JPH071136B2 - Absorption chiller / heater vacuum degree diagnostic device - Google Patents

Absorption chiller / heater vacuum degree diagnostic device

Info

Publication number
JPH071136B2
JPH071136B2 JP18333988A JP18333988A JPH071136B2 JP H071136 B2 JPH071136 B2 JP H071136B2 JP 18333988 A JP18333988 A JP 18333988A JP 18333988 A JP18333988 A JP 18333988A JP H071136 B2 JPH071136 B2 JP H071136B2
Authority
JP
Japan
Prior art keywords
temperature
vacuum degree
judgment
cooling water
outlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18333988A
Other languages
Japanese (ja)
Other versions
JPH0233584A (en
Inventor
教之 西山
誠 中村
和平 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yazaki Corp
Original Assignee
Tokyo Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yazaki Corp filed Critical Tokyo Gas Co Ltd
Priority to JP18333988A priority Critical patent/JPH071136B2/en
Publication of JPH0233584A publication Critical patent/JPH0233584A/en
Publication of JPH071136B2 publication Critical patent/JPH071136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収冷温水機の作動状態の診断装置に係り、具
体的には冷温水機の真空度の状態を各部の温度を計測す
ることによって診断する吸収冷温水機の真空度診断装置
に関する。
Description: TECHNICAL FIELD The present invention relates to a diagnostic device for an operating state of an absorption chiller-heater, and more specifically, to measure the temperature of each part of the state of the vacuum degree of the chiller-heater. The present invention relates to a vacuum degree diagnostic device for an absorption chiller-heater.

〔従来の技術〕[Conventional technology]

一般に、吸収冷温水機は、凝縮器から供給される液冷媒
を蒸発させて冷温水管内を通流される冷温水と熱交換さ
せる蒸発器と、この蒸発器で蒸発された冷媒蒸気を冷却
水が通流される冷却水管表面にて吸収液に接触させて吸
収させる吸収器とを備えて構成される。そして、吸収器
から流出される冷媒蒸気を吸収してなる稀溶液を加熱し
て冷媒蒸気と吸収液とに分離し、それぞれ前記凝縮器と
前記吸収器とに循環供給するようにしている。
In general, an absorption chiller-heater has an evaporator that evaporates a liquid refrigerant supplied from a condenser and exchanges heat with the cold-hot water that flows through the cold-hot water pipe, and the refrigerant vapor evaporated in this evaporator is cooled by cooling water. The cooling water pipe is made to come into contact with the absorbing liquid to absorb the absorbing liquid. Then, the dilute solution obtained by absorbing the refrigerant vapor flowing out from the absorber is heated to be separated into the refrigerant vapor and the absorbing liquid, which are circulated and supplied to the condenser and the absorber, respectively.

このように構成される吸収冷温水機を高効率で運転する
ために、吸収冷温水機内の真空度を適宜診断して高真空
度を保持する必要がある。
In order to operate the absorption chiller-heater configured as described above with high efficiency, it is necessary to appropriately diagnose the degree of vacuum in the absorption chiller-heater to maintain the high degree of vacuum.

従来、上記真空度を診断する方法として、蒸発器または
吸収器に検出バルブを介して圧力検出器(連成計、マノ
メーター、圧力センサー等)を取り付け、その接続管内
部を真空引きしたあと、検圧バルブを開けて冷温水機の
機内圧力を導き,検出器が示した値から判断することが
知られている。また、他の方法として、蒸発器の冷媒液
温度を計測し、その温度より冷媒の飽和蒸気圧を計算
(又は、線図)により求めたものと、吸収液の吸収器出
口温度と、その液を採液(採液バルブより真空ポンプを
用いて採る)して濃度を計り、その濃度、温度から溶液
の飽和蒸気圧を計算(又は、溶液の線図)により求めた
ものとを比較して真空度の診断を行っていた。
Conventionally, as a method of diagnosing the degree of vacuum, a pressure detector (compound meter, manometer, pressure sensor, etc.) is attached to the evaporator or absorber through a detection valve, and the inside of the connecting pipe is evacuated and then detected. It is known to open the pressure valve to guide the internal pressure of the chiller / heater and judge from the value indicated by the detector. As another method, the refrigerant liquid temperature of the evaporator is measured, and the saturated vapor pressure of the refrigerant is calculated (or a diagram) from the temperature, the absorber outlet temperature of the absorbing liquid, and the liquid Is sampled (using a vacuum pump from the sampling valve) to measure the concentration, and the saturated vapor pressure of the solution is calculated (or a diagram of the solution) from the concentration and temperature to compare it with that obtained. I was diagnosing the degree of vacuum.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、従来の公知技術では、次のような問題点
があった。
However, the conventional known techniques have the following problems.

