JPH04148101A - Controlling method for steam drum water level at time of switching of feed water control valve - Google Patents

Controlling method for steam drum water level at time of switching of feed water control valve

Info

Publication number
JPH04148101A
JPH04148101A JP2273600A JP27360090A JPH04148101A JP H04148101 A JPH04148101 A JP H04148101A JP 2273600 A JP2273600 A JP 2273600A JP 27360090 A JP27360090 A JP 27360090A JP H04148101 A JPH04148101 A JP H04148101A
Authority
JP
Japan
Prior art keywords
flow rate
water
water supply
control valve
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2273600A
Other languages
Japanese (ja)
Other versions
JP2599026B2 (en
Inventor
Takashi Iijima
隆 飯島
Hideyuki Takahashi
秀幸 高橋
Katsumi Kishiwada
岸和田 勝実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP2273600A priority Critical patent/JP2599026B2/en
Publication of JPH04148101A publication Critical patent/JPH04148101A/en
Application granted granted Critical
Publication of JP2599026B2 publication Critical patent/JP2599026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To raise the performance in water level control for a steam drum and reduce the work assigned to the operator by adjusting the value travel of a feed water control valve according to the difference between the feed water volume at the inlet of the feed water control valve and a target feed water flow rate which corresponds to the output of the furnace. CONSTITUTION:A return pipe from a furnace cleaning system merges with he piping from a main feed water control valve 34 and a low flow rate feed water control valve 35 to a steam drum 12 and the temperature and flow rate there are measured. The drum water level signal and set water level are compared by a steam drum water level adjusting device and signal of PI (proportional integration) action is generated from the water level deviation. And, by using the most suitable feed water flow rate curve for the output of the nuclear reactor a target feed water flow rate is calculated and the calculation is added to the output of the steam drum water level adjusting device to seek the final target feed water flow rate. Next, from temperature T1, T2, T3 round the feed water control valve and a flow rate F2 the feed water flow rate F1 is calculated. The final target feed water flow rate the takes the water level deviation in consideration and the feed water flow rate F1 as the result of the calculation are compared by the feed water flow rate control device and final control signal is generated by cascade PI action and the valve travel of the feed water control valve is controlled so as to match the control signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子力発電プラント等の給水調節弁の切替え
時における蒸気ドラム水位flI111方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for determining the steam drum water level flI111 during switching of a feedwater control valve in a nuclear power plant or the like.

更に詳しく述べると、例えば原子炉低出力領域にて行わ
れる主給水調節弁と低流量給水調節弁の切替え時に、蒸
気−水混合流体を気水分離する蒸気ドラム内の水位を一
定に制御する方法に関するものである。
More specifically, a method for controlling the water level in a steam drum that separates steam-water mixed fluid to a constant level when switching between the main feed water control valve and the low flow rate feed water control valve, which is performed in the low power region of the reactor, for example. It is related to.

[従来の技術] 以下、新型転換炉発電プラントを例にとって説明する。[Conventional technology] The following is an explanation using a new converter reactor power plant as an example.

新型転換炉発電プラントにおける蒸気ドラムは、原子炉
から生じる蒸気と水の混合した冷却材を集めて気水分離
し、蒸気のみをタービン系へ送り、水はタービン系から
戻ってきた給水と混合して再び原子炉へ送り込む役割を
もつ。この時、原子炉の中の燃料の除熱を確保するとと
もに、タービンへの水のキャリーオーバを防ぐ意味から
、蒸気ドラム水位は適切な範囲に保たれていなければな
らない。そのため、蒸気ドラム水位を設定値に維持する
ように給水流量を制御する。この水位を一定に制御する
には、原理的には気水分離された蒸気の流量と給水の流
量か合致するように給水調節弁によって給水流量を#御
すればよい。
The steam drum in the new converter reactor power plant collects the coolant mixture of steam and water generated from the nuclear reactor, separates the steam and water, and sends only the steam to the turbine system, while the water is mixed with the feed water returned from the turbine system. It has the role of sending it back to the nuclear reactor. At this time, the steam drum water level must be maintained within an appropriate range in order to ensure heat removal from the fuel in the reactor and to prevent water carryover to the turbine. Therefore, the water supply flow rate is controlled to maintain the steam drum water level at the set value. In order to control this water level to a constant level, in principle, the flow rate of the water supply should be controlled by the water supply control valve so that the flow rate of the separated steam matches the flow rate of the water supply.

