JP2013174402A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2013174402A
JP2013174402A JP2012039912A JP2012039912A JP2013174402A JP 2013174402 A JP2013174402 A JP 2013174402A JP 2012039912 A JP2012039912 A JP 2012039912A JP 2012039912 A JP2012039912 A JP 2012039912A JP 2013174402 A JP2013174402 A JP 2013174402A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
gas
expansion means
intermediate pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012039912A
Other languages
Japanese (ja)
Other versions
JP5971548B2 (en
Inventor
Tsutomu Tanaka
努 田中
Junji Okamura
隼次 岡村
Atsushi Todoroki
篤 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012039912A priority Critical patent/JP5971548B2/en
Publication of JP2013174402A publication Critical patent/JP2013174402A/en
Application granted granted Critical
Publication of JP5971548B2 publication Critical patent/JP5971548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating device using a refrigerant, such as carbon dioxide, the refrigerant device being capable of sending a sufficient amount of a liquid refrigerant to an expansion means for expanding the refrigerant flowing into an evaporator.SOLUTION: In a refrigerating device R, a refrigerant circuit 1 is comprised of a compressor 11, a gas cooler 28, a main expansion means 46A and an evaporator 47A, and a high-pressure side has a supercritical pressure. A high-pressure refrigerant issued from a gas cooler is expanded, decreasing its pressure to an intermediate pressure, and is separated into a saturated liquid refrigerant and a gas refrigerant. Then, the gas refrigerant is expanded for exchanging heat with the saturated liquid refrigerant, the saturated liquid refrigerant is supplied to the main expansion means and the gas refrigerant is returned to the compressor.

Description

本発明は、圧縮手段と、ガスクーラと、膨張手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus in which a refrigerant circuit is configured by a compression unit, a gas cooler, an expansion unit, and an evaporator, and a high pressure side is a supercritical pressure.

従来よりこの種冷凍装置は、圧縮手段、ガスクーラ、膨張手段(絞り手段)等から冷凍サイクルが構成され、圧縮手段で圧縮された冷媒がガスクーラにて放熱し、膨張手段にて減圧膨張された後、蒸発器にて冷媒を蒸発させて、このときの冷媒の蒸発により周囲の空気を冷却するものとされていた。近年、この種冷凍装置では、自然環境問題などからフロン系冷媒が使用できなくなってきている。このため、フロン冷媒の代替品として自然冷媒である二酸化炭素を使用するものが開発されている(例えば、特許文献1参照)。   Conventionally, in this type of refrigeration system, a refrigeration cycle is constituted by a compression means, a gas cooler, an expansion means (throttle means), etc., and the refrigerant compressed by the compression means radiates heat at the gas cooler and is decompressed and expanded by the expansion means The refrigerant is evaporated by an evaporator, and the ambient air is cooled by evaporation of the refrigerant at this time. In recent years, chlorofluorocarbon refrigerants cannot be used in this type of refrigeration system due to natural environmental problems. For this reason, what uses the carbon dioxide which is a natural refrigerant | coolant is developed as a substitute of a fluorocarbon refrigerant | coolant (for example, refer patent document 1).

二酸化炭素冷媒は、臨界点が圧力7.38MPaと高圧であるのに加え、これが+31.1℃という日常的な温度で生じるという特有の物性を有している。そのため、通常の気温では、二酸化炭素冷媒を使用した冷凍装置の高圧側での放熱運転は、臨界点以上の超臨界圧力で行われる場合が多い。臨界状態での二酸化炭素の放熱は、液化という状態が無いため、ガスクーラ内の冷媒の温度に依存する密度と容積により圧力が決定される。   Carbon dioxide refrigerant has a specific physical property that it occurs at a daily temperature of + 31.1 ° C. in addition to the critical point being a high pressure of 7.38 MPa. For this reason, at normal temperatures, the heat radiation operation on the high pressure side of the refrigeration apparatus using carbon dioxide refrigerant is often performed at a supercritical pressure above the critical point. Since the heat release of carbon dioxide in the critical state has no liquefaction state, the pressure is determined by the density and volume depending on the temperature of the refrigerant in the gas cooler.

この状態の冷媒を膨張弁等で膨張させると、蒸発器入口での冷媒の乾き度が高くなり、液冷媒の比率が低くなるため、冷却能力を確保するためには、蒸発器への冷媒の供給量を増加させる必要がある。また、蒸発器への冷媒供給量が多くなると、配管内を流れる冷媒の速度が上がるため、圧力損失が増大し、蒸発器入口と出口の間で温度勾配が生じ、熱交換効率が悪化する。   When the refrigerant in this state is expanded by an expansion valve or the like, the dryness of the refrigerant at the evaporator inlet increases and the ratio of the liquid refrigerant decreases. Therefore, in order to ensure the cooling capacity, the refrigerant is not supplied to the evaporator. It is necessary to increase the supply amount. Further, when the amount of refrigerant supplied to the evaporator increases, the speed of the refrigerant flowing in the pipe increases, so that the pressure loss increases, a temperature gradient occurs between the evaporator inlet and outlet, and the heat exchange efficiency deteriorates.

また、臨界状態であった冷媒は膨張して臨界圧力以下に下がると、液/ガス2相の平衡状態になり、それが蒸発器に流入すると、蒸発器の配管内は同温度の液とガスの気泡で満たされた状態となる。そのため、管壁付近での熱交換はあるものの、管中心部では冷媒への熱移動が困難になる。これらの問題から、吸熱効果を上げるために蒸発器を大型化し、圧力損失を抑えるために配管数を増やしたり複雑化する必要が生じ、コストが高騰する問題があった。   In addition, when the refrigerant in the critical state expands and falls below the critical pressure, it reaches a liquid / gas two-phase equilibrium state, and when it flows into the evaporator, the evaporator pipe is filled with liquid and gas at the same temperature. It becomes a state filled with bubbles. Therefore, although there is heat exchange near the tube wall, heat transfer to the refrigerant becomes difficult at the center of the tube. From these problems, the evaporator has to be enlarged in order to increase the endothermic effect, and the number of pipes has to be increased or complicated in order to suppress the pressure loss.

また、高圧側が超臨界圧力となる二酸化炭素冷媒を用いた場合は、外気温度が上昇して例えば+25℃〜30℃以上となると、上述のガスクーラ内では冷媒は液化せず、高圧側は超臨界の状態のガスサイクル運転が行われることとなる。そのため、超臨界ガスとなった高圧側では冷媒の圧力や密度が高いため、それを収納するために径の大きな所謂受液器を設けることは冷凍機の機内のスペースが大きくなり、現実的には無理がある。更に、冷媒の状態が所謂気体(ガス)といった状態ではないので、上記受液器内では気液分離することができない。そのため、この受液器では循環冷媒量の調整を行うことができなくなり、冷媒回路中の過剰なガス冷媒によって高圧側圧力が異常に上昇するという問題が考えられる。   Further, when a carbon dioxide refrigerant having a supercritical pressure on the high pressure side is used, when the outside air temperature rises to, for example, + 25 ° C. to 30 ° C. or higher, the refrigerant is not liquefied in the gas cooler, and the high pressure side is supercritical. In this state, the gas cycle operation is performed. Therefore, since the pressure and density of the refrigerant are high on the high pressure side that has become a supercritical gas, providing a so-called liquid receiver having a large diameter to accommodate it increases the space inside the refrigerator, which is realistic. Is impossible. Furthermore, since the state of the refrigerant is not so-called gas (gas), gas-liquid separation cannot be performed in the receiver. For this reason, in this liquid receiver, it is impossible to adjust the amount of circulating refrigerant, and there is a problem that the high-pressure side pressure abnormally increases due to excessive gas refrigerant in the refrigerant circuit.

そこで、ガスクーラで放熱させた臨界冷媒の一部を分離して膨張させ、分離した残りの冷媒を熱交換器で過冷却し、膨張弁に送る乾き度を下げる。また、冷媒回路の高圧側に膨張弁を介して冷媒量調整タンクを接続し、高圧側の圧力が異常に上昇したときは、この冷媒量調整タンクに冷媒を回収し、圧力が低下した場合には冷媒回路中に放出する方法が考えられている(例えば、特許文献2参照)。   Therefore, a part of the critical refrigerant radiated by the gas cooler is separated and expanded, the remaining separated refrigerant is supercooled by the heat exchanger, and the dryness sent to the expansion valve is lowered. In addition, when a refrigerant amount adjustment tank is connected to the high pressure side of the refrigerant circuit via an expansion valve and the pressure on the high pressure side rises abnormally, the refrigerant is collected in this refrigerant amount adjustment tank and the pressure drops. Is considered to be discharged into the refrigerant circuit (for example, see Patent Document 2).

図4に係る従来の冷凍装置100の冷媒回路図を示し、図5にそのp−h線図を示す。従来の冷凍装置100は、冷凍機103と複数台のショーケース105A、105Bとから成り、冷凍機103と各ショーケース105A、105Bとが、冷媒配管107及び109により連結されている。そして、冷媒回路は高圧側の冷媒圧力がその臨界圧力以上(超臨界)となる二酸化炭素を冷媒として用いる。   A refrigerant circuit diagram of a conventional refrigeration apparatus 100 according to FIG. 4 is shown, and a ph diagram thereof is shown in FIG. The conventional refrigeration apparatus 100 includes a refrigerator 103 and a plurality of showcases 105A and 105B. The refrigerator 103 and the showcases 105A and 105B are connected by refrigerant pipes 107 and 109. And a refrigerant circuit uses the carbon dioxide from which the refrigerant | coolant pressure of a high voltage | pressure side becomes more than the critical pressure (supercritical) as a refrigerant | coolant.

冷凍機103は、第1及び第2の回転圧縮要素118、120を有する圧縮機111を備える。第1の回転圧縮要素118は、冷媒配管109を介して冷媒回路の低圧側から圧縮機111に吸い込まれる低圧冷媒を圧縮し、中間圧まで昇圧して吐出し、第2の回転圧縮要素120は、第1の回転圧縮要素118で圧縮されて吐出された中間圧の冷媒を更に吸い込み、圧縮して高圧まで昇圧し、冷媒回路の高圧側に吐出する。   The refrigerator 103 includes a compressor 111 having first and second rotary compression elements 118 and 120. The first rotary compression element 118 compresses the low-pressure refrigerant sucked into the compressor 111 from the low-pressure side of the refrigerant circuit via the refrigerant pipe 109, boosts it to an intermediate pressure, and discharges it. The second rotary compression element 120 The intermediate pressure refrigerant compressed and discharged by the first rotary compression element 118 is further sucked in, compressed to a high pressure, and discharged to the high pressure side of the refrigerant circuit.

