radiator) for heating the blown air.
 室内凝縮器12の冷媒出口側には、除湿暖房モード時に室内凝縮器12から流出した冷媒の流れを分岐する第1三方継手13aの1つの冷媒流入出口が接続されている。このような三方継手は、管径の異なる配管を接合して形成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて形成してもよい。なお、後述する第2~第4三方継手13b~13dについても、その基本的構成は第1三方継手13aと同様である。 The refrigerant outlet side of the indoor condenser 12 is connected to one refrigerant inlet / outlet of the first three-way joint 13a that branches the flow of the refrigerant flowing out of the indoor condenser 12 in the dehumidifying heating mode. Such a three-way joint may be formed by joining pipes having different pipe diameters, or may be formed by providing a plurality of refrigerant passages in a metal block or a resin block. The basic configuration of second to fourth three-way joints 13b to 13d described later is the same as that of the first three-way joint 13a.
 第1三方継手13aの別の冷媒流入出口には、室内凝縮器12から流出した冷媒を、室外熱交換器16の冷媒入口側へ導く第1冷媒通路14aが接続されている。また、第1三方継手13aのさらに別の冷媒流入出口には、室内凝縮器12から流出した冷媒を、後述する第3冷媒通路14cに配置された第2膨張弁15bの入口側(具体的には、第3三方継手13cの1つの冷媒流入出口)へ導く第2冷媒通路14bが接続されている。 A first refrigerant passage 14a that guides the refrigerant flowing out of the indoor condenser 12 to the refrigerant inlet side of the outdoor heat exchanger 16 is connected to another refrigerant inlet / outlet of the first three-way joint 13a. In addition, at another refrigerant inflow / outlet of the first three-way joint 13a, the refrigerant that has flowed out of the indoor condenser 12 is supplied to the inlet side (specifically, the second expansion valve 15b disposed in the third refrigerant passage 14c described later). Is connected to the second refrigerant passage 14b leading to one refrigerant inflow / outlet of the third three-way joint 13c.
 第1冷媒通路14aには、暖房モード時および除湿暖房モード時に、室内凝縮器12から流出した冷媒を減圧させる室外器用減圧装置としての第1膨張弁15aが配置されている。第1膨張弁15aは、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される可変絞り機構である。 In the first refrigerant passage 14a, a first expansion valve 15a is disposed as an outdoor unit decompression device that decompresses the refrigerant flowing out of the indoor condenser 12 during the heating mode and the dehumidifying heating mode. The first expansion valve 15a is a variable throttle mechanism that includes a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body. .
 さらに、第1膨張弁15aは、絞り開度を全開にすることによって、冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能付きの可変絞り機構として構成されている。なお、第1膨張弁15aは、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。 Furthermore, the first expansion valve 15a is configured as a variable throttle mechanism with a fully open function that functions as a simple refrigerant passage with almost no refrigerant decompression effect by fully opening the throttle opening. The operation of the first expansion valve 15a is controlled by a control signal (control pulse) output from the air conditioning control device 40.
 第1膨張弁15aの出口側には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、車両ボンネット内の車両前方側に配置されて、内部を流通する冷媒と図示しない送風ファンから送風された車室外空気(外気)とを熱交換させるものである。送風ファンは、空調制御装置40から出力される制御電圧によって回転数(送風能力)が制御される電動送風機である。 The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet side of the first expansion valve 15a. The outdoor heat exchanger 16 is disposed on the vehicle front side in the vehicle bonnet, and exchanges heat between the refrigerant circulating inside and the air outside the vehicle (outside air) blown from a blower fan (not shown). The blower fan is an electric blower whose number of rotations (blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
 室外熱交換器16の冷媒出口側には、第2三方継手13bの1つの冷媒流入出口が接続されている。第2三方継手13bの別の冷媒流入出口には、室外熱交換器16から流出した冷媒を、室内蒸発器18の冷媒入口側へ導く第3冷媒通路14cが接続されている。また、第2三方継手13bのさらに別の冷媒流入出口には、室外熱交換器16から流出した冷媒を、後述するアキュムレータ20の入口側(具体的には、第4三方継手13dの1つの冷媒流入出口)へ導く第4冷媒通路14dが接続されている。 One refrigerant inlet / outlet of the second three-way joint 13b is connected to the refrigerant outlet side of the outdoor heat exchanger 16. A third refrigerant passage 14c that guides the refrigerant flowing out of the outdoor heat exchanger 16 to the refrigerant inlet side of the indoor evaporator 18 is connected to another refrigerant inlet / outlet of the second three-way joint 13b. In addition, the refrigerant flowing out of the outdoor heat exchanger 16 is supplied to another refrigerant inflow / outlet of the second three-way joint 13b from the inlet side of the accumulator 20 (specifically, one refrigerant of the fourth three-way joint 13d). A fourth refrigerant passage 14d leading to the inflow / outlet is connected.
 第3冷媒通路14cには、第2三方継手13b側から室内蒸発器18側へ冷媒が流れることのみを許容する逆止弁17、前述した第2冷媒通路14bが接続される第3三方継手13c、並びに、除湿暖房モード時および冷房モード時に、室外熱交換器16から流出して、室内蒸発器18へ流入する冷媒を減圧させる減圧装置としての第2膨張弁15bが、冷媒流れに対してこの順に配置されている。 The third refrigerant passage 14c is connected to the check valve 17 that only allows the refrigerant to flow from the second three-way joint 13b side to the indoor evaporator 18 side, and the third three-way joint 13c to which the second refrigerant passage 14b described above is connected. In addition, in the dehumidifying heating mode and the cooling mode, the second expansion valve 15b serving as a decompression device that decompresses the refrigerant that flows out of the outdoor heat exchanger 16 and flows into the indoor evaporator 18 is provided with respect to the refrigerant flow. Arranged in order.
 第2膨張弁15bの基本的構成は、第1膨張弁15aと同様である。さらに、本実施形態の第2膨張弁15bは、絞り開度を全開した際に室外熱交換器16から室内蒸発器18へ至る冷媒通路を全開する全開機能のみならず、絞り開度を全閉した際に当該冷媒通路を閉塞する全閉機能付きの可変絞り機構で構成されている。 The basic configuration of the second expansion valve 15b is the same as that of the first expansion valve 15a. Furthermore, the second expansion valve 15b of the present embodiment not only has a fully-open function that fully opens the refrigerant passage from the outdoor heat exchanger 16 to the indoor evaporator 18 when the throttle opening is fully opened, but also fully closes the throttle opening. In this case, it is composed of a variable throttle mechanism with a fully closing function that closes the refrigerant passage.
 従って、本実施形態の冷凍サイクル装置10では、第2膨張弁15bを全閉として第3冷媒通路14cを閉じることによって、冷媒回路を切り替えることができる。換言すると、第2膨張弁15bは、冷媒部減圧装置としての機能を果たすとともに、サイクルを循環する冷媒の冷媒回路を切り替える冷媒回路切替部としての機能を兼ね備えている。 Therefore, in the refrigeration cycle apparatus 10 of the present embodiment, the refrigerant circuit can be switched by closing the third refrigerant passage 14c with the second expansion valve 15b fully closed. In other words, the second expansion valve 15b functions as a refrigerant unit decompression device and also functions as a refrigerant circuit switching unit that switches a refrigerant circuit of the refrigerant circulating in the cycle.
 室内蒸発器18は、室内空調ユニット30のケーシング31内のうち、室内凝縮器12の送風空気流れ上流側に配置され、冷房モード時および除湿暖房モード時に、内部を流通する低圧冷媒を室内凝縮器12通過前の送風空気と熱交換させて蒸発させ、冷媒に吸熱作用を発揮させることにより送風空気を冷却する冷却用熱交換器(蒸発器)である。 The indoor evaporator 18 is disposed in the casing 31 of the indoor air conditioning unit 30 on the upstream side of the blower air flow of the indoor condenser 12, and in the cooling mode and the dehumidifying heating mode, the low-pressure refrigerant that circulates inside the indoor evaporator 18 12 is a heat exchanger for cooling (evaporator) that cools the blown air by causing heat exchange with the blown air before passing through 12 and evaporating the refrigerant to exhibit an endothermic effect.
 室内蒸発器18の冷媒出口側には、蒸発圧力調整弁19の流入口側が接続されている。蒸発圧力調整弁19は、室内蒸発器18の着霜(フロスト)を抑制するために、室内蒸発器18における冷媒蒸発圧力(冷媒蒸発温度)を予め定めた基準蒸発圧力(基準蒸発温度)以上に維持する機能を果たすものである。 The inlet side of the evaporation pressure adjusting valve 19 is connected to the refrigerant outlet side of the indoor evaporator 18. The evaporation pressure adjusting valve 19 sets the refrigerant evaporation pressure (refrigerant evaporation temperature) in the indoor evaporator 18 to be equal to or higher than a predetermined reference evaporation pressure (reference evaporation temperature) in order to suppress frost formation (frost) of the indoor evaporator 18. It fulfills the function of maintaining.
 なお、本実施形態では、冷媒としてR134aを採用し、基準蒸発温度を0℃よりも僅かに高い値に決定しているので、基準蒸発圧力は、0.293MPaより僅かに高い値となる。この蒸発圧力調整弁19の詳細構成については後述する。 In this embodiment, R134a is used as the refrigerant, and the reference evaporation temperature is determined to be a value slightly higher than 0 ° C., so the reference evaporation pressure is a value slightly higher than 0.293 MPa. The detailed configuration of the evaporation pressure adjusting valve 19 will be described later.
 蒸発圧力調整弁19の出口側には、前述した第4冷媒通路14dが接続される第4三方継手13dが接続されている。さらに、第4三方継手13dの別の冷媒流入出口には、アキュムレータ20の入口側が接続されている。 The fourth three-way joint 13d to which the above-described fourth refrigerant passage 14d is connected is connected to the outlet side of the evaporation pressure adjusting valve 19. Furthermore, the inlet side of the accumulator 20 is connected to another refrigerant inlet / outlet of the fourth three-way joint 13d.
 また、第2三方継手13bと第4三方継手13dとを接続する第4冷媒通路14dには、第4冷媒通路14dを開閉する第1開閉弁21が配置されている。この第1開閉弁21は、空調制御装置40から出力される制御信号によって、その作動が制御される電磁弁であって、冷媒回路切替部としての機能を果たす。 Also, a first on-off valve 21 for opening and closing the fourth refrigerant passage 14d is disposed in the fourth refrigerant passage 14d that connects the second three-way joint 13b and the fourth three-way joint 13d. The first on-off valve 21 is an electromagnetic valve whose operation is controlled by a control signal output from the air-conditioning control device 40, and functions as a refrigerant circuit switching unit.
 同様に、第1三方継手13aと第3三方継手13cとを接続する第2冷媒通路14bには、第2冷媒通路14bを開閉する第2開閉弁22が配置されている。この第2開閉弁22の基本的構成は、第1開閉弁21と同様である。さらに、第2開閉弁22は、第2膨張弁15bおよび第1開閉弁21とともに冷媒回路切替部としての機能を果たす。 Similarly, a second on-off valve 22 for opening and closing the second refrigerant passage 14b is disposed in the second refrigerant passage 14b connecting the first three-way joint 13a and the third three-way joint 13c. The basic configuration of the second on-off valve 22 is the same as that of the first on-off valve 21. Further, the second on-off valve 22 functions as a refrigerant circuit switching unit together with the second expansion valve 15 b and the first on-off valve 21.
 アキュムレータ20は、内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離装置である。アキュムレータ20の気相冷媒出口には、圧縮機11の吸入口側が接続されている。従って、アキュムレータ20は、圧縮機11に液相冷媒が吸入されることを抑制し、圧縮機11における液圧縮を防止する機能を果たす。 The accumulator 20 is a gas-liquid separator that separates the gas-liquid of the refrigerant that has flowed into the accumulator and stores excess refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 20. Therefore, the accumulator 20 functions to prevent liquid phase refrigerant from being sucked into the compressor 11 and prevent liquid compression in the compressor 11.
 次に、図2~図6を用いて、蒸発圧力調整弁19の詳細構成について説明する。蒸発圧力調整弁19は、純機械的機構で構成されている。具体的には、蒸発圧力調整弁19は、複数の金属部材を組み合わせることによって構成されたボデー91を有し、このボデー91の内部に形成された冷媒通路内に、筒状弁体部92、ベローズ93、スプリング94等を配置することによって構成されている。 Next, the detailed configuration of the evaporation pressure adjusting valve 19 will be described with reference to FIGS. The evaporation pressure adjusting valve 19 is constituted by a pure mechanical mechanism. Specifically, the evaporating pressure adjusting valve 19 has a body 91 configured by combining a plurality of metal members, and a cylindrical valve body portion 92, a refrigerant passage formed inside the body 91, A bellows 93, a spring 94 and the like are arranged.
 ボデー91は、蒸発圧力調整弁19の外殻を形成するもので、筒状に形成されている。筒状に形成されたボデー91の軸方向一端側には、室内蒸発器18の冷媒出口側に接続される流入口91aが設けられ、軸方向他端側には、アキュムレータ20の入口側に接続される流出口91bが設けられている。 The body 91 forms an outer shell of the evaporation pressure regulating valve 19 and is formed in a cylindrical shape. An inflow port 91a connected to the refrigerant outlet side of the indoor evaporator 18 is provided on one end side in the axial direction of the body 91 formed in a cylindrical shape, and connected to the inlet side of the accumulator 20 on the other end side in the axial direction. An outlet 91b is provided.
 さらに、ボデー91の流入口91aの冷媒流れ下流側には、シリンダ部91cが形成されている。シリンダ部91cの内部には円柱状の空間が形成されており、この円柱状の空間には、筒状弁体部92の円筒状部92aが軸方向に摺動可能に嵌め込まれている。つまり筒状弁体部92の円筒状部92aの外径寸法とシリンダ部91cの内径寸法は、隙間バメの寸法関係となっている。 Furthermore, a cylinder portion 91c is formed on the downstream side of the refrigerant flow of the inlet 91a of the body 91. A cylindrical space is formed inside the cylinder portion 91c, and the cylindrical portion 92a of the cylindrical valve body portion 92 is fitted in the cylindrical space so as to be slidable in the axial direction. That is, the outer diameter size of the cylindrical portion 92a of the cylindrical valve body portion 92 and the inner diameter size of the cylinder portion 91c are in a dimensional relationship of the clearance fit.
 筒状弁体部92は、図2~図4に示すように、有底円筒状(カップ状)の金属部材で形成されており、軸方向他端側(流出口91b側)に配置される底面には軸方向に垂直に広がる鍔部92bが設けられている。鍔部92bは、シリンダ部91cの最下流側端部に当接して筒状弁体部92の変位を規制する部位である。さらに、筒状弁体部92の円筒状部92aの側面には、その内周側と外周側とを連通させる複数(本実施形態では6つ)の連通穴92cが形成されている。例えば、図2のように、連通孔92cは、筒状弁体部92の周方向に配置された複数の三角形状開口であり、それぞれの三角形開口の一辺は前記筒状弁体部92の同一円周に設け、それぞれの三角形開口の他の二辺に比べて、蒸発圧力調整弁19の流入口91a側に配置される。 As shown in FIGS. 2 to 4, the cylindrical valve body 92 is formed of a bottomed cylindrical (cup-shaped) metal member, and is disposed on the other axial end side (outlet 91b side). On the bottom surface is provided a flange 92b that extends perpendicular to the axial direction. The flange portion 92b is a portion that abuts on the most downstream end portion of the cylinder portion 91c and regulates the displacement of the cylindrical valve body portion 92. Furthermore, a plurality (six in this embodiment) of communication holes 92c are formed on the side surface of the cylindrical portion 92a of the cylindrical valve body portion 92 so as to communicate the inner peripheral side and the outer peripheral side thereof. For example, as shown in FIG. 2, the communication hole 92 c is a plurality of triangular openings arranged in the circumferential direction of the cylindrical valve body portion 92, and one side of each triangular opening is the same as that of the cylindrical valve body portion 92. It is provided on the circumference and is disposed closer to the inlet 91a side of the evaporation pressure regulating valve 19 than the other two sides of each triangular opening.