ところでタービン系から蒸気ドラムに至る給水系には、
通常、容量の異なる2種の給水調節弁が並列に設置され
ており、原子炉出力に応じて使い分けられている。具体
的には原子炉出力約18%以下の低出力領域(低流量領
域)では低流量給水調節弁が使用され、それ以上の高出
力領域(高流量領域)では主給水調節弁が使用されてい
る。そのため原子炉出力か約18%のところで給水調節
弁の切替えを行っている。
By the way, in the water supply system from the turbine system to the steam drum,
Normally, two types of water supply control valves with different capacities are installed in parallel and are used depending on the reactor output. Specifically, a low flow water supply water control valve is used in the low power range (low flow range) of about 18% or less of the reactor output, and a main water supply water control valve is used in the higher power range (high flow range). There is. Therefore, the water supply control valve is switched at approximately 18% of the reactor output.

[発明が解決しようとする課題] この給水調節弁の切替えは、運転員の手動調節により行
われているため、蒸気ドラムの水位変動か比較的大きく
なる傾向があり、この領域における弁切替えの簡素化、
自動化が望まれていた。
[Problems to be Solved by the Invention] Since the switching of this water supply control valve is performed by manual adjustment by the operator, the water level fluctuation in the steam drum tends to be relatively large. transformation,
Automation was desired.

給水調節弁切替え時に蒸気ドラム水位を一定に保つには
、常に原子炉出力に見合った給水流量を確保すればよい
が、原子炉出力約18%程度の領域では給水流量が少な
いため給水流量の精度良い測定値が得られない。そのた
め運転員は、少しずつ弁を操作して蒸気ドラム水位の変
化を監視しながら慎重に切替え作業を行っており、切替
え時間が長くなり、運転員の負担も大きい欠点があった
In order to keep the steam drum water level constant when switching the feedwater control valve, it is necessary to always ensure a feedwater flow rate commensurate with the reactor output, but in the region of about 18% of the reactor output, the feedwater flow rate is small, so the accuracy of the feedwater flow rate is I can't get good measurements. For this reason, operators have to carefully operate the valves little by little and monitor changes in the water level of the steam drum while carefully performing switching operations, which has the disadvantage of lengthening the switching time and placing a heavy burden on the operators.

本発明の目的は、給水調節弁切替え時間の短縮、蒸気ド
ラム水位制御の性能向上及び運転員の負担軽減を図るこ
とができ、自動化も可能となるような蒸気ドラム水位制
御方法を提供することにある。
An object of the present invention is to provide a steam drum water level control method that can shorten the switching time of the water supply control valve, improve the performance of steam drum water level control, reduce the burden on operators, and also enable automation. be.

[課題を解決するための手段] 本発明は、炉から生じる蒸気と水との混合流体を気水分
離する蒸気ドラムと、発生した蒸気をタービン系へ送る
蒸気系と、タービン系から前記蒸気ドラムに至る給水系
と、蒸気ドラムの水を浄化して戻す炉浄化系を具備する
システムで、前記給水系に容量の異なる2種の給水調節
弁を並設して、それら給水調節弁を炉出力に応じて切替
える時に前記蒸気ドラムの水位を制御する方法である。
[Means for Solving the Problems] The present invention provides a steam drum that separates a mixed fluid of steam and water generated from a furnace, a steam system that sends the generated steam to a turbine system, and a steam drum that transports the generated steam from the turbine system to the steam drum. This system is equipped with a water supply system leading to the furnace output, and a furnace purification system that purifies and returns the water in the steam drum. Two types of water supply control valves with different capacities are installed in parallel in the water supply system, and the water supply control valves are used to control the furnace output. This is a method of controlling the water level of the steam drum when switching according to.