第1の回転圧縮要素118の低圧部(図5のa)に吸い込まれた低圧(LP:通常運転状態で2.5MPa程)の冷媒ガスは、当該第1の回転圧縮要素118により中間圧(MP:通常運転状態で5MPa程)に昇圧され(図5のb)、インタークーラ138に流入する。インタークーラ138は、第1の回転圧縮要素118から吐出された中間圧の冷媒を空冷するものであり、インタークーラ138でた冷媒は第2の回転圧縮要素120に吸い込まれる(図5のc)。そして、この第2の回転圧縮要素120に吸い込まれた中間圧(MP)の冷媒ガスは、当該第2の回転圧縮要素120により2段目の圧縮が行われて高温高圧(HP:通常運転状態で8MPa程の超臨界圧力)の冷媒ガスとなる(図5のd)。   The refrigerant gas of low pressure (LP: about 2.5 MPa in the normal operation state) sucked into the low pressure portion (a in FIG. 5) of the first rotary compression element 118 is subjected to intermediate pressure ( MP: The pressure is increased to about 5 MPa in a normal operation state (b in FIG. 5), and flows into the intercooler 138. The intercooler 138 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 118, and the refrigerant in the intercooler 138 is sucked into the second rotary compression element 120 (c in FIG. 5). . Then, the intermediate pressure (MP) refrigerant gas sucked into the second rotary compression element 120 is compressed in the second stage by the second rotary compression element 120 and is subjected to high temperature and high pressure (HP: normal operation state). The refrigerant gas has a supercritical pressure of about 8 MPa) (d in FIG. 5).

そして、第2の回転圧縮要素120の吐出側はオイルセパレータ144、ガスクーラ146、分流器182、スプリット熱交換器180を介して冷媒配管107に接続される。ガスクーラ146にはそれを空冷するガスクーラ用送風機147が配設されている。ショーケース105A、105Bは、店舗内等に設置されて冷媒配管107及び109に並列に接続される。各ショーケース105A、5Bは、電動膨張弁からなる主膨張手段162A、162Bと、蒸発器163A、163Bをそれぞれ備えている。主膨張手段162A、162Bは冷媒配管107に接続され、各蒸発器163A、163Bは冷媒配管109に接続されて最終的に圧縮機111の第1の回転圧縮要素118に連通接続されている。   The discharge side of the second rotary compression element 120 is connected to the refrigerant pipe 107 via an oil separator 144, a gas cooler 146, a flow divider 182, and a split heat exchanger 180. The gas cooler 146 is provided with a gas cooler blower 147 for air-cooling it. The showcases 105A and 105B are installed in a store or the like and connected in parallel to the refrigerant pipes 107 and 109. Each showcase 105A, 5B is provided with main expansion means 162A, 162B comprising electric expansion valves and evaporators 163A, 163B, respectively. The main expansion means 162A and 162B are connected to the refrigerant pipe 107, and the evaporators 163A and 163B are connected to the refrigerant pipe 109 and finally connected to the first rotary compression element 118 of the compressor 111.

分流器182は、ガスクーラ146から出た冷媒(図5のe)を第1の冷媒流と第2の冷媒流とに分流し、第1の冷媒流は電動膨張弁からなる補助膨張手段183を介してスプリット熱交換器180の第1の流路180Aに流れ、これが補助回路となる。また、第2の冷媒流はスプリット熱交換器180の第2の流路180Bを経て冷媒配管107に流れ、これが主回路となる。即ち、冷凍機103からショーケース105A、105Bに冷媒は高圧で搬送されることになる。   The flow divider 182 divides the refrigerant (e in FIG. 5) output from the gas cooler 146 into a first refrigerant flow and a second refrigerant flow, and the first refrigerant flow passes through the auxiliary expansion means 183 including an electric expansion valve. Through the first flow path 180A of the split heat exchanger 180, which becomes an auxiliary circuit. In addition, the second refrigerant flow passes through the second flow path 180B of the split heat exchanger 180 and flows into the refrigerant pipe 107, which becomes the main circuit. That is, the refrigerant is conveyed from the refrigerator 103 to the showcases 105A and 105B at a high pressure.

スプリット熱交換器180は、補助膨張手段183で減圧された第1の冷媒流(図5のg)を第1の流路180Aに流し、分流器182で分流された第2の冷媒流を第2の流路180Bに流してそれらの熱交換を行わせる。それにより、第2の冷媒流は第1の流路180Aを流れる第1の冷媒流により冷却されるので、主膨張手段162A、162Bに向かう第2の冷媒流(図5のf)を過冷却することが可能となり、蒸発器163A、163Bの入口側における比エンタルピを小さくすることができる。そして、主膨張手段162A、162Bで減圧された第2の冷媒流(図5のh)は蒸発器163A、163Bに流入して蒸発し、このときの吸熱作用でショーケース105A、105Bの庫内を冷蔵温度に冷却する。   The split heat exchanger 180 flows the first refrigerant flow (g in FIG. 5) decompressed by the auxiliary expansion means 183 to the first flow path 180A, and the second refrigerant flow divided by the flow divider 182 The two flow paths 180B are used to exchange heat. Thereby, since the second refrigerant flow is cooled by the first refrigerant flow flowing through the first flow path 180A, the second refrigerant flow (f in FIG. 5) toward the main expansion means 162A and 162B is supercooled. Therefore, the specific enthalpy on the inlet side of the evaporators 163A and 163B can be reduced. Then, the second refrigerant flow (h in FIG. 5) decompressed by the main expansion means 162A, 162B flows into the evaporators 163A, 163B and evaporates, and the inside of the showcases 105A, 105B is absorbed by the endothermic action at this time. Cool to refrigeration temperature.

図5は係る冷凍装置100のp−h線図である。図4の冷媒回路中に(a)〜(i)の符号で示した箇所が、図5中の(a)〜(i)に対応している。スプリット熱交換器180における過冷却は図5中の(e)から(f)で示す部分であり、その分(h)から(a)までの冷凍効果が増大される効果がある。尚、第1の流路180Aを出た冷媒(図5のi)はインタークーラ138から出た冷媒に合流される。   FIG. 5 is a ph diagram of the refrigeration apparatus 100. In the refrigerant circuit of FIG. 4, locations indicated by reference numerals (a) to (i) correspond to (a) to (i) in FIG. 5. The supercooling in the split heat exchanger 180 is a portion indicated by (e) to (f) in FIG. 5, and the refrigeration effect from (h) to (a) is increased accordingly. Note that the refrigerant (i in FIG. 5) exiting the first flow path 180 </ b> A is merged with the refrigerant exiting the intercooler 138.

スプリット熱交換器180の下流側の冷媒配管107には、第1の連通回路201を介して冷媒量調整タンク200が接続されている。冷媒量調整タンク200は、所定の容積を有するものであり、第1の連通回路201には、電動膨張弁202が介設されている。冷媒量調整タンク200には、当該タンク200内上部と、インタークーラ138出口とを連通する第2の連通回路203が接続され、第2の連通回路203には、電磁弁204が介設されている。また、冷媒量調整タンク200には、下部とインタークーラ138出口とを連通する第3の連通回路205が接続され、第3の連通回路205には、電磁弁206とキャピラリチューブ207が介設されている。   A refrigerant amount adjustment tank 200 is connected to the refrigerant pipe 107 on the downstream side of the split heat exchanger 180 via a first communication circuit 201. The refrigerant amount adjustment tank 200 has a predetermined volume, and an electric expansion valve 202 is interposed in the first communication circuit 201. The refrigerant amount adjustment tank 200 is connected to a second communication circuit 203 that communicates the upper part of the tank 200 and the outlet of the intercooler 138. The second communication circuit 203 is provided with an electromagnetic valve 204. Yes. The refrigerant quantity adjustment tank 200 is connected to a third communication circuit 205 that communicates the lower portion with the outlet of the intercooler 138. The third communication circuit 205 is provided with an electromagnetic valve 206 and a capillary tube 207. ing.

そして、高圧側の圧力が異常に上昇したときは、電動膨張弁202を介して冷媒量調整タンク200に高圧冷媒を回収し、高圧上昇を抑える。そして、高圧側の圧力が低下したら電磁弁206を開いて圧縮機111の第2の回転圧縮要素120の吸込側に放出するものであった。   When the pressure on the high pressure side abnormally increases, the high pressure refrigerant is collected in the refrigerant amount adjustment tank 200 via the electric expansion valve 202 to suppress the increase in high pressure. When the pressure on the high pressure side decreases, the electromagnetic valve 206 is opened and discharged to the suction side of the second rotary compression element 120 of the compressor 111.

特公平7−18602号公報Japanese Patent Publication No. 7-18602 特開2011−133205号公報JP 2011-133205 A

しかしながら、上記のように冷媒を高圧で搬送する冷凍装置では、冷媒配管107を超臨界状態の冷媒が流れるため、サイトグラスなどで冷媒充填量を正確に判断することが難しくなる。また、冷媒は外気温度が高くなる夏季には膨張し、冬季には収縮するが、二酸化炭素等の冷媒ではこの変化が大きくなるため、冷媒量調整タンクで回収/放出しても調整し切れなくなる。そのため、冷凍能力の確保を考慮して多めに充填した場合、運転状況によっては、やはり高圧側圧力が急激に上昇するようになる。そして、高圧側圧力が大きく変化することにより、ショーケース105A、105B側の主膨張手段162A、162B前後の差圧も大きく変化し、電動膨張弁により制御し切れなくなる。   However, in the refrigeration apparatus that conveys the refrigerant at a high pressure as described above, since the refrigerant in the supercritical state flows through the refrigerant pipe 107, it is difficult to accurately determine the refrigerant filling amount with a sight glass or the like. In addition, the refrigerant expands in the summer when the outside air temperature becomes high and contracts in the winter. However, this change becomes large in the refrigerant such as carbon dioxide, so that it cannot be adjusted even if it is recovered / released by the refrigerant amount adjustment tank. . For this reason, when a large amount is charged in consideration of securing the refrigerating capacity, the high-pressure side pressure also suddenly rises depending on the operating conditions. When the high-pressure side pressure changes greatly, the differential pressures before and after the main expansion means 162A, 162B on the showcase 105A, 105B side also change greatly, and cannot be completely controlled by the electric expansion valve.

更に、外気温度が高い環境下ではスプリット熱交換器180における過冷却効果が殆ど期待できなくなることが分かった。即ち、補助膨張手段183を中間圧で制御しているため、冷蔵のショーケース等では中間圧が高く、温度があまり低くなくなり、スプリット熱交換器180における過冷却が行えなくなる。   Further, it has been found that the supercooling effect in the split heat exchanger 180 can hardly be expected in an environment where the outside air temperature is high. That is, since the auxiliary expansion means 183 is controlled by the intermediate pressure, the intermediate pressure is high in a refrigerated showcase or the like, the temperature is not so low, and the subcooling in the split heat exchanger 180 cannot be performed.

