JP3083929B2 - Failure diagnosis system for absorption refrigerator - Google Patents

Failure diagnosis system for absorption refrigerator

Info

Publication number
JP3083929B2
JP3083929B2 JP05035162A JP3516293A JP3083929B2 JP 3083929 B2 JP3083929 B2 JP 3083929B2 JP 05035162 A JP05035162 A JP 05035162A JP 3516293 A JP3516293 A JP 3516293A JP 3083929 B2 JP3083929 B2 JP 3083929B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchange
refrigeration
absorber
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05035162A
Other languages
Japanese (ja)
Other versions
JPH06249532A (en
Inventor
秀和 中島
芳男 小澤
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sanyo Electric Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP05035162A priority Critical patent/JP3083929B2/en
Publication of JPH06249532A publication Critical patent/JPH06249532A/en
Application granted granted Critical
Publication of JP3083929B2 publication Critical patent/JP3083929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に冷凍サイクルを構成する熱交換ユニットの熱交換率の
低下を検知し、該検知に基づいて冷凍機の故障を診断す
るシステムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to a system for detecting a decrease in heat exchange rate of a heat exchange unit constituting a refrigeration cycle and diagnosing a failure of the refrigerator based on the detection. It is.

【0002】[0002]

【従来の技術】吸収式冷凍機においては、凝縮器、蒸発
器、吸収器、再生器等、2つの媒体間の熱交換を行なう
べき複数の熱交換ユニットを相互に配管接続して1つの
冷凍サイクルが構成される。特に二重効用型の吸収式冷
凍機は冷凍効率が高いため、広く採用されている(例え
ば特開昭62-77567号〔F25B15/00〕参照)。
2. Description of the Related Art In an absorption refrigerator, a plurality of heat exchange units, such as a condenser, an evaporator, an absorber, and a regenerator, for exchanging heat between two media are connected to each other by pipes to form one refrigeration unit. A cycle is configured. In particular, a double-effect absorption refrigerator is widely used because of its high refrigeration efficiency (for example, see Japanese Patent Application Laid-Open No. 62-77567 [F25B15 / 00]).

【0003】ところで、吸収式冷凍機においては、屋外
のクーリングタワーとの間で冷却水が循環するため、そ
の過程で冷却水が外気中の塵埃等を吸収する。この様な
冷却水が吸収器や凝縮器等の熱交換ユニットを通過する
と、伝熱面が汚れて熱交換率が低下することになる。
[0003] In an absorption refrigerator, cooling water circulates between the cooling tower and an outdoor cooling tower. In the process, the cooling water absorbs dust and the like in the outside air. When such cooling water passes through a heat exchange unit such as an absorber or a condenser, the heat transfer surface becomes dirty and the heat exchange rate decreases.

【0004】又、例えば真空異常等の故障が発生した場
合、漏れ込んだガスが下胴に集ってくる。下胴のガスを
貯室へ排出する機構によって、大部分のガスは貯室へ排
出されるが、貯室の圧力が高まるにつれて、下胴に残る
ガスも増えてくる。下胴内では、蒸発器の伝熱管から吸
収器の伝熱管へ向けて水蒸気が流れているので、不凝縮
ガスは、吸収器の伝熱管の周囲に集められ、吸収器での
水蒸気の吸収を妨げる。この結果、吸収器の対数平均温
度差が異常に上昇することになる。
[0004] When a failure such as a vacuum abnormality occurs, the leaked gas collects on the lower body. Most of the gas is discharged into the storage chamber by the mechanism that discharges the gas in the lower body into the storage chamber. However, as the pressure in the storage chamber increases, the gas remaining in the lower body increases. In the lower body, since steam flows from the heat transfer tube of the evaporator to the heat transfer tube of the absorber, the non-condensable gas is collected around the heat transfer tube of the absorber, and the absorption of steam in the absorber is performed. Hinder. This results in an abnormal increase in the logarithmic average temperature difference of the absorber.

【0005】この様に、ある種の故障が発生した場合、
その故障の原因と関係のある1或いは複数の熱交換ユニ
ットにおいて、それらの伝熱性能には異常がないにも拘
わらず、対数平均温度差が異常に上昇する。
As described above, when a certain kind of failure occurs,
In one or a plurality of heat exchange units related to the cause of the failure, the logarithmic average temperature difference abnormally rises even though their heat transfer performance is not abnormal.

【0006】そこで、従来は、各熱交換ユニットの入出
力部に、温度、流量、濃度等を測定する各種センサーを
配備し、センサー出力を監視することによって、熱交換
ユニットの汚れや真空異常等の故障を検知することが行
なわれている。
Therefore, conventionally, various sensors for measuring the temperature, flow rate, concentration, etc. are provided in the input / output section of each heat exchange unit, and the sensor output is monitored, so that the heat exchange unit becomes dirty or abnormal vacuum. Is detected.

【0007】一般的な熱交換器においては、熱交換量Q
を熱交換率Kと対数平均温度差ΔTの積で表わし、熱交
換率K、即ち熱交換量Qを対数平均温度差ΔTで除した
値Kを監視することによって、伝熱面の汚れによる性能
低下が検知される。この方法を吸収器、凝縮器等の他の
熱交換ユニットにも適用し、熱交換率が低下している熱
交換ユニットの種別、組合せを知ることによって、真空
異常等の故障の原因を診断することが出来る。
In a general heat exchanger, the amount of heat exchange Q
Is expressed as the product of the heat exchange rate K and the logarithmic average temperature difference ΔT. By monitoring the heat exchange rate K, that is, the value K obtained by dividing the heat exchange amount Q by the logarithmic average temperature difference ΔT, the performance due to the contamination of the heat transfer surface is obtained. A drop is detected. This method is also applied to other heat exchange units such as absorbers and condensers, and by knowing the types and combinations of heat exchange units whose heat exchange rates are decreasing, the cause of failures such as abnormal vacuum is diagnosed. I can do it.

【0008】[0008]

【発明が解決しようとする課題】ところが、吸収式冷凍
機において各熱交換ユニットの熱交換量を算出するため
には、各々に温度計、流量計等の複数の計器を設置せね
ばならず、これによって設備が大規模となる問題があ
る。
However, in order to calculate the amount of heat exchange of each heat exchange unit in an absorption refrigerator, a plurality of instruments such as a thermometer and a flow meter must be installed for each. This causes a problem that the equipment becomes large-scale.

【0009】本発明の目的は、各熱交換ユニットの熱交
換量の代わりに冷凍負荷(蒸発器の熱交換量)を用いて、
熱交換率の低下を正確に検知することが出来る故障診断
システムを提供することである。
An object of the present invention is to use a refrigeration load (a heat exchange amount of an evaporator) instead of a heat exchange amount of each heat exchange unit.
An object of the present invention is to provide a failure diagnosis system capable of accurately detecting a decrease in a heat exchange rate.