(1)作業に熟練を要する。(1) Skill required for work.

(2)精度の高い高価な計測機器や真空ポンプなどの機
器を必要とする。またそれらの機器の現場への搬入・搬
出が大変である。
(2) Highly accurate and expensive measuring equipment and equipment such as vacuum pumps are required. In addition, it is difficult to carry in and out these devices to the site.

(3)作業時に冷凍機のバルブ(検圧、採液)の開閉を
行うため真空破壊の危険性が伴う。
(3) Since the valves (pressure detection and liquid sampling) of the refrigerator are opened and closed during the work, there is a risk of breaking the vacuum.

(4)一般的に吸収冷温水機の溶液は腐食性が高いた
め、機器を痛めたり、作業時の溶液の飛散によって腐食
(錆)を招く恐れがある。
(4) In general, the solution of the absorption chiller-heater is highly corrosive, which may damage the equipment or cause corrosion (rust) due to scattering of the solution during work.

(5)点検に要する時間と費用が大きい。(5) The time and cost required for inspection are large.

本発明の課題は、吸収冷温水機の真空度状態の診断を、
冷温水機の構成要素及び各要素を接続する管系の温度情
報のみから、圧力計や濃度計を用いることなく精度よく
行うことのできる真空度診断装置を提供するにある。
An object of the present invention is to diagnose the vacuum state of an absorption chiller-heater,
An object of the present invention is to provide a vacuum degree diagnostic device that can be accurately performed without using a pressure gauge or a densitometer based only on temperature information of the components of the chiller / heater and the pipe system connecting each element.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記課題を解決するため、冷温水の出口温度T
b,蒸発器における液冷媒の蒸発温度Te,吸収器から流出
される吸収液出口温度Td,冷却水の入口温度Taと出口温
度Tcをそれぞれ検出する温度検出器と、蒸発温度Te,吸
収液出口温度Tdと冷却水入口温度Taの差Tda,吸収液出口
温度Tdと冷却水出口温度Tcの差Tdcをそれぞれ判断要素
とし、前記検出された冷温水出口温度Tbと冷却水入口温
度Taに基づいて予め定められた正常な運転状態における
各判断要素の判断基準値を求める判断基準値演算手段
と、前記検出された各部の温度に基づいて前記判断要素
の現状値を求め、該現状値と前記判断基準値を比較して
真空度の良否を判定する真空度判定手段とを具備してな
る真空度診断装置としたことにある。
In order to solve the above problems, the present invention provides an outlet temperature T of cold / hot water.
b, evaporation temperature Te of the liquid refrigerant in the evaporator, temperature Td of the outlet of the absorption liquid flowing out from the absorber, temperature detectors that detect the inlet temperature Ta and the outlet temperature Tc of the cooling water, and the evaporation temperature Te and the outlet of the absorption liquid. The difference Tda between the temperature Td and the cooling water inlet temperature Ta and the difference Tdc between the absorption liquid outlet temperature Td and the cooling water outlet temperature Tc are used as the judgment factors, respectively, and based on the detected cold / hot water outlet temperature Tb and the cooling water inlet temperature Ta. Judgment reference value calculating means for obtaining a judgment reference value of each judgment element in a predetermined normal operating state, and a present value of the judgment element based on the detected temperature of each part, and the present value and the judgment Another object of the present invention is to provide a degree-of-vacuum diagnostic device including a degree-of-vacuum determination means for determining whether the degree of vacuum is good by comparing reference values.

〔作用〕[Action]

吸収冷温水機の液冷媒の蒸発温度Teと真空度との間、ま
た吸収液出口温度Tdと冷却水入口温度Taの温度差Tdaと
真空度との間、また吸収液出口温度Tdと冷却水出口温度
Tcの温度差Tdcと真空度との間には、それぞれ強い相関
関係がある。そこで本発明はこの三項目を判断要素とし
て真空度の診断を行なう。
Between the evaporation temperature Te of the liquid refrigerant of the absorption chiller / heater and the vacuum degree, between the temperature difference Tda between the absorption fluid outlet temperature Td and the cooling water inlet temperature Ta and the vacuum degree, and between the absorption fluid outlet temperature Td and the cooling water. Outlet temperature
There is a strong correlation between the temperature difference Tdc of Tc and the degree of vacuum. Therefore, the present invention diagnoses the degree of vacuum by using these three items as judgment factors.