例えば、外気温度が+20℃のとき、中間圧(MP)は5MPa、+30℃のとき6MPaに達する。そして、スプリット熱交換器180における第1の冷媒流による冷却温度は実測値+15℃〜+23℃となっていて、スプリット熱交換器180を出た第2の冷媒流の温度は+20℃〜+30℃であった。これは外気温度と殆ど同一であり、スプリット熱交換器180における過冷却効果が小さいことが実測で分かっている。   For example, when the outside air temperature is + 20 ° C., the intermediate pressure (MP) reaches 5 MPa, and when it is + 30 ° C., it reaches 6 MPa. The cooling temperature by the first refrigerant flow in the split heat exchanger 180 is an actually measured value + 15 ° C. to + 23 ° C., and the temperature of the second refrigerant flow leaving the split heat exchanger 180 is + 20 ° C. to + 30 ° C. Met. This is almost the same as the outside air temperature, and it has been found by actual measurement that the subcooling effect in the split heat exchanger 180 is small.

また、スプリット熱交換器180からの第1の冷媒流で第1の回転圧縮要素118の吐出温度を制御していたため、供給冷媒量が変動し、スプリット熱交換器180における安定した過冷却を得ることができない。   Further, since the discharge temperature of the first rotary compression element 118 is controlled by the first refrigerant flow from the split heat exchanger 180, the amount of the supplied refrigerant fluctuates, and stable subcooling in the split heat exchanger 180 is obtained. I can't.

更に、従来の冷凍装置では冷凍機103の保護を目的として冷媒量は不足気味で運転されていた。そして、ショーケース105A、105Bに供給される冷媒は臨界圧からの膨張となるので、スプリット熱交換器180で十分な過冷却が行えない場合、やはり主膨張手段162A、162Bにおける冷媒の乾き度が高くなり、蒸発器163A、163Bにおいて十分な冷却効果が得られないという問題が発生する。   Furthermore, the conventional refrigeration apparatus is operated with a shortage of refrigerant for the purpose of protecting the refrigerator 103. Since the refrigerant supplied to the showcases 105A and 105B expands from the critical pressure, if sufficient subcooling cannot be performed by the split heat exchanger 180, the dryness of the refrigerant in the main expansion means 162A and 162B is also high. As a result, the problem arises that a sufficient cooling effect cannot be obtained in the evaporators 163A and 163B.

本発明は、係る従来の技術的課題を解決するためになされたものであり、二酸化炭素等の冷媒を用いる冷凍装置において、蒸発器に流入する冷媒を膨張させる膨張手段に十分な量の飽和液冷媒を送ることができる冷凍装置を提供するものである。   The present invention has been made to solve the conventional technical problem, and in a refrigeration apparatus using a refrigerant such as carbon dioxide, a sufficient amount of saturated liquid for expansion means for expanding the refrigerant flowing into the evaporator. A refrigeration apparatus capable of sending a refrigerant is provided.

上記課題を解決するために、請求項1の発明の冷凍装置は、圧縮手段と、ガスクーラと、膨張手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となるものにおいて、ガスクーラから出た高圧冷媒を膨張させて中間圧に下げ、飽和液冷媒とガス冷媒とに分離した後、ガス冷媒を膨張させて飽和液冷媒と熱交換させ、当該飽和液冷媒を膨張手段に供給し、ガス冷媒を圧縮手段に戻すことを特徴とする。   In order to solve the above-mentioned problem, the refrigeration apparatus of the invention of claim 1 is a gas cooler in which a refrigerant circuit is composed of a compression means, a gas cooler, an expansion means, and an evaporator, and the high pressure side becomes a supercritical pressure. The high-pressure refrigerant discharged from the refrigerant is expanded to lower the intermediate pressure and separated into the saturated liquid refrigerant and the gas refrigerant, and then the gas refrigerant is expanded to exchange heat with the saturated liquid refrigerant, and the saturated liquid refrigerant is supplied to the expansion means. The gas refrigerant is returned to the compression means.

請求項2の発明の冷凍装置は、圧縮手段と、ガスクーラと、主膨張手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となるものにおいて、ガスクーラと主膨張手段の間に接続された中圧制御装置を備え、この中圧制御装置は、ガスクーラから出た高圧冷媒を膨張させて中間圧に下げる高圧膨張手段と、この高圧膨張手段にて膨張された冷媒を貯留し、飽和液冷媒とガス冷媒とに分離する中圧受液器と、この中圧受液器内の飽和液冷媒が流入する液冷媒流路と中間受液器内のガス冷媒が流入するガス冷媒流路とを有して両流路を流れる冷媒を熱交換させるガス冷熱回収器と、中圧受液器内のガス冷媒を膨張させた後、ガス冷熱回収器のガス冷媒流路に流入させる中圧膨張手段とを有し、ガス冷熱回収器の液冷媒流路から出た冷媒を主膨張手段に流入させ、ガス冷媒流路から出た冷媒を圧縮手段に戻すことを特徴とする。   In the refrigeration apparatus according to the second aspect of the present invention, the refrigerant circuit is constituted by the compression means, the gas cooler, the main expansion means, and the evaporator, and the high pressure side becomes the supercritical pressure. Between the gas cooler and the main expansion means, A medium pressure control device connected to the medium pressure control device, the high pressure expansion means for expanding the high pressure refrigerant discharged from the gas cooler to lower the intermediate pressure, and the refrigerant expanded by the high pressure expansion means; An intermediate pressure receiver that separates into saturated liquid refrigerant and gas refrigerant, a liquid refrigerant channel into which saturated liquid refrigerant in the intermediate pressure receiver flows, and a gas refrigerant channel into which gas refrigerant in the intermediate receiver flows And a medium-temperature expansion means for expanding the gas refrigerant in the intermediate-pressure receiver and then flowing into the gas refrigerant flow path of the gas-cooled heat recovery device And refrigerant discharged from the liquid refrigerant flow path of the gas cold heat recovery device To flow into the main expansion means, and returning to the compression means of the refrigerant exiting the gas refrigerant flow path.

請求項3の発明の冷凍装置は、上記発明においてガス冷熱回収器のガス冷媒流路を出た冷媒を、蒸発器を出た冷媒と共に圧縮手段に吸い込ませることを特徴とする。   A refrigeration apparatus according to a third aspect of the invention is characterized in that, in the above invention, the refrigerant that has exited the gas refrigerant flow path of the gas cold heat recovery device is sucked into the compression means together with the refrigerant that has exited the evaporator.

請求項4の発明の冷凍装置は、請求項2又は請求項3の発明において中圧膨張手段に流入するガス冷媒の圧力を検出する中圧膨張手段入口圧力センサと、この中圧膨張手段入口圧力センサの出力に基づいて中圧膨張手段を制御する制御手段とを備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a refrigeration apparatus according to the second or third aspect of the present invention, wherein the intermediate pressure expansion means inlet pressure sensor detects the pressure of the gas refrigerant flowing into the intermediate pressure expansion means, and the intermediate pressure expansion means inlet pressure. And a control means for controlling the medium pressure expansion means based on the output of the sensor.

請求項5の発明の冷凍装置は、請求項2乃至請求項4の発明においてガスクーラから出た冷媒の温度と圧力を検出するガスクーラ出口温度センサ及びガスクーラ出口圧力センサと、各センサの出力に基づいて高圧膨張手段を制御する制御手段とを備えたことを特徴とする。   A refrigeration apparatus according to a fifth aspect of the present invention is based on the gas cooler outlet temperature sensor and the gas cooler outlet pressure sensor for detecting the temperature and pressure of the refrigerant discharged from the gas cooler in the inventions of the second to fourth aspects, and the output of each sensor. And a control means for controlling the high-pressure expansion means.

請求項6の発明の冷凍装置は、請求項2乃至請求項5の発明において圧縮手段及びガスクーラを含む冷凍機ユニットと、主膨張手段及び蒸発器を含む利用側ユニットとを備え、冷凍機ユニットは、中圧制御装置も含むことを特徴とする。   A refrigeration apparatus according to a sixth aspect of the present invention includes the refrigerator unit including the compression means and the gas cooler and the utilization side unit including the main expansion means and the evaporator according to the second to fifth aspects of the invention. The intermediate pressure control device is also included.

請求項7の発明の冷凍装置は、請求項2乃至請求項5の発明において圧縮手段及びガスクーラを含む冷凍機ユニットと、主膨張手段及び蒸発器を含む利用側ユニットとを備え、この利用側ユニットは、中圧制御装置も含むことを特徴とする。   According to a seventh aspect of the present invention, there is provided a refrigeration apparatus comprising: the refrigeration unit including the compression means and the gas cooler according to the second to fifth aspects of the invention; and the utilization side unit including the main expansion means and the evaporator. Includes an intermediate pressure control device.

請求項8の発明の冷凍装置は、上記各発明において冷媒として二酸化炭素を使用したことを特徴とする。   The refrigeration apparatus according to the invention of claim 8 is characterized in that carbon dioxide is used as a refrigerant in each of the above inventions.

圧縮手段にて圧縮され、ガスクーラから出た冷媒を膨張させて圧力を中間圧に下げると、飽和液冷媒とガス冷媒とになる。本発明では、ガスクーラから出た冷媒を膨張させてその圧力を中間圧に下げ、その後、飽和液冷媒とガス冷媒とに分離し、飽和液冷媒を主膨張手段に供給する。そして、気液分離したガス冷媒を膨張させて低温の液冷媒とガス冷媒にする。それを主膨張手段に向かう飽和液冷媒と熱交換させるので、ガス冷媒の冷熱を利用して主膨張手段に向かう液冷媒を過冷却することができるようになる。   When the refrigerant compressed by the compression means and discharged from the gas cooler is expanded to reduce the pressure to an intermediate pressure, a saturated liquid refrigerant and a gas refrigerant are obtained. In the present invention, the refrigerant discharged from the gas cooler is expanded to reduce its pressure to an intermediate pressure, and then separated into a saturated liquid refrigerant and a gas refrigerant, and the saturated liquid refrigerant is supplied to the main expansion means. The gas-liquid separated gas refrigerant is expanded to form a low-temperature liquid refrigerant and a gas refrigerant. Since it is heat-exchanged with the saturated liquid refrigerant toward the main expansion means, the liquid refrigerant toward the main expansion means can be supercooled using the cold heat of the gas refrigerant.

これにより、ガスクーラから出た冷媒の状態に拘わらず、過冷却状態で主膨張手段に十分な量の冷媒を供給し、蒸発器に流入する冷媒の乾き度を小さくすることができるようになり、請求項8の発明の如き二酸化炭素冷媒を用いた冷凍装置の蒸発器において大きな冷却効果を得ることが可能となる。   This makes it possible to supply a sufficient amount of refrigerant to the main expansion means in the supercooled state regardless of the state of the refrigerant that has come out of the gas cooler, and to reduce the dryness of the refrigerant flowing into the evaporator, A large cooling effect can be obtained in the evaporator of the refrigeration apparatus using the carbon dioxide refrigerant as in the invention of claim 8.