第1の方法は給水温度監視法であり、給水調節弁入口の
給水温度をT1、炉浄化系戻り水の温度をT1、蒸気ド
ラム入口の給水温度をT、とし、炉浄化系戻り水の流量
をF2としたとき、給水調節弁入口の給水流量F1を、
次式 で求め、切替時にその値と炉出力に応じた目標給水流量
との偏差により給水調節弁開度を調節するように制御す
る。
The first method is the feed water temperature monitoring method, in which the feed water temperature at the inlet of the feed water control valve is T1, the temperature of the reactor purification system return water is T1, the feed water temperature at the steam drum inlet is T, and the flow rate of the reactor purification system return water is When is F2, the water supply flow rate F1 at the inlet of the water supply control valve is,
It is calculated using the following formula, and the opening degree of the water supply control valve is controlled to be adjusted based on the deviation between the value and the target water supply flow rate according to the furnace output at the time of switching.

また第2の方法は給水流量保持法であり、給水調節弁の
前後の差圧を求め、多弁の開度に対するCV値と前記弁
前後の差圧から給水流量を求め、切替期間中、両給水調
節弁の給水流量の和が一定になるように弁開度を自動制
御する。
The second method is the water supply flow rate maintenance method, in which the differential pressure before and after the water supply control valve is determined, and the water supply flow rate is determined from the CV value for the opening degree of the multiple valve and the differential pressure before and after the valve. The valve opening degree is automatically controlled so that the sum of the water supply flow rates of the control valves is constant.

更に上記2つの方法を組み合わせ、第2の方法(給水流
量保持法)で自動切替えした後、その流量評価誤差に基
づく水位変動を第1の方法(給水温度監視法)で補正す
る複合制御方法もあり、それも本発明に含まれる。
Furthermore, there is also a combined control method that combines the above two methods, automatically switching using the second method (water supply flow rate maintenance method), and then correcting water level fluctuations based on the flow rate evaluation error using the first method (water supply temperature monitoring method). Yes, it is also included in the present invention.

なお、本発明において「蒸気ドラム」とは蒸気と水との
混合流体を気水分離する装置のことを言い、原子炉の蒸
気ドラムの他、それに類似した各種冷却系における気水
分離器、蒸気発生器なとも含まれる。
In the present invention, the term "steam drum" refers to a device that separates steam and water from a mixed fluid of steam and water, and includes steam drums in nuclear reactors as well as steam and water separators and steam separators in various similar cooling systems. Also included is a generator.

[作用] 炉出力に応じて、低流量領域では低流量給水調節弁か用
いられ、高流量領域では主給水調節弁が用いられる。こ
れらの給水調節弁の切替えは、例えば原子炉出力的18
%のところで行われる。この時、蒸気ドラム水位を一定
に保つには、常に炉出力に見合った給水流量を確保すれ
ばよいが、低流量領域では給水流量や蒸気流量は精度良
く測定できない。
[Operation] Depending on the reactor output, a low flow rate water control valve is used in a low flow rate region, and a main feed water control valve is used in a high flow rate region. Switching of these water supply control valves is carried out, for example, at a reactor output of 18
It is done at %. At this time, in order to keep the steam drum water level constant, it is sufficient to always ensure a feed water flow rate commensurate with the furnace output, but the feed water flow rate and steam flow rate cannot be accurately measured in the low flow rate region.

本発明の制御方法では、給水流量や蒸気流量の測定値を
使用せずに、間接的に給水流量を求めて蒸気ドラム内の
水位を一定に維持する。
In the control method of the present invention, the water level in the steam drum is maintained constant by indirectly determining the feed water flow rate without using the measured values of the feed water flow rate or the steam flow rate.

第1の方法では給水調節弁まわりの配管系の温度などの
測定値から給水流量を求める。第2の方法では弁の開度
に対するCV値と弁前後の差圧から給水流量を求める。
In the first method, the water supply flow rate is determined from measured values such as the temperature of the piping system around the water supply control valve. In the second method, the water supply flow rate is determined from the CV value for the opening degree of the valve and the differential pressure before and after the valve.

これらの値に基づき両給水調節弁の開度の調節を行うこ
とにより、給水調節弁切替え時に蒸気ドラム内の水位の
制御が行われる。
By adjusting the opening degrees of both feedwater control valves based on these values, the water level in the steam drum is controlled when the feedwater control valves are switched.