【0010】[0010]

【課題を解決する為の手段】本発明に係る吸収式冷凍機
の故障診断システムは、熱交換率の低下を検出せんとす
る熱交換ユニットについて、該熱交換ユニット内を流れ
る2つの媒体の温度差に応じた温度差データ(対数平均
温度差ΔT)を導出する第1データ処理手段と、吸収式
冷凍機の正常時における温度差データと冷凍負荷との対
応関係が格納されている第1格納手段と、該熱交換ユニ
ットについての熱交換量と冷凍負荷との比が、冷凍サイ
クルの冷凍効率に影響を及ぼす1或いは複数の物理量
(例えば冷却水入口温度等)を変数とする関数関係によっ
て格納されている第2格納手段と、第2格納手段の関数
関係に基づいて、故障診断時の熱交換量と冷凍負荷との
比を導出し、該比を用いて冷凍負荷に補正を施す第2デ
ータ処理手段と、第1格納手段の対応関係に基づいて、
第2データ処理手段から得られる補正冷凍負荷に対応す
る正常時の温度差データを導出する第3データ処理手段
と、第3データ処理手段から得られる正常時の温度差デ
ータと、第1データ処理手段から得られる故障診断時の
温度差データの比較によって、該熱交換ユニットの異常
度を判定する第4データ処理手段と、第4データ処理手
段の判定結果を出力する出力手段とを具えている。
SUMMARY OF THE INVENTION A failure diagnosis system for an absorption refrigerator according to the present invention comprises a heat exchange unit for detecting a decrease in the heat exchange rate, the temperature of two media flowing through the heat exchange unit. First data processing means for deriving temperature difference data (logarithmic average temperature difference ΔT) corresponding to the difference, and a first storage in which a correspondence relationship between the temperature difference data and the refrigeration load in a normal state of the absorption refrigerator is stored. Means and one or more physical quantities that affect the refrigeration efficiency of the refrigeration cycle, wherein the ratio of the heat exchange amount to the refrigeration load for the heat exchange unit
(E.g., cooling water inlet temperature) stored in a functional relationship with a variable, and based on the functional relationship of the second storing means, the ratio between the heat exchange amount and the refrigeration load at the time of failure diagnosis is determined. Based on the correspondence between the second data processing means for deriving and correcting the refrigeration load using the ratio and the first storage means,
Third data processing means for deriving normal temperature difference data corresponding to the corrected refrigeration load obtained from the second data processing means; normal temperature difference data obtained from the third data processing means; A fourth data processing means for determining the degree of abnormality of the heat exchange unit by comparing the temperature difference data at the time of failure diagnosis obtained from the means, and an output means for outputting a determination result of the fourth data processing means. .

【0011】[0011]

【作用】本発明の故障診断システムの構築に際しては、
予め、吸収式冷凍機が正常な状態で、熱交換率の低下を
検出せんとする熱交換ユニットについて、温度差データ
(対数平均温度差)と冷凍負荷との対応関係がテーブル化
或いは関数化されて、第1格納手段に格納される。
When constructing the fault diagnosis system of the present invention,
In advance, when the absorption refrigerator is in a normal state, the temperature difference
The correspondence between the (logarithmic average temperature difference) and the refrigeration load is tabulated or functioned and stored in the first storage unit.

【0012】又、該熱交換ユニットについての熱交換量
と冷凍負荷との比が、冷凍サイクルの冷凍効率に影響を
及ぼす1或いは複数の物理量を変数として関数化され、
該関数関係が第2格納手段に格納される。例えば冷却水
入口温度を変数とすると、冷凍効率は冷却水入口温度が
低下するにつれて向上するから、冷凍負荷が一定の場
合、吸収式冷凍機に対する熱入力は冷却水入口温度の低
下に伴って減少し、更には各熱交換ユニットの熱交換量
も同様に減少する。このとき、熱交換量の減少の度合い
は熱交換ユニット毎に異なる。これは、各熱交換ユニッ
トの熱交換量に占める熱入力と冷凍負荷の割合が、熱交
換ユニット毎に異なるからである。従って、熱交換ユニ
ット毎に、熱交換量と冷凍負荷との比を、冷却水入口温
度を変数とする関数、例えば一次式で表わすことが出来
るのである。
The ratio between the heat exchange amount and the refrigeration load for the heat exchange unit is functioned by using one or a plurality of physical quantities that affect the refrigeration efficiency of the refrigeration cycle as variables.
The function relation is stored in the second storage means. For example, if the cooling water inlet temperature is a variable, the refrigeration efficiency increases as the cooling water inlet temperature decreases.Therefore, when the refrigeration load is constant, the heat input to the absorption chiller decreases as the cooling water inlet temperature decreases. In addition, the amount of heat exchange of each heat exchange unit is similarly reduced. At this time, the degree of reduction in the heat exchange amount differs for each heat exchange unit. This is because the ratio of the heat input and the refrigeration load to the heat exchange amount of each heat exchange unit differs for each heat exchange unit. Therefore, for each heat exchange unit, the ratio between the heat exchange amount and the refrigeration load can be represented by a function having the cooling water inlet temperature as a variable, for example, a linear expression.

【0013】故障診断に際しては、蒸発器を通過する冷
水の出入口温度差及び流量を測定し、これらの測定デー
タから冷凍負荷を算出する。又、対象となる熱交換ユニ
ットの温度差データ(対数平均温度差ΔT)を測定する。
At the time of failure diagnosis, the temperature difference and the flow rate of the cold water passing through the evaporator are measured, and the refrigeration load is calculated from the measured data. Further, temperature difference data (logarithmic average temperature difference ΔT) of the target heat exchange unit is measured.

【0014】ところで、熱交換率の低下を検知する際に
熱交換量の代わりに冷凍負荷を用いた場合、冷凍負荷が
一定であるにも拘わらず、例えば冷却水入口温度が低下
すると、上述の如く熱交換量が減少するから、熱交換量
と冷凍負荷が相互に対応せず、熱交換率の低下を正確に
検知することが出来ない。
By the way, when a refrigeration load is used in place of the heat exchange amount when detecting a decrease in the heat exchange rate, for example, if the cooling water inlet temperature decreases despite the refrigeration load being constant, the above-described case will be described. Since the amount of heat exchange decreases as described above, the amount of heat exchange and the refrigerating load do not correspond to each other, and it is impossible to accurately detect a decrease in the heat exchange rate.

【0015】そこで、本発明では、熱交換量の変化率だ
け冷凍負荷も変化させる補正を施すことによって、上記
の不具合を解消することとした。即ち、対象となる熱交
換ユニットについて、前記第2格納手段の関数に対して
そのときの物理量(例えば冷却水入口温度)を入力して、
熱交換量と冷凍負荷との比を導出する。この比を冷凍負
荷に乗算して、冷凍負荷を補正すれば、補正された冷凍
負荷は、冷却水入口温度による冷凍効率の変動による影
響を除外した値となる。
Therefore, in the present invention, the above problem is solved by performing a correction for changing the refrigeration load by the change rate of the heat exchange amount. That is, for the target heat exchange unit, the physical quantity at that time (for example, cooling water inlet temperature) is input to the function of the second storage means,
The ratio between the heat exchange amount and the refrigeration load is derived. If the ratio is multiplied by the refrigeration load to correct the refrigeration load, the corrected refrigeration load has a value excluding the effect of the fluctuation of the refrigeration efficiency due to the cooling water inlet temperature.