特に、分離したガス冷媒が有する冷却能力を蒸発器での冷却能力に置換することができるようになるので、ガスクーラから出た冷媒のガス比率が高い場合でも、蒸発器における冷却効果の向上を図ることが可能となる。   In particular, since the cooling capacity of the separated gas refrigerant can be replaced with the cooling capacity in the evaporator, the cooling effect in the evaporator is improved even when the gas ratio of the refrigerant discharged from the gas cooler is high. It becomes possible.

更に、請求項2の発明の如くガスクーラから出た冷媒を高圧膨張手段にて膨張させてその圧力を中間圧に下げ、その後、中圧受液器に貯留して飽和液冷媒とガス冷媒とに分離するようにすれば、冷媒量の調整効果も得ることができるようになり、冷媒回路内に多めに冷媒を充填することも可能となる。更にまた、中圧受液器にて高圧側圧力の変動も吸収することが可能となるので、一定の中間圧にて飽和液冷媒を主膨張手段に供給することができるようになり、蒸発器における安定した過熱度制御を行うことができるようになる。   Further, the refrigerant discharged from the gas cooler is expanded by the high-pressure expansion means as in the second aspect of the invention, and the pressure is lowered to the intermediate pressure, and then stored in the intermediate pressure receiver and separated into the saturated liquid refrigerant and the gas refrigerant. By doing so, it is possible to obtain an effect of adjusting the amount of refrigerant, and it is also possible to fill a larger amount of refrigerant in the refrigerant circuit. Furthermore, since it becomes possible to absorb the fluctuation of the high pressure side pressure in the intermediate pressure receiver, the saturated liquid refrigerant can be supplied to the main expansion means at a constant intermediate pressure. Stable superheat control can be performed.

この場合、請求項2の発明の如く高圧膨張手段と、中圧受液器と、中圧受液器で分離された飽和液冷媒が流入する液冷媒流路とガス冷媒が流入するガス冷媒流路とを有して両流路を流れる冷媒を熱交換させるガス冷熱回収器と、中圧受液器で分離されたガス冷媒を膨張させた後、ガス冷熱回収器のガス冷媒流路に流入させる中圧膨張手段を有する中圧制御装置を構成し、この中圧制御装置が請求項6の発明の如く、圧縮手段及びガスクーラを含む冷凍機ユニットに含まれるようにすれば、主膨張手段及び蒸発器を含む利用側ユニット側に中圧制御装置を設ける場合に比して、利用側ユニット側における設置スペースを削減することが可能となる。   In this case, as in the second aspect of the invention, the high-pressure expansion means, the intermediate pressure receiver, the liquid refrigerant flow path into which the saturated liquid refrigerant separated by the intermediate pressure receiver flows, and the gas refrigerant flow path into which the gas refrigerant flows A gas cold heat recovery device that exchanges heat between the refrigerant flowing through both flow paths and an intermediate pressure that expands the gas refrigerant separated by the intermediate pressure receiver and then flows into the gas refrigerant flow path of the gas cold heat recovery device If an intermediate pressure control device having an expansion means is configured, and this intermediate pressure control device is included in a refrigerator unit including a compression means and a gas cooler as in the invention of claim 6, the main expansion means and the evaporator are provided. The installation space on the use side unit side can be reduced as compared with the case where the intermediate pressure control device is provided on the use side unit side.

逆に、請求項7の発明の如く中圧制御装置が利用側ユニットに含まれるようにすれば、店舗に設置されるショーケースユニットと冷凍機ユニットの如く、主膨張手段及び蒸発器を含む利用側ユニットと冷凍機ユニットとが離間して設置される場合に、冷凍機ユニットと利用側ユニットとを接続する長い冷媒配管を高圧で冷媒搬送することができるようになるので、充填冷媒量を削減することができるようになる。   Conversely, if the medium pressure control device is included in the use side unit as in the invention of claim 7, the use including the main expansion means and the evaporator as in the showcase unit and the refrigerator unit installed in the store. When the side unit and the refrigerator unit are installed apart from each other, a long refrigerant pipe connecting the refrigerator unit and the use side unit can be conveyed at high pressure, reducing the amount of refrigerant charged Will be able to.

また、請求項3の発明の如くガス冷熱回収器のガス冷媒流路を出た冷媒を、蒸発器を出た冷媒と共に圧縮手段に吸い込ませるようにすれば、中圧受液器内のガス冷媒の圧力を中圧膨張手段により低圧まで落とすことができるようになり、ガス冷媒による高い過冷却効果を期待できるようになる。   If the refrigerant exiting the gas refrigerant flow path of the gas cold heat recovery device is sucked into the compression means together with the refrigerant exiting the evaporator as in the invention of claim 3, the gas refrigerant in the intermediate pressure receiver The pressure can be lowered to a low pressure by the medium pressure expansion means, and a high supercooling effect by the gas refrigerant can be expected.

更に、請求項4の発明の如く中圧膨張手段に流入するガス冷媒の圧力を検出する中圧膨張手段入口圧力センサと、この中圧膨張手段入口圧力センサの出力に基づいて中圧膨張手段を制御する制御手段とを設けたので、この制御手段により、例えば中圧膨張手段に流入するガス冷媒の圧力が下がり過ぎないように中圧膨張手段を制御することにより、ガス冷熱回収器における飽和液冷媒の過冷却効果を維持することが可能となる。   Further, the intermediate pressure expansion means inlet pressure sensor for detecting the pressure of the gas refrigerant flowing into the intermediate pressure expansion means as in the fourth aspect of the invention, and the intermediate pressure expansion means based on the output of the intermediate pressure expansion means inlet pressure sensor. The control means for controlling the saturated refrigerant in the gas cold heat recovery unit by controlling the intermediate pressure expansion means so that the pressure of the gas refrigerant flowing into the intermediate pressure expansion means does not drop too much. It becomes possible to maintain the supercooling effect of the refrigerant.

更にまた、請求項5の発明の如くガスクーラから出た冷媒の温度と圧力を検出するガスクーラ出口温度センサ及びガスクーラ出口圧力センサと、各センサの出力に基づいて高圧膨張手段を制御する制御手段とを設けたので、この制御手段により、例えばガスクーラ内の冷媒の流速が速くなり過ぎないように高圧膨張手段を制御することにより、ガスクーラにおける冷媒の放熱能力を確保することが可能となる。   Furthermore, as in the invention of claim 5, there are provided a gas cooler outlet temperature sensor and a gas cooler outlet pressure sensor for detecting the temperature and pressure of the refrigerant discharged from the gas cooler, and a control means for controlling the high pressure expansion means based on the output of each sensor. Since it is provided, by this control means, for example, by controlling the high-pressure expansion means so that the flow rate of the refrigerant in the gas cooler does not become too fast, it is possible to ensure the heat dissipation capability of the refrigerant in the gas cooler.

本発明を適用した実施例の冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating device of the example to which the present invention is applied. 図1の冷凍装置のp−h線図である。FIG. 2 is a ph diagram of the refrigeration apparatus in FIG. 1. 図1の冷凍機ユニットの電気回路の機能ブロック図である。It is a functional block diagram of the electric circuit of the refrigerator unit of FIG. 従来の冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the conventional freezing apparatus. 図4の冷凍装置のp−h線図である。FIG. 5 is a ph diagram of the refrigeration apparatus in FIG. 4.

以下、本発明の実施形態を図面を参照して説明する。図1は本発明の実施形態にかかる冷凍装置Rの冷媒回路図である。本実施例における冷凍装置Rは、スーパーマーケットやコンビニエンスストア等の店舗に設置された低温ショーケースを冷却するものであり、店外に設置された冷凍機ユニット3と、店内に設置された複数台のショーケースユニット(利用側ユニット)5A、5Bとを備え、これら冷凍機ユニット3と各ショーケースユニット5A、5Bとが、冷媒配管7及び9により連結されて所定の冷媒回路1が構成されるものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment of the present invention. The refrigeration apparatus R in the present embodiment cools a low temperature showcase installed in a store such as a supermarket or a convenience store, and includes a refrigerator unit 3 installed outside the store and a plurality of units installed in the store. Showcase units (use side units) 5A and 5B, and the refrigerator unit 3 and the showcase units 5A and 5B are connected by refrigerant pipes 7 and 9 to form a predetermined refrigerant circuit 1. It is.

この冷凍装置Rの冷媒回路1は、高圧側の冷媒圧力(高圧圧力)がその臨界圧力以上(超臨界)となる二酸化炭素を冷媒として用いる。この二酸化炭素冷媒は、地球環境に優しく、可燃性及び毒性等を考慮した自然冷媒である。また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等、既存のオイルが使用される。   The refrigerant circuit 1 of the refrigeration apparatus R uses carbon dioxide whose refrigerant pressure (high pressure) on the high pressure side is equal to or higher than its critical pressure (supercritical) as a refrigerant. This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity. As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.

冷凍機ユニット3は、圧縮機(圧縮手段)11を備える。本実施例において、圧縮機11は、内部中間圧型多段圧縮式ロータリ圧縮機であり、鋼板から成る円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された図示しない電動要素及びこの電動要素により駆動される第1の(低段側)回転圧縮要素(第1の圧縮要素)18及び第2の(高段側)回転圧縮要素(第2の圧縮要素)20から構成されている。   The refrigerator unit 3 includes a compressor (compression unit) 11. In this embodiment, the compressor 11 is an internal intermediate pressure type multistage compression rotary compressor, and a cylindrical sealed container 12 made of a steel plate and an electric motor (not shown) disposed and housed above the inner space of the sealed container 12. And a first (low stage side) rotary compression element (first compression element) 18 and a second (high stage side) rotary compression element (second compression element) 20 driven by the electric element. Has been.

第1の回転圧縮要素18は、冷媒配管9を介して冷媒回路1の低圧側から圧縮機11に吸い込まれる低圧冷媒を圧縮して中間圧まで昇圧して吐出し、第2の回転圧縮要素20は、第1の回転圧縮要素20で圧縮されて吐出された中間圧の冷媒を更に吸い込み、圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。圧縮機11は、周波数可変型の圧縮機であり、前記電動要素の運転周波数を変更することで、第1の回転圧縮要素18及び第2の回転圧縮要素20の回転数を制御可能とする。   The first rotary compression element 18 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9, boosts it to an intermediate pressure, and discharges it. Further sucks in the intermediate pressure refrigerant compressed and discharged by the first rotary compression element 20, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The compressor 11 is a variable frequency compressor, and the rotational speed of the first rotary compression element 18 and the second rotary compression element 20 can be controlled by changing the operating frequency of the electric element.

圧縮機11の第1の回転圧縮要素18には冷媒導入管21が接続され、この冷媒導入管21に冷媒配管9に接続されている。これらの配管を介して第1の回転圧縮要素18の低圧部に吸い込まれた低圧(LP:通常運転状態で2.5MPa程)の冷媒ガスは、当該第1の回転圧縮要素18により中間圧(MP:通常運転状態で5MPa程)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。   A refrigerant introduction pipe 21 is connected to the first rotary compression element 18 of the compressor 11, and the refrigerant introduction pipe 21 is connected to the refrigerant pipe 9. The refrigerant gas having a low pressure (LP: about 2.5 MPa in a normal operation state) sucked into the low pressure portion of the first rotary compression element 18 through these pipes is subjected to an intermediate pressure ( MP: The pressure is increased to about 5 MPa in a normal operation state and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).