また、上記の判断要素に基づいて真空度の良否を判断す
るための判断基準値は、吸収冷温水機の運転状態(負荷
状態)に関係する。また、運転状態は冷温水出口温度Tb
と冷却水入口温度Taに相関することから、これらの検出
温度に基づいて正常な真空度のときの運転状態における
前記判断要素の値を求め、これを判断基準値とする。
Further, the judgment reference value for judging the quality of the vacuum degree based on the above-mentioned judgment factors is related to the operating state (load state) of the absorption chiller-heater. Also, the operating state is the cold / hot water outlet temperature Tb
Is correlated with the cooling water inlet temperature Ta, the value of the judgment element in the operating state at the normal vacuum degree is obtained based on these detected temperatures, and this is used as the judgment reference value.

しかして、本発明によれば、温度検出器により検出され
た各部の温度に基づいて、判断要素の現状値とその判断
基準値が求められ、それらを比較して真空度の良否が判
定される。
Therefore, according to the present invention, based on the temperature of each part detected by the temperature detector, the present value of the judgment element and its judgment reference value are obtained, and the quality of the vacuum degree is judged by comparing them. .

この判断は上記3つの判断要素ごとに行ない、それらの
良否に基づいて総合的に判断する。
This judgment is made for each of the above-mentioned three judgment elements, and a comprehensive judgment is made based on their quality.

この場合において、真空度の良否判定に及ぼす影響度合
いが判断要素ごとに異なることから、各判断要素の比較
結果に重み付けを行なって判定することが望ましい。
In this case, since the degree of influence of the vacuum degree on the quality determination is different for each determination element, it is desirable to weight the comparison result of each determination element for determination.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。第1図に本
発明の一実施例真空度診断装置30の構成概要図を示す。
本実施例の真空度診断装置30は移動可能に形成された本
体31と、吸収冷温水機の各部の温度を検出する温度検出
器32a〜32eからなる。本体31は判断基準値演算器33と、
現状値演算器34と、比較演算器35と、重み演算器36と、
重み集計値比較演算器37と、表示器38を含んで形成され
ている。比較演算器35と重み演算器36と重み集計値比較
演算器37により、真空度判定手段が形成されている。ま
た、温度検出器32a〜32eは本体31に設けられた接続子39
a〜39eにそれぞれ可撓線で接続され、各接続子39a〜39e
は判断基準値演算器33と現状値演算器34に適宜接続され
ている。
Hereinafter, the present invention will be described based on examples. FIG. 1 shows a schematic configuration diagram of a vacuum degree diagnostic device 30 according to an embodiment of the present invention.
The vacuum degree diagnostic device 30 of the present embodiment includes a movable main body 31 and temperature detectors 32a to 32e for detecting the temperature of each part of the absorption chiller-heater. The main body 31 is a judgment reference value calculator 33,
A current value calculator 34, a comparison calculator 35, a weight calculator 36,
The weighted total value comparison calculator 37 and the display 38 are included. The degree-of-vacuum determination means is formed by the comparison calculator 35, the weight calculator 36, and the weighted aggregate value comparison calculator 37. Further, the temperature detectors 32a to 32e are the connectors 39 provided on the main body 31.
a to 39e, each connected with a flexible wire, and each connector 39a to 39e.
Are appropriately connected to the judgment reference value calculator 33 and the current value calculator 34.

以下、上記各演算器の詳細構成を動作とともに説明す
る。なお、診断対象として、第2図に示す吸収冷温水機
を例にとって説明する。
Hereinafter, the detailed configuration of each of the arithmetic units will be described together with the operation. The absorption chiller-heater shown in FIG. 2 will be described as an example of the diagnosis target.

まず、第2図に示す吸収冷温水機について説明する。冷
媒を吸収してなる稀溶液は再出器1にて加熱されて分離
器2に導びかれ、ここにおいて冷媒蒸気と吸収液に分離
される。この吸収液は未蒸発の冷媒を含む中濃溶液とな
っており、第1の熱交換器9を介して低温再生器3に導
びかれ、ここでさらに冷媒が蒸発分離される。低温再生
器3から流出される濃溶液は第2の熱交換器8を介して
吸収器6の頂部に注入される。
First, the absorption chiller-heater shown in FIG. 2 will be described. The dilute solution that has absorbed the refrigerant is heated in the re-ejector 1 and guided to the separator 2, where it is separated into refrigerant vapor and absorbing liquid. This absorbing liquid is a medium-concentrated solution containing a non-evaporated refrigerant, and is guided to the low temperature regenerator 3 via the first heat exchanger 9, where the refrigerant is further evaporated and separated. The concentrated solution flowing out from the low temperature regenerator 3 is injected into the top of the absorber 6 via the second heat exchanger 8.