 そして、筒状弁体部92が軸方向一端側(流入口91a側)へ変位して鍔部92bがシリンダ部91cの最下流側端部に当接している状態では、連通穴92cがシリンダ部91cの内周壁面によって閉塞され、流入口91aと流出口91bとの連通が遮断される。この状態から筒状弁体部92が軸方向他端側へ変位して変位量Lが増加すると、連通穴92cがシリンダ部91cから露出して、流出口91bと流出口91bが連通穴92cを介して連通する。 When the tubular valve body 92 is displaced toward one end in the axial direction (the inlet 91a side) and the flange 92b is in contact with the most downstream end of the cylinder 91c, the communication hole 92c is formed in the cylinder. It is blocked by the inner peripheral wall surface of 91c, and the communication between the inflow port 91a and the outflow port 91b is blocked. When the cylindrical valve body portion 92 is displaced from the other end side in the axial direction to increase the displacement L, the communication hole 92c is exposed from the cylinder portion 91c, and the outflow port 91b and the outflow port 91b pass through the communication hole 92c. Communicate through.
 さらに、筒状弁体部92の変位量Lの増加に伴って、連通穴92cのうちシリンダ部91cから露出する部位の面積が増加する。本実施形態では、このように筒状弁体部92を変位させることによって、蒸発圧力調整弁19内の冷媒通路面積を変化させている。つまり、本実施形態のシリンダ部91cおよび筒状弁体部92は、いわゆるスライド弁を構成している。 Furthermore, as the displacement amount L of the cylindrical valve body 92 increases, the area of the portion of the communication hole 92c exposed from the cylinder portion 91c increases. In the present embodiment, the area of the refrigerant passage in the evaporation pressure regulating valve 19 is changed by displacing the cylindrical valve body portion 92 in this way. That is, the cylinder part 91c and the cylindrical valve body part 92 of the present embodiment constitute a so-called slide valve.
 ベローズ93は、筒状弁体部92の変位方向(ボデー91の軸方向)に伸縮自在に形成された金属製の中空筒状部材であり、筒状弁体部92の冷媒流れ下流側に配置されている。さらに、ベローズ93の軸方向一端側は、筒状弁体部92に連結されており、ベローズ93の軸方向他端側は、ボデー91側に固定されている。 The bellows 93 is a metal hollow cylindrical member formed to be extendable and contractible in the displacement direction of the cylindrical valve body portion 92 (the axial direction of the body 91), and is disposed on the downstream side of the refrigerant flow of the cylindrical valve body portion 92. Has been. Furthermore, the axial direction one end side of the bellows 93 is connected with the cylindrical valve body part 92, and the axial direction other end side of the bellows 93 is being fixed to the body 91 side.
 ベローズ93の内部空間には、スプリング94が配置されている。スプリング94は、筒状弁体部92の変位方向に伸びる円筒コイルバネで構成されており、ベローズ93とともに、筒状弁体部92を閉弁方向(流入口91a側へ向かう方向)に付勢する荷重をかけている。なお、ベローズ93およびスプリング94が筒状弁体部92に付勢する荷重は、調整ネジ94aによって調整することができる。 A spring 94 is disposed in the internal space of the bellows 93. The spring 94 is constituted by a cylindrical coil spring that extends in the displacement direction of the cylindrical valve body 92, and urges the cylindrical valve body 92 together with the bellows 93 in the valve closing direction (direction toward the inflow port 91a). A load is applied. The load that the bellows 93 and the spring 94 urge against the cylindrical valve body 92 can be adjusted by the adjusting screw 94a.
 従って、本実施形態の筒状弁体部92は、流入口91a側の冷媒圧力(室内蒸発器18における冷媒蒸発圧力)、流出口91b側の冷媒圧力(圧縮機11の吸入側冷媒圧力、すなわちアキュムレータ20内の冷媒圧力)、さらに、ベローズ93およびスプリング94による荷重を受ける。 Therefore, the cylindrical valve body 92 of the present embodiment includes the refrigerant pressure on the inlet 91a side (refrigerant evaporation pressure in the indoor evaporator 18), the refrigerant pressure on the outlet 91b side (the suction side refrigerant pressure of the compressor 11, that is, Refrigerant pressure in the accumulator 20) and further a load by the bellows 93 and the spring 94.
 そして、筒状弁体部92が、これらの荷重が釣り合う位置に変位することによって、蒸発圧力調整弁19内の冷媒通路面積が調整される。より具体的には、筒状弁体部92が受ける荷重の釣り合いは、以下数式F1で表すことができる。
P1×A1+P2×A2=K×L+P2×A1+F0…(F1)
 ここで、P1は流入口91a側の冷媒圧力であり、P2は流出口91b側の冷媒圧力、A1は筒状弁体部92の受圧面積、A2はベローズ93の受圧面積、Kはベローズ93およびスプリング94の合計バネ定数、Lは筒状弁体部92の変位量、F0は調整ネジ94aによって調整されたベローズ93およびスプリング94の初期荷重である。
The tubular valve body 92 is displaced to a position where these loads are balanced, so that the refrigerant passage area in the evaporation pressure adjusting valve 19 is adjusted. More specifically, the balance of the load received by the tubular valve body portion 92 can be expressed by the following formula F1.
P1 * A1 + P2 * A2 = K * L + P2 * A1 + F0 (F1)
Here, P1 is the refrigerant pressure on the inlet 91a side, P2 is the refrigerant pressure on the outlet 91b side, A1 is the pressure receiving area of the tubular valve body 92, A2 is the pressure receiving area of the bellows 93, K is the bellows 93 and The total spring constant of the spring 94, L is the amount of displacement of the tubular valve body 92, and F0 is the initial load of the bellows 93 and spring 94 adjusted by the adjusting screw 94a.
 さらに、本実施形態の蒸発圧力調整弁19では、A1≒A2となっているので、数式F1は、以下数式F2の如く変形することができる。
P1=K/A1×L+F0/A1…(F2)
 この数式F2によれば、流入口91a側の冷媒圧力P1は、変位量Lの増加に伴って増加することが判る。また、前述の如く、変位量Lの増加に伴って蒸発圧力調整弁19内の冷媒通路面積が増加し、室内蒸発器18を流通する冷媒流量も増加する。
Further, in the evaporation pressure adjusting valve 19 of the present embodiment, since A1≈A2, Equation F1 can be modified as Equation F2 below.
P1 = K / A1 × L + F0 / A1 (F2)
According to this mathematical formula F2, it can be seen that the refrigerant pressure P1 on the inlet 91a side increases as the displacement amount L increases. Further, as described above, as the displacement L increases, the refrigerant passage area in the evaporation pressure adjusting valve 19 increases, and the flow rate of refrigerant flowing through the indoor evaporator 18 also increases.
 従って、本実施形態の蒸発圧力調整弁19は、室内蒸発器18を流通する冷媒流量(蒸発圧力調整弁19を流通する冷媒流量)の増加に伴って、流入口91a側の冷媒圧力P1を上昇させる構成になっている。つまり、本実施形態の蒸発圧力調整弁19は、流入口91a側の冷媒圧力P1の上昇に比例して変位量Lが増加し、流入口91a側の冷媒圧力P1の上昇に伴って蒸発圧力調整弁19内の冷媒通路面積が増加する構成になっている。本例では、流入口91a側の冷媒圧力P1は、室内蒸発器18における冷媒蒸発圧力Peに相当する。 Therefore, the evaporation pressure adjusting valve 19 of the present embodiment increases the refrigerant pressure P1 on the inlet 91a side as the refrigerant flow rate flowing through the indoor evaporator 18 (the refrigerant flow rate flowing through the evaporation pressure adjusting valve 19) increases. It has a configuration to let you. That is, the evaporation pressure adjusting valve 19 of the present embodiment increases the displacement L in proportion to the increase of the refrigerant pressure P1 on the inlet 91a side, and adjusts the evaporation pressure with the increase of the refrigerant pressure P1 on the inlet 91a side. The refrigerant passage area in the valve 19 is increased. In this example, the refrigerant pressure P1 on the inlet 91a side corresponds to the refrigerant evaporation pressure Pe in the indoor evaporator 18.
 さらに、本実施形態の複数の連通穴92cは、図3の側面図から明らかなように、それぞれ流出口91b側に頂点を有する二等辺三角形状に形成されている。つまり、連通穴92cは、筒状弁体部92の開弁方向(流出口91b側へ向かう方向)に向かって、徐々に縮小する形状に形成されている。 Furthermore, as is apparent from the side view of FIG. 3, the plurality of communication holes 92c of the present embodiment are each formed in an isosceles triangle shape having a vertex on the outlet 91b side. That is, the communication hole 92c is formed in a shape that gradually decreases in the valve opening direction of the cylindrical valve body portion 92 (the direction toward the outflow port 91b).
 換言すると、筒状弁体部92の閉弁方向(流入口91a側へ向かう方向)に向かって、図4に示す軸方向垂直断面における連通穴92cの周方向LCの長さが徐々に長くなる形状に形成されている。より具体的には、本実施形態では、筒状弁体部92の変位量Lと冷媒通路面積の平方根が比例して変化する関係になるように、連通穴92cの形状が決定されている。 In other words, the length in the circumferential direction LC of the communication hole 92c in the axial vertical cross section shown in FIG. 4 gradually increases in the valve closing direction of the cylindrical valve body 92 (the direction toward the inflow port 91a). It is formed into a shape. More specifically, in the present embodiment, the shape of the communication hole 92c is determined so that the displacement amount L of the cylindrical valve body 92 and the square root of the refrigerant passage area change in proportion.
 このため、本実施形態の蒸発圧力調整弁19では、図5の太実線で示す筒状弁体部92の変位量Lの増加(すなわち、流入口91a側の冷媒圧力P1の上昇)に伴う冷媒通路面積の増加度合が、図5の太破線に示す筒状弁体部92の変位量Lの増加に比例して線形的に冷媒通路面積を増加させるもの(以下、比較例という。)の増加度合よりも、全域に亘って大きくなっている。蒸発圧力調整弁19は、室内蒸発器18における冷媒蒸発圧力Peの上昇に伴って、内部の冷媒通路面積が増加する。冷媒蒸発圧力Peの上昇に伴って前記冷媒通路面積が増加する際の増加度合は、冷媒蒸発圧力Peの上昇に比例して線形的に冷媒通路面積が増加する際(比較例)の増加度合よりも大きくなっている。具体的に、図5のように、変位量Lがゼロの時点の接線の傾きを有する線形的に増加する際(比較例)の増加度合よりも、冷媒通路面積が大きくなるように増加度合を設定される。 For this reason, in the evaporation pressure regulating valve 19 of the present embodiment, the refrigerant accompanying the increase in the displacement amount L of the cylindrical valve body 92 shown by the thick solid line in FIG. 5 (that is, the rise in the refrigerant pressure P1 on the inlet 91a side). The increase in the passage area linearly increases the refrigerant passage area in proportion to the increase in the displacement amount L of the cylindrical valve body 92 shown by the thick broken line in FIG. 5 (hereinafter referred to as a comparative example). It is larger over the entire area than the degree. The evaporating pressure adjusting valve 19 has an inner refrigerant passage area that increases as the refrigerant evaporating pressure Pe in the indoor evaporator 18 increases. The degree of increase when the refrigerant passage area increases as the refrigerant evaporation pressure Pe increases is larger than the degree of increase when the refrigerant passage area increases linearly in proportion to the increase of the refrigerant evaporation pressure Pe (comparative example). Is also getting bigger. Specifically, as shown in FIG. 5, the degree of increase is set so that the refrigerant passage area becomes larger than the degree of increase when the displacement L is linearly increased with a tangential slope at the time of zero (comparative example). Is set.
 従って、本実施形態の蒸発圧力調整弁19では、図6の太実線に示すように、室内蒸発器18を流通する冷媒流量の増加に伴う設定圧力Psetの上昇度合が、図6の太破線に示す比較例の設定圧力Psetの上昇度合よりも。全域に亘って小さくなる。 Therefore, in the evaporation pressure regulating valve 19 of the present embodiment, as shown by the thick solid line in FIG. 6, the increase degree of the set pressure Pset accompanying the increase in the flow rate of the refrigerant flowing through the indoor evaporator 18 is indicated by the thick broken line in FIG. Than the degree of increase in the set pressure Pset of the comparative example shown. It becomes smaller over the entire area.
 なお、本実施形態の設定圧力Psetとは、全開状態となっている(変位量Lが最大変位量となっている)蒸発圧力調整弁19が、室内蒸発器18における冷媒蒸発圧力を基準蒸発圧力以上に維持するために、冷媒通路面積の縮小を開始させる際(筒状弁体部92の閉弁方向への変位を開始させる際)の流入口91a側の冷媒圧力(室内蒸発器18における冷媒蒸発圧力)である。 Note that the set pressure Pset of the present embodiment is that the evaporation pressure adjusting valve 19 in the fully opened state (the displacement amount L is the maximum displacement amount) uses the refrigerant evaporation pressure in the indoor evaporator 18 as the reference evaporation pressure. In order to maintain the above, the refrigerant pressure on the inlet 91a side (the refrigerant in the indoor evaporator 18) when the reduction of the refrigerant passage area is started (when the displacement of the tubular valve body 92 in the valve closing direction is started). Evaporative pressure).
 より具体的に説明すると、この蒸発圧力調整弁19では、冷凍サイクル装置10を冷房モードや除湿暖房モードで作動させると、作動開始直後に筒状弁体部92の変位量Lが最大変位量となる。 More specifically, in the evaporating pressure adjusting valve 19, when the refrigeration cycle apparatus 10 is operated in the cooling mode or the dehumidifying heating mode, the displacement amount L of the cylindrical valve body portion 92 becomes the maximum displacement amount immediately after the operation is started. Become.
 その後、圧縮機11の回転数の増加に伴って、流出口91b側の冷媒圧力P2が低下すると、流入口91a側の冷媒圧力P1が基準蒸発圧力以上に維持されるように、ベローズ93およびスプリング94の荷重によって筒状弁体部92を閉弁方向(流入口91a側へ向かう方向)へ変位させる。 Thereafter, when the refrigerant pressure P2 on the outlet 91b side decreases as the rotational speed of the compressor 11 increases, the bellows 93 and the spring are adjusted so that the refrigerant pressure P1 on the inlet 91a side is maintained above the reference evaporation pressure. The cylindrical valve body 92 is displaced in the valve closing direction (direction toward the inflow port 91a) by the load of 94.