【0016】そして第1格納手段の対応関係に基づき、
補正冷凍負荷に対応する温度差データを導出する。この
正常時の温度差データと故障診断時の温度差データは、
熱効率による影響を除外した同一の熱交換量の下でのデ
ータであるから、これらの温度差データを比較すれば、
熱交換ユニットの異常度を正確に判定することが出来
る。異常度の低下している熱交換ユニットの種別、組合
せが判明すると、これに基づいて故障の原因を診断する
ことが可能となる。
Then, based on the correspondence of the first storage means,
Deriving temperature difference data corresponding to the corrected refrigeration load. The temperature difference data at normal time and the temperature difference data at fault diagnosis are
Since the data under the same heat exchange amount excluding the effect of thermal efficiency, comparing these temperature difference data,
The degree of abnormality of the heat exchange unit can be accurately determined. When the type and combination of the heat exchange units having a reduced degree of abnormality are found, it is possible to diagnose the cause of the failure based on this.

【0017】[0017]

【発明の効果】本発明に係る吸収式冷凍機の故障診断シ
ステムによれば、測定の容易な冷凍負荷を用いて熱交換
率の低下を正確に検知出来るから、最小の設備によって
信頼性の高い故障診断が可能である。
According to the failure diagnosing system for an absorption refrigerator according to the present invention, a decrease in the heat exchange rate can be accurately detected by using a refrigeration load that can be easily measured. Fault diagnosis is possible.

【0018】[0018]

【実施例】以下、本発明を二重効用型の吸収式冷凍機に
実施した一例につき、図面に沿って詳述する。図1に示
す如く吸収式冷凍機は、冷媒として水、吸収液として臭
化リチウム(LiBr)溶液を用いたもので、凝縮器(11)
及び低温再生器(12)からなる上胴(1)、蒸発器(21)及び
吸収器(22)からなる下胴(2)、バーナ(31)を内蔵した高
温再生器(3)、高温熱交換器(4)、低温熱交換器(5)等
を相互に配管接続して構成されている。尚、これら複数
の機器の媒体入出力部には、必要なセンサー(図示省略)
が取り付けられており、後述の各種物理量が測定され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a double effect absorption refrigerator will be described in detail with reference to the drawings. As shown in FIG. 1, the absorption refrigerator uses water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid.
And a lower body (2) comprising an evaporator (21) and an absorber (22); a high temperature regenerator (3) incorporating a burner (31); An exchanger (4), a low-temperature heat exchanger (5) and the like are connected to each other by piping. In addition, necessary sensors (not shown) are provided in the medium input / output unit of these multiple devices.
Are attached, and various physical quantities described later are measured.

【0019】クーリングタワー(図示省略)から供給され
る温度の低い冷却水は、先ず吸収器(22)を通過した後、
凝縮器(11)を通過し、これによって温度が上昇した冷却
水は再びクーリングタワーへ戻される。又、室内ユニッ
ト(図示省略)からの温度の高い冷水は蒸発器(21)を通過
し、これによって冷却された温度の低い冷水が室内ユニ
ットへ供給される。
Low-temperature cooling water supplied from a cooling tower (not shown) first passes through an absorber (22),
The cooling water, which has passed through the condenser (11) and thus has increased in temperature, is returned to the cooling tower again. The high-temperature cold water from the indoor unit (not shown) passes through the evaporator (21), whereby the low-temperature cold water cooled is supplied to the indoor unit.

【0020】図2は、凝縮器(11)及び蒸発器(21)につい
ての故障診断を行なうシステムの構成を示している。セ
ンサー群(6)は、図1に示す上胴(1)内の圧力、凝縮器
(11)の冷媒出口温度、吸収器(22)内の吸収液の溜り温度
Ta_out、吸収器(22)内の吸収液の散布温度Ta_
in、凝縮器(11)から流出する冷却水の出口温度Tco
_out、吸収器(22)と凝縮器(11)間の冷却水中間温度
Tco_mid、吸収器(22)へ供給される冷却水の入口
温度Tco_in、蒸発器(21)の冷水出口温度Tc_o
ut、冷水入口温度Tc_in、及び冷水流量Vcを夫
々測定するための圧力計、温度計、流量計から構成され
る。
FIG. 2 shows the configuration of a system for performing a failure diagnosis on the condenser (11) and the evaporator (21). The sensor group (6) includes a pressure in the upper body (1) shown in FIG.
The refrigerant outlet temperature of (11), the pool temperature Ta_out of the absorbent in the absorber (22), and the spray temperature Ta_ of the absorbent in the absorber (22)
in, outlet temperature Tco of the cooling water flowing out of the condenser (11)
_Out, the cooling water intermediate temperature Tco_mid between the absorber (22) and the condenser (11), the inlet temperature Tco_in of the cooling water supplied to the absorber (22), and the chilled water outlet temperature Tc_o of the evaporator (21).
ut, a chilled water inlet temperature Tc_in, and a pressure gauge, a thermometer, and a flow meter for measuring the chilled water flow rate Vc, respectively.

【0021】本実施例では、冷凍サイクルの冷凍効率に
影響を及ぼす物理量として、吸収器へ供給される冷却水
の入口温度を採用する。冷却水入口温度が低下すること
によって冷凍効率が向上する理由は、例えば冷凍サイク
ルをデューリング線図上に表わした場合、冷凍サイクル
のループが全体として低圧力及び低温側へ移動すること
から説明出来る。ここでは、冷却水入口温度の低下によ
って、どの程度、冷凍効率が向上するかにつき、具体的
に試算してみる。
In the present embodiment, the inlet temperature of the cooling water supplied to the absorber is adopted as a physical quantity that affects the refrigeration efficiency of the refrigeration cycle. The reason that the refrigeration efficiency is improved by lowering the cooling water inlet temperature can be explained by, for example, when the refrigeration cycle is represented on a During diagram, the entire refrigeration cycle loop moves to the low pressure and low temperature side. . Here, a specific trial calculation will be made as to how much the refrigeration efficiency is improved by lowering the cooling water inlet temperature.

【0022】今、冷凍機がある状態で運転していると
き、冷却水入口温度が低下すると、冷却水中間温度と出
口温度も略同じだけ低下する。これは、冷却水温度が変
化しても、冷却水に放出される熱量は殆ど変わらないか
らである。従って、冷却水温度の低下は、吸収器と凝縮
器の2箇所に別々に現われることになる。
When the cooling water inlet temperature decreases while the refrigerator is operating in a certain state, the cooling water intermediate temperature and the outlet temperature also decrease by substantially the same amount. This is because the amount of heat released to the cooling water hardly changes even if the temperature of the cooling water changes. Therefore, a decrease in the temperature of the cooling water will appear separately in two places, the absorber and the condenser.