一方、分離器2で分離された冷媒蒸気は低温再生器3を
介して凝縮器4に導びかれ、ここにおいて冷却水管18内
を通流されている冷却水に熱を奪われて凝縮される。凝
縮されて生じた液冷媒は蒸発器5の頂部に導かれ、蒸発
器5の内部に配設された冷温水管20の表面に流下され
る。これにより液冷媒は蒸発され、その蒸発熱は冷温水
管20内を通流されている冷温水と熱交換される。
On the other hand, the refrigerant vapor separated by the separator 2 is guided to the condenser 4 via the low-temperature regenerator 3, where heat is taken by the cooling water flowing in the cooling water pipe 18 and condensed. . The liquid refrigerant produced by condensation is guided to the top of the evaporator 5 and flows down to the surface of the cold / hot water pipe 20 arranged inside the evaporator 5. As a result, the liquid refrigerant is evaporated, and the heat of evaporation is exchanged with the cold / hot water flowing in the cold / hot water pipe 20.

蒸発器5で気化された冷媒蒸気は吸収器6に導びかれ、
吸収器6内に配設された冷却水管18の表面に流下されて
いる吸収液(濃溶液)に接触して吸収される。このとき
発生する吸収熱は冷却水により除去される。吸収器6に
て冷媒を吸収してなる稀溶液は溶液循環ポンプ7により
抜き出され、第1と第2の熱交換器8,9を介して再生器
1に戻される。
The refrigerant vapor evaporated in the evaporator 5 is guided to the absorber 6,
The absorption liquid (concentrated solution) flowing down on the surface of the cooling water pipe 18 arranged in the absorber 6 is contacted and absorbed. The absorption heat generated at this time is removed by the cooling water. The dilute solution obtained by absorbing the refrigerant in the absorber 6 is extracted by the solution circulation pump 7 and returned to the regenerator 1 via the first and second heat exchangers 8 and 9.

このように構成される吸収冷温水機の内部は高い真空度
に保持されるが、真空度が低下すると次のような温度変
化現象が生ずる。
The inside of the absorption chiller-heater configured as described above is maintained at a high degree of vacuum, but when the degree of vacuum decreases, the following temperature change phenomenon occurs.

蒸発器5の蒸発温度Teは真空度低下とともに上昇す
る。
The evaporation temperature Te of the evaporator 5 rises as the degree of vacuum decreases.

蒸発器5の底部に流下される未蒸発の液冷媒を頂部
に還流させる冷媒ポンプをもたない冷温水機において
は、蒸発器5での冷媒蒸発量が減少すると未蒸発の液冷
媒が増加する。この液冷媒は吸収器6に流れて吸収液と
直接混合され希釈熱を発生する。この熱は冷却水管18に
接していないので冷却水へ捨てられる機会がなく吸収器
6から出る稀溶液の温度を高める。よって稀溶液の吸収
器出口温度Tdと冷却水入口温度Taとの温度差Tda(=Td
−Ta)は真空度が低下すれば大きくなる。
In a chiller-heater that does not have a refrigerant pump that recirculates unevaporated liquid refrigerant flowing down to the bottom of the evaporator 5 to the top, when the amount of refrigerant evaporation in the evaporator 5 decreases, the amount of unevaporated liquid refrigerant increases. . This liquid refrigerant flows into the absorber 6 and is directly mixed with the absorbing liquid to generate heat of dilution. Since this heat is not in contact with the cooling water pipe 18, it has no opportunity to be thrown into the cooling water and raises the temperature of the dilute solution exiting the absorber 6. Therefore, the temperature difference between the absorber outlet temperature Td of the dilute solution and the cooling water inlet temperature Ta is Tda (= Td
-Ta) increases as the degree of vacuum decreases.