 そして、筒状弁体部92が閉弁方向に変位を開始する際の流入口91a側の冷媒圧力P1が、設定圧力Psetとなる。さらに、この設定圧力Psetは、図6に示すように、室内蒸発器18を流通する冷媒流量の増加に伴って上昇する。 Then, the refrigerant pressure P1 on the inlet 91a side when the cylindrical valve body 92 starts to be displaced in the valve closing direction becomes the set pressure Pset. Further, the set pressure Pset increases as the flow rate of the refrigerant flowing through the indoor evaporator 18 increases, as shown in FIG.
 次に、図1に示す室内空調ユニット30について説明する。室内空調ユニット30は、冷凍サイクル装置10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。さらに、室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器18、室内凝縮器12等を収容することによって構成されている。 Next, the indoor air conditioning unit 30 shown in FIG. 1 will be described. The indoor air conditioning unit 30 is for blowing out the blown air whose temperature has been adjusted by the refrigeration cycle apparatus 10 into the vehicle interior, and is disposed inside the instrument panel (instrument panel) at the forefront of the vehicle interior. Furthermore, the indoor air conditioning unit 30 is configured by housing a blower 32, the indoor evaporator 18, the indoor condenser 12, and the like in a casing 31 that forms an outer shell thereof.
 ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング31内の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替部としての内外気切替装置33が配置されている。 The casing 31 forms an air passage for the blown air blown into the passenger compartment, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength. An inside / outside air switching device 33 as an inside / outside air switching unit that switches and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the casing 31 is arranged on the most upstream side of the blown air flow in the casing 31. ing.
 内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port through which the inside air is introduced into the casing 31 and the outside air introduction port through which the outside air is introduced by the inside / outside air switching door, so that the air volume of the inside air and the air volume of the outside air are adjusted. The air volume ratio is continuously changed. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
 内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。 A blower 32 that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the blowing air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
 送風機32の送風空気流れ下流側には、室内蒸発器18および室内凝縮器12が、送風空気の流れに対して、この順に配置されている。換言すると、室内蒸発器18は、室内凝縮器12よりも送風空気流れ上流側に配置されている。また、ケーシング31内には、室内蒸発器18を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す冷風バイパス通路35が形成されている。 On the downstream side of the blower air flow of the blower 32, the indoor evaporator 18 and the indoor condenser 12 are arranged in this order with respect to the flow of the blown air. In other words, the indoor evaporator 18 is disposed on the upstream side of the blown air flow with respect to the indoor condenser 12. Further, in the casing 31, a cold air bypass passage 35 is formed in which the blown air that has passed through the indoor evaporator 18 bypasses the indoor condenser 12 and flows downstream.
 室内蒸発器18の送風空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、室内蒸発器18通過後の送風空気のうち、室内凝縮器12を通過させる風量割合を調整するエアミックスドア34が配置されている。 On the downstream side of the blower air flow of the indoor evaporator 18 and on the upstream side of the blower air flow of the indoor condenser 12, the ratio of the amount of air passing through the indoor condenser 12 among the blown air after passing through the indoor evaporator 18. An air mix door 34 for adjusting the air pressure is disposed.
 また、室内凝縮器12の送風空気流れ下流側には、室内凝縮器12にて加熱された送風空気と冷風バイパス通路35を通過して室内凝縮器12にて加熱されていない送風空気とを混合させる混合空間が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間にて混合された送風空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が配置されている。 In addition, the blast air heated by the indoor condenser 12 and the blast air not heated by the indoor condenser 12 through the cold air bypass passage 35 are mixed on the downstream side of the blast air flow of the indoor condenser 12. A mixing space is provided. Furthermore, the opening hole which blows off the ventilation air (air-conditioning wind) mixed in the mixing space to the vehicle interior which is an air-conditioning object space is arrange | positioned in the most downstream part of the ventilation air flow of the casing 31. FIG.
 具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴(いずれも図示せず)が設けられている。これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 Specifically, the opening hole includes a face opening hole that blows air-conditioned air toward the upper body of the passenger in the passenger compartment, a foot opening hole that blows air-conditioned air toward the feet of the passenger, and an inner surface of the front window glass of the vehicle. A defroster opening hole (both not shown) for blowing the conditioned air toward is provided. The air flow downstream of these face opening holes, foot opening holes, and defroster opening holes is connected to the face air outlet, foot air outlet, and defroster air outlet provided in the vehicle interior via ducts that form air passages, respectively. Neither is shown).
 従って、エアミックスドア34が、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整されて、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整されることになる。 Therefore, the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the cold air bypass passage 35, thereby adjusting the temperature of the conditioned air mixed in the mixing space. The temperature of the blast air (air conditioned air) blown out from each outlet to the vehicle interior is adjusted.
 つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部を構成している。なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。 That is, the air mix door 34 constitutes a temperature adjustment unit that adjusts the temperature of the conditioned air blown into the vehicle interior. The air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device 40.
 また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。 Further, on the upstream side of the air flow of the face opening hole, foot opening hole, and defroster opening hole, a face door for adjusting the opening area of the face opening hole, a foot door for adjusting the opening area of the foot opening hole, and a defroster opening, respectively. A defroster door (both not shown) for adjusting the opening area of the hole is disposed.
 これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替部を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置40から出力される制御信号によって、その作動が制御される。 These face doors, foot doors, and defroster doors constitute an opening hole mode switching unit that switches the opening hole mode, and are linked to an electric actuator for driving the outlet mode door via a link mechanism or the like. And rotated. The operation of this electric actuator is also controlled by a control signal output from the air conditioning control device 40.
 吹出口モード切替部によって切り替えられる吹出口モードとしては、具体的に、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出すフェイスモード、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出すバイレベルモード、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出すフットモード、およびフット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出すフットデフロスタモードがある。 Specifically, as the air outlet mode switched by the air outlet mode switching unit, a face mode in which the face air outlet is fully opened and air is blown out from the face air outlet toward the upper body of the passenger in the passenger compartment, the face air outlet and the foot air outlet The bi-level mode that opens both of the air outlets and blows air toward the upper body and feet of passengers in the passenger compartment, fully opens the foot outlet and opens the defroster outlet by a small opening, and mainly draws air from the foot outlet. There is a foot mode for blowing air, and a foot defroster mode for opening air from both the foot air outlet and the defroster air outlet by opening the foot air outlet and the defroster air outlet to the same extent.
 さらに、乗員が操作パネル60に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。 Furthermore, when the occupant manually operates a blow mode switching switch provided on the operation panel 60, the defroster mode in which the defroster blowout port is fully opened and air is blown out from the defroster blowout port to the inner surface of the front windshield of the vehicle can be set.
 次に、図7を用いて、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された、圧縮機11、第1膨張弁15a、第2膨張弁15b、第1開閉弁21、第2開閉弁22、送風機32等の各種空調制御機器の作動を制御する。 Next, the electric control unit of this embodiment will be described with reference to FIG. The air conditioning control device 40 includes a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various calculations and processes are performed based on the air conditioning control program stored in the ROM, and the compressor 11, the first expansion valve 15a, the second expansion valve 15b, and the first on-off valve connected to the output side thereof. 21, the operation of various air conditioning control devices such as the second on-off valve 22 and the blower 32 are controlled.
 また、空調制御装置40の入力側には、車室内温度(内気温)Trを検出する内気温検出器としての内気センサ51、車室外温度(外気温)Tamを検出する外気温検出器としての外気センサ52、車室内へ照射される日射量Asを検出する日射量検出器としての日射センサ53、圧縮機11吐出冷媒の吐出冷媒温度Tdを検出する吐出温度センサ54、室内凝縮器12の出口側冷媒圧力(高圧側冷媒圧力)Pdを検出する高圧側圧力センサ55、室内蒸発器18における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度センサ56、室内蒸発器18の出口側冷媒圧力(低圧側冷媒圧力)Peを検出する低圧側圧力センサ57、混合空間から車室内へ送風される送風空気温度TAVを検出する送風空気温度センサ58等の空調制御用のセンサ群の検出信号が入力される。 Further, on the input side of the air-conditioning control device 40, an inside air sensor 51 as an inside air temperature detector that detects a vehicle interior temperature (inside air temperature) Tr, and an outside air temperature detector that detects a vehicle outside temperature (outside air temperature) Tam. An outside air sensor 52, a solar radiation sensor 53 as a solar radiation amount detector for detecting the solar radiation amount As irradiated into the vehicle interior, a discharge temperature sensor 54 for detecting the refrigerant discharge temperature Td of the refrigerant discharged from the compressor 11, and an outlet of the indoor condenser 12 High pressure side pressure sensor 55 for detecting the side refrigerant pressure (high pressure side refrigerant pressure) Pd, the evaporator temperature sensor 56 for detecting the refrigerant evaporation temperature (evaporator temperature) Tefin in the indoor evaporator 18, and the outlet side refrigerant of the indoor evaporator 18 Air conditioning such as a low pressure side pressure sensor 57 that detects pressure (low pressure side refrigerant pressure) Pe, and a blown air temperature sensor 58 that detects a blown air temperature TAV blown from the mixed space into the vehicle interior. Detection signals of patronage groups of the sensor is input.
 なお、本実施形態の高圧側冷媒圧力Pdは、例えば、暖房モード等では、圧縮機11の吐出口側から第1膨張弁15aの入口側へ至るサイクルの高圧側冷媒圧力となり、冷房モードでは、圧縮機11の吐出口側から第2膨張弁15bの入口側へ至るサイクルの高圧側冷媒圧力となる。 The high-pressure side refrigerant pressure Pd of the present embodiment is, for example, a high-pressure side refrigerant pressure of a cycle from the discharge port side of the compressor 11 to the inlet side of the first expansion valve 15a in the heating mode or the like, and in the cooling mode, It becomes the high pressure side refrigerant pressure of the cycle from the discharge port side of the compressor 11 to the inlet side of the second expansion valve 15b.
 また、本実施形態の低圧側冷媒圧力Peは、冷房モードおよび除湿暖房モードでは、室内蒸発器18における実際の冷媒蒸発圧力に相当する値となる。 Further, the low-pressure side refrigerant pressure Pe of the present embodiment is a value corresponding to the actual refrigerant evaporation pressure in the indoor evaporator 18 in the cooling mode and the dehumidifying heating mode.
 また、本実施形態の蒸発器温度センサ56は、室内蒸発器18の熱交換フィン温度を検出しているが、蒸発器温度センサ56として、室内蒸発器18のその他の部位の温度を検出する温度検出器を採用してもよいし、室内蒸発器18を流通する冷媒自体の温度を直接検出する温度検出器を採用してもよい。 Moreover, although the evaporator temperature sensor 56 of this embodiment has detected the heat exchange fin temperature of the indoor evaporator 18, the temperature which detects the temperature of the other site | part of the indoor evaporator 18 as the evaporator temperature sensor 56 is detected. A detector may be employed, or a temperature detector that directly detects the temperature of the refrigerant itself flowing through the indoor evaporator 18 may be employed.
 また、本実施形態では、送風空気温度TAVを検出する送風空気温度センサを設けているが、この送風空気温度TAVとして、蒸発器温度Tefin、吐出冷媒温度Td等に基づいて算出された値を採用してもよい。 Moreover, in this embodiment, although the ventilation air temperature sensor which detects blowing air temperature TAV is provided, the value calculated based on evaporator temperature Tefin, discharge refrigerant temperature Td, etc. is employ | adopted as this blowing air temperature TAV. May be.
 さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された操作パネル60に設けられた各種空調操作スイッチからの操作信号が入力される。この操作パネル60に設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ(A/Cスイッチ)、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度である車室内設定温度Tsetを設定する温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。 Furthermore, on the input side of the air conditioning control device 40, operation signals from various air conditioning operation switches provided on the operation panel 60 disposed in the vicinity of the instrument panel in the front of the vehicle interior are input. Specific examples of the various air conditioning operation switches provided on the operation panel 60 include an auto switch for setting or canceling the automatic control operation of the vehicle air conditioner 1, and a cooling switch (A / C switch), an air volume setting switch for manually setting the air volume of the blower 32, a temperature setting switch for setting the vehicle interior set temperature Tset, which is a target temperature in the vehicle interior, and a blow mode switching switch for manually setting the air discharge mode.
 なお、空調制御装置40は、その出力側に接続された各種空調制御機器を制御する制御部が一体に構成されたものであるが、それぞれの空調制御機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの空調制御機器の作動を制御する制御部を構成している。 The air-conditioning control device 40 is configured integrally with a control unit that controls various air-conditioning control devices connected to the output side of the air-conditioning control device 40. The configuration (hardware and hardware) controls the operation of each air-conditioning control device. Software) constitutes a control unit that controls the operation of each air conditioning control device.
 例えば、本実施形態では、圧縮機11の作動を制御する構成が吐出能力制御部40aを構成し、冷媒回路切替部を構成する第2膨張弁15b、第1開閉弁21および第2開閉弁22の作動を制御する構成が冷媒回路制御部40bを構成している。もちろん、吐出能力制御部、冷媒回路制御部等を空調制御装置40に対して別体の制御装置で構成してもよい。 For example, in the present embodiment, the configuration for controlling the operation of the compressor 11 constitutes the discharge capacity control unit 40a, and the second expansion valve 15b, the first on-off valve 21 and the second on-off valve 22 constituting the refrigerant circuit switching unit. The configuration for controlling the operation of the refrigerant circuit constitutes the refrigerant circuit control unit 40b. Of course, the discharge capacity control unit, the refrigerant circuit control unit, and the like may be configured as a separate control device with respect to the air conditioning control device 40.
 次に、図8、図9を用いて、上記構成における本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1は、冷房モード、暖房モード、および除湿暖房モードでの運転を切り替えることができる。そして、これらの各運転モードの切り替えは、予め空調制御装置40に記憶された空調制御プログラムが実行されることによって行われる。 Next, the operation of the vehicle air conditioner 1 according to this embodiment having the above-described configuration will be described with reference to FIGS. The vehicle air conditioner 1 according to the present embodiment can switch the operation in the cooling mode, the heating mode, and the dehumidifying heating mode. The switching between these operation modes is performed by executing an air conditioning control program stored in the air conditioning control device 40 in advance.
 図8は、この空調制御プログラムのメインルーチンとしての制御処理を示すフローチャートである。この制御処理は、操作パネル60のオートスイッチが投入(ON)された際に実行される。なお、図8、図9に示すフローチャートの各制御ステップは、空調制御装置40が有する各種の機能実現部を構成している。 FIG. 8 is a flowchart showing a control process as a main routine of the air conditioning control program. This control process is executed when the auto switch of the operation panel 60 is turned on. In addition, each control step of the flowchart shown to FIG. 8, FIG. 9 comprises the various function implementation | achievement part which the air-conditioning control apparatus 40 has.
 まず、ステップS1では、空調制御装置40の記憶回路によって構成されるフラグ、タイマ等の初期化、および上述した各種電動アクチュエータを構成するステッピングモータの初期位置合わせ等のイニシャライズが行われる。なお、ステップS1のイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置の停止時や車両システム終了時に記憶された値が読み出されるものもある。 First, in step S1, initialization such as initialization of flags and timers configured by the storage circuit of the air-conditioning control device 40 and initial positioning of the stepping motors constituting the various electric actuators described above is performed. It should be noted that in the initialization in step S1, some of the flags and the calculated values are read out from the values stored at the previous stop of the vehicle air conditioner or the end of the vehicle system.