そして、密閉容器12内の中間圧の冷媒ガスはインタークーラ22の一端に接続された中間圧吐出配管23に吐出される。インタークーラ22は、第1の回転圧縮要素18から吐出された中間圧の冷媒を空冷するものであり、当該インタークーラ22の他端には、中間圧吸入管24が接続され、この中間圧吸入管24は圧縮機11の第2の回転圧縮要素20の吸込側に接続される。   The intermediate-pressure refrigerant gas in the sealed container 12 is discharged to an intermediate-pressure discharge pipe 23 connected to one end of the intercooler 22. The intercooler 22 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 18, and an intermediate pressure suction pipe 24 is connected to the other end of the intercooler 22. The pipe 24 is connected to the suction side of the second rotary compression element 20 of the compressor 11.

中間圧吸入管24により第2の回転圧縮要素20の中圧部に吸い込まれた中間圧(MP)の冷媒ガスは、当該第2の回転圧縮要素20により2段目の圧縮が行われて高温高圧(HP:通常運転状態で8MPa程の超臨界圧力)の冷媒ガスとなる。   The intermediate pressure (MP) refrigerant gas sucked into the intermediate pressure portion of the second rotary compression element 20 by the intermediate pressure suction pipe 24 is compressed at the second stage by the second rotary compression element 20 and is heated to a high temperature. The refrigerant gas has a high pressure (HP: a supercritical pressure of about 8 MPa in a normal operation state).

そして、圧縮機11の第2の回転圧縮要素20の高圧室側に接続された高圧吐出配管26は、オイルセパレータ27、ガスクーラ28、詳細は後述する本発明の中圧制御装置29を介して、冷媒配管7に接続される。尚、本実施例では中圧制御装置29は冷凍機ユニット3に設置されている。   The high pressure discharge pipe 26 connected to the high pressure chamber side of the second rotary compression element 20 of the compressor 11 is connected to an oil separator 27, a gas cooler 28, and a medium pressure control device 29 of the present invention, which will be described in detail later. Connected to the refrigerant pipe 7. In the present embodiment, the intermediate pressure control device 29 is installed in the refrigerator unit 3.

ガスクーラ28は、圧縮機11から吐出された高温高圧の冷媒を放熱させて冷却するものであり、ガスクーラ28の近傍には当該ガスクーラ28を空冷するガスクーラ用送風機31が配設されている。そして、このガスクーラ28の出口配管32に中圧制御装置29の入口配管33が接続されている。   The gas cooler 28 radiates and cools the high-temperature and high-pressure refrigerant discharged from the compressor 11, and a gas cooler blower 31 for air-cooling the gas cooler 28 is disposed in the vicinity of the gas cooler 28. The inlet pipe 33 of the intermediate pressure control device 29 is connected to the outlet pipe 32 of the gas cooler 28.

この中圧制御装置29は、電動膨張弁から成る高圧膨張手段34と、所定容量のタンクから成る中圧受液器36と、これも電動膨張弁から成る中圧膨張手段37と、熱交換器から成るガス冷熱回収器38等から構成されている。前記入口配管33は高圧膨張手段34の入口配管であり、この高圧膨張手段34の出口配管39は中圧受液器36内に上部から挿入接続されて内部にて開口している。   The intermediate pressure control device 29 includes a high pressure expansion means 34 comprising an electric expansion valve, an intermediate pressure liquid receiver 36 comprising a tank of a predetermined capacity, an intermediate pressure expansion means 37 comprising an electric expansion valve, and a heat exchanger. The gas cold / heat recovery unit 38 is formed. The inlet pipe 33 is an inlet pipe of the high-pressure expansion means 34, and an outlet pipe 39 of the high-pressure expansion means 34 is inserted and connected from above into the intermediate pressure receiver 36 and is opened inside.

この中圧受液器36内底部からは液冷媒配管41が引き出され、中圧受液器36の上部にはガス冷媒配管42が接続されている。ガス冷熱回収器38は液冷媒流路38Aとガス冷媒流路38Bとを有しており、両流路38A、38B内を流れる冷媒同士を熱交換させるものである。そして、このガス冷熱回収器38の液冷媒流路38Aの入口に前記液冷媒配管41の出口が接続されている。中圧膨張手段37はガス冷媒配管42に介設され、このガス冷媒配管42の出口はガス冷熱回収器38のガス冷媒流路38Bの入口に接続されている。   A liquid refrigerant pipe 41 is drawn out from the inner bottom of the intermediate pressure receiver 36, and a gas refrigerant pipe 42 is connected to the upper part of the intermediate pressure receiver 36. The gas cold heat recovery unit 38 has a liquid refrigerant flow path 38A and a gas refrigerant flow path 38B, and exchanges heat between the refrigerants flowing in both flow paths 38A and 38B. The outlet of the liquid refrigerant pipe 41 is connected to the inlet of the liquid refrigerant flow path 38 </ b> A of the gas cold heat recovery unit 38. The intermediate pressure expansion means 37 is interposed in the gas refrigerant pipe 42, and the outlet of the gas refrigerant pipe 42 is connected to the inlet of the gas refrigerant flow path 38 </ b> B of the gas cold heat recovery device 38.

そして、ガス冷熱回収器38のガス冷媒流路38Bの出口は冷媒戻し配管43に接続され、この冷媒戻し配管43は圧縮機11の冷媒導入管21に接続された冷媒配管9に接続されている。また、ガス冷熱回収器38の液冷媒流路38Aの出口は冷媒配管7に接続されている。   The outlet of the gas refrigerant flow path 38B of the gas cold heat recovery device 38 is connected to the refrigerant return pipe 43, and the refrigerant return pipe 43 is connected to the refrigerant pipe 9 connected to the refrigerant introduction pipe 21 of the compressor 11. . Further, the outlet of the liquid refrigerant flow path 38 </ b> A of the gas cold heat recovery device 38 is connected to the refrigerant pipe 7.

一方、ショーケースユニット5A、5Bは、それぞれ店舗内等に設置され、冷媒配管7及び9にそれぞれ並列に接続されている。各ショーケースユニット5A、5Bは、冷媒配管7と冷媒配管9とを連結するケース側冷媒配管44A、44Bを有しており、各ケース側冷媒配管44A、44Bには、それぞれ電動膨張弁から成る膨張手段としての主膨張手段46A、46Bと、蒸発器47A、47Bが順次接続されている。各蒸発器47A、47Bには、それぞれ当該蒸発器に送風する図示しない冷気循環用送風機が隣接されている。そして、当該冷媒配管9は、上述したように冷媒戻し配管43と合流した後、冷媒導入管21を介して圧縮機11の第1の回転圧縮要素18の吸込側に接続されている。これにより、本実施例における冷凍装置Rの冷媒回路1が構成される。   On the other hand, the showcase units 5A and 5B are installed in a store or the like, and are connected in parallel to the refrigerant pipes 7 and 9, respectively. Each showcase unit 5A, 5B has case-side refrigerant pipes 44A, 44B that connect the refrigerant pipe 7 and the refrigerant pipe 9, and each case-side refrigerant pipe 44A, 44B comprises an electric expansion valve. Main expansion means 46A and 46B as expansion means and evaporators 47A and 47B are sequentially connected. Each of the evaporators 47A and 47B is adjacent to an unillustrated cool air circulation blower that blows air to the evaporator. The refrigerant pipe 9 joins the refrigerant return pipe 43 as described above, and is then connected to the suction side of the first rotary compression element 18 of the compressor 11 via the refrigerant introduction pipe 21. Thereby, the refrigerant circuit 1 of the refrigeration apparatus R in the present embodiment is configured.

冷凍装置Rの冷凍機ユニット3は、汎用のマイクロコンピュータにより構成される制御手段50を備えている。尚、各電気機器及びセンサは冷凍機ユニット3とショーケースユニット5A、5Bに設けられるものであり、制御手段もそれらにそれぞれ設けられるものであるが、ここでは冷凍機ユニット3の制御手段50について説明する。   The refrigerator unit 3 of the refrigeration apparatus R includes a control means 50 configured by a general-purpose microcomputer. The electric devices and sensors are provided in the refrigerator unit 3 and the showcase units 5A and 5B, and the control means are also provided in them. Here, the control means 50 of the refrigerator unit 3 is described. explain.

制御手段50の入力側には、ガスクーラ28の出口配管32に設けられてガスクーラ28を出た冷媒の温度と圧力を検出するガスクーラ出口温度センサ51及びガスクーラ出口圧力センサ52の出力と、中圧膨張手段37の入口側のガス冷媒配管42に設けられて中圧膨張手段37に流入するガス冷媒の圧力を検出する中圧膨張手段入口圧力センサ53の出力が接続されている。また、制御手段50の入力側には冷媒導入管21に設けられて冷媒回路1の低圧側圧力を検出する低圧センサ54の出力が接続されている。   On the input side of the control means 50, an output of a gas cooler outlet temperature sensor 51 and a gas cooler outlet pressure sensor 52 which are provided in an outlet pipe 32 of the gas cooler 28 and detect the temperature and pressure of the refrigerant exiting the gas cooler 28, and an intermediate pressure expansion. An output of an intermediate pressure expansion means inlet pressure sensor 53 that is provided in the gas refrigerant pipe 42 on the inlet side of the means 37 and detects the pressure of the gas refrigerant flowing into the intermediate pressure expansion means 37 is connected. An output of a low pressure sensor 54 that is provided in the refrigerant introduction pipe 21 and detects the low pressure side pressure of the refrigerant circuit 1 is connected to the input side of the control means 50.

更に、制御手段50の出力側には、前記圧縮機11、ガスクーラ用送風機31、高圧膨張手段34、中圧膨張手段37が接続されている。制御手段50は各センサの出力に基づいてこれらの圧縮機11及びガスクーラ用送風機31の運転を制御し、各膨張手段34、37の弁開度を制御するものである。   Further, the compressor 11, the gas cooler blower 31, the high-pressure expansion unit 34, and the intermediate-pressure expansion unit 37 are connected to the output side of the control unit 50. The control means 50 controls the operation of the compressor 11 and the gas cooler blower 31 based on the output of each sensor, and controls the valve openings of the expansion means 34 and 37.