【0023】冷凍機の冷凍能力に大きな変化がない場
合、下胴の蒸気圧は殆ど変化しないのに対し、吸収器で
は、冷却水温度の低下によって吸収液の温度が低下す
る。例えば、下胴圧力6mmHg、冷却水入口温度30
度、吸収液稀液濃度55%、稀液温度35度の場合、冷
却水温度が4度低下すると、下胴圧力は一定のまま、吸
収液濃度53%、稀液温度31度に変化する。これによ
って、吸収器からの低温、低濃度の吸収液が高温再生器
へ流れるため、高温再生器の温度と濃度が低下する方向
へ変化することになる。
When there is no significant change in the refrigerating capacity of the refrigerator, the vapor pressure in the lower body hardly changes, whereas in the absorber, the temperature of the absorbing liquid decreases due to a decrease in the cooling water temperature. For example, lower body pressure 6 mmHg, cooling water inlet temperature 30
If the cooling water temperature is lowered by 4 degrees in the case of the absorption liquid concentration of 55% and the dilution liquid temperature of 35 degrees, the absorption liquid concentration changes to 53% and the dilution liquid temperature of 31 degrees while the lower body pressure is kept constant. As a result, the low-temperature, low-concentration absorbing liquid from the absorber flows to the high-temperature regenerator, so that the temperature and concentration of the high-temperature regenerator change in a direction of decreasing.

【0024】一方、凝縮器では、冷却水入口温度が30
度の場合、中間温度が34度、出口温度が36度の状態
で、入口温度が4度低下すると、中間温度及び出口温度
は夫々同じだけ下がって、30度と32度になる。これ
によって、凝縮器での冷媒の凝縮温度が略4度低下する
ため、上胴の圧力が約60mmHgから50mmHgへ低下
する。上胴の圧力が低下すると、低温再生器内の吸収液
の沸点が低下する。又同時に、吸収器で発生した吸収液
濃度の低下や、後述する吸収液循環量の低下等の影響も
含めて、吸収液は、濃度61%、濃液温度90度から、
濃度60%、温度85度に夫々低下する。
On the other hand, in the condenser, the cooling water inlet temperature is 30
In the case of degrees, when the intermediate temperature is 34 degrees and the outlet temperature is 36 degrees, if the inlet temperature decreases by 4 degrees, the intermediate temperature and the outlet temperature decrease by the same amount to 30 degrees and 32 degrees, respectively. As a result, the condensation temperature of the refrigerant in the condenser drops by about 4 degrees, so that the pressure of the upper body drops from about 60 mmHg to 50 mmHg. When the pressure in the upper body decreases, the boiling point of the absorbent in the low-temperature regenerator decreases. At the same time, the absorption liquid has a concentration of 61% and a concentrated liquid temperature of 90 degrees, including the effects of a decrease in the concentration of the absorption liquid generated in the absorber and a decrease in the circulation amount of the absorption liquid described below.
The concentration decreases to 60% and the temperature to 85 degrees, respectively.

【0025】吸収液濃液の温度(沸点)が低下すると、低
温再生器の伝熱管内で凝縮する高温再生器からの冷媒蒸
気の凝縮温度が92度から87度に低下する。凝縮温度
が低下すると、低温再生器での蒸気圧力が550mmHg
かあ450mmHgに低下する。低温再生器と高温再生器
の間には、蒸気の流れ抵抗があるため、高温再生器と低
温再生器の蒸気圧力は同じにはならないが、低温再生器
の蒸気圧力が低下することにより、高温再生器の蒸気圧
力も低下して、670mmHgから550mmHgに低下す
る。
When the temperature (boiling point) of the absorbent concentrate decreases, the condensation temperature of the refrigerant vapor from the high-temperature regenerator condensing in the heat transfer tube of the low-temperature regenerator decreases from 92 degrees to 87 degrees. When the condensation temperature decreases, the vapor pressure in the low-temperature regenerator becomes 550 mmHg
It falls to 450 mmHg. Because of the steam flow resistance between the low-temperature regenerator and the high-temperature regenerator, the steam pressure of the high-temperature regenerator and the low-temperature regenerator will not be the same, but the low-temperature regenerator will have a low steam pressure. The steam pressure in the regenerator also drops, from 670 mmHg to 550 mmHg.

【0026】蒸気圧力の低下、吸収液濃度の低下、更に
吸収液循環量の低下により、高温再生器の吸収液中間液
は濃度60%、温度152度から、濃度59%、温度1
45度に低下する。このように、高温再生器の圧力と上
胴圧力が低下すると、高温再生器と上胴圧力との差圧も
610mmHgから500mmHgへ低下する。
Due to a decrease in the vapor pressure, a decrease in the concentration of the absorbing solution, and a decrease in the amount of the circulating absorbing solution, the intermediate solution of the absorbing solution in the high-temperature regenerator has a concentration of 60% and a temperature of 152 degrees, a concentration of 59% and a temperature of 1%.
It drops to 45 degrees. As described above, when the pressure of the high-temperature regenerator and the upper body pressure decrease, the pressure difference between the high-temperature regenerator and the upper body pressure also decreases from 610 mmHg to 500 mmHg.

【0027】両再生器の吸収液面位差が圧力差で押し上
げられることにより、吸収液は高温再生器から高温熱交
換器を通って低温再生器へ循環するので、圧力差が低下
すると、吸収液の循環量が低下することになる。冷却水
入口温度の4度差で、吸収液稀液循環量は略0.84%
程低下する。
When the difference in the level of the absorbing liquid between the two regenerators is pushed up by the pressure difference, the absorbing liquid circulates from the high-temperature regenerator through the high-temperature heat exchanger to the low-temperature regenerator. The amount of liquid circulation will be reduced. With the difference of 4 degrees of cooling water inlet temperature, the circulating volume of the dilute absorbing liquid is about 0.84%
The lower it is.

【0028】この結果、同じ冷凍能力を維持するには、
吸収液で同量の冷媒蒸気を吸収液が吸収する必要がある
ため、冷却水温度が低下すると、吸収液濃液と稀液の濃
度差が6%(=61%−55%)から7%(=60%−5
3%)に増加することになる。このとき、低温熱交換器
から高温熱交換器を通って加熱された、高温再生器へ入
る前の吸収液稀液の温度は、125度から118度に低
下する。
As a result, to maintain the same refrigeration capacity,
Since it is necessary for the absorbing liquid to absorb the same amount of refrigerant vapor in the absorbing liquid, when the cooling water temperature decreases, the concentration difference between the absorbing liquid concentrated liquid and the diluted liquid becomes 6% (= 61% -55%) to 7%. (= 60% -5
3%). At this time, the temperature of the diluted absorbent before entering the high-temperature regenerator, which has been heated from the low-temperature heat exchanger through the high-temperature heat exchanger, decreases from 125 degrees to 118 degrees.

【0029】以下、吸収器で吸収する冷媒蒸気1Kg当
りについての試算を行なう。高温再生器での加熱量は、
冷却水入口温度30度のとき、濃度55%、温度125
度の稀液10.17Kgを加熱して、濃度60%、温度
152度の中間液9.32Kgと、圧力670mmHgの
水蒸気1Kgを作るから、エンタルピー差として、64
7.75Kcalが必要加熱量となる。
Hereinafter, a trial calculation will be made for 1 kg of refrigerant vapor absorbed by the absorber. The heating amount in the high-temperature regenerator
When the cooling water inlet temperature is 30 degrees, the concentration is 55% and the temperature is 125.
Is heated to produce 9.32 Kg of an intermediate liquid having a concentration of 60% and a temperature of 152 ° C. and 1 Kg of steam having a pressure of 670 mmHg.
7.75 Kcal is the required heating amount.