 次に、ステップS2では、空調制御用のセンサ群51~58等の検出信号および操作パネル60の操作信号等を読み込む。続くステップS3では、ステップS2にて読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出す送風空気の目標温度である目標吹出温度TAOを算出する。 Next, in step S2, detection signals from the sensor groups 51 to 58 for air conditioning control, operation signals from the operation panel 60, and the like are read. In subsequent step S3, based on the detection signal and operation signal read in step S2, a target blowing temperature TAO that is a target temperature of the blown air blown into the vehicle interior is calculated.
 具体的には、目標吹出温度TAOは、以下数式F3によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F3)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサ51によって検出された車室内温度(内気温)、Tamは外気センサ52によって検出された外気温、Asは日射センサ53によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Specifically, the target blowing temperature TAO is calculated by the following formula F3.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C (F3)
Note that Tset is the vehicle interior set temperature set by the temperature setting switch, Tr is the vehicle interior temperature (inside air temperature) detected by the inside air sensor 51, Tam is the outside air temperature detected by the outside air sensor 52, and As is the solar radiation sensor 53. Is the amount of solar radiation detected by. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
 次に、ステップS4では、運転モードの決定がなされる。より詳細には、ステップS4では、図9に示すサブルーチンが実行される。まず、ステップS41では、操作パネル60の冷房スイッチが投入されているか否かが判定される。ステップS41にて冷房スイッチが投入されている(ONになっている)と判定された際には、ステップS42へ進む。 Next, in step S4, the operation mode is determined. More specifically, in step S4, a subroutine shown in FIG. 9 is executed. First, in step S41, it is determined whether or not the cooling switch of the operation panel 60 is turned on. When it is determined in step S41 that the cooling switch is turned on (turned on), the process proceeds to step S42.
 一方、ステップS41にて冷房スイッチが投入されていない(OFFになっている)と判定された際には、ステップS45へ進み、運転モードが暖房モードに決定されて、ステップS5へ進む。 On the other hand, when it is determined in step S41 that the cooling switch is not turned on (turned off), the process proceeds to step S45, the operation mode is determined as the heating mode, and the process proceeds to step S5.
 ステップS42では、目標吹出温度TAOから外気温Tamを減算した値(TAO-Tam)が予め定めた基準冷房温度α(本実施形態では、α=0)より低くなっているか否かが判定される。 In step S42, it is determined whether or not a value (TAO-Tam) obtained by subtracting the outside air temperature Tam from the target blowing temperature TAO is lower than a predetermined reference cooling temperature α (α = 0 in the present embodiment). .
 ステップS42にて、(TAO-Tam)<αとなっている場合には、ステップS43へ進み、運転モードが冷房モードに決定されて、ステップS5へ戻る。一方、ステップS42にて、(TAO-Tam)<αとなっていない場合には、ステップS44へ進み、運転モードが除湿暖房モードに決定されて、ステップS5へ戻る。 In step S42, if (TAO-Tam) <α, the process proceeds to step S43, the operation mode is determined to be the cooling mode, and the process returns to step S5. On the other hand, if (TAO−Tam) <α is not satisfied in step S42, the process proceeds to step S44, the operation mode is determined to be the dehumidifying heating mode, and the process returns to step S5.
 続くステップS5では、ステップ4で決定された運転モードに応じて、第1、第2開閉弁21、22の開閉状態が決定される。ステップS6では、ステップ4で決定された運転モードに応じて、エアミックスドア34の開度が決定される。さらに、ステップS7では、ステップ4で決定された運転モードに応じて、第1、第2膨張弁15a、15bの作動状態が決定される。 In the subsequent step S5, the open / close state of the first and second open / close valves 21 and 22 is determined according to the operation mode determined in step 4. In step S6, the opening degree of the air mix door 34 is determined according to the operation mode determined in step 4. Further, in step S7, the operating states of the first and second expansion valves 15a and 15b are determined according to the operation mode determined in step 4.
 より具体的には、ステップS5~S7では、図10の図表に示すように、第1、第2開閉弁21、22の開閉状態、エアミックスドア34の開度、さらに、第1、第2膨張弁15a、15bの作動状態が決定される。続くステップS8では、後述する各運転モードの詳細に記載するように、圧縮機11の冷媒吐出能力が決定される。 More specifically, in steps S5 to S7, as shown in the chart of FIG. 10, the open / close state of the first and second on-off valves 21 and 22, the opening of the air mix door 34, and the first and second The operating state of the expansion valves 15a and 15b is determined. In subsequent step S8, the refrigerant discharge capacity of the compressor 11 is determined as described in detail in each operation mode described later.
 そして、ステップS9では、ステップS5~S8で決定された各種空調制御機器の作動状態が得られるように、空調制御装置40から各種空調制御機器に対して、制御信号あるいは制御電圧が出力される。続くステップS10では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2へ戻る。 In step S9, control signals or control voltages are output from the air conditioning control device 40 to the various air conditioning control devices so that the operating states of the various air conditioning control devices determined in steps S5 to S8 are obtained. In continuing step S10, it waits for control period (tau), and if progress of control period (tau) is determined, it will return to step S2.
 本実施形態の車両用空調装置1では、上記の如く、運転モードが決定されて、各運転モードでの運転を実行する。以下に各運転モードにおける作動を説明する。 In the vehicle air conditioner 1 of the present embodiment, the operation mode is determined as described above, and the operation in each operation mode is executed. The operation in each operation mode will be described below.
 (a)暖房モード
 暖房モードでは、図10の図表に示すように、空調制御装置40が、第1開閉弁21を開き、第2開閉弁22を閉じ、第1膨張弁15aを減圧作用を発揮する絞り状態とし、第2膨張弁15bを全閉状態とする。
(A) Heating Mode In the heating mode, as shown in the chart of FIG. 10, the air conditioning control device 40 opens the first on-off valve 21, closes the second on-off valve 22, and exerts a pressure reducing action on the first expansion valve 15a. The second expansion valve 15b is fully closed.
 これにより、暖房モードでは、図1の黒塗り矢印に示すように、圧縮機11→室内凝縮器12→第1膨張弁15a→室外熱交換器16→(第1開閉弁21→)アキュムレータ20→圧縮機11の順に冷媒を循環させる蒸気圧縮式の冷凍サイクルが構成される。 Thereby, in the heating mode, as indicated by the black arrow in FIG. 1, the compressor 11 → the indoor condenser 12 → the first expansion valve 15 a → the outdoor heat exchanger 16 → (the first on-off valve 21 →) the accumulator 20 → A vapor compression refrigeration cycle in which refrigerant is circulated in the order of the compressor 11 is configured.
 さらに、この冷媒回路の構成で、上述のステップS6~S8にて説明したように、空調制御装置40が、暖房モード時における各種空調制御機器の作動状態(各種空調制御機器へ出力する制御信号)を決定する。 Further, with the configuration of this refrigerant circuit, as described in steps S6 to S8 above, the air conditioning control device 40 operates the various air conditioning control devices in the heating mode (control signals output to the various air conditioning control devices). To decide.
 例えば、ステップS6にて決定されるエアミックスドア34の電動アクチュエータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を全閉とし、室内蒸発器18通過後の送風空気の全流量が室内凝縮器12側の空気通路を通過するように決定される。 For example, for the control signal output to the electric actuator of the air mix door 34 determined in step S6, the air mix door 34 fully closes the cold air bypass passage 35, and the entire blown air after passing through the indoor evaporator 18 The flow rate is determined so as to pass through the air passage on the indoor condenser 12 side.
 また、ステップS7にて決定される第1膨張弁15aへ出力される制御信号については、第1膨張弁15aへ流入する冷媒の過冷却度が、サイクルの成績係数(COP)が略最大値となるように定められた目標過冷却度に近づくように決定される。 Further, regarding the control signal output to the first expansion valve 15a determined in step S7, the degree of supercooling of the refrigerant flowing into the first expansion valve 15a is such that the coefficient of performance (COP) of the cycle is substantially the maximum value. It is determined so as to approach the target subcooling degree determined to be.
 また、ステップS8にて決定される圧縮機11の電動モータへ出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内凝縮器12における目標凝縮圧力PCOを決定する。 Further, the control signal output to the electric motor of the compressor 11 determined in step S8 is determined as follows. First, the target condensing pressure PCO in the indoor condenser 12 is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance.
 そして、この目標凝縮圧力PCOと高圧側圧力センサ55によって検出された高圧側冷媒圧力Pdとの偏差に基づいて、フィードバック制御手法を用いて高圧側冷媒圧力Pdが目標凝縮圧力PCOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Then, based on the deviation between the target condensation pressure PCO and the high-pressure side refrigerant pressure Pd detected by the high-pressure side pressure sensor 55, the feedback control method is used so that the high-pressure side refrigerant pressure Pd approaches the target condensation pressure PCO. A control signal output to the electric motor of the compressor 11 is determined.
 従って、暖房モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。室内凝縮器12に流入した冷媒は、送風機32から送風されて室内蒸発器18を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱される。 Therefore, in the refrigeration cycle apparatus 10 in the heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. The refrigerant flowing into the indoor condenser 12 exchanges heat with the blown air that has been blown from the blower 32 and passed through the indoor evaporator 18 to dissipate heat. Thereby, blowing air is heated.
 室内凝縮器12から流出した冷媒は、第2開閉弁22が閉じているので、第1三方継手13aから第1冷媒通路14a側へ流出し、第1膨張弁15aにて低圧冷媒となるまで減圧される。そして、第1膨張弁15aにて減圧された低圧冷媒は、室外熱交換器16へ流入して、送風ファンから送風された外気から吸熱する。 Since the second on-off valve 22 is closed, the refrigerant flowing out of the indoor condenser 12 flows out from the first three-way joint 13a toward the first refrigerant passage 14a and is decompressed until it becomes a low-pressure refrigerant at the first expansion valve 15a. Is done. The low-pressure refrigerant decompressed by the first expansion valve 15a flows into the outdoor heat exchanger 16 and absorbs heat from the outside air blown from the blower fan.
 室外熱交換器16から流出した冷媒は、第1開閉弁21が開き、第2膨張弁15bが全閉状態となっているので、第2三方継手13bから第4冷媒通路14d側へ流出し、アキュムレータ20へ流入して気液分離される。そして、アキュムレータ20にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。 The refrigerant flowing out of the outdoor heat exchanger 16 flows out from the second three-way joint 13b to the fourth refrigerant passage 14d side because the first on-off valve 21 is opened and the second expansion valve 15b is fully closed. It flows into the accumulator 20 and is separated into gas and liquid. The gas-phase refrigerant separated by the accumulator 20 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
 以上の如く、暖房モードでは、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 As described above, in the heating mode, the vehicle interior can be heated by blowing the air blown by the indoor condenser 12 into the vehicle interior.
 (b)除湿暖房モード
 除湿暖房モードでは、図10の図表に示すように、空調制御装置40が、第1開閉弁21を開き、第2開閉弁22を開き、第1膨張弁15aを絞り状態とし、第2膨張弁15bを絞り状態とする。
(B) Dehumidification heating mode In the dehumidification heating mode, as shown in the chart of FIG. 10, the air conditioning control device 40 opens the first on-off valve 21, opens the second on-off valve 22, and restricts the first expansion valve 15a. And the second expansion valve 15b is in the throttle state.
 これにより、第2除湿暖房モードでは、図1の網掛けハッチング付き矢印に示すように、圧縮機11→室内凝縮器12→第1膨張弁15a→室外熱交換器16→(第1開閉弁21→)アキュムレータ20→圧縮機11の順に冷媒を循環させるとともに、圧縮機11→室内凝縮器12→(第2開閉弁22→)第2膨張弁15b→室内蒸発器18→蒸発圧力調整弁19→アキュムレータ20→圧縮機11の順に冷媒を循環させる蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the second dehumidifying and heating mode, as indicated by the hatched arrow in FIG. 1, the compressor 11 → the indoor condenser 12 → the first expansion valve 15a → the outdoor heat exchanger 16 → (the first on-off valve 21 →) The refrigerant is circulated in the order of accumulator 20 → compressor 11, and compressor 11 → indoor condenser 12 → (second on-off valve 22 →) second expansion valve 15 b → indoor evaporator 18 → evaporation pressure regulating valve 19 → A vapor compression refrigeration cycle in which refrigerant is circulated in the order of accumulator 20 → compressor 11 is configured.
 つまり、除湿暖房モードでは、室内凝縮器12から流出した冷媒を第1膨張弁15a→室外熱交換器16→圧縮機11の順に流すとともに、第2膨張弁15b→室内蒸発器18→蒸発圧力調整弁19→圧縮機11の順に並列的に流す冷媒回路に切り替えられる。従って、除湿暖房モードの冷媒回路は、特許請求の範囲に記載された第2冷媒回路に対応している。 That is, in the dehumidifying and heating mode, the refrigerant flowing out from the indoor condenser 12 flows in the order of the first expansion valve 15a → the outdoor heat exchanger 16 → the compressor 11, and the second expansion valve 15b → the indoor evaporator 18 → the evaporation pressure adjustment. The refrigerant circuit is switched in parallel in the order of the valve 19 → the compressor 11. Therefore, the refrigerant circuit in the dehumidifying heating mode corresponds to the second refrigerant circuit described in the claims.
 さらに、この冷媒回路の構成で、上述のステップS6~S8にて説明したように、空調制御装置40が、除湿暖房モード時における各種空調制御機器の作動状態を決定する。 Furthermore, with the configuration of this refrigerant circuit, the air conditioning control device 40 determines the operating state of various air conditioning control devices in the dehumidifying heating mode, as described in steps S6 to S8 above.
 例えば、ステップS6にて決定されるエアミックスドア34の電動アクチュエータへ出力される制御信号については、暖房モードと同様に、エアミックスドア34が冷風バイパス通路35を全閉とし、室内蒸発器18通過後の送風空気の全流量が室内凝縮器12側の空気通路を通過するように決定される。 For example, for the control signal output to the electric actuator of the air mix door 34 determined in step S6, the air mix door 34 fully closes the cold air bypass passage 35 and passes through the indoor evaporator 18 as in the heating mode. The total flow rate of the subsequent blown air is determined so as to pass through the air passage on the indoor condenser 12 side.
 また、ステップS7にて決定される第1膨張弁15aへ出力される制御信号については、暖房モードと同様に、第1膨張弁15aへ流入する冷媒の過冷却度が、サイクルの成績係数(COP)が略最大値となるように定められた目標過冷却度に近づくように決定される。 As for the control signal output to the first expansion valve 15a determined in step S7, as in the heating mode, the degree of supercooling of the refrigerant flowing into the first expansion valve 15a is the coefficient of performance (COP) of the cycle. ) Is determined so as to approach the target degree of subcooling determined to be substantially the maximum value.
 一方、第2膨張弁15bへ出力される制御信号については、室内蒸発器18を流通する冷媒流量が適切な流量となるように決定される。具体的には、室内蒸発器18出口側冷媒の過熱度が予め定めた基準過熱度(例えば、5℃)となるように、第2膨張弁15bの絞り開度が調整される。 On the other hand, the control signal output to the second expansion valve 15b is determined so that the flow rate of the refrigerant flowing through the indoor evaporator 18 becomes an appropriate flow rate. Specifically, the throttle opening degree of the second expansion valve 15b is adjusted so that the superheat degree of the refrigerant on the outlet side of the indoor evaporator 18 becomes a predetermined reference superheat degree (for example, 5 ° C.).