上記と同じ理由、および真空度低下に伴う冷凍能
力の低下により冷却水への除去熱量が減少し、冷却水出
口温度Tcの低下との相乗作用により、稀溶液の吸収器出
口温度Tdと冷却水出口温度Tcとの温度差Tdc(=Td−T
c)は真空度が低下すれば大きくなる。したがって、こ
の三項目を判断要素として真空度診断を行なうことがで
きるのである。
For the same reason as above, and the amount of heat removed to the cooling water decreases due to the reduction in the refrigeration capacity accompanying the decrease in the degree of vacuum, and due to the synergistic action with the decrease in the cooling water outlet temperature Tc, the absorber outlet temperature Td of the diluted solution Temperature difference from outlet temperature Tc Tdc (= Td-T
c) becomes larger as the degree of vacuum decreases. Therefore, the degree of vacuum can be diagnosed by using these three items as judgment factors.

上記判断に必要な各部の温度のうち、冷却水入口温度Ta
は温度検出器32aにより、冷温水出口温度Tbは温度検出
器32bにより、冷却水出口温度Tcは温度検出器32cによ
り、吸収液出口温度Tdは温度検出器32dにより、蒸発温
度Teは温度検出器32eによりそれぞれ検出するようにな
っている。これらの検出器32a〜dは管路等に取付けて
対応する温度を測定可能に形成されている。
Of the temperatures of each part required for the above judgment, the cooling water inlet temperature Ta
Is the temperature detector 32a, the cold / hot water outlet temperature Tb is the temperature detector 32b, the cooling water outlet temperature Tc is the temperature detector 32c, the absorption liquid outlet temperature Td is the temperature detector 32d, and the evaporation temperature Te is the temperature detector. It is designed to detect each by 32e. These detectors 32a to 32d are attached to pipes or the like so as to measure corresponding temperatures.

検出された温度のうち、冷却水入口温度Taと冷温水出口
温度Tbは判断基準値演算器33に入力され、第1表に示す
判断要素に対応した判断基準値が求められる。
Of the detected temperatures, the cooling water inlet temperature Ta and the cold / hot water outlet temperature Tb are input to the judgment reference value calculator 33, and the judgment reference values corresponding to the judgment elements shown in Table 1 are obtained.

この判断基準値J1〜J3は、正常な真空状態にあればこう
なるであろうと考えられる判断要素の値であり、その値
はまた負荷状態などにより変化することから、上記2つ
の温度TaとTbに基づき、かつROM上に記憶されている予
め定められた計算式に基づいて求められる。
The judgment reference values J 1 to J 3 are the values of the judgment factors that are considered to be the case under the normal vacuum state, and since the values also change depending on the load condition and the like, the above two temperatures Ta And Tb, and based on a predetermined calculation formula stored in the ROM.

第4図に真空破壊発生前後の各判断要素の変化の実測例
を示す。
FIG. 4 shows an example of actual measurement of changes in each judgment element before and after the occurrence of vacuum break.

一方、検出され入力された冷却水入口温度Ta、冷却水出
口温度Tc、稀溶液吸収器出口温度Tdおよび蒸発器温度Te
に基づいて、現状値演算器34により、第2表に示す前記
判断要素毎の現状の温度差(現状値)が算出される。
On the other hand, the detected and input cooling water inlet temperature Ta, cooling water outlet temperature Tc, diluted solution absorber outlet temperature Td, and evaporator temperature Te
Based on the above, the current value calculator 34 calculates the current temperature difference (current value) for each of the judgment elements shown in Table 2.