以上の構成で次に動作を説明する。制御手段50により圧縮機11が運転されると、前述したように冷媒導入管21を介して圧縮機11の第1の回転圧縮要素18の低圧部に吸い込まれた低圧(LP:通常運転状態で2.5MPa程)の冷媒ガスは、当該第1の回転圧縮要素18により中間圧(MP:通常運転状態で5MPa程)に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。   Next, the operation of the above configuration will be described. When the compressor 11 is operated by the control means 50, as described above, the low pressure (LP: normal operation state) sucked into the low pressure portion of the first rotary compression element 18 of the compressor 11 via the refrigerant introduction pipe 21. The refrigerant gas of about 2.5 MPa is boosted to an intermediate pressure (MP: about 5 MPa in a normal operation state) by the first rotary compression element 18 and is discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).

そして、密閉容器12内の中間圧の冷媒ガスは中間圧吐出配管23からインタークーラ22に流入して放熱した後、中間圧吸入管24から圧縮機11の第2の回転圧縮要素20に吸い込まれる。第2の回転圧縮要素20の中圧部に吸い込まれた中間圧(MP)の冷媒ガスは、当該第2の回転圧縮要素20により2段目の圧縮が行われて高温高圧(HP:通常運転状態で8MPa程の超臨界圧力)の冷媒ガスとなり、高圧吐出配管26からオイルセパレータ27を経てガスクーラ28に流入する。   The intermediate pressure refrigerant gas in the sealed container 12 flows into the intercooler 22 from the intermediate pressure discharge pipe 23 and radiates heat, and is then sucked into the second rotary compression element 20 of the compressor 11 from the intermediate pressure suction pipe 24. . The intermediate pressure (MP) refrigerant gas sucked into the intermediate pressure portion of the second rotary compression element 20 is compressed in the second stage by the second rotary compression element 20 to generate a high temperature and high pressure (HP: normal operation). In this state, the refrigerant gas becomes a supercritical pressure of about 8 MPa, and flows into the gas cooler 28 from the high-pressure discharge pipe 26 through the oil separator 27.

ガスクーラ28で放熱した冷媒は出口配管32から出て中圧制御装置29の入口配管33から高圧膨張手段34に至る。この高圧膨張手段34で冷媒は絞られ、一段目の膨張が行われて圧力は4.5MPa〜5MPaに下げられる。この一段目の膨張により冷媒は飽和液冷媒とガス冷媒となって出口配管39より中圧受液器36内に流入する。中圧受液器36に流入した飽和液冷媒はその内底部に貯留され、ガス冷媒は上部に移動して気液分離が行われる。   The refrigerant radiated by the gas cooler 28 exits from the outlet pipe 32 and reaches the high-pressure expansion means 34 from the inlet pipe 33 of the intermediate pressure control device 29. The refrigerant is squeezed by the high-pressure expansion means 34, the first stage expansion is performed, and the pressure is lowered to 4.5 MPa to 5 MPa. By this first stage expansion, the refrigerant becomes a saturated liquid refrigerant and a gas refrigerant and flows into the intermediate pressure receiver 36 from the outlet pipe 39. The saturated liquid refrigerant that has flowed into the intermediate pressure receiver 36 is stored in the inner bottom part thereof, and the gas refrigerant moves to the upper part for gas-liquid separation.

この中圧受液器36内に貯留された飽和液冷媒は、液冷媒配管41を経てガス冷熱回収器38の液冷媒流路38Aに流入し、そこを通過して冷媒配管7に流出する。一方、中圧受液器36内上部のガス冷媒は、ガス冷媒配管42を経て中圧膨張手段37に至る。そして、この中圧膨張手段37で低圧まで圧力が下げられて膨張する。   The saturated liquid refrigerant stored in the intermediate pressure receiver 36 flows into the liquid refrigerant flow path 38A of the gas cold heat recovery device 38 through the liquid refrigerant pipe 41, passes through there, and flows out to the refrigerant pipe 7. On the other hand, the gas refrigerant in the upper part of the intermediate pressure receiver 36 reaches the intermediate pressure expansion means 37 through the gas refrigerant pipe 42. Then, the pressure is lowered to a low pressure by the intermediate pressure expansion means 37 to expand.

ガス冷媒は、低圧に膨張されると、低温の液冷媒とガス冷媒とになる。この気液混合冷媒はガス冷媒配管42からガス冷熱回収器38のガス冷媒流路38Bに流入し、液冷媒は蒸発する。このときのガス冷媒の冷熱及び液冷媒の蒸発に伴う吸熱作用で、液冷媒流路38Aを通過する飽和液冷媒は過冷却されることになる。   When the gas refrigerant is expanded to a low pressure, it becomes a low-temperature liquid refrigerant and a gas refrigerant. This gas-liquid mixed refrigerant flows from the gas refrigerant pipe 42 into the gas refrigerant flow path 38B of the gas cold heat recovery device 38, and the liquid refrigerant evaporates. The saturated liquid refrigerant passing through the liquid refrigerant flow path 38A is supercooled by the cold heat of the gas refrigerant and the endothermic action accompanying the evaporation of the liquid refrigerant.

そして、このガス冷熱回収器38で過冷却された飽和液冷媒は分流して各主膨張手段46A、46Bに至り、そこで最終的な膨張が行われて蒸発器47A、47Bに流入し、そこで蒸発する。このときの吸熱作用で冷気を生成し、送風機で庫内に循環することでショーケースユニット5A、5Bの庫内を冷蔵温度に冷却する。   Then, the saturated liquid refrigerant supercooled by the gas cold heat recovery unit 38 is divided to reach the main expansion means 46A and 46B, where final expansion is performed and flows into the evaporators 47A and 47B, where they are evaporated. To do. Cold air is generated by the endothermic action at this time, and the interior of the showcase units 5A and 5B is cooled to the refrigeration temperature by circulating in the warehouse with a blower.

各蒸発器47A、47Bを出た冷媒は合流して冷媒配管9に入る。一方、ガス冷熱回収器38のガス冷媒流路38Bを通過した冷媒は冷媒戻し配管43を経て冷媒配管9に至る。そこで、蒸発器47A、47Bからの冷媒と合流して冷媒導入管21から圧縮機11の第1の回転圧縮要素18に吸い込まれることになる。   The refrigerant exiting each of the evaporators 47A and 47B joins and enters the refrigerant pipe 9. On the other hand, the refrigerant that has passed through the gas refrigerant flow path 38 </ b> B of the gas cold heat recovery device 38 reaches the refrigerant pipe 9 through the refrigerant return pipe 43. Therefore, the refrigerant from the evaporators 47 </ b> A and 47 </ b> B merges and is sucked into the first rotary compression element 18 of the compressor 11 from the refrigerant introduction pipe 21.

制御手段50は、ガスクーラ出口温度センサ51及びガスクーラ出口圧力センサ52の出力に基づき、ガスクーラ28内の冷媒の流速が速くなり過ぎないように高圧膨張手段34の弁開度を制御する。この高圧膨張手段34の弁開度を開け過ぎると、ガスクーラ28内の冷媒の流速が速くなり、ガスクーラ28において十分な放熱を得られなくなる。制御手段50はガスクーラ出口温度と圧力を監視し、ガスクーラ28における所要の放熱能力を維持するように高圧膨張手段34の弁開度を制御する。また、この高圧膨張手段34の弁開度により、中圧受液器36内のガス冷媒の量が決まる。   The control means 50 controls the valve opening degree of the high-pressure expansion means 34 based on the outputs of the gas cooler outlet temperature sensor 51 and the gas cooler outlet pressure sensor 52 so that the flow rate of the refrigerant in the gas cooler 28 does not become too fast. If the valve opening degree of the high-pressure expansion means 34 is opened too much, the flow rate of the refrigerant in the gas cooler 28 increases, and sufficient heat dissipation cannot be obtained in the gas cooler 28. The control means 50 monitors the gas cooler outlet temperature and pressure, and controls the valve opening degree of the high-pressure expansion means 34 so as to maintain the required heat dissipation capability in the gas cooler 28. Further, the amount of the gas refrigerant in the intermediate pressure receiver 36 is determined by the valve opening degree of the high pressure expansion means 34.

また、制御手段50は中圧膨張手段入口圧力センサ53の出力に基づき、中圧膨張手段37に流入するガス冷媒の圧力(中間圧)が下がり過ぎないように中圧膨張手段37の弁開度を制御する。即ち、制御手段50は中圧膨張手段37に流入するガス冷媒の圧力が一定の目標値となるように中圧膨張手段37の弁開度を制御する。   Further, the control means 50 determines the valve opening degree of the intermediate pressure expansion means 37 based on the output of the intermediate pressure expansion means inlet pressure sensor 53 so that the pressure (intermediate pressure) of the gas refrigerant flowing into the intermediate pressure expansion means 37 does not decrease too much. To control. That is, the control means 50 controls the valve opening degree of the intermediate pressure expansion means 37 so that the pressure of the gas refrigerant flowing into the intermediate pressure expansion means 37 becomes a constant target value.

尚、各ショーケースユニット5A、5Bも庫内温度を検出する図示しない庫内温度センサと制御手段を備えており、この制御手段により庫内温度に基づいて主膨張手段46A、46Bの弁開度を制御し、庫内温度を所定の冷蔵温度に維持する。冷凍機ユニット3の制御手段50は、低圧センサ54の出力に基づき、低圧側圧力が所定の値より高い場合に圧縮機11の運転周波数を制御して運転する。そして、各主膨張手段46A、46Bが閉じられ、低圧側圧力が所定の値に低下したことで圧縮機11を停止し、主膨張手段46A或いは46Bが開放されて低圧側圧力が上昇したことで圧縮機11を起動する。   Each showcase unit 5A, 5B is also provided with a chamber temperature sensor (not shown) and a control means for detecting the chamber temperature, and the valve opening degree of the main expansion means 46A, 46B based on the chamber temperature by this control means. And the inside temperature is maintained at a predetermined refrigeration temperature. Based on the output of the low pressure sensor 54, the control means 50 of the refrigerator unit 3 operates by controlling the operating frequency of the compressor 11 when the low pressure side pressure is higher than a predetermined value. Then, the main expansion means 46A, 46B are closed, the low pressure side pressure is reduced to a predetermined value, the compressor 11 is stopped, the main expansion means 46A or 46B is opened, and the low pressure side pressure is increased. The compressor 11 is started.

図2は係る本発明の冷凍装置Rのp−h線図である。図2の冷媒回路中に(a)〜(m)の符号で示した箇所が、図1中の(a)〜(m)に対応している。ガス冷熱回収器38における過冷却は図2中の(g)から(h)で示す部分であり、その分(i)から(a)までの冷凍効果が増大される効果がある。また、この図からも明らかな如く、−10℃の蒸発温度における冷媒の乾き度(i)は、図5における乾き度(h)よりも著しく低くなっている。   FIG. 2 is a ph diagram of the refrigeration apparatus R according to the present invention. In the refrigerant circuit of FIG. 2, locations indicated by reference numerals (a) to (m) correspond to (a) to (m) in FIG. 1. The supercooling in the gas cold heat recovery unit 38 is a portion indicated by (g) to (h) in FIG. 2, and the refrigeration effect from (i) to (a) is increased accordingly. Further, as is clear from this figure, the dryness (i) of the refrigerant at the evaporation temperature of −10 ° C. is significantly lower than the dryness (h) in FIG.

このように、本発明ではガスクーラ28から出た冷媒を膨張させてその圧力を中間圧に下げ、その後、飽和液冷媒とガス冷媒とに分離し、飽和液冷媒を主膨張手段46A、46Bに供給する。そして、気液分離したガス冷媒を中圧膨張手段37で膨張させて低温の液冷媒とガス冷媒にし、それをガス冷熱回収器38にて主膨張手段46A、46Bに向かう飽和液冷媒と熱交換させるようにしたので、ガス冷媒の冷熱を利用して主膨張手段46A、46Bに向かう液冷媒を過冷却することができるようになる。   As described above, in the present invention, the refrigerant discharged from the gas cooler 28 is expanded to reduce its pressure to an intermediate pressure, and then separated into a saturated liquid refrigerant and a gas refrigerant, and the saturated liquid refrigerant is supplied to the main expansion means 46A and 46B. To do. The gas-liquid separated gas refrigerant is expanded by the intermediate pressure expansion means 37 to form a low-temperature liquid refrigerant and a gas refrigerant, and the gas cold heat recovery unit 38 exchanges heat with the saturated liquid refrigerant toward the main expansion means 46A and 46B. As a result, the liquid refrigerant directed to the main expansion means 46A and 46B can be supercooled using the cold heat of the gas refrigerant.

これにより、ガスクーラ28から出た冷媒の状態に拘わらず、過冷却状態で主膨張手段46A、46Bに十分な量の冷媒を供給し、蒸発器47A、47Bに流入する冷媒の乾き度を小さくすることができるようになり、二酸化炭素冷媒を用いた冷凍装置Rの蒸発器47A、47Bにおいて大きな冷却効果を得ることが可能となる。   As a result, a sufficient amount of refrigerant is supplied to the main expansion means 46A and 46B in the supercooled state regardless of the state of the refrigerant discharged from the gas cooler 28, and the dryness of the refrigerant flowing into the evaporators 47A and 47B is reduced. It becomes possible to obtain a large cooling effect in the evaporators 47A and 47B of the refrigeration apparatus R using the carbon dioxide refrigerant.

特に、分離したガス冷媒が有する冷却能力を蒸発器47A、47Bでの冷却能力に置換することができるようになるので、ガスクーラ28から出た冷媒のガス比率が高い場合でも、蒸発器47A、47Bにおける冷却効果の向上を図ることが可能となる。   In particular, since the cooling capacity of the separated gas refrigerant can be replaced with the cooling capacity of the evaporators 47A and 47B, the evaporators 47A and 47B can be used even when the gas ratio of the refrigerant discharged from the gas cooler 28 is high. It is possible to improve the cooling effect.

更に、ガスクーラ28から出た冷媒を高圧膨張手段34にて膨張させてその圧力を中間圧に下げ、その後、中圧受液器36に貯留して飽和液冷媒とガス冷媒とに分離するので、中圧受液器36にて冷媒量の調整効果も得ることができるようになり、冷媒回路1内に多めに冷媒を充填することも可能となる。更にまた、中圧受液器36にて高圧側圧力の変動も吸収することが可能となるので、一定の中間圧にて飽和液冷媒を主膨張手段46A、46Bに供給することができるようになり、蒸発器47A、47Bにおける安定した過熱度制御を行うことができるようになる。   Further, the refrigerant discharged from the gas cooler 28 is expanded by the high-pressure expansion means 34 and the pressure thereof is reduced to an intermediate pressure. Thereafter, the refrigerant is stored in the intermediate pressure receiver 36 and separated into the saturated liquid refrigerant and the gas refrigerant. The pressure receiver 36 can also provide an effect of adjusting the amount of refrigerant, and the refrigerant circuit 1 can be filled with a larger amount of refrigerant. Furthermore, since it is possible to absorb the fluctuation of the high pressure side pressure in the intermediate pressure receiver 36, the saturated liquid refrigerant can be supplied to the main expansion means 46A and 46B at a constant intermediate pressure. Thus, stable superheat control in the evaporators 47A and 47B can be performed.

このとき、高圧膨張手段34と、中圧受液器36と、ガス冷熱回収器38と、中圧膨張手段37を有する中圧制御装置29を構成し、この中圧制御装置29を冷凍機ユニット3に設けているので、ショーケースユニット5A、5B側における設置スペースを削減することが可能となる。   At this time, an intermediate pressure control device 29 having a high pressure expansion means 34, an intermediate pressure receiver 36, a gas cold heat recovery device 38, and an intermediate pressure expansion means 37 is configured, and this intermediate pressure control device 29 is configured as the refrigerator unit 3. Therefore, the installation space on the showcase unit 5A, 5B side can be reduced.

また、ガス冷熱回収器38のガス冷媒流路38Aを出た冷媒を、蒸発器47A、47Bを出た冷媒と共に圧縮機11の第1の回転圧縮要素18に吸い込ませるようにしているので、中圧受液器36内のガス冷媒の圧力を中圧膨張手段37により低圧まで落とすことができるようになり、ガス冷媒による高い過冷却効果を期待できる。   Further, since the refrigerant that has exited the gas refrigerant flow path 38A of the gas cold heat recovery device 38 is sucked into the first rotary compression element 18 of the compressor 11 together with the refrigerant that has exited the evaporators 47A and 47B, The pressure of the gas refrigerant in the pressure receiver 36 can be lowered to a low pressure by the intermediate pressure expansion means 37, and a high supercooling effect by the gas refrigerant can be expected.

更に、中圧膨張手段37に流入するガス冷媒の圧力を検出する中圧膨張手段入口圧力センサ53を設け、制御手段50により、中圧膨張手段37に流入するガス冷媒の圧力が下がり過ぎないように、一定の目標値となるよう中圧膨張手段37を制御しているので、ガス冷熱回収器38における飽和液冷媒の過冷却効果を維持することが可能となる。   Further, an intermediate pressure expansion means inlet pressure sensor 53 for detecting the pressure of the gas refrigerant flowing into the intermediate pressure expansion means 37 is provided, so that the control means 50 does not cause the pressure of the gas refrigerant flowing into the intermediate pressure expansion means 37 to decrease too much. In addition, since the intermediate pressure expansion means 37 is controlled so as to have a constant target value, it is possible to maintain the supercooling effect of the saturated liquid refrigerant in the gas cold heat recovery unit 38.

更にまた、ガスクーラ28から出た冷媒の温度と圧力を検出するガスクーラ出口温度センサ51及びガスクーラ出口圧力センサ52を設け、制御手段50により、ガスクーラ28内の冷媒の流速が速くなり過ぎないように高圧膨張手段34を制御しているので、ガスクーラ28における冷媒の放熱能力を確保することが可能となる。   Furthermore, a gas cooler outlet temperature sensor 51 and a gas cooler outlet pressure sensor 52 for detecting the temperature and pressure of the refrigerant discharged from the gas cooler 28 are provided, and the control means 50 provides a high pressure so that the flow rate of the refrigerant in the gas cooler 28 does not become too fast. Since the expansion means 34 is controlled, it is possible to ensure the heat dissipation capability of the refrigerant in the gas cooler 28.

尚、実施例では中圧制御装置29を冷凍機ユニット3に設けたが、それに限らず、スペースが許すならばショーケースユニット5A、或いは、5B側に設けても良い。そのようにすれば、冷凍機ユニット3とショーケースユニット5A、5Bとを接続する長い冷媒配管7を高圧で冷媒搬送することができるようになるので、充填冷媒量を削減することができるようになる。   Although the intermediate pressure control device 29 is provided in the refrigerator unit 3 in the embodiment, the present invention is not limited to this, and may be provided on the showcase unit 5A or 5B side if space is allowed. By doing so, the long refrigerant pipe 7 connecting the refrigerator unit 3 and the showcase units 5A and 5B can be conveyed at high pressure, so that the amount of refrigerant charged can be reduced. Become.

また、実施例で示した各値はそれに限られるものでは無く、冷凍装置の容量、使用目的に応じて適宜設定されるべきものである。更に、実施例では利用側ユニットとしてショーケースユニットを例に採りあげて本発明を説明したが、それに限らず、家庭用冷蔵庫や業務用冷蔵庫、プレハブ冷蔵庫、空気調和機等にも本発明は有効である。更にまた、冷媒も二酸化炭素に限らず、高圧側が超臨界圧力で運転される各種冷媒に対して本発明の冷凍装置は有効である。   Moreover, each value shown in the Example is not restricted to it, It should be suitably set according to the capacity | capacitance of a freezing apparatus, and the intended purpose. Further, in the embodiments, the present invention has been described by taking a showcase unit as an example of a use side unit, but the present invention is not limited to this, and the present invention is also effective for a household refrigerator, a commercial refrigerator, a prefabricated refrigerator, an air conditioner, and the like. It is. Furthermore, the refrigerant is not limited to carbon dioxide, and the refrigeration apparatus of the present invention is effective for various refrigerants whose high pressure side is operated at a supercritical pressure.

R 冷凍装置
1 冷媒回路
3 冷凍機ユニット
5A、5B ショーケースユニット(利用側ユニット)
7、9 冷媒配管
11 圧縮機
28 ガスクーラ
29 中圧制御装置
34 高圧膨張手段
36 中圧受液器
37 中圧膨張手段
38 ガス冷熱回収器
38A 液冷媒流路
38B ガス冷媒流路
46A、46B 主膨張手段(膨張手段)
47A、47B 蒸発器
50 制御手段
51 ガスクーラ出口温度センサ
52 ガスクーラ出口圧力センサ
53 中圧膨張手段入口圧力センサ
R Refrigeration equipment 1 Refrigerant circuit 3 Refrigerator unit 5A, 5B Showcase unit (use side unit)
7, 9 Refrigerant piping 11 Compressor 28 Gas cooler 29 Medium pressure control device 34 High pressure expansion means 36 Medium pressure receiver 37 Medium pressure expansion means 38 Gas cold heat recovery unit 38A Liquid refrigerant flow path 38B Gas refrigerant flow path 46A, 46B Main expansion means (Expansion means)
47A, 47B Evaporator 50 Control means 51 Gas cooler outlet temperature sensor 52 Gas cooler outlet pressure sensor 53 Medium pressure expansion means inlet pressure sensor

Claims (8)