 また、ステップS8にて決定される圧縮機11の電動モータへ出力される制御信号については、暖房モードと同様に決定される。 Further, the control signal output to the electric motor of the compressor 11 determined in step S8 is determined in the same manner as in the heating mode.
 従って、除湿暖房モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が、室内凝縮器12へ流入して、室内蒸発器18にて冷却されて除湿された送風空気と熱交換して放熱する。これにより、送風空気が加熱される。 Accordingly, in the refrigeration cycle apparatus 10 in the dehumidifying and heating mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12 and is cooled by the indoor evaporator 18 to be dehumidified and exchanged heat. To dissipate heat. Thereby, blowing air is heated.
 室内凝縮器12から流出した冷媒の流れは、第2開閉弁22が開いているので、第1三方継手13aにて分岐される。第1三方継手13aにて分岐された一方の冷媒は、第1冷媒通路14a側へ流出し、第1膨張弁15aにて低圧冷媒となるまで減圧される。第1膨張弁15aにて減圧された低圧冷媒は、室外熱交換器16へ流入して、送風ファンから送風された外気から吸熱する。 The flow of the refrigerant flowing out of the indoor condenser 12 is branched at the first three-way joint 13a because the second on-off valve 22 is open. One refrigerant branched by the first three-way joint 13a flows out to the first refrigerant passage 14a side and is depressurized until it becomes a low-pressure refrigerant by the first expansion valve 15a. The low-pressure refrigerant decompressed by the first expansion valve 15a flows into the outdoor heat exchanger 16 and absorbs heat from the outside air blown from the blower fan.
 一方、第1三方継手13aにて分岐された他方の冷媒は、第2冷媒通路14b側へ流出する。第2冷媒通路14b側へ流出した冷媒は、逆止弁17の作用によって、室外熱交換器16側へ流出することはなく、第2開閉弁22および第3三方継手13cを介して第2膨張弁15bへ流入する。 On the other hand, the other refrigerant branched by the first three-way joint 13a flows out to the second refrigerant passage 14b side. The refrigerant that has flowed out to the second refrigerant passage 14b side does not flow out to the outdoor heat exchanger 16 side due to the action of the check valve 17, and the second expansion is performed via the second on-off valve 22 and the third three-way joint 13c. It flows into the valve 15b.
 第2膨張弁15bへ流入した冷媒は、低圧冷媒となるまで減圧される。そして、第2膨張弁15bにて減圧された低圧冷媒は、室内蒸発器18へ流入し、送風機32から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。 The refrigerant that has flowed into the second expansion valve 15b is depressurized until it becomes a low-pressure refrigerant. The low-pressure refrigerant decompressed by the second expansion valve 15 b flows into the indoor evaporator 18, absorbs heat from the blown air blown from the blower 32, and evaporates. Thereby, blowing air is cooled.
 さらに、室内蒸発器18から流出した冷媒は、蒸発圧力調整弁19にて減圧されて、室外熱交換器16から流出した冷媒と同等の圧力となる。蒸発圧力調整弁19から流出した冷媒は第4三方継手13dへ流入して、室外熱交換器16から流出した冷媒と合流する。第4三方継手13dにて合流した冷媒は、アキュムレータ20→圧縮機11の吸入側へと流れて再び圧縮機11にて圧縮される。 Furthermore, the refrigerant that has flowed out of the indoor evaporator 18 is decompressed by the evaporation pressure adjusting valve 19, and becomes the same pressure as the refrigerant that has flowed out of the outdoor heat exchanger 16. The refrigerant that has flowed out of the evaporating pressure adjusting valve 19 flows into the fourth three-way joint 13d and merges with the refrigerant that has flowed out of the outdoor heat exchanger 16. The refrigerant merged at the fourth three-way joint 13d flows from the accumulator 20 to the suction side of the compressor 11 and is compressed again by the compressor 11.
 以上の如く、除湿暖房モードでは、室内蒸発器18にて冷却されて除湿された送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことによって、車室内の暖房を行うことができる。 As described above, in the dehumidifying heating mode, the vehicle interior can be heated by heating the blown air that has been cooled and dehumidified by the indoor evaporator 18 and blown out into the vehicle interior. .
 この際、蒸発圧力調整弁19の作用によって、室内蒸発器18における冷媒蒸発温度が基準蒸発温度(本実施形態では、0℃より高い値)以上に維持されるので、室内蒸発器18の着霜を抑制することができる。 At this time, the refrigerant evaporation temperature in the indoor evaporator 18 is maintained at or above the reference evaporation temperature (in this embodiment, a value higher than 0 ° C.) by the action of the evaporation pressure adjusting valve 19. Can be suppressed.
 さらに、室外熱交換器16における冷媒蒸発温度を、室内蒸発器18における冷媒蒸発温度よりも低下させることができるので、室外熱交換器16における冷媒蒸発温度と外気温との温度差を拡大させて、室外熱交換器16における冷媒の吸熱量を増加させることができる。 Furthermore, since the refrigerant evaporation temperature in the outdoor heat exchanger 16 can be lower than the refrigerant evaporation temperature in the indoor evaporator 18, the temperature difference between the refrigerant evaporation temperature in the outdoor heat exchanger 16 and the outside air temperature is increased. The amount of heat absorbed by the refrigerant in the outdoor heat exchanger 16 can be increased.
 その結果、室外熱交換器16における冷媒蒸発温度が、室内蒸発器18における冷媒蒸発温度と同様に基準蒸発温度以上となってしまうサイクル構成よりも、室内凝縮器12における送風空気の加熱能力を増加させることができる。 As a result, the heating capacity of the blown air in the indoor condenser 12 is increased as compared with the cycle configuration in which the refrigerant evaporation temperature in the outdoor heat exchanger 16 becomes equal to or higher than the reference evaporation temperature similarly to the refrigerant evaporation temperature in the indoor evaporator 18. Can be made.
 (c)冷房モード
 冷房モードでは、図10の図表に示すように、空調制御装置40が、第1開閉弁21を閉じ、第2開閉弁22を閉じ、第1膨張弁15aを全開状態とし、第2膨張弁15bを絞り状態とする。
(C) Cooling mode In the cooling mode, as shown in the chart of FIG. 10, the air conditioning control device 40 closes the first on-off valve 21, closes the second on-off valve 22, and fully opens the first expansion valve 15a. The second expansion valve 15b is brought into a throttled state.
 これにより、冷房モードでは、図1の白抜き矢印に示すように、圧縮機11→室内凝縮器12→(第1膨張弁15a→)室外熱交換器16→(逆止弁17→)第2膨張弁15b→室内蒸発器18→蒸発圧力調整弁19→アキュムレータ20→圧縮機11の順に冷媒を循環させる蒸気圧縮式の冷凍サイクルが構成される。従って、冷房モードの冷媒回路は、特許請求の範囲に記載された第1冷媒回路に対応している。 Thereby, in the cooling mode, as indicated by the white arrow in FIG. 1, the compressor 11 → the indoor condenser 12 → (first expansion valve 15 a →) outdoor heat exchanger 16 → (check valve 17 →) second A vapor compression refrigeration cycle in which the refrigerant is circulated in the order of the expansion valve 15b → the indoor evaporator 18 → the evaporation pressure adjusting valve 19 → the accumulator 20 → the compressor 11 is configured. Accordingly, the cooling mode refrigerant circuit corresponds to the first refrigerant circuit recited in the claims.
 さらに、この冷媒回路の構成で、上述のステップS6~S8にて説明したように、空調制御装置40が、冷房モード時における各種空調制御機器の作動状態を決定する。 Furthermore, with the configuration of this refrigerant circuit, as described in the above steps S6 to S8, the air conditioning control device 40 determines the operating state of various air conditioning control devices in the cooling mode.
 例えば、ステップS6にて決定されるエアミックスドア34の電動アクチュエータへ出力される制御信号については、エアミックスドア34が冷風バイパス通路35を全開とし、室内蒸発器18通過後の送風空気の全流量が冷風バイパス通路35を通過するように決定される。なお、冷房モードでは、送風空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34の開度を制御してもよい。 For example, for the control signal output to the electric actuator of the air mix door 34 determined in step S6, the air mix door 34 fully opens the cold air bypass passage 35, and the total flow rate of the blown air after passing through the indoor evaporator 18 Is determined to pass through the cold air bypass passage 35. In the cooling mode, the opening degree of the air mix door 34 may be controlled so that the blown air temperature TAV approaches the target blowing temperature TAO.
 また、ステップS7にて決定される第2膨張弁15bへ出力される制御信号については、第2膨張弁15bへ流入する冷媒の過冷却度が、サイクルの成績係数(COP)が略最大値となるように定められた目標過冷却度に近づくように決定される。 Further, regarding the control signal output to the second expansion valve 15b determined in step S7, the degree of supercooling of the refrigerant flowing into the second expansion valve 15b indicates that the coefficient of performance (COP) of the cycle is substantially the maximum value. It is determined so as to approach the target subcooling degree determined to be.
 また、ステップS8にて決定される圧縮機11の電動モータへ出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器18における目標蒸発圧力PEOを決定する。 Further, the control signal output to the electric motor of the compressor 11 determined in step S8 is determined as follows. First, the target evaporation pressure PEO in the indoor evaporator 18 is determined based on the target outlet temperature TAO with reference to a control map stored in advance in the air conditioning controller 40.
 具体的には、この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発圧力PEOが低下するように決定する。さらに、目標蒸発圧力PEOは、室内蒸発器18の着霜を抑制可能に決定された最低目標蒸発圧力(例えば、0.315Mpa、すなわち冷媒蒸発温度が2℃に相当)以上となるように決定される。従って、本実施形態では、制御ステップS8が、特許請求の範囲に記載された目標蒸発圧力決定部を構成している。 More specifically, in this control map, the target evaporation pressure PEO is determined to decrease as the target blowing temperature TAO decreases. Further, the target evaporation pressure PEO is determined to be equal to or higher than the minimum target evaporation pressure (for example, 0.315 Mpa, that is, the refrigerant evaporation temperature corresponds to 2 ° C.) determined so as to be able to suppress frost formation in the indoor evaporator 18. The Therefore, in this embodiment, control step S8 comprises the target evaporation pressure determination part described in the claim.
 そして、この目標蒸発圧力PEOと低圧側圧力センサ57によって検出された低圧側冷媒圧力Peとの偏差に基づいて、フィードバック制御手法を用いて低圧側冷媒圧力Peが目標蒸発圧力PEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 Based on the deviation between the target evaporation pressure PEO and the low-pressure refrigerant pressure Pe detected by the low-pressure sensor 57, the low-pressure refrigerant pressure Pe approaches the target evaporation pressure PEO using a feedback control method. A control signal output to the electric motor of the compressor 11 is determined.
 ここで、上述した目標吹出温度TAOは、車室内温度を、乗員の所望の温度に相当する車室内設定温度Tsetに保つために決定される値である。従って、本実施形態の冷房モードのように室内蒸発器18にて送風空気を冷却する冷凍サイクル装置10では、目標吹出温度TAOの低下に伴って、サイクルの冷房熱負荷が増加することになる。 Here, the target outlet temperature TAO described above is a value determined in order to maintain the vehicle interior temperature at the vehicle interior set temperature Tset corresponding to the desired temperature of the passenger. Therefore, in the refrigeration cycle apparatus 10 that cools the blown air by the indoor evaporator 18 as in the cooling mode of the present embodiment, the cooling heat load of the cycle increases as the target blowing temperature TAO decreases.
 換言すると、目標吹出温度TAOの低下に伴って、室内蒸発器18に要求される送風空気の冷却能力が増加することになる。つまり、本実施形態の目標蒸発圧力決定部は、室内蒸発器18に要求される送風空気の冷却能力の増加に伴って、目標蒸発圧力PEOを低下させるように決定している。 In other words, as the target blowing temperature TAO decreases, the cooling capacity of the blown air required for the indoor evaporator 18 increases. That is, the target evaporation pressure determination unit of the present embodiment determines to decrease the target evaporation pressure PEO as the cooling capacity of the blown air required for the indoor evaporator 18 increases.
 従って、冷房モード時の冷凍サイクル装置10では、圧縮機11から吐出された高圧冷媒が室内凝縮器12に流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を全閉としているので、室内凝縮器12に流入した冷媒は、殆ど送風空気と熱交換することなく、室内凝縮器12から流出する。 Therefore, in the refrigeration cycle apparatus 10 in the cooling mode, the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12. At this time, since the air mix door 34 fully closes the air passage on the indoor condenser 12 side, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 with almost no heat exchange with the blown air. .
 室内凝縮器12から流出した冷媒は、第2開閉弁22が閉じているので、第1三方継手13aから第1冷媒通路14a側へ流出し、第1膨張弁15aに流入する。この際、第1膨張弁15aが全開状態となっているので、室内凝縮器12から流出した冷媒は、第1膨張弁15aにて減圧されることなく、室外熱交換器16に流入する。 Since the second on-off valve 22 is closed, the refrigerant that has flowed out of the indoor condenser 12 flows out from the first three-way joint 13a toward the first refrigerant passage 14a and flows into the first expansion valve 15a. At this time, since the first expansion valve 15a is fully opened, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 16 without being depressurized by the first expansion valve 15a.
 室外熱交換器16に流入した冷媒は、室外熱交換器16にて送風ファンから送風された外気へ放熱する。室外熱交換器16から流出した冷媒は、第1開閉弁21が閉じているので、第2三方継手13bを介して第3冷媒通路14c側へ流入し、第2膨張弁15bにて低圧冷媒となるまで減圧される。 The refrigerant flowing into the outdoor heat exchanger 16 dissipates heat to the outside air blown from the blower fan in the outdoor heat exchanger 16. Since the first on-off valve 21 is closed, the refrigerant that has flowed out of the outdoor heat exchanger 16 flows into the third refrigerant passage 14c via the second three-way joint 13b, and the low-pressure refrigerant is separated from the refrigerant at the second expansion valve 15b. The pressure is reduced until
 第2膨張弁15bにて減圧された低圧冷媒は、室内蒸発器18へ流入し、送風機32から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。室内蒸発器18から流出した冷媒は、蒸発圧力調整弁19を介してアキュムレータ20へ流入して気液分離される。そして、アキュムレータ20にて分離された気相冷媒が圧縮機11の吸入側から吸入されて再び圧縮機11にて圧縮される。 The low-pressure refrigerant decompressed by the second expansion valve 15 b flows into the indoor evaporator 18, absorbs heat from the blown air blown from the blower 32, and evaporates. Thereby, blowing air is cooled. The refrigerant flowing out of the indoor evaporator 18 flows into the accumulator 20 through the evaporation pressure adjusting valve 19 and is separated into gas and liquid. The gas-phase refrigerant separated by the accumulator 20 is sucked from the suction side of the compressor 11 and compressed again by the compressor 11.
 以上の如く、冷房モードでは、室内蒸発器18にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 As described above, in the cooling mode, the vehicle interior can be cooled by blowing the blown air cooled by the indoor evaporator 18 into the vehicle interior.
 従って、本実施形態の車両用空調装置1によれば、暖房モード、除湿暖房モード、および冷房モードの運転を切り替えることによって、車室内の適切な空調を実現することができる。 Therefore, according to the vehicle air conditioner 1 of the present embodiment, appropriate air conditioning in the passenger compartment can be realized by switching the operation of the heating mode, the dehumidifying heating mode, and the cooling mode.
 ここで、本実施形態の冷凍サイクル装置10のように、冷房モード時に、室内蒸発器18に要求される送風空気の冷却能力の増加に伴って、目標蒸発圧力PEOを低下させる構成では、室内蒸発器18に要求される送風空気の冷却能力の増加に伴って、圧縮機11の冷媒吐出能力(回転数)を増加させる。 Here, as in the refrigeration cycle apparatus 10 of the present embodiment, in the configuration in which the target evaporation pressure PEO is decreased in accordance with the increase in the cooling capacity of the blown air required for the indoor evaporator 18 in the cooling mode, the indoor evaporation is performed. The refrigerant discharge capacity (rotation speed) of the compressor 11 is increased with an increase in the cooling capacity of the blown air required for the compressor 18.
 ところが、蒸発圧力調整弁19を備える冷凍サイクル装置では、図6にて説明したように、圧縮機11の冷媒吐出能力を増加させて室内蒸発器18を流通する冷媒流量を増加させると、蒸発圧力調整弁19の設定圧力Psetが上昇してしまうため、室内蒸発器18における冷媒蒸発圧力(低圧側冷媒圧力Pe)も上昇してしまう。 However, in the refrigeration cycle apparatus including the evaporation pressure adjusting valve 19, if the refrigerant discharge capacity of the compressor 11 is increased and the refrigerant flow rate flowing through the indoor evaporator 18 is increased as described with reference to FIG. Since the set pressure Pset of the regulating valve 19 increases, the refrigerant evaporation pressure (low-pressure side refrigerant pressure Pe) in the indoor evaporator 18 also increases.
 この際、設定圧力Psetが目標蒸発圧力PEOを上回っていると、圧縮機11の冷媒吐出能力を増加させても冷媒蒸発圧力Peを目標蒸発圧力PEOとなるまで低下させることができなくなってしまうといった、いわゆる制御干渉が生じてしまう。 At this time, if the set pressure Pset exceeds the target evaporation pressure PEO, the refrigerant evaporation pressure Pe cannot be lowered until the target evaporation pressure PEO is reached even if the refrigerant discharge capacity of the compressor 11 is increased. So-called control interference occurs.
 このような制御干渉が生じると、室内蒸発器18における冷媒蒸発圧力Peを目標蒸発圧力PEOに近づけるために、圧縮機11の回転数を不必要に上昇させてしまうので、圧縮機11の消費動力を増加させてしまう。さらに、圧縮機11の回転数の不必要な上昇は、圧縮機11の耐久寿命に悪影響を及ぼしてしまう。 When such control interference occurs, the rotational speed of the compressor 11 is unnecessarily increased in order to bring the refrigerant evaporation pressure Pe in the indoor evaporator 18 close to the target evaporation pressure PEO. Will increase. Furthermore, an unnecessary increase in the rotational speed of the compressor 11 adversely affects the durable life of the compressor 11.
 これに対して、本実施形態の冷凍サイクル装置10では、蒸発圧力調整弁19として、図5に示すように、筒状弁体部92の変位量Lの増加に対する冷媒通路面積の増加度合が比較例よりも大きくなっているものを採用している。これにより、図6に示すように、室内蒸発器18を流通する冷媒流量が増加した際の設定圧力Psetの上昇度合を低下させて、設定圧力Psetが目標蒸発圧力PEOよりも低くなるようにしている。 On the other hand, in the refrigeration cycle apparatus 10 of this embodiment, as shown in FIG. 5, the degree of increase in the refrigerant passage area with respect to the increase in the displacement L of the cylindrical valve body 92 is compared as the evaporation pressure adjusting valve 19. The one that is larger than the example is adopted. As a result, as shown in FIG. 6, the degree of increase in the set pressure Pset when the flow rate of the refrigerant flowing through the indoor evaporator 18 is increased is reduced so that the set pressure Pset becomes lower than the target evaporation pressure PEO. Yes.
 そして、冷媒蒸発圧力Peが、設定圧力Psetおよび目標蒸発圧力PEOのうち高い方の値である目標蒸発圧力PEOに近づくように、圧縮機11の作動を制御している。従って、本実施形態の冷凍サイクル装置10では、上述した制御干渉が生じない。その結果、圧縮機11の消費動力を不必要に増加させることなく、室内蒸発器18に要求される冷却能力を発揮させることができる。 Then, the operation of the compressor 11 is controlled so that the refrigerant evaporation pressure Pe approaches the target evaporation pressure PEO which is the higher value of the set pressure Pset and the target evaporation pressure PEO. Therefore, the above-described control interference does not occur in the refrigeration cycle apparatus 10 of the present embodiment. As a result, the cooling capacity required for the indoor evaporator 18 can be exhibited without unnecessarily increasing the power consumption of the compressor 11.
 つまり、本実施形態の冷凍サイクル装置10では、蒸発圧力調整弁19における冷媒流量の増加に対する設定圧力Psetの上昇特性を変化させることによって、圧縮機11の消費動力の不必要な上昇を抑制している。また、本実施形態では、圧縮機11の消費動力の不必要な増加を抑制可能に構成された蒸発圧力調整弁19を備える冷凍サイクル装置を開示していると表現することもできる。 That is, in the refrigeration cycle apparatus 10 of the present embodiment, an unnecessary increase in power consumption of the compressor 11 is suppressed by changing the rising characteristic of the set pressure Pset with respect to the increase in the refrigerant flow rate in the evaporation pressure adjusting valve 19. Yes. Moreover, in this embodiment, it can also be expressed that the refrigerating cycle apparatus provided with the evaporation pressure regulating valve 19 comprised so that suppression of the unnecessary increase of the power consumption of the compressor 11 can be suppressed is disclosed.
 また、本実施形態の蒸発圧力調整弁19では、シリンダ部91cおよび筒状弁体部92によってシリンダ弁を形成し、筒状弁体部92の側面に形成された連通穴92cの形状を、開弁方向へ向かって徐々に縮小する形状にしている。従って、図5の実線で示すような冷媒通路面積の増加度合を容易に実現することができる。 Further, in the evaporation pressure adjusting valve 19 of the present embodiment, a cylinder valve is formed by the cylinder portion 91c and the cylindrical valve body portion 92, and the shape of the communication hole 92c formed in the side surface of the cylindrical valve body portion 92 is opened. The shape is gradually reduced toward the valve direction. Therefore, the degree of increase in the refrigerant passage area as shown by the solid line in FIG. 5 can be easily realized.
 (第2実施形態)
 第1実施形態では、室内蒸発器18を流通する冷媒流量が増加しても、設定圧力Psetが目標蒸発圧力PEOよりも低い値になる蒸発圧力調整弁19を採用した例を説明したが、例えば、蒸発圧力調整弁19の大きさ等に制約がある場合等には、室内蒸発器18を流通する冷媒流量が増加した際に、設定圧力Psetが目標蒸発圧力PEOを上回ってしまうおそれがある。
(Second Embodiment)
Although 1st Embodiment demonstrated the example which employ | adopted the evaporation pressure adjustment valve 19 from which the setting pressure Pset becomes a value lower than the target evaporation pressure PEO even if the refrigerant | coolant flow volume which distribute | circulates the indoor evaporator 18 increased, When there is a restriction on the size of the evaporation pressure adjusting valve 19 or the like, the set pressure Pset may exceed the target evaporation pressure PEO when the flow rate of the refrigerant flowing through the indoor evaporator 18 increases.
 そこで、本実施形態では、蒸発圧力調整弁19として、筒状弁体部92の変位量Lの増加に比例して線形的に冷媒通路面積を増加させるもの(第1実施形態の比較例に相当するもの)を採用し、さらに、第1実施形態に対して、冷房モード時の制御ステップS8における圧縮機11の作動状態の決定を変更している。 Therefore, in the present embodiment, the evaporating pressure adjusting valve 19 linearly increases the refrigerant passage area in proportion to the increase in the displacement amount L of the cylindrical valve body 92 (corresponding to a comparative example of the first embodiment). Further, the determination of the operating state of the compressor 11 in the control step S8 in the cooling mode is changed with respect to the first embodiment.
 具体的には、本実施形態の冷房モード時の制御ステップS8では、図11のフローチャートに示すように、ステップS81にて、運転モードの判定を行う。ステップS81にて、運転モードが暖房モードになっていると判定された場合には、ステップS82へ進み、第1実施形態の暖房モードと同様に圧縮機11の冷媒吐出能力(作動状態)が決定されて、ステップS9へ進む。 Specifically, in the control step S8 in the cooling mode of the present embodiment, the operation mode is determined in step S81 as shown in the flowchart of FIG. If it is determined in step S81 that the operation mode is the heating mode, the process proceeds to step S82, and the refrigerant discharge capacity (operating state) of the compressor 11 is determined as in the heating mode of the first embodiment. Then, the process proceeds to step S9.
 また、ステップS81にて、運転モードが除湿暖房モードになっていると判定された場合には、ステップS83へ進み、第1実施形態の除湿暖房モードと同様に圧縮機11の冷媒吐出能力(作動状態)が決定されて、ステップS9へ進む。さらに、ステップS81にて、運転モードが冷房モードになっていると判定された場合には、ステップS84へ進む。 Further, when it is determined in step S81 that the operation mode is the dehumidifying heating mode, the process proceeds to step S83, and the refrigerant discharge capacity (operation) of the compressor 11 is performed as in the dehumidifying heating mode of the first embodiment. State) is determined, and the process proceeds to step S9. Further, when it is determined in step S81 that the operation mode is the cooling mode, the process proceeds to step S84.
 ステップS84では、第1実施形態と同様に目標蒸発圧力PEOを決定し、続くステップS85では、冷媒蒸発圧力Peが目標蒸発圧力PEOよりも高くなっているか否かが判定される。ステップS85にて、冷媒蒸発圧力Peが目標蒸発圧力PEOよりも高くなっていると判定された場合は、ステップS86へ進み、冷媒蒸発圧力Peが目標蒸発圧力PEOよりも高くなっていないと判定された場合は、ステップS87へ進む。 In step S84, the target evaporation pressure PEO is determined as in the first embodiment, and in subsequent step S85, it is determined whether or not the refrigerant evaporation pressure Pe is higher than the target evaporation pressure PEO. When it is determined in step S85 that the refrigerant evaporation pressure Pe is higher than the target evaporation pressure PEO, the process proceeds to step S86, where it is determined that the refrigerant evaporation pressure Pe is not higher than the target evaporation pressure PEO. If YES, go to step S87.
 ステップS86では、蒸発圧力調整弁19が作動しているか否かが判定される。ステップS86にて、蒸発圧力調整弁19が作動していると判定された場合には、ステップS87へ進み、圧縮機11の回転数を予め定めた所定量分減少させて、ステップS9へ進む。一方、ステップS86にて、蒸発圧力調整弁19が作動していないと判定された場合には、ステップS88へ進み、圧縮機11の回転数を予め定めた所定量分増加させて、ステップS9へ進む。 In step S86, it is determined whether or not the evaporation pressure adjusting valve 19 is operating. If it is determined in step S86 that the evaporation pressure adjusting valve 19 is operating, the process proceeds to step S87, the number of rotations of the compressor 11 is decreased by a predetermined amount, and the process proceeds to step S9. On the other hand, if it is determined in step S86 that the evaporation pressure adjusting valve 19 is not in operation, the process proceeds to step S88, the rotation speed of the compressor 11 is increased by a predetermined amount, and the process proceeds to step S9. move on.
 ここで、「蒸発圧力調整弁19が作動している」とは、図12において、室内蒸発器18を流通する冷媒流量と冷媒蒸発圧力Peによって決定される点が、斜線ハッチングで示す領域にある状態を意味している。より詳細には、蒸発圧力調整弁19が、室内蒸発器18における冷媒蒸発圧力Peを基準蒸発圧力以上に維持するために、冷媒通路面積を最大値よりも縮小させている状態を意味している。 Here, “the evaporating pressure adjusting valve 19 is operating” means that in FIG. 12, the area determined by the flow rate of the refrigerant flowing through the indoor evaporator 18 and the refrigerant evaporating pressure Pe is in the area indicated by hatching. Means state. More specifically, this means that the evaporation pressure adjusting valve 19 reduces the refrigerant passage area below the maximum value in order to maintain the refrigerant evaporation pressure Pe in the indoor evaporator 18 at or above the reference evaporation pressure. .
 また、制御ステップS86における判定は、図12に示すような蒸発圧力調整弁19における冷媒流量と設定圧力Psetとの関係を予め空調制御装置40に記憶させておくことで実現することができる。なお、本実施形態では、第1実施形態の比較例に相当する蒸発圧力調整弁19を採用しているので、図12の太実線で示す設定圧力Psetは、図6の太破線で示す設定圧力Psetと同等となっている。 Further, the determination in the control step S86 can be realized by storing the relationship between the refrigerant flow rate and the set pressure Pset in the evaporation pressure adjusting valve 19 as shown in FIG. In this embodiment, since the evaporation pressure regulating valve 19 corresponding to the comparative example of the first embodiment is adopted, the set pressure Pset shown by the thick solid line in FIG. 12 is the set pressure shown by the thick broken line in FIG. It is equivalent to Pset.
 その他の構成および作動は、第1実施形態と同様である。従って、本実施形態の車両用空調装置1では、第1実施形態と同様に、暖房モード、除湿暖房モード、および冷房モードの運転を切り替えることによって、車室内の空調を実現することができる。 Other configurations and operations are the same as those in the first embodiment. Therefore, in the vehicle air conditioner 1 of the present embodiment, air conditioning in the vehicle compartment can be realized by switching the operation in the heating mode, the dehumidifying heating mode, and the cooling mode, as in the first embodiment.
 さらに、本実施形態の冷房モードでは、冷媒蒸発圧力Peが、目標蒸発圧力PEOおよび設定圧力Psetのうち高い方に近づくように圧縮機11の作動が制御されるので、圧縮機11の消費動力の不必要な増加を抑制することができる。 Furthermore, in the cooling mode of the present embodiment, the operation of the compressor 11 is controlled so that the refrigerant evaporation pressure Pe approaches the higher one of the target evaporation pressure PEO and the set pressure Pset. Unnecessary increase can be suppressed.
 このことをより詳細に説明すると、本実施形態では、制御ステップS85にて、室内蒸発器18における冷媒蒸発圧力Peが目標蒸発圧力PEOより高くなっていると判定され、かつ、制御ステップS86にて、蒸発圧力調整弁19が作動していないと判定された際に、制御ステップS88にて、圧縮機11の回転数(冷媒吐出能力)を増加させている。 This will be explained in more detail. In the present embodiment, it is determined in control step S85 that the refrigerant evaporation pressure Pe in the indoor evaporator 18 is higher than the target evaporation pressure PEO, and in control step S86. When it is determined that the evaporation pressure adjusting valve 19 is not in operation, the rotational speed (refrigerant discharge capacity) of the compressor 11 is increased in control step S88.