【0030】同様に、冷却水入口温度26度の場合、濃
度53%、温度118度の稀液8.57Kgを、濃度5
9%、温度145度の中間液7.70Kgと、圧力55
0mmHgの蒸気1Kgにするので、エンタルピー差とし
て、620.78Kcalが必要加熱量となる。
Similarly, when the cooling water inlet temperature is 26 ° C., 8.57 kg of a diluted liquid having a concentration of 53% and a temperature of 118 ° C.
9.70 kg of an intermediate liquid having a temperature of 145 degrees and a pressure of 55%.
The required heating amount is 620.78 Kcal as the enthalpy difference because the pressure is 0 kgHg steam 1 kg.

【0031】従って、冷却水温度が30度から26度に
4度低下すると、冷凍機の効率(冷凍能力/入熱量)は、
およそ4%向上する。但し、実際には、冷媒凝縮温度の
低下により、吸収器での冷媒蒸気の吸収量が幾分減少す
るので、もう少し効率が向上することになる。
Therefore, when the cooling water temperature drops 4 degrees from 30 degrees to 26 degrees, the efficiency (refrigeration capacity / heat input) of the refrigerator becomes
Improve by about 4%. However, in practice, the decrease in the refrigerant condensing temperature slightly reduces the amount of refrigerant vapor absorbed by the absorber, so that the efficiency is slightly improved.

【0032】上述の如く、冷却水入口温度の低下に伴っ
て冷凍効率が向上するので、本実施例では、冷却水入口
温度を変数として、凝縮器(11)及び吸収器(22)について
の熱交換量と冷凍負荷との比を、予め関数化しておき、
該関数に基づいて冷凍負荷を補正することにより、適正
な異常度を算出するのである。
As described above, the refrigeration efficiency is improved with a decrease in the cooling water inlet temperature. Therefore, in this embodiment, the cooling water inlet temperature is used as a variable and the heat of the condenser (11) and the absorber (22) is changed. The ratio between the replacement amount and the refrigeration load is functioned in advance,
By correcting the refrigeration load based on the function, an appropriate degree of abnormality is calculated.

【0033】図2に示す演算処理回路(7)はマイクロコ
ンピュータから構成され、次の9つの計算部(71)〜(79)
を具えている。凝縮器対数平均温度差計算部(71)は、上
胴圧力、冷媒出口温度、冷却水出口温度及び冷却水中間
温度から凝縮器の対数平均温度差を計算するものであ
り、吸収器対数平均温度差計算部(72)は、吸収液溜り温
度、吸収液散布温度、冷却水出口温度及び冷却水入口温
度から吸収器の対数平均温度差を計算するものである。
The arithmetic processing circuit (7) shown in FIG. 2 is composed of a microcomputer, and has the following nine calculation units (71) to (79).
It has. The condenser logarithmic average temperature difference calculation unit (71) calculates the logarithmic average temperature difference of the condenser from the upper body pressure, the refrigerant outlet temperature, the cooling water outlet temperature, and the cooling water intermediate temperature. The difference calculation unit (72) calculates the logarithmic average temperature difference of the absorber from the absorption liquid pool temperature, the absorption liquid spraying temperature, the cooling water outlet temperature, and the cooling water inlet temperature.

【0034】具体的には、吸収器の対数平均温度差ΔT
(abso)は次の数1によって、凝縮器の対数平均温度
差ΔT(cond)は数2によって算出される。
Specifically, the logarithmic average temperature difference ΔT of the absorber
(abso) is calculated by the following equation (1), and the logarithmic average temperature difference ΔT (cond) of the condenser is calculated by the following equation (2).

【0035】[0035]

【数1】 ΔT(abso) =(Ta_in-Tco_mid-Ta_out+Tco_in)/ln{(Ta_in-Tco_mid)/(Ta_out-Tco_in)}ΔT (abso) = (Ta_in-Tco_mid-Ta_out + Tco_in) / ln {(Ta_in-Tco_mid) / (Ta_out-Tco_in)}

【0036】[0036]

【数2】 ΔT(cond) =(Tcond-Tco_out-Tcond+Tco_mid)/ln{(Tcond-Tco_out)/(Tcond-Tco_mid)}ΔT (cond) = (Tcond−Tco_out−Tcond + Tco_mid) / ln {(Tcond−Tco_out) / (Tcond−Tco_mid)}

【0037】ここで、Tcondは凝縮器内の飽和蒸気
温度であって、上胴(1)内の圧力から求められる。
Here, Tcond is the saturated vapor temperature in the condenser, and is determined from the pressure in the upper body (1).

【0038】演算処理回路(7)の冷凍負荷計算部(75)
は、冷水出口温度、冷水入口温度及び冷水流量から下記
数2に基づいて冷凍負荷Lcを計算するものである。
The refrigeration load calculator (75) of the arithmetic processing circuit (7)
Calculates the refrigeration load Lc from the chilled water outlet temperature, the chilled water inlet temperature, and the chilled water flow rate based on the following equation (2).

【0039】[0039]

【数3】Lc=Vc(Tc_out−Tc_in)Lc = Vc (Tc_out−Tc_in)

【0040】図2に示す演算処理回路(7)において、凝
縮器についての冷凍負荷補正部(73)と吸収器についての
冷凍負荷補正部(74)は夫々、冷却水入口温度に基づいて
冷凍負荷に補正を施すものであって、各補正部には、予
め、熱交換量Qと冷凍負荷Lcとの比Q/Lcが、冷却
水入口温度Tco_inを変数とする関数の形で格納さ
れている。
In the arithmetic processing circuit (7) shown in FIG. 2, the refrigeration load correction unit (73) for the condenser and the refrigeration load correction unit (74) for the absorber are each provided with a refrigeration load based on the cooling water inlet temperature. In each correction unit, the ratio Q / Lc between the heat exchange amount Q and the refrigeration load Lc is stored in advance in the form of a function using the cooling water inlet temperature Tco_in as a variable. .

【0041】図3は、吸収器と凝縮器の夫々について、
冷却水入口温度Tco_inと前記比Q/Lcの関係を
実測した結果を表わしており、何れも1次式で精度良く
表し得ることがわかる。そこで、図3中に示す一次式を
変形して冷凍負荷Lcに対する補正係数とすると、吸収
器及び凝縮器についての補正冷凍負荷Lc′(abso)及び
Lc′(cond)は夫々、次の数4及び数5で表わすことが
出来る。
FIG. 3 shows each of the absorber and the condenser.
It shows the results of actual measurement of the relationship between the cooling water inlet temperature Tco_in and the ratio Q / Lc, and it can be seen that any of them can be accurately expressed by a linear equation. Therefore, assuming that the linear equation shown in FIG. 3 is modified to be a correction coefficient for the refrigeration load Lc, the corrected refrigeration loads Lc ′ (abso) and Lc ′ (cond) for the absorber and the condenser are respectively expressed by the following equation (4). And equation (5).