上記算出された判断基準値ならびに現状値は、第3図の
フローチャートに示すように比較演算器35に入力され、
該比較演算器35により前記判断要素ごとに判断基準値と
現状値が比較され、当該判断要素における真空度の良
否、不良の判断が行われる。現状値が判断基準値より小
さい場合は良(EGV)、大きい場合は不良(ELV)と判定
し、それらの大小の比較結果が重み演算器36に出力され
る。重み演算器36は各判断要素ごとに良(EGV)と不良
(ELV)の2つの判定枠(具体的にはレジスタ)を有し
ており、比較演算器35の比較結果に対応するEGV又はELV
のいずれかの判定枠に重み値W1,W2,W3がそれぞれセット
される。この重み値は真空度判定に及ぼす各判断要素の
影響度合いを表わしたもので、総計が1又は100%にな
るように、予め設定され記憶されている。重み集計値比
較演算器37は重み演算器36の各判定枠から良(EGV)又
は不良(ELV)ごとに分けて内容を取込み、それらの値
を集計する。そしてEGV集計値とELVの集計値を比較し、
ELVの集計値が大であれば真空度不良と判定し、その判
定信号を表示器38に出力し、EGVの集計値が大であれば
真空度良好の判定信号を表示器38に出力する。なお、表
示器38には求めたEGLとEGVの集計値を表示するようにし
てもよい。また、表示器38は液晶表示の他、ランプ表示
を適用することもできる。
The calculated judgment reference value and current value are input to the comparison calculator 35 as shown in the flowchart of FIG.
The comparison calculator 35 compares the judgment reference value and the current value for each judgment element, and judges whether the degree of vacuum in the judgment element is good or bad. When the current value is smaller than the judgment reference value, it is judged to be good (EGV), and when it is larger, it is judged to be defective (ELV), and the comparison result of these sizes is output to the weight calculator 36. The weight calculator 36 has two judgment frames (specifically, registers) of good (EGV) and bad (ELV) for each judgment element, and the EGV or ELV corresponding to the comparison result of the comparison calculator 35.
The weight values W 1 , W 2 , and W 3 are set in one of the judgment frames. This weight value represents the degree of influence of each judgment element on the vacuum degree judgment, and is preset and stored so that the total becomes 1 or 100%. The weighted aggregate value comparison calculator 37 takes in the contents separately from each judgment frame of the weight calculator 36 for each good (EGV) or defective (ELV), and totals those values. Then compare the EGV aggregate value with the ELV aggregate value,
If the total value of ELV is large, it is determined that the degree of vacuum is poor, and the determination signal is output to the display unit 38, and if the total value of EGV is large, the determination signal that the degree of vacuum is good is output to the display unit 38. Note that the display 38 may display the calculated aggregate values of EGL and EGV. Further, the display 38 may be a liquid crystal display or a lamp display.

なお、真空度不良の診断がなされたとき、その信号を利
用して抽気装置を作動させることもできる。また冷媒ポ
ンプを有する冷温水機においては、蒸発器5における冷
媒蒸発量が減少しても稀溶液と冷媒液がが混合すること
がなく、単に吸収器6における吸収熱量が減るだけであ
る。このため前記現象とは逆に稀溶液の吸収器出口温度
Tdは低下する。このように冷媒ポンプがあるものと無い
ものとでは、稀溶液吸収器出口温度Tdは逆の現象を呈す
るので判断を逆にすれば上記実施例と同様に診断でき
る。すなわち、判断要素のTdaとTdcの判断の不等号を逆
にして行なえばよい。
When a vacuum degree defect is diagnosed, the signal can be used to operate the air extraction device. Further, in the chiller-heater having the refrigerant pump, even if the refrigerant evaporation amount in the evaporator 5 decreases, the diluted solution and the refrigerant liquid do not mix, and the absorbed heat amount in the absorber 6 simply decreases. Therefore, contrary to the above phenomenon, the temperature at the outlet of the absorber
Td decreases. As described above, the diluted solution absorber outlet temperature Td exhibits the opposite phenomenon depending on whether the refrigerant pump is provided or not. That is, the inequality signs of the judgment factors Tda and Tdc may be reversed.

なおまた、上記実施例では3つの判断要素により真空度
を判定するものについて示したが、3つの判断要素のう
ちの任意の1つ又は2つの組合せにより判定することも
可能である。その場合、真空度判定の精度や信頼度はそ
れに応じて低下する場合がある。
In addition, in the above-described embodiment, the case where the degree of vacuum is determined by the three determination elements has been described, but it is also possible to perform determination by any one or a combination of two of the three determination elements. In that case, the accuracy and reliability of the vacuum degree determination may be reduced accordingly.

また、上記実施例は診断対象として二重効用吸収冷温水
機について示したが、判断基準値を算出する計算式を差
換えることにより単効用吸収冷温水機にも適用可能であ
る。
In addition, although the above-described embodiment shows the double-effect absorption chiller-heater as a diagnosis target, it is also applicable to a single-effect absorption chiller-heater by replacing the calculation formula for calculating the judgment reference value.

上に述べたように、吸収冷温水機の真空度が良好である
か、不良であるかを濃度計や圧力計を用いることなく、
温度を検出することによって診断することが可能であ
り、しかもあらかじめ冷温水機に特別の装置を設けてお
く必要がない。また診断に必要な作業は、移動式の真空
度診断装置に付属している5個の温度検出器を診断対象
の吸収冷温水機に取付けるのみであり、作業時間が短か
くてすむ。又複数の判断要素を組み合わせて診断を行う
ため診断の精度が高い。
As described above, whether the vacuum degree of the absorption chiller-heater is good or bad, without using a densitometer or pressure gauge,
It is possible to make a diagnosis by detecting the temperature, and it is not necessary to provide a special device for the water cooler in advance. Further, the work required for the diagnosis is only to attach the five temperature detectors attached to the mobile vacuum degree diagnostic device to the absorption chiller-heater to be diagnosed, and the work time is short. Further, the accuracy of the diagnosis is high because the diagnosis is made by combining a plurality of judgment elements.