[実施例] 第4図は新型転換炉プラントにおける給水・蒸気系統の
一例を示す概略図である。先ずプラント全体の構成につ
いて概略説明する。
[Example] Fig. 4 is a schematic diagram showing an example of a water supply/steam system in a new type converter plant. First, the overall configuration of the plant will be briefly explained.

原子炉lOで発生した蒸気と水との混合冷却材は蒸気ド
ラム12に入り気水分離される。分離された蒸気は、蒸
気隔離弁14を通り、蒸気止弁16及び蒸気加減弁18
を通ってタービン20に入り発電機22を駆動し、復水
器24に至る。蒸気隔離弁14からの蒸気の一部は、・
タービンバイパス弁26を通って復水器24に至る。復
水器24の水は、復水ポンプ28、脱塩器29、給水加
熱器30、給水ポンプ32、主給水調節弁34又は低流
量給水調節弁35を通って蒸気ドラム12に戻る。これ
か給水系である。この給水は蒸気ドラム12で分離され
た水と混合され、再循環ポンプ36により原子炉lOへ
戻る。また蒸気ドラム12の水の一部は脱塩器38を通
って蒸気ドラム12に戻される。
A mixed coolant of steam and water generated in the nuclear reactor IO enters the steam drum 12 and is separated from air and water. The separated steam passes through a steam isolation valve 14, a steam stop valve 16 and a steam control valve 18.
It passes through the turbine 20, drives the generator 22, and reaches the condenser 24. A portion of the steam from the steam isolation valve 14 is...
It passes through the turbine bypass valve 26 and reaches the condenser 24 . Water in the condenser 24 returns to the steam drum 12 through the condensate pump 28 , desalter 29 , feedwater heater 30 , feedwater pump 32 , main feedwater control valve 34 or low flow feedwater control valve 35 . This is the water supply system. This feed water is mixed with the separated water in the steam drum 12 and returned to the reactor IO by a recirculation pump 36. A portion of the water in the steam drum 12 is also returned to the steam drum 12 through a demineralizer 38 .

これが炉浄化系である。This is the furnace purification system.

通常状態では、蒸気ドラム12の水位を測定するドラム
水位検出器42、蒸気系の蒸気流量を測定する蒸気流量
計44、給水系の給水流量を測定する給水流量計46の
各信号が給水制御装置48に送られ、その出力で前記主
給水調節弁34及び低流量給水調節弁35の開度が制御
される。
Under normal conditions, each signal from the drum water level detector 42 that measures the water level of the steam drum 12, the steam flow meter 44 that measures the steam flow rate of the steam system, and the feed water flow meter 46 that measures the water flow rate of the water supply system is sent to the water supply control device. 48, and the opening degrees of the main water supply control valve 34 and the low flow water supply control valve 35 are controlled by the output thereof.

給水調節弁まわりの配管系の概略図を第3図に示す。主
給水調節弁34及び低流量給水調節弁35から蒸気ドラ
ム12までの間に炉浄化系からの戻り配管か合流するよ
うになっており、この温度及び流量を測定する。これら
のプロセス値に関するエネルギーバランスを記述すると
次式のようになる。
A schematic diagram of the piping system around the water supply control valve is shown in Figure 3. A return pipe from the furnace purification system joins between the main water supply control valve 34 and the low flow rate water supply control valve 35 to the steam drum 12, and its temperature and flow rate are measured. The energy balance regarding these process values is described by the following equation.

h(T1.PI)XFI+h(T2.Pt)XF!=h
(Ts、Ps)x(F+ +Fり    ・・・(1)
h(T、P)  二温度T、圧力Pの水の比エンタルピ
(kcal/kg)を与える関数 T、、P、、F、 :給水調節弁入口の給水温度じC)
h(T1.PI)XFI+h(T2.Pt)XF! =h
(Ts, Ps) x (F+ +Fri...(1)
h(T, P) A function that gives the specific enthalpy (kcal/kg) of water at two temperatures T and pressure P, T, , P, , F, : Feed water temperature at the inlet of the water supply control valve C)
.

圧力(at) 、及び流量(kg/h)T、、 P、、
 F2:炉浄化系戻り水の温度(℃)、圧力(at)、
及び流量(kg/h) Ts、Ps   :蒸気ドラム入口の給水温度(”C)
Pressure (at) and flow rate (kg/h) T, , P, ,
F2: Temperature (℃), pressure (at) of the return water of the furnace purification system,
and flow rate (kg/h) Ts, Ps: Water supply temperature at steam drum inlet ("C)
.