【0042】[0042]

【数4】 Lc′(abso)=Lc{1+KTco(abso)・(Tco_in−BTco(abso))}Lc ′ (abso) = Lc {1 + KTco (abso) · (Tco_in−BTco (abso))}

【数5】 Lc′(cond)=Lc{1+KTco(cond)・(Tco_in−BTco(cond))}Lc ′ (cond) = Lc {1 + KTco (cond) · (Tco_in−BTco (cond))}

【0043】ここで、KTco(abso)、BTco(abs
o)、KTco(cond)、BTco(cond)は夫々、吸収器と
凝縮器の固有の係数であって、実験的に求められるもの
である。
Here, KTco (abso), BTco (abs
o), KTco (cond) and BTco (cond) are specific coefficients of the absorber and the condenser, respectively, and are experimentally obtained.

【0044】図2に示す凝縮器の正常時の対数平均温度
差計算部(76)及び吸収器の正常時の対数平均温度差計算
部(77)には夫々、正常時における対数平均温度差と冷凍
負荷との対応関係がテーブル化されており、補正された
冷凍負荷に基づいて正常時の対数平均温度差が導出され
る。
The normal logarithmic average temperature difference calculating section (76) and the normal logarithmic average temperature difference calculating section (77) of the condenser shown in FIG. The correspondence relationship with the refrigeration load is tabulated, and the logarithmic average temperature difference in a normal state is derived based on the corrected refrigeration load.

【0045】図4は冷凍負荷Lcと対数平均温度差ΔT
の関係を定性的なグラフで表わしたものであって、実線
は、前記正常時の対数平均温度差計算部に格納されてい
るテーブルに対応している。この関係は、故障診断を行
なうべき熱交換ユニット、本実施例では、凝縮器と吸収
器の夫々について、正常な運転状態にて、冷凍負荷を変
化させつつ対数平均温度差を実測することによって、予
め作成される。
FIG. 4 shows the refrigeration load Lc and the logarithmic average temperature difference ΔT.
Is represented by a qualitative graph, and the solid line corresponds to the table stored in the logarithmic average temperature difference calculation unit in the normal state. This relationship is obtained by actually measuring the logarithmic average temperature difference while changing the refrigeration load in a normal operation state for each of the heat exchange unit to be subjected to the failure diagnosis, and in this embodiment, for each of the condenser and the absorber. Created in advance.

【0046】凝縮器の正常時の対数平均温度差計算部(7
6)は、図1の冷凍負荷補正部(73)から得られる補正され
た冷凍負荷に基づいて前記テーブルをサーチし、補正冷
凍負荷に対応する対数平均温度差を導出する。又、吸収
器の正常時の対数平均温度差計算部(77)は、図1の冷凍
負荷補正部(74)から得られる補正された冷凍負荷に基づ
いて前記テーブルをサーチし、補正冷凍負荷に対応する
対数平均温度差を導出する。
The logarithmic mean temperature difference calculation section (7
6) searches the table based on the corrected refrigeration load obtained from the refrigeration load correction unit (73) in FIG. 1, and derives a logarithmic average temperature difference corresponding to the corrected refrigeration load. The logarithmic average temperature difference calculation unit (77) in the normal state of the absorber searches the table based on the corrected refrigeration load obtained from the refrigeration load correction unit (74) in FIG. Derive the corresponding log average temperature difference.

【0047】凝縮器異常度計算部(78)及び吸収器異常度
計算部(79)は夫々、故障診断時及び正常時における対数
平均温度差から異常度を計算するものである。ここで異
常度Aは、図4に示すグラフにおいて、異常時の対数平
均温度差ΔT(Lc)を正常時の対数平均温度差ΔTs
(Lc)によって正規化したものであって、下記数6で定
義される。
The condenser abnormality degree calculation section (78) and the absorber abnormality degree calculation section (79) calculate the degree of abnormality from the logarithmic average temperature difference at the time of failure diagnosis and at the time of normal operation, respectively. Here, in the graph shown in FIG. 4, the degree of abnormality A is obtained by converting the logarithmic average temperature difference ΔT (Lc) in the abnormal state into a logarithmic average temperature difference ΔTs in the normal state.
This is normalized by (Lc), and is defined by Equation 6 below.

【0048】[0048]

【数6】 A={ΔT(Lc)−ΔTs(Lc)}/ΔTs(Lc)A = {ΔT (Lc) −ΔTs (Lc)} / ΔTs (Lc)

【0049】数6では、異常時と正常時の対数平均温度
差が同一の冷凍負荷Lcでの値となっているが、前述の
ごとく冷凍効率の影響を除外するには、正常時の対数平
均温度差を導出する際に、補正された冷凍負荷を基準と
するのが妥当である。
In Equation 6, the logarithmic average temperature difference between the abnormal state and the normal state is a value at the same refrigeration load Lc. When deriving the temperature difference, it is appropriate to use the corrected refrigeration load as a reference.

【0050】そこで、凝縮器及び吸収器についての異常
度A(abso)及びA(cond)は、前記数4及び数5で示され
る正常時の対数平均温度を用いて、夫々下記数7及び数
8によって計算する。
Then, the abnormalities A (abso) and A (cond) of the condenser and the absorber are calculated by using the logarithmic average temperatures in the normal state shown by the above equations 4 and 5, respectively, by the following equations 7 and Calculated by 8.

【0051】[0051]

【数7】 A(abso)={ΔT(Lc(abso))−ΔTs(Lc′(abso)}/ΔTs(Lc′(abso)A (abso) = {ΔT (Lc (abso)) − ΔTs (Lc ′ (abso)} / ΔTs (Lc ′ (abso)

【数8】 A(cond)={ΔT(Lc(cond))−ΔTs(Lc′(cond)}/ΔTs(Lc′(cond)A (cond) = {ΔT (Lc (cond)) − ΔTs (Lc ′ (cond)} / ΔTs (Lc ′ (cond)

【0052】図2の出力装置(8)は、凝縮器異常度計算
部(78)及び吸収器異常度計算部(79)から得られる凝縮器
と吸収器の異常度を数値データとして、或いは基準値を
越えたときに警報として、運転監視室等へ出力するもの
である。
The output device (8) shown in FIG. 2 calculates the abnormality degree of the condenser and the absorber obtained from the condenser abnormality degree calculation section (78) and the absorber abnormality degree calculation section (79) as numerical data or as reference data. When the value is exceeded, an alarm is output to an operation monitoring room or the like.

【0053】上述の故障診断システムによれば、凝縮器
(11)や吸収器(22)の熱交換量を測定することなく、測定
の容易な冷凍負荷Lcを用いて異常度を計算することが
出来、然も、異常度の計算に際して補正冷凍負荷を用い
ることにより、冷凍効率による影響を除外しているか
ら、正確な異常度を得ることが出来、これによって信頼
性の高い故障診断が可能である。
According to the above failure diagnosis system, the condenser
Without measuring the heat exchange amount of (11) and the absorber (22), the degree of abnormality can be calculated by using the easily measured refrigeration load Lc. By using the method, the influence of the refrigeration efficiency is excluded, so that an accurate degree of abnormality can be obtained, thereby enabling a highly reliable failure diagnosis.