圧縮手段と、ガスクーラと、膨張手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、
前記ガスクーラから出た高圧冷媒を膨張させて中間圧に下げ、飽和液冷媒とガス冷媒とに分離した後、前記ガス冷媒を膨張させて前記飽和液冷媒と熱交換させ、当該飽和液冷媒を前記膨張手段に供給し、前記ガス冷媒を前記圧縮手段に戻すことを特徴とする冷凍装置。
In the refrigeration apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the expansion means, and the evaporator, and the high pressure side is the supercritical pressure,
The high-pressure refrigerant discharged from the gas cooler is expanded and lowered to an intermediate pressure and separated into a saturated liquid refrigerant and a gas refrigerant, and then the gas refrigerant is expanded to exchange heat with the saturated liquid refrigerant, and the saturated liquid refrigerant is A refrigeration apparatus that supplies the expansion means and returns the gas refrigerant to the compression means.
圧縮手段と、ガスクーラと、主膨張手段と、蒸発器とから冷媒回路が構成され、高圧側が超臨界圧力となる冷凍装置において、
前記ガスクーラと主膨張手段の間に接続された中圧制御装置を備え、
該中圧制御装置は、
前記ガスクーラから出た高圧冷媒を膨張させて中間圧に下げる高圧膨張手段と、
該高圧膨張手段にて膨張された冷媒を貯留し、飽和液冷媒とガス冷媒とに分離する中圧受液器と、
該中圧受液器内の飽和液冷媒が流入する液冷媒流路と前記中間受液器内のガス冷媒が流入するガス冷媒流路とを有して両流路を流れる冷媒を熱交換させるガス冷熱回収器と、
前記中圧受液器内のガス冷媒を膨張させた後、前記ガス冷熱回収器のガス冷媒流路に流入させる中圧膨張手段とを有し、
前記ガス冷熱回収器の液冷媒流路から出た冷媒を前記主膨張手段に流入させ、ガス冷媒流路から出た冷媒を前記圧縮手段に戻すことを特徴とする冷凍装置。
In the refrigeration apparatus in which the refrigerant circuit is configured by the compression means, the gas cooler, the main expansion means, and the evaporator, and the high pressure side is the supercritical pressure,
An intermediate pressure control device connected between the gas cooler and the main expansion means;
The intermediate pressure control device
High-pressure expansion means for expanding the high-pressure refrigerant discharged from the gas cooler to lower it to an intermediate pressure;
An intermediate pressure receiver for storing the refrigerant expanded by the high pressure expansion means and separating the refrigerant into a saturated liquid refrigerant and a gas refrigerant;
A gas having a liquid refrigerant flow path into which the saturated liquid refrigerant in the intermediate pressure receiver flows and a gas refrigerant flow path into which the gas refrigerant in the intermediate liquid receiver flows and exchanging heat between the refrigerant flowing through both flow paths. A cold energy recovery device,
Medium pressure expansion means for expanding the gas refrigerant in the intermediate pressure receiver and then flowing it into the gas refrigerant flow path of the gas cold heat recovery device;
A refrigeration apparatus comprising: a refrigerant that has flowed out of a liquid refrigerant flow path of the gas cold heat recovery device is allowed to flow into the main expansion means; and the refrigerant that has come out of the gas refrigerant flow path is returned to the compression means.
前記ガス冷熱回収器のガス冷媒流路を出た冷媒を、前記蒸発器を出た冷媒と共に前記圧縮手段に吸い込ませることを特徴とする請求項2に記載の冷凍装置。   The refrigerating apparatus according to claim 2, wherein the refrigerant that has exited the gas refrigerant flow path of the gas cold heat recovery device is sucked into the compression means together with the refrigerant that has exited the evaporator. 前記中圧膨張手段に流入するガス冷媒の圧力を検出する中圧膨張手段入口圧力センサと、
該中圧膨張手段入口圧力センサの出力に基づいて前記中圧膨張手段を制御する制御手段とを備えたことを特徴とする請求項2又は請求項3に記載の冷凍装置。
An intermediate pressure expansion means inlet pressure sensor for detecting the pressure of the gas refrigerant flowing into the intermediate pressure expansion means;
4. The refrigeration apparatus according to claim 2, further comprising a control unit that controls the intermediate pressure expansion unit based on an output of the intermediate pressure expansion unit inlet pressure sensor.
前記ガスクーラから出た冷媒の温度と圧力を検出するガスクーラ出口温度センサ及びガスクーラ出口圧力センサと、
各センサの出力に基づいて前記高圧膨張手段を制御する制御手段とを備えたことを特徴とする請求項2乃至請求項4のうちの何れかに記載の冷凍装置。
A gas cooler outlet temperature sensor and a gas cooler outlet pressure sensor for detecting a temperature and a pressure of the refrigerant discharged from the gas cooler;
5. The refrigeration apparatus according to claim 2, further comprising a control unit that controls the high-pressure expansion unit based on an output of each sensor.
前記圧縮手段及びガスクーラを含む冷凍機ユニットと、
前記主膨張手段及び蒸発器を含む利用側ユニットとを備え、
前記冷凍機ユニットは、前記中圧制御装置も含むことを特徴とする請求項2乃至請求項5のうちの何れかに記載の冷凍装置。
A refrigerator unit including the compression means and a gas cooler;
A use side unit including the main expansion means and an evaporator,
The refrigeration apparatus according to any one of claims 2 to 5, wherein the refrigerator unit also includes the intermediate pressure control device.
前記圧縮手段及びガスクーラを含む冷凍機ユニットと、
前記主膨張手段及び蒸発器を含む利用側ユニットとを備え、
該利用側ユニットは、前記中圧制御装置も含むことを特徴とする請求項2乃至請求項5のうちの何れかに記載の冷凍装置。
A refrigerator unit including the compression means and a gas cooler;
A use side unit including the main expansion means and an evaporator,
The refrigeration apparatus according to any one of claims 2 to 5, wherein the use side unit also includes the intermediate pressure control device.
前記冷媒として二酸化炭素を使用したことを特徴とする請求項1乃至請求項7のうちの何れかに記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 7, wherein carbon dioxide is used as the refrigerant.
JP2012039912A 2012-02-27 2012-02-27 Refrigeration equipment Active JP5971548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039912A JP5971548B2 (en) 2012-02-27 2012-02-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039912A JP5971548B2 (en) 2012-02-27 2012-02-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2013174402A true JP2013174402A (en) 2013-09-05
JP5971548B2 JP5971548B2 (en) 2016-08-17

Family

ID=49267452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039912A Active JP5971548B2 (en) 2012-02-27 2012-02-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5971548B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148431A (en) * 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2016014496A (en) * 2014-07-02 2016-01-28 パナソニックIpマネジメント株式会社 Refrigeration system
JP2016128734A (en) * 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 Refrigeration device
JP2017053599A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
KR20170058959A (en) * 2014-09-09 2017-05-29 8 리버스 캐피탈, 엘엘씨 Production of low pressure liquid carbon dioxide from a power production system and method
WO2021065115A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration device and heat source unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223370A (en) * 1991-11-04 1993-08-31 General Electric Co <Ge> Refrigerator
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2008267766A (en) * 2007-04-25 2008-11-06 Sanden Corp Vapor compression refrigeration cycle
JP2009014208A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device
JP2010048474A (en) * 2008-08-22 2010-03-04 Sanden Corp Vapor compression refrigerating cycle
JP2011220559A (en) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp Refrigerating/air conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223370A (en) * 1991-11-04 1993-08-31 General Electric Co <Ge> Refrigerator
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2008267766A (en) * 2007-04-25 2008-11-06 Sanden Corp Vapor compression refrigeration cycle
JP2009014208A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device
JP2010048474A (en) * 2008-08-22 2010-03-04 Sanden Corp Vapor compression refrigerating cycle
JP2011220559A (en) * 2010-04-06 2011-11-04 Mitsubishi Electric Corp Refrigerating/air conditioning device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148431A (en) * 2014-02-10 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2016014496A (en) * 2014-07-02 2016-01-28 パナソニックIpマネジメント株式会社 Refrigeration system
KR20220132038A (en) * 2014-09-09 2022-09-29 8 리버스 캐피탈, 엘엘씨 Production of low pressure liquid carbon dioxide from a power production system and method
KR102445857B1 (en) * 2014-09-09 2022-09-22 8 리버스 캐피탈, 엘엘씨 Production of low pressure liquid carbon dioxide from a power production system and method
KR20170058959A (en) * 2014-09-09 2017-05-29 8 리버스 캐피탈, 엘엘씨 Production of low pressure liquid carbon dioxide from a power production system and method
JP2017533371A (en) * 2014-09-09 2017-11-09 8 リバーズ キャピタル,エルエルシー Low pressure liquid carbon dioxide generation from power generation systems and methods
CN111005779A (en) * 2014-09-09 2020-04-14 八河流资产有限责任公司 Production of low pressure liquid carbon dioxide from power generation systems and methods
JP2020073797A (en) * 2014-09-09 2020-05-14 8 リバーズ キャピタル,エルエルシー Generation of low-pressure liquid carbon dioxide from power generation system and method
KR102625300B1 (en) * 2014-09-09 2024-01-15 8 리버스 캐피탈, 엘엘씨 Production of low pressure liquid carbon dioxide from a power production system and method
JP2016128734A (en) * 2015-01-09 2016-07-14 パナソニックIpマネジメント株式会社 Refrigeration device
JP2017053599A (en) * 2015-09-11 2017-03-16 パナソニックIpマネジメント株式会社 Refrigeration device
CN114450544A (en) * 2019-09-30 2022-05-06 大金工业株式会社 Refrigerating device and heat source unit
JP2021055919A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration unit and heat source unit
EP4030124A4 (en) * 2019-09-30 2022-11-16 Daikin Industries, Ltd. Refrigeration device and heat source unit
US11686518B2 (en) 2019-09-30 2023-06-27 Daikin Industries, Ltd. Refrigeration apparatus that operates a utilization unit based on drivability of a compressor in a heat source unit
WO2021065115A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration device and heat source unit

Also Published As

Publication number Publication date
JP5971548B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
US9068765B2 (en) Refrigeration storage in a refrigerant vapor compression system
JP5627417B2 (en) Dual refrigeration equipment
JP5971548B2 (en) Refrigeration equipment
WO2012066763A1 (en) Freezer
EP3070417A1 (en) Refrigeration system
JP2007139225A (en) Refrigerating device
WO2014068967A1 (en) Refrigeration device
CN103635761A (en) Refrigeration device
US20100011791A1 (en) R422d heat transfer systems and r22 systems retrofitted with r422d
US10180269B2 (en) Refrigeration device
CN103196250A (en) Refrigerating apparatus and refrigerating unit
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP2013160427A (en) Dual refrigeration system
JP2011080736A (en) Heat exchange device
WO2017179210A1 (en) Refrigerating device
JP4476946B2 (en) Refrigeration equipment
JP2015218911A (en) Refrigeration device
JP5506638B2 (en) Refrigeration equipment
JP2015102319A (en) Refrigeration cycle device
JP6206787B2 (en) Refrigeration equipment
JP6094859B2 (en) Refrigeration equipment
JP2015087020A (en) Refrigeration cycle device
KR101246372B1 (en) An experimental and training apparatus for two-stage compression refrigeration
KR101820683B1 (en) Cryogenic refrigeration system capable of capacity control by intermediate pressure control
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150318

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R151 Written notification of patent or utility model registration

Ref document number: 5971548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250