及び圧力(at) +11式から給水流量F1は次式で求まる。and pressure (at) From the +11 formula, the water supply flow rate F1 can be determined by the following formula.

(2)式で使用するプロセス値はいずれも計測可能なた
め、これにより給水流量を計算で求めることができるが
、圧カフ0〜120at程度の範囲の飽和温度以下の環
境にあっては、比エンタルピは温度とほぼ同じ数値とな
るため、(2)式は次式のように簡略化できる。
Since all process values used in equation (2) can be measured, the water supply flow rate can be calculated using these values, but in an environment below the saturation temperature in the pressure cuff range of 0 to 120 at, Since enthalpy is approximately the same value as temperature, equation (2) can be simplified as shown below.

そこで上記(3)式に基づき第1図に示すl制御系のブ
ロック線図により、給水調節弁の切替え動作を行う。こ
れが給水温度監視法である。この実施例では蒸気ドラム
水位!II節計でドラム水位信号と設定水位とを比較し
て水位偏差からPI(比例積分)動作の信号を発生させ
る。また原子炉出力に対する最適給水流量曲線を用いて
目標給水流量を演算し、前記蒸気ドラム水位調節計の出
力と加算して最終目標給水流量を求める。
Therefore, based on the above equation (3), the switching operation of the water supply control valve is performed according to the block diagram of the l control system shown in FIG. This is the feed water temperature monitoring method. In this example, the steam drum water level! The drum water level signal is compared with the set water level using the II moderator, and a PI (proportional integral) operation signal is generated from the water level deviation. Further, the target feed water flow rate is calculated using the optimum feed water flow rate curve for the reactor output, and is added to the output of the steam drum water level controller to obtain the final target feed water flow rate.

次に前記(3)式によって給水調節弁まわりの温度Tl
! T1. Tlと流量F、から給水流量F+を演算す
る。
Next, using equation (3) above, the temperature around the water supply control valve Tl
! T1. The water supply flow rate F+ is calculated from Tl and the flow rate F.

給水流量調節計で水位偏差を考慮した最終目標給水流量
と演算結果の給水流量F1とを比較しカスケードPI動
作によって最終的な#御信号を発生させ、それに合うよ
うに給水l1節弁開度を制御する。これによって給水調
節弁切替え期間において原子炉出力か変化しても、それ
に追従させることかできる。
The water supply flow rate controller compares the final target water supply flow rate considering the water level deviation with the calculated water supply flow rate F1, generates the final # control signal by cascade PI operation, and adjusts the water supply l1 node valve opening to match it. Control. As a result, even if the reactor output changes during the feed water control valve switching period, it can be followed.

次に蒸気ドラム水位が安定した状態で給水調節弁を切替
える場合には、主給水調節弁と低流量給水調節弁の合計
流量を常に一定に保てば良いことになる。そこで主給水
調節弁から低流量給水調節弁へ切替える場合には、主給
水調節弁の流量を07曲線と弁前後の差圧から計算によ
り求め、主給水調節弁を閉めることによって減少する流
量を低流量給水調節弁の給水流量調節計の目標値とする
ように制御系を構成する。また低流量給水調節弁から主
給水調節弁に切替える場合には、これと逆の方法で達成
できる。
Next, when switching the feed water control valve in a state where the steam drum water level is stable, it is sufficient to always keep the total flow rate of the main feed water control valve and the low flow rate feed water control valve constant. Therefore, when switching from the main water supply control valve to the low-flow water supply control valve, calculate the flow rate of the main water supply control valve from the 07 curve and the differential pressure before and after the valve, and reduce the flow rate that decreases by closing the main water supply control valve. The control system is configured to set the target value of the water supply flow rate controller of the flow rate water supply control valve. Also, when switching from a low-flow water supply control valve to a main water supply control valve, this can be achieved by the reverse method.

この切替え方法では、切替えスイッチを運転員が操作す
ることにより、自動的に片方の弁が設定された速度で閉
まり、他方の弁がそれを補償するように自動的に開くよ
うにすることも可能