【0054】上記実施例では、冷凍効率に影響を及ぼす
物理量として、冷却水入口温度を採用しているが、その
他、冷却水の流量、吸収器と凝縮器の間の冷却水中間温
度、凝縮器から流出する冷却水の出口温度、吸収器へ供
給される吸収液の濃度、流量、温度、吸収器内の圧力、
凝縮器内の圧力、或いは蒸発器から流出する冷水の出口
温度等を採用することも可能である。又、これらの中か
ら選ばれる複数の物理量を組み合わせることも可能であ
る。
In the above embodiment, the cooling water inlet temperature is employed as a physical quantity affecting the refrigeration efficiency. However, the cooling water flow rate, the cooling water intermediate temperature between the absorber and the condenser, the condenser Outlet temperature of the cooling water flowing out of the tank, concentration of the absorbing liquid supplied to the absorber, flow rate, temperature, pressure inside the absorber,
It is also possible to adopt the pressure in the condenser, the outlet temperature of the cold water flowing out of the evaporator, or the like. It is also possible to combine a plurality of physical quantities selected from these.

【0055】例えば、冷却水の中間温度や出口温度は、
主として凝縮器における凝縮温度や、上胴圧力に影響を
与えるため、高温再生器の圧力や、吸収液循環量に影響
して、効率を変化させる。
For example, the intermediate temperature and outlet temperature of the cooling water are
Since it mainly affects the condensation temperature in the condenser and the upper body pressure, the efficiency is changed by affecting the pressure of the high-temperature regenerator and the amount of circulating absorbent.

【0056】冷却水流量については、これが増加する
と、冷却水入口温度が一定の場合でも、吸収器内の吸収
液温度が低下する。又、冷却水中間温度や出口温度が低
下するので、凝縮温度も低下する。従って、冷却水流量
が増加すると、冷凍機の効率は向上する。この場合、冷
却水入口温度が変化する場合に比べて、凝縮器に対する
影響が大きくなる。
As for the flow rate of the cooling water, when the cooling water flow rate increases, the temperature of the absorbing liquid in the absorber decreases even when the cooling water inlet temperature is constant. Further, since the cooling water intermediate temperature and the outlet temperature decrease, the condensing temperature also decreases. Therefore, as the flow rate of the cooling water increases, the efficiency of the refrigerator increases. In this case, the influence on the condenser is greater than when the cooling water inlet temperature changes.

【0057】吸収液濃度については、再生器への入熱量
が同じ場合、吸収液濃度(例えば濃液濃度)が上昇する
と、吸収液循環量、吸収液温度等が同じであれば、吸収
液の水蒸気吸収量が増加するので、冷凍能力が増大し
て、冷凍効率が向上する。
With respect to the concentration of the absorbing solution, if the heat input to the regenerator is the same and the concentration of the absorbing solution (for example, the concentration of the concentrated solution) increases, if the circulation amount of the absorbing solution and the temperature of the absorbing solution are the same, Since the amount of water vapor absorption increases, the refrigeration capacity increases, and the refrigeration efficiency improves.

【0058】吸収液循環量については、再生器への入熱
量が同じ場合、吸収液循環量が増加すると、吸収液温度
や濃度が同じであれば、吸収液の水蒸気吸収量が増加す
るので、冷凍能力が増大して、冷凍効率が向上する。
Regarding the circulating amount of the absorbing solution, when the amount of heat input to the regenerator is the same, if the circulating amount of the absorbing solution increases, if the temperature and the concentration of the absorbing solution are the same, the amount of absorbing water vapor of the absorbing solution increases. The refrigerating capacity is increased, and the refrigerating efficiency is improved.

【0059】吸収液温度(吸収器の濃液/稀液温度)の変
化は、冷却水入口温度の場合と同様の理由で効率に影響
を与える。又、低温再生器における吸収液温度が上昇す
ると、上胴圧力が同じであれば、濃液濃度が上昇するた
め、吸収器での水蒸気吸収量が増加し、効率が向上す
る。
Changes in the temperature of the absorbing solution (the temperature of the concentrated solution / the diluted solution in the absorber) affect the efficiency for the same reason as in the case of the cooling water inlet temperature. Further, when the temperature of the absorbing solution in the low-temperature regenerator increases, the concentration of the concentrated solution increases if the upper body pressure is the same, so that the amount of water vapor absorbed by the absorber increases, and the efficiency improves.

【0060】又、冷水入口温度や出口温度が上昇し、或
いは冷水流量が増加すると、蒸発器での冷媒の蒸発量が
増加するため、下胴圧力が増大する。これによって、吸
収器での吸収液の蒸気吸収能力が増大するため、冷凍効
率が向上することになる。
When the inlet / outlet temperature of the cold water rises or the flow rate of the cold water increases, the amount of refrigerant evaporated in the evaporator increases, so that the lower body pressure increases. As a result, the capacity of the absorber to absorb the vapor of the absorbing liquid is increased, and the refrigeration efficiency is improved.

【0061】従って、上記の複数の物理量の中から1或
いは複数を選択し、これを変数として、熱交換ユニット
についての熱交換量と冷凍負荷との比を関数化しておけ
ば、該関数に基づいて冷凍負荷を補正することにより、
適正な異常度を算出することが出来る。
Therefore, if one or a plurality of physical quantities are selected from the above-mentioned plurality of physical quantities and the ratio between the heat exchange quantity and the refrigeration load for the heat exchange unit is expressed as a function, a function based on the function is obtained. By compensating the refrigeration load,
An appropriate degree of abnormality can be calculated.

【0062】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能である。
The description of the above embodiments is for the purpose of illustrating the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

【0063】例えば上記実施例では、凝縮器(11)及び吸
収器(22)を対象とする故障診断を行なっているが、これ
に限らず、本発明は、高温熱交換器(4)や低温熱交換器
(5)等の他の熱交換ユニットについても同様に適用出来
るのは言うまでもない。又、異常度としては、前記数6
によって定義されたものに限らず、熱交換ユニットの熱
交換率の低下を反映する種々の評価値を採用することが
出来る。
For example, in the above-described embodiment, the failure diagnosis is performed for the condenser (11) and the absorber (22). However, the present invention is not limited to this, and the present invention may be applied to a high-temperature heat exchanger (4) or a low-temperature heat exchanger (4). Heat exchanger
Needless to say, the same can be applied to other heat exchange units such as (5). In addition, as the degree of abnormality,
Various evaluation values reflecting the reduction in the heat exchange rate of the heat exchange unit can be employed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施すべき吸収式冷凍機の構成図であ
る。
FIG. 1 is a configuration diagram of an absorption refrigerator in which the present invention is to be implemented.

【図2】故障診断システムの構成を示すブロック図であ
る。
FIG. 2 is a block diagram illustrating a configuration of a failure diagnosis system.

【図3】熱交換量と冷凍能力の比を冷却水入口温度を変
数として表わしたグラフである。
FIG. 3 is a graph showing a ratio between a heat exchange amount and a refrigerating capacity with a cooling water inlet temperature as a variable.

【図4】正常時と異常時の対数平均温度差を比較したグ
ラフである。
FIG. 4 is a graph comparing a logarithmic average temperature difference between a normal state and an abnormal state.