〔発明の効果〕〔The invention's effect〕

本発明によれば、温度検出器と、検出された温度に基づ
いて判断基準値を算出する判断基準値演算手段と、検出
された温度に基づいて現状値を算出する現状値演算手段
と、算出された判断基準値と現状値に基づいて真空度を
判断する真空度判定手段とにより構成し、吸収冷温水機
の構成要素及び各要素を接続する管系の温度のみから真
空度を診断するようにしていることから、圧力計や濃度
計を用いることなくかつ精度よく診断できるという効果
がある。
According to the present invention, a temperature detector, a judgment reference value calculation means for calculating a judgment reference value based on the detected temperature, a current value calculation means for calculating a current value based on the detected temperature, and a calculation The vacuum degree judging means for judging the degree of vacuum based on the determined reference value and the present value is used to diagnose the degree of vacuum only from the temperature of the components of the absorption chiller-heater and the pipe system connecting each element. Therefore, there is an effect that diagnosis can be performed accurately without using a pressure gauge or a densitometer.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の構成を示す概要図、第2図は
第1図実施例の診断装置を吸収冷温水機へ取付けた状態
を示すブロック図、第3図は第1図実施例の真空度診断
の手順を示すフローチャート、第4図は吸収冷温水機に
故意に真空度不良を与えたときの各判断要素の変化を示
す図である。 1……再生器、4……凝縮器、5……蒸発器、 6……吸収器、8,9……溶液熱交換器、 18……冷却水管、20……冷温水管、 30……真空度診断装置、32……温度検出器、 33……判断基準値演算器、34……現状値演算器、 35……比較演算器、36……重み演算器、 37……重み値集計値比較演算器、 38……表示器。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing a state in which the diagnostic device of FIG. 1 embodiment is attached to an absorption chiller-heater, and FIG. FIG. 4 is a flow chart showing the procedure of the vacuum degree diagnosis of the example, and FIG. 4 is a diagram showing changes in each judgment element when the vacuum degree is intentionally given to the absorption chiller-heater. 1 ... Regenerator, 4 ... Condenser, 5 ... Evaporator, 6 ... Absorber, 8,9 ... Solution heat exchanger, 18 ... Cooling water pipe, 20 ... Cold / hot water pipe, 30 ... Vacuum Degree diagnostic device, 32 ... Temperature detector, 33 ... Judgment reference value calculator, 34 ... Present value calculator, 35 ... Comparison calculator, 36 ... Weight calculator, 37 ... Weight value aggregate value comparison Calculator, 38 …… Display.

フロントページの続き (72)発明者 有田 和平 静岡県浜松市子安町1370 矢崎総業株式会 社内 (56)参考文献 特開 昭64−28454(JP,A) 特開 昭64−38574(JP,A)Front Page Continuation (72) Inventor Kahei Arita 1370 Koyasu-cho, Hamamatsu City, Shizuoka Prefecture Yazaki General Stock Company In-house (56) References JP 64-28454 (JP, A) JP 64-38574 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】凝縮器から供給される液冷媒を蒸発させて
冷温水管内を通流される冷温水と熱交換させる蒸発器
と、該蒸発器で蒸発された冷媒蒸気を冷却水が通流され
る冷却水管表面にて吸収液に接触させて吸収させる吸収
器とを備え、該吸収器から流出される冷媒蒸気を吸収し
てなる稀溶液を加熱して冷媒蒸気と吸収液とに分離し、
それぞれ前記凝縮器と前記吸収器とに循環供給するよう
にしてなる吸収冷温水機の真空度の良否を判定する真空
度診断装置において、前記冷温水の出口温度Tb,前記蒸
発器における液冷媒の蒸発温度Te,前記吸収器から流出
される吸収液出口温度Td,前記冷却水の入口温度Taと出
口温度Tcをそれぞれ検出する温度検出器と、蒸発温度T
e,吸収液出口温度Tdと冷却水入口温度Taの差Tda,吸収液
出口温度Tdと冷却水出口温度Tcの差Tdcをそれぞれ判断
要素とし、前記検出された冷温水出口温度Tbと冷却水入
口温度Taに基づいて予め定められた正常な運転状態にお
ける前記各判断要素の判断基準値を求める判断基準値演
算手段と、前記検出された各部の温度に基づいて前記判
断要素の現状値を求め、該現状値と前記判断基準値を比
較して真空度の良否を判定する真空度判定手段と、を具
備してなる吸収冷温水機の真空度診断装置。
1. An evaporator for evaporating a liquid refrigerant supplied from a condenser and exchanging heat with cold / hot water flowing in a cold / hot water pipe, and a cooling water flowing through a refrigerant vapor evaporated in the evaporator. An absorber for contacting and absorbing the absorbing liquid on the surface of the cooling water pipe is provided, and a dilute solution obtained by absorbing the refrigerant vapor flowing out from the absorber is heated to separate the refrigerant vapor and the absorbing liquid.
In the vacuum degree diagnostic device for determining the quality of the vacuum degree of the absorption chiller-heater configured to be circulated and supplied to the condenser and the absorber, respectively, the outlet temperature Tb of the hot and cold water, the liquid refrigerant in the evaporator Evaporation temperature Te, outlet temperature Td of the absorbing liquid flowing out of the absorber, temperature detectors for detecting the inlet temperature Ta and the outlet temperature Tc of the cooling water, and the evaporation temperature T
e, the difference Tda between the absorption liquid outlet temperature Td and the cooling water inlet temperature Ta, and the difference Tdc between the absorption liquid outlet temperature Td and the cooling water outlet temperature Tc, respectively, are used as the judgment factors, and the detected cold / hot water outlet temperature Tb and the cooling water inlet Judgment reference value calculation means for obtaining the judgment reference value of each of the judgment elements in a predetermined normal operating state based on the temperature Ta, and the present value of the judgment element based on the detected temperature of each part, A vacuum degree diagnosing device for an absorption chiller-heater, comprising: a vacuum degree judging means for comparing the present value with the judgment reference value to judge whether the vacuum degree is good or bad.
【請求項2】前記真空度判定手段は前記各判断要素の比
較結果にそれぞれ予め定められた重みを付加して判定す
ることを特徴とする請求項1記載の真空度診断装置。
2. The vacuum degree diagnostic device according to claim 1, wherein said vacuum degree determining means makes a determination by adding a predetermined weight to each comparison result of said determination elements.
JP18333988A 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device Expired - Lifetime JPH071136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18333988A JPH071136B2 (en) 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18333988A JPH071136B2 (en) 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device

Publications (2)

Publication Number Publication Date
JPH0233584A JPH0233584A (en) 1990-02-02
JPH071136B2 true JPH071136B2 (en) 1995-01-11

Family

ID=16133993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18333988A Expired - Lifetime JPH071136B2 (en) 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device

Country Status (1)

Country Link
JP (1) JPH071136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052811A (en) * 2007-08-28 2009-03-12 Daikin Ind Ltd Exhaust heat drive-type absorption refrigerating device
JP4922872B2 (en) * 2007-09-03 2012-04-25 矢崎総業株式会社 Absorption type water heater

Also Published As

Publication number Publication date
JPH0233584A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
Grace et al. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
US5623426A (en) Failure diagnosing system for absorption chillers
US7631508B2 (en) Apparatus and method for determining refrigerant charge level
US9520221B2 (en) Method for function monitoring and/or control of a cooling system, and a corresponding cooling system
Li et al. Virtual refrigerant pressure sensors for use in monitoring and fault diagnosis of vapor-compression equipment
CN111896287A (en) Heat exchanger test bench and use method thereof
CN102520010B (en) Condenser dirt detection method for vapor compression cycle cold water unit
CN105865661A (en) Positive displacement increasing enthalpy compressor refrigerating capacity testing device and method
JPH071136B2 (en) Absorption chiller / heater vacuum degree diagnostic device
EP1535006B1 (en) A method and a device for detecting flash gas
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
CN212513661U (en) Heat exchanger test bench
JP3054554B2 (en) Abnormality detector for absorption type water heater
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JP2000321103A (en) Tester for refrigerating compressor
US20230168014A1 (en) Methods and systems for determining phase state or subcooling state
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JPS613961A (en) Absorption refrigerator
CN109458754B (en) Single-effect lithium bromide absorption type low-temperature water chilling unit for online detection of density steam
JPH06249533A (en) Failure diagnosis system for absorption type refrigerating machine
JP3258692B2 (en) Abnormality detector for absorption refrigerator
KR100317155B1 (en) Fault diagnosis system of absorption chiller
JP7022658B2 (en) Performance diagnosis system for absorption chillers
JPH0625640B2 (en) Absorption chiller / heater diagnostic method