 これによれば、目標蒸発圧力PEOが設定圧力Psetよりも高くなっている場合には、冷媒蒸発圧力Peが目標蒸発圧力PEOに近づくように圧縮機11の作動を制御することができる。従って、圧縮機11の消費動力を不必要に増加させることなく、室内蒸発器18に要求される冷却能力を発揮させることができる。 According to this, when the target evaporation pressure PEO is higher than the set pressure Pset, the operation of the compressor 11 can be controlled so that the refrigerant evaporation pressure Pe approaches the target evaporation pressure PEO. Therefore, the cooling capacity required for the indoor evaporator 18 can be exhibited without unnecessarily increasing the power consumption of the compressor 11.
 一方、制御ステップS85にて、室内蒸発器18における冷媒蒸発圧力Peが目標蒸発圧力PEOより高くなっていると判定され、かつ、制御ステップS86にて、蒸発圧力調整弁19が作動していると判定された際に、制御ステップS87にて、圧縮機11の回転数(冷媒吐出能力)を減少させている。 On the other hand, when it is determined in the control step S85 that the refrigerant evaporation pressure Pe in the indoor evaporator 18 is higher than the target evaporation pressure PEO, and the evaporation pressure adjusting valve 19 is activated in the control step S86. When the determination is made, the rotational speed (refrigerant discharge capacity) of the compressor 11 is decreased in the control step S87.
 ここで、前述の如く、蒸発圧力調整弁19は、室内蒸発器18における冷媒蒸発圧力Peを基準蒸発圧力以上に維持する機能を果たすものである。従って、冷媒蒸発圧力Peが目標蒸発圧力PEOより高くなっており、かつ、蒸発圧力調整弁19が作動している運転条件では、蒸発圧力調整弁19の設定圧力Psetが目標蒸発圧力PEOよりも高くなっていることになる。 Here, as described above, the evaporating pressure adjusting valve 19 functions to maintain the refrigerant evaporating pressure Pe in the indoor evaporator 18 at or above the reference evaporating pressure. Therefore, under the operating conditions in which the refrigerant evaporation pressure Pe is higher than the target evaporation pressure PEO and the evaporation pressure adjustment valve 19 is operating, the set pressure Pset of the evaporation pressure adjustment valve 19 is higher than the target evaporation pressure PEO. It will be.
 このような運転条件では、本実施形態のように圧縮機11の回転数を低下させることで、冷媒蒸発圧力Peを上昇させてしまうものの、室内蒸発器18を流通する冷媒流量を低下させて、設定圧力Psetを低下させることができる。さらに、蒸発圧力調整弁19を作動していない状態(冷媒通路面積が最大となっている状態)として、冷媒蒸発圧力Peを設定圧力Psetに近づけることができる。 Under such operating conditions, although the refrigerant evaporation pressure Pe is increased by reducing the rotational speed of the compressor 11 as in the present embodiment, the flow rate of the refrigerant flowing through the indoor evaporator 18 is decreased, The set pressure Pset can be reduced. Furthermore, the refrigerant evaporating pressure Pe can be brought close to the set pressure Pset in a state where the evaporating pressure adjusting valve 19 is not operated (a state where the refrigerant passage area is maximized).
 つまり、本実施形態の冷房モードでは、設定圧力Psetが目標蒸発圧力PEOよりも高くなっている場合には、蒸発圧力調整弁19が非作動状態となるように、すなわち、蒸発圧力調整弁19が内部の冷媒通路面積を減少させることを抑制するように、圧縮機11の作動を制御して、冷媒蒸発圧力Peを設定圧力Psetに近づけている。 That is, in the cooling mode of the present embodiment, when the set pressure Pset is higher than the target evaporation pressure PEO, the evaporation pressure adjustment valve 19 is deactivated, that is, the evaporation pressure adjustment valve 19 is The operation of the compressor 11 is controlled so as to suppress the reduction of the internal refrigerant passage area, and the refrigerant evaporation pressure Pe is brought close to the set pressure Pset.
 従って、冷媒蒸発圧力Peを目標蒸発圧力PEOに近づけようとすることによって生じる制御干渉を回避することができ、圧縮機11の消費動力を不必要に増加させてしまうことを容易に抑制できる。 Therefore, it is possible to avoid control interference caused by trying to bring the refrigerant evaporating pressure Pe closer to the target evaporating pressure PEO, and it is possible to easily suppress an unnecessary increase in power consumption of the compressor 11.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)上述の各実施形態では、本開示の冷凍サイクル装置10を、電気自動車に搭載される車両用空調装置1に適用した例を説明したが、本開示の適用はこれに限定されない。例えば、車両走行用の駆動力を内燃機関(エンジン)から得る通常の車両に搭載される車両用空調装置に適用してもよいし、走行用電動モータおよび内燃機関の双方から走行用の駆動力を得るハイブリッド車両に搭載される車両用空調装置に適用してもよい。 (1) In each of the above-described embodiments, the example in which the refrigeration cycle apparatus 10 of the present disclosure is applied to the vehicle air conditioner 1 mounted on an electric vehicle has been described, but the application of the present disclosure is not limited thereto. For example, the driving force for driving the vehicle may be applied to a vehicle air conditioner mounted on a normal vehicle that obtains from the internal combustion engine (engine), or the driving force for driving from both the driving electric motor and the internal combustion engine. You may apply to the vehicle air conditioner mounted in the hybrid vehicle which obtains.
 また、内燃機関を有する車両に適用する場合は、送風空気の補助加熱装置として内燃機関の冷却水を熱源として送風空気を加熱するヒータコアを設けてもよい。さらに、本開示の冷凍サイクル装置10は、車両用に限定されることなく、据え置き型の空調装置等に適用してもよい。 When applied to a vehicle having an internal combustion engine, a heater core that heats the blown air using the cooling water of the internal combustion engine as a heat source may be provided as an auxiliary heating device for the blown air. Furthermore, the refrigeration cycle apparatus 10 of the present disclosure is not limited to a vehicle, and may be applied to a stationary air conditioner or the like.
 (2)上述の各実施形態では、暖房モード、除湿暖房モード、および冷房モードの冷媒回路に切替可能な冷凍サイクル装置10について説明したが、少なくとも上述の実施形態の冷房モードと同様の構成で、同様に作動する冷凍サイクル装置であれば、圧縮機11の消費動力抑制効果を得ることができる。 (2) In each of the embodiments described above, the refrigeration cycle apparatus 10 that can be switched to the refrigerant circuit in the heating mode, the dehumidifying heating mode, and the cooling mode has been described, but at least the configuration similar to the cooling mode of the above-described embodiment, If it is a refrigeration cycle apparatus that operates in the same manner, the power consumption suppression effect of the compressor 11 can be obtained.
 また、上述の各実施形態で説明した冷凍サイクル装置10において、第1、第2開閉弁21、22を閉じて冷房モードと同様の冷媒回路に切り替え、さらに、目標吹出温度TAOに応じて、第1膨張弁15aおよび第2膨張弁15bの絞り開度を変更することによって、車室内の除湿暖房を行う補助除湿暖房モードの運転を行うようにしてもよい。 Further, in the refrigeration cycle apparatus 10 described in each of the above-described embodiments, the first and second on-off valves 21 and 22 are closed and switched to the refrigerant circuit similar to that in the cooling mode, and further according to the target outlet temperature TAO. You may make it operate | move in the auxiliary | assistant dehumidification heating mode which performs dehumidification heating of a vehicle interior by changing the aperture opening degree of the 1st expansion valve 15a and the 2nd expansion valve 15b.
 具体的には、補助除湿暖房モードでは、目標吹出温度TAOの上昇に伴って、第1膨張弁15aの絞り開度を減少させるとともに、第2膨張弁15bの絞り開度を増加させる。これにより、室外熱交換器16を放熱器として機能させる状態から蒸発器として機能させる状態へ切り替えて、室内凝縮器12における送風空気の加熱能力を変化させてもよい。 Specifically, in the auxiliary dehumidifying and heating mode, the throttle opening of the first expansion valve 15a is decreased and the throttle opening of the second expansion valve 15b is increased as the target blowing temperature TAO increases. Thereby, the outdoor heat exchanger 16 may be switched from a state of functioning as a radiator to a state of functioning as an evaporator, and the heating capacity of the blown air in the indoor condenser 12 may be changed.
 (3)上述の各実施形態では、冷房モード時に、低圧側冷媒圧力Peが目標蒸発圧力PEOに近づくように、圧縮機11の作動を制御した例を説明したが、もちろん、冷媒圧力の検出値に代えて、冷媒温度の検出値を用いて圧縮機11の作動を制御してもよい。 (3) In each of the above-described embodiments, the example in which the operation of the compressor 11 is controlled so that the low-pressure refrigerant pressure Pe approaches the target evaporation pressure PEO in the cooling mode has been described. Instead of this, the operation of the compressor 11 may be controlled using the detected value of the refrigerant temperature.
 例えば、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器18における目標蒸発温度TEOを決定し、蒸発器温度センサ56によって検出された冷媒蒸発温度(蒸発器温度)Tefinが目標蒸発温度TEOに近づくように圧縮機の作動を制御してもよい。なお、目標蒸発温度TEOは、目標吹出温度TAOの低下に伴って、低下するように決定すればよい。 For example, the target evaporation temperature TEO in the indoor evaporator 18 is determined based on the target blowing temperature TAO with reference to a control map stored in the air conditioning control device 40 in advance, and the refrigerant evaporation detected by the evaporator temperature sensor 56 is determined. The operation of the compressor may be controlled so that the temperature (evaporator temperature) Tefin approaches the target evaporation temperature TEO. In addition, what is necessary is just to determine target evaporation temperature TEO so that it may fall with the fall of target blowing temperature TAO.
 また、上述の第2実施形態の制御ステップS86では、蒸発圧力調整弁19における冷媒流量と設定圧力Psetとの関係を予め空調制御装置40に記憶させておくことによって、蒸発圧力調整弁19が作動しているか否かを判定した例を説明したが、蒸発圧力調整弁19が作動しているか否かを判定はこれに限定されない。 In the control step S86 of the second embodiment described above, the relationship between the refrigerant flow rate and the set pressure Pset in the evaporating pressure adjusting valve 19 is stored in advance in the air conditioning control device 40, whereby the evaporating pressure adjusting valve 19 is activated. However, the determination as to whether or not the evaporation pressure adjusting valve 19 is operating is not limited to this.
 例えば、蒸発圧力調整弁19の出口側冷媒圧力Psoを検出する出口側低圧圧力センサを設けて、低圧側冷媒圧力Peと出口側冷媒圧力Psoとの圧力差(Pe-Peo)が予め定めた基準圧力差以上となっている際に、蒸発圧力調整弁19が作動していると判定してもよい。 For example, an outlet-side low pressure sensor for detecting the outlet-side refrigerant pressure Pso of the evaporation pressure adjusting valve 19 is provided, and a pressure reference (Pe−Peo) between the low-pressure side refrigerant pressure Pe and the outlet-side refrigerant pressure Pso is a predetermined reference. When the pressure difference is greater than or equal to the pressure difference, it may be determined that the evaporation pressure adjustment valve 19 is operating.
 (4)上述の各実施形態では、暖房モード時および除湿暖房モード時に、室内凝縮器12にて高圧冷媒と送風空気とを熱交換させることによって、送風空気を加熱した例を説明したが、室内凝縮器12に代えて、例えば、熱媒体を循環させる熱媒体循環回路を設け、この熱媒体循環回路に高圧冷媒と熱媒体とを熱交換させる水-冷媒熱交換器、および水-冷媒熱交換器にて加熱された熱媒体と送風空気とを熱交換させて送風空気を加熱する加熱用熱交換器等を配置してもよい。 (4) In each of the above-described embodiments, the example in which the blown air is heated by exchanging heat between the high-pressure refrigerant and the blown air in the indoor condenser 12 during the heating mode and the dehumidifying heating mode has been described. Instead of the condenser 12, for example, a heat medium circulation circuit for circulating the heat medium is provided, and a water-refrigerant heat exchanger for exchanging heat between the high-pressure refrigerant and the heat medium in the heat medium circulation circuit and water-refrigerant heat exchange are provided. A heat exchanger or the like for heating that heats the blown air by exchanging heat between the heat medium heated by the vessel and the blown air may be arranged.
 放熱器として水-冷媒熱交換器を採用し、高圧冷媒と送風空気とを熱媒体を介して間接的に熱交換させてもよい。さらに、内燃機関を有する車両に適用する場合は、内燃機関の冷却水を熱媒体として、熱媒体循環回路を流通させるようにしてもよい。また、電気自動車においては、バッテリや電気機器を冷却する冷却水を熱媒体として、熱媒体循環回路を流通させるようにしてもよい。 A water-refrigerant heat exchanger may be adopted as a heat radiator, and high-pressure refrigerant and blown air may be indirectly heat-exchanged via a heat medium. Furthermore, when applied to a vehicle having an internal combustion engine, the heat medium circulation circuit may be circulated using cooling water of the internal combustion engine as a heat medium. Moreover, in an electric vehicle, you may make it distribute | circulate a heat-medium circulation circuit by using the cooling water which cools a battery and an electric equipment as a heat medium.
 (5)上述の各実施形態では、圧縮機11として電動圧縮機を採用した例を説明した、内燃機関等から回転駆動力を得る可変容量型の圧縮機を採用してもよい。また、上述の各実施形態では、各構成部材を金属で形成した蒸発圧力調整弁19を採用した例を説明したが、例えば、筒状弁体部92が樹脂にて形成されたものを採用してもよいし、ベローズ93に代えて、有底円筒状(カップ状)のゴムにて形成されたベロフラムを備えるものを採用してもよい。 (5) In each of the above-described embodiments, a variable capacity compressor that obtains a rotational driving force from an internal combustion engine or the like, which is an example in which an electric compressor is employed as the compressor 11, may be employed. Further, in each of the above-described embodiments, the example in which the evaporation pressure adjusting valve 19 in which each constituent member is formed of metal has been described. However, for example, a cylindrical valve body portion 92 formed of resin is used. Alternatively, instead of the bellows 93, one having a bellophram formed of a bottomed cylindrical (cup-shaped) rubber may be employed.
 (6)上述の各実施形態では、制御ステップS8にて目標蒸発圧力決定部を構成した例を説明したが、もちろん、別の制御ステップにて目標蒸発圧力決定部を構成してもよい。例えば、制御ステップS3において、目標吹出温度TAOとともに、目標蒸発圧力PEOを決定してもよい。この場合は、制御ステップS3によって、目標蒸発圧力決定部が構成されることになる。 (6) In each of the above-described embodiments, the example in which the target evaporation pressure determining unit is configured in the control step S8 has been described. Of course, the target evaporation pressure determining unit may be configured in another control step. For example, in the control step S3, the target evaporation pressure PEO may be determined together with the target blowing temperature TAO. In this case, the target evaporation pressure determination unit is configured by the control step S3.
 (7)上述の各実施形態では、空調制御プログラムを実行することによって、各運転モードを切り替えた例を説明したが、各運転モードの切り替えはこれに限定されない。例えば、操作パネルに各運転モードを設定する運転モード設定スイッチを設け、当該運転モード設定スイッチの操作信号に応じて、暖房モードと冷房モードおよび除湿暖房モードを切り替えるようにしてもよい。 (7) In each of the above-described embodiments, the example in which each operation mode is switched by executing the air conditioning control program has been described. However, the switching of each operation mode is not limited to this. For example, an operation mode setting switch for setting each operation mode may be provided on the operation panel, and the heating mode, the cooling mode, and the dehumidifying heating mode may be switched according to an operation signal of the operation mode setting switch.

Claims (9)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒と外気とを熱交換させる室外熱交換器(16)と、
     前記室外熱交換器(16)から流出した冷媒を減圧させる減圧装置(15b)と、
     前記減圧装置(15b)にて減圧された低圧冷媒と熱交換対象流体とを熱交換させて前記低圧冷媒を蒸発させる蒸発器(18)と、
     前記蒸発器(18)における冷媒蒸発圧力(Pe)が予め定めた基準蒸発圧力以上となるように調整する蒸発圧力調整弁(19)と、
     前記蒸発器(18)における目標蒸発圧力(PEO)を決定する目標蒸発圧力決定部(S8)と、
     前記圧縮機(11)の作動を制御する吐出能力制御部(40a)と、を備え、
     前記目標蒸発圧力決定部(S8)は、前記蒸発器(18)に要求される前記熱交換対象流体の冷却能力の増加に伴って、前記目標蒸発圧力(PEO)を低下させるように決定するものであり、
     前記蒸発圧力調整弁(19)は、前記蒸発器(18)を流通する冷媒流量の増加に伴って、設定圧力(Pset)が上昇する構成になっており、
     前記吐出能力制御部(40a)が前記圧縮機(11)の作動を制御した際に、前記冷媒蒸発圧力が前記目標蒸発圧力(PEO)および前記設定圧力(Pset)のうち高い方に近づくように調整される冷凍サイクル装置。
    A compressor (11) for compressing and discharging the refrigerant;
    An outdoor heat exchanger (16) for exchanging heat between the refrigerant discharged from the compressor (11) and the outside air;
    A decompression device (15b) for decompressing the refrigerant flowing out of the outdoor heat exchanger (16);
    An evaporator (18) for exchanging heat between the low-pressure refrigerant decompressed by the decompression device (15b) and the heat exchange target fluid, and evaporating the low-pressure refrigerant;
    An evaporation pressure adjusting valve (19) for adjusting the refrigerant evaporation pressure (Pe) in the evaporator (18) to be equal to or higher than a predetermined reference evaporation pressure;
    A target evaporation pressure determining unit (S8) for determining a target evaporation pressure (PEO) in the evaporator (18);
    A discharge capacity control section (40a) for controlling the operation of the compressor (11),
    The target evaporation pressure determining unit (S8) determines the target evaporation pressure (PEO) to decrease with an increase in the cooling capacity of the heat exchange target fluid required for the evaporator (18). And
    The evaporating pressure adjusting valve (19) is configured such that the set pressure (Pset) increases with an increase in the flow rate of the refrigerant flowing through the evaporator (18).
    When the discharge capacity control unit (40a) controls the operation of the compressor (11), the refrigerant evaporating pressure approaches the higher one of the target evaporating pressure (PEO) and the set pressure (Pset). Regulated refrigeration cycle equipment.
  2.  前記蒸発圧力調整弁(19)は、前記冷媒蒸発圧力(Pe)の上昇に伴って、内部の冷媒通路面積が増加する構成になっており、
     前記冷媒蒸発圧力(Pe)の上昇に伴って前記冷媒通路面積が増加する際の増加度合は、前記冷媒蒸発圧力(Pe)の上昇に比例して線形的に前記冷媒通路面積が増加する際の増加度合よりも大きくなっている請求項1に記載の冷凍サイクル装置。
    The evaporating pressure adjusting valve (19) is configured such that the internal refrigerant passage area increases as the refrigerant evaporating pressure (Pe) increases.
    The degree of increase when the refrigerant passage area increases with an increase in the refrigerant evaporation pressure (Pe) is that when the refrigerant passage area increases linearly in proportion to the increase in the refrigerant evaporation pressure (Pe). The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is larger than the degree of increase.
  3.  前記蒸発圧力調整弁(19)は、筒状に形成されたシリンダ部(91c)、および有底筒状に形成されて前記シリンダ部(91c)の内部に摺動可能に配置された筒状弁体部(92)を有し、
     前記筒状弁体部(92)の筒状部(92a)の側面には、内周側と外周側とを連通させる連通穴(92c)が形成されており、
     前記連通穴(92c)の形状は、前記筒状弁体部(92)が前記冷媒通路面積を増加させる側に変位する方向に向かって、徐々に縮小する形状に形成されている請求項2に記載の冷凍サイクル装置。
    The evaporating pressure adjusting valve (19) includes a cylinder portion (91c) formed in a cylindrical shape, and a cylindrical valve formed in a bottomed cylindrical shape and slidably disposed inside the cylinder portion (91c). Having a body (92),
    A communication hole (92c) for communicating the inner peripheral side and the outer peripheral side is formed on the side surface of the cylindrical portion (92a) of the cylindrical valve body portion (92),
    The shape of the communication hole (92c) is formed in a shape that gradually decreases in a direction in which the cylindrical valve body (92) is displaced toward the side of increasing the refrigerant passage area. The refrigeration cycle apparatus described.
  4.  前記吐出能力制御部(40a)は、前記蒸発圧力調整弁(19)が、内部の冷媒通路面積を減少させることを抑制するように、前記圧縮機(11)の作動を制御するものである請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。 The discharge capacity control section (40a) controls the operation of the compressor (11) so as to prevent the evaporation pressure regulating valve (19) from decreasing the internal refrigerant passage area. Item 4. The refrigeration cycle apparatus according to any one of Items 1 to 3.
  5.  前記圧縮機(11)から吐出された高圧冷媒と前記熱交換対象流体とを熱交換させる放熱器(12)と、
     前記室外熱交換器(16)へ流入する冷媒を減圧させる室外器用減圧装置(15a)と、を備える請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
    A radiator (12) for exchanging heat between the high-pressure refrigerant discharged from the compressor (11) and the fluid for heat exchange;
    The refrigeration cycle apparatus according to any one of claims 1 to 4, further comprising: an outdoor unit decompression device (15a) that decompresses the refrigerant flowing into the outdoor heat exchanger (16).
  6.  サイクルの冷媒回路を切り替える冷媒回路切替部(21、22)を備え、
     前記放熱器(12)は、前記高圧冷媒と前記蒸発器(18)通過後の前記熱交換対象流体とを熱交換させるものであり、
     前記冷媒回路切替部(21、22)は、少なくとも前記圧縮機(11)→前記室外熱交換器(16)→前記減圧装置(15b)→前記蒸発器(18)→前記蒸発圧力調整弁(19)→前記圧縮機(11)の順に冷媒を循環させる第1冷媒回路、および前記圧縮機(11)→前記放熱器(12)→前記減圧装置(15b)→前記蒸発器(18)→前記蒸発圧力調整弁(19)→前記圧縮機(11)の順に冷媒を循環させるとともに、前記圧縮機(11)→前記放熱器(12)→前記室外器用減圧装置(15a)→前記室外熱交換器(16)→前記圧縮機(11)の順に冷媒を循環させる第2冷媒回路を切替可能に構成されている請求項5に記載の冷凍サイクル装置。
    A refrigerant circuit switching unit (21, 22) for switching the refrigerant circuit of the cycle;
    The radiator (12) exchanges heat between the high-pressure refrigerant and the heat exchange target fluid after passing through the evaporator (18).
    The refrigerant circuit switching unit (21, 22) includes at least the compressor (11) → the outdoor heat exchanger (16) → the pressure reducing device (15b) → the evaporator (18) → the evaporation pressure adjusting valve (19 ) → the first refrigerant circuit for circulating the refrigerant in the order of the compressor (11), and the compressor (11) → the radiator (12) → the pressure reducing device (15b) → the evaporator (18) → the evaporation The refrigerant is circulated in the order of the pressure regulating valve (19) → the compressor (11), and the compressor (11) → the radiator (12) → the outdoor unit pressure reducing device (15a) → the outdoor heat exchanger ( The refrigeration cycle apparatus according to claim 5, wherein the second refrigerant circuit for circulating the refrigerant in the order of 16) → the compressor (11) is switchable.
  7.  
     前記蒸発圧力調整弁(19)は、前記冷媒蒸発圧力(Pe)の上昇に伴って、内部の冷媒通路面積が増加され、
     前記冷媒蒸発圧力(Pe)の上昇に伴って前記冷媒通路面積が増加する際の増加度合は、前記冷媒蒸発圧力(Pe)の上昇に比例して、変位量がゼロの時点の接線の傾きを有した線形的に前記冷媒通路面積が増加する際の増加度合よりも大きくなっている請求項1に記載の冷凍サイクル装置。

    The evaporating pressure adjusting valve (19) has an increased internal refrigerant passage area as the refrigerant evaporating pressure (Pe) increases.
    The degree of increase when the refrigerant passage area increases as the refrigerant evaporating pressure (Pe) increases is proportional to the increase in the refrigerant evaporating pressure (Pe), and the slope of the tangent at the time when the displacement amount is zero. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is larger than a degree of increase when the refrigerant passage area increases linearly.
  8.  前記蒸発圧力調整弁(19)は、筒状に形成されたシリンダ部(91c)、および有底筒上に形成されて前記シリンダ部(91c)の内部に摺動可能に配置された筒状弁体部(92)を有し、
    前記筒状弁体部(92)の筒状部の側面には、内周側と外周側とを連通さえる連通穴(92c)が形成されており、
    前記連通孔(92c)の形状は、前記筒状弁体部(92)と前記シリンダ部(91c)とが軸方向において相対変位することにより、冷媒通路面積が変化する形状である請求項2記載の冷凍サイクル装置。
    The evaporating pressure adjusting valve (19) includes a cylinder part (91c) formed in a cylindrical shape, and a cylindrical valve formed on the bottomed cylinder and slidably disposed inside the cylinder part (91c). Having a body (92),
    A communication hole (92c) that connects the inner peripheral side and the outer peripheral side is formed on the side surface of the cylindrical portion of the cylindrical valve body portion (92),
    The shape of the communication hole (92c) is a shape in which the area of the refrigerant passage is changed by the relative displacement of the cylindrical valve body portion (92) and the cylinder portion (91c) in the axial direction. Refrigeration cycle equipment.
  9.  前記連通孔(92c)は、前記筒状弁体部(92)の周方向に配置された複数の三角形状開口であり、それぞれの三角形開口の一辺は前記筒状弁体部(92)の同一円周に設け、それぞれの三角形開口の他の二辺に比べて、前記蒸発圧力調整弁(19)の流入口(91a)側に配置される請求項8記載の冷凍サイクル装置。 The communication hole (92c) is a plurality of triangular openings arranged in the circumferential direction of the cylindrical valve body (92), and one side of each triangular opening is the same as that of the cylindrical valve body (92). The refrigeration cycle apparatus according to claim 8, wherein the refrigeration cycle apparatus is provided on a circumference and disposed closer to the inlet (91a) of the evaporation pressure regulating valve (19) than the other two sides of each triangular opening.
PCT/JP2015/000094 2014-01-21 2015-01-12 Freeze cycling device WO2015111379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-008372 2014-01-21
JP2014008372A JP2015137778A (en) 2014-01-21 2014-01-21 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2015111379A1 true WO2015111379A1 (en) 2015-07-30

Family

ID=53681194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000094 WO2015111379A1 (en) 2014-01-21 2015-01-12 Freeze cycling device

Country Status (2)

Country Link
JP (1) JP2015137778A (en)
WO (1) WO2015111379A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023632A1 (en) 2015-08-03 2017-02-09 Hill Phoenix, Inc. C02 refrigeration system with direct c02 heat exchange
WO2019044353A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Refrigeration cycle
WO2019065013A1 (en) * 2017-09-28 2019-04-04 株式会社デンソー Refrigeration cycle device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582843B2 (en) * 2015-10-06 2019-10-02 株式会社デンソー Refrigeration cycle equipment
JP6699460B2 (en) * 2016-08-30 2020-05-27 株式会社デンソー Refrigeration cycle equipment
JP2023005492A (en) * 2021-06-29 2023-01-18 株式会社デンソー Evaporation pressure regulation valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723747Y2 (en) * 1979-01-10 1982-05-22
JPH05288186A (en) * 1992-04-06 1993-11-02 Zexel Corp Inlet valve for compressor
JP2006214396A (en) * 2005-02-07 2006-08-17 Sanden Corp Opening control valve
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
JP2012225637A (en) * 2011-04-04 2012-11-15 Denso Corp Refrigeration cycle device
WO2013172201A1 (en) * 2012-05-14 2013-11-21 株式会社デンソー Flow rate adjustment valve for refrigeration cycle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723747Y2 (en) * 1979-01-10 1982-05-22
JPH05288186A (en) * 1992-04-06 1993-11-02 Zexel Corp Inlet valve for compressor
JP2006214396A (en) * 2005-02-07 2006-08-17 Sanden Corp Opening control valve
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
JP2012225637A (en) * 2011-04-04 2012-11-15 Denso Corp Refrigeration cycle device
WO2013172201A1 (en) * 2012-05-14 2013-11-21 株式会社デンソー Flow rate adjustment valve for refrigeration cycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023632A1 (en) 2015-08-03 2017-02-09 Hill Phoenix, Inc. C02 refrigeration system with direct c02 heat exchange
EP3341662A4 (en) * 2015-08-03 2019-03-27 Hill Phoenix Inc. Co2 refrigeration system with direct co2 heat exchange
US10502461B2 (en) 2015-08-03 2019-12-10 Hill Phoeniz, Inc. CO2 refrigeration system with direct CO2 heat exchange for building temperature control
WO2019044353A1 (en) * 2017-08-31 2019-03-07 株式会社デンソー Refrigeration cycle
JP2019045034A (en) * 2017-08-31 2019-03-22 株式会社デンソー Refrigeration cycle device
WO2019065013A1 (en) * 2017-09-28 2019-04-04 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2015137778A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5949648B2 (en) Refrigeration cycle equipment
JP6277888B2 (en) Refrigeration cycle equipment
JP6011375B2 (en) Refrigeration cycle equipment
US10538138B2 (en) Air conditioning device for vehicle
CN109642756B (en) Refrigeration cycle device
WO2020203150A1 (en) Refrigeration cycle device
JP5445569B2 (en) Air conditioner for vehicles
WO2015111379A1 (en) Freeze cycling device
JP6711258B2 (en) Refrigeration cycle equipment
WO2013145537A1 (en) Air conditioner device for vehicle
WO2018096869A1 (en) Vehicle air conditioning device
JP6225709B2 (en) Air conditioner
JP5817660B2 (en) Refrigeration cycle equipment
JP6390431B2 (en) Refrigeration cycle equipment
JP5935714B2 (en) Refrigeration cycle equipment
WO2017187790A1 (en) Coolant quantity insufficiency sensing device and refrigeration cycle device
JP6601307B2 (en) Refrigeration cycle equipment
JP6699460B2 (en) Refrigeration cycle equipment
JP2016008792A (en) Heat pump cycle device
JP5888126B2 (en) Air conditioner for vehicles
WO2017154429A1 (en) Air-conditioning control device for controlling vehicle air-conditioning device
JP2018063070A (en) Ejector type refrigeration cycle
JP2017202737A (en) Air conditioner
JP2016176609A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740916

Country of ref document: EP

Kind code of ref document: A1