【符号の説明】[Explanation of symbols]

(11) 凝縮器 (12) 低温再生器 (21) 蒸発器 (22) 吸収器 (3) 高温再生器 (4) 高温熱交換器 (5) 低温熱交換器 (6) センサー群 (7) 演算処理回路 (8) 出力装置 (11) Condenser (12) Low temperature regenerator (21) Evaporator (22) Absorber (3) High temperature regenerator (4) High temperature heat exchanger (5) Low temperature heat exchanger (6) Sensor group (7) Calculation Processing circuit (8) Output device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 雅裕 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平4−64876(JP,A) 特開 平2−130363(JP,A) 特開 昭56−146966(JP,A) 実開 昭61−162766(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 F25B 15/00 306 F25B 49/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masahiro Furukawa 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-4-64876 (JP, A) JP-A-Hei 2-130363 (JP, A) JP-A-56-146966 (JP, A) JP-A-61-162766 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 15/00 F25B 15/00 306 F25B 49/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凝縮器、蒸発器、吸収器等の複数の熱交
換ユニットを相互に配管接続して1つの冷凍サイクルを
構成した吸収式冷凍機において、各熱交換ユニットの熱
交換率の低下に基づいて、冷凍機の故障を診断するシス
テムであって、 熱交換率の低下を検出せんとする熱交換ユニットについ
て、該熱交換ユニット内を流れる2つの媒体の温度差に
応じた温度差データを導出する第1データ処理手段と、 吸収式冷凍機の正常時における温度差データと冷凍負荷
との対応関係が格納されている第1格納手段と、 該熱交換ユニットについての熱交換量と冷凍負荷との比
が、冷凍サイクルの冷凍効率に影響を及ぼす1或いは複
数の物理量を変数とする関数関係として格納されている
第2格納手段と、 第2格納手段の関数関係に基づいて、故障診断時の熱交
換量と冷凍負荷との比を導出し、該比に応じて冷凍負荷
を補正する第2データ処理手段と、 第1格納手段の対応関係に基づいて、第2データ処理手
段から得られる補正冷凍負荷に対応する正常時の温度差
データを導出する第3データ処理手段と、 第3データ処理手段から得られる正常時の温度差データ
と、第1データ処理手段から得られる故障診断時の温度
差データの比較によって、該熱交換ユニットの異常度を
判定する第4データ処理手段と、 第4データ処理手段の判定結果を出力する出力手段とを
具えたことを特徴とする吸収式冷凍機の故障診断システ
ム。
1. An absorption refrigerator in which a plurality of heat exchange units, such as a condenser, an evaporator, and an absorber, are connected to each other by piping to form one refrigeration cycle, and the heat exchange rate of each heat exchange unit is reduced. Is a system for diagnosing a failure of a refrigerator based on a temperature difference data corresponding to a temperature difference between two media flowing in the heat exchange unit, wherein the heat exchange unit detects a decrease in a heat exchange rate. First data processing means for deriving the temperature of the absorption type refrigerator, first storage means for storing the correspondence between the temperature difference data and the refrigeration load of the absorption chiller during normal operation, and the heat exchange amount and refrigeration for the heat exchange unit. A failure diagnosis is performed based on a second storage unit in which a ratio with a load is stored as a functional relationship with one or a plurality of physical quantities as variables as variables that affect the refrigeration efficiency of the refrigeration cycle. A second data processing means for deriving a ratio between the heat exchange amount at the time and the refrigeration load and correcting the refrigeration load according to the ratio; Data processing means for deriving normal temperature difference data corresponding to the corrected refrigeration load, normal temperature difference data obtained from the third data processing means, and failure diagnosis obtained from the first data processing means 4. An absorption refrigeration system comprising: fourth data processing means for determining the degree of abnormality of the heat exchange unit by comparing the temperature difference data of the above; and output means for outputting the determination result of the fourth data processing means. Machine failure diagnosis system.
【請求項2】 第2格納手段において、冷凍サイクルの
冷凍効率に影響を及ぼす物理量としては、吸収器へ供給
される冷却水の入口温度、流量、吸収器と凝縮器の間を
流れる冷却水の温度、凝縮器から流出する冷却水の出口
温度、吸収器へ供給される吸収液の濃度、流量、温度、
吸収器内の圧力、凝縮器内の圧力、及び蒸発器から流出
する冷水の出口温度の中から選ばれる1或いは複数の物
理量が設定される請求項1に記載の故障診断システム。
In the second storage means, the physical quantities affecting the refrigeration efficiency of the refrigeration cycle include the inlet temperature and flow rate of the cooling water supplied to the absorber, and the cooling water flowing between the absorber and the condenser. Temperature, outlet temperature of the cooling water flowing out of the condenser, concentration, flow rate, temperature of the absorbing liquid supplied to the absorber,
The fault diagnosis system according to claim 1, wherein one or more physical quantities selected from among a pressure in the absorber, a pressure in the condenser, and an outlet temperature of the cold water flowing out of the evaporator are set.
JP05035162A 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator Expired - Fee Related JP3083929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05035162A JP3083929B2 (en) 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05035162A JP3083929B2 (en) 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH06249532A JPH06249532A (en) 1994-09-06
JP3083929B2 true JP3083929B2 (en) 2000-09-04

Family

ID=12434182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05035162A Expired - Fee Related JP3083929B2 (en) 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3083929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168204A (en) * 2011-03-31 2013-06-19 三菱重工业株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481053A (en) * 1987-09-22 1989-03-27 Fanuc Ltd Data storing system
JP6988366B2 (en) * 2017-10-23 2022-01-05 栗田工業株式会社 Performance deterioration diagnostic method and diagnostic equipment for water-cooled turbo chillers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168204A (en) * 2011-03-31 2013-06-19 三菱重工业株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
CN103168204B (en) * 2011-03-31 2015-03-11 三菱重工业株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
US9689730B2 (en) 2011-03-31 2017-06-27 Mitsubishi Heavy Industries, Ltd. Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate

Also Published As

Publication number Publication date
JPH06249532A (en) 1994-09-06

Similar Documents

Publication Publication Date Title
JP3083929B2 (en) Failure diagnosis system for absorption refrigerator
JP6660275B2 (en) Capacity diagnosis system and capacity diagnosis method for absorption refrigerator
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JP6940983B2 (en) Performance diagnosis device and performance diagnosis method for absorption chillers
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP3253190B2 (en) Cooling water flow rate estimation method for absorption chiller / heater
JP3083931B2 (en) Failure diagnosis system for absorption refrigerator
JP2909368B2 (en) Cooling water dirt diagnosis system for absorption chiller / heater
JP3054554B2 (en) Abnormality detector for absorption type water heater
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JP2902946B2 (en) Abnormality determination device for absorption type water heater
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JPH0791783A (en) Trouble diagnosing system for absorption chilled and warm water machine
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JP3058677B2 (en) Absorption refrigerator
JP6948756B1 (en) Performance diagnosis method for absorption chiller-heater
JP3579248B2 (en) Diagnosis method of cooling water dirt
KR100317155B1 (en) Fault diagnosis system of absorption chiller
JP7022658B2 (en) Performance diagnosis system for absorption chillers
JP3195087B2 (en) Absorption refrigerator
JP3195085B2 (en) Absorption refrigerator
JP2810430B2 (en) Absorption refrigerator protection device
JP3208165B2 (en) Abnormality detector for absorption refrigerator
JP2011247542A (en) Control method of absorption type refrigerating machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000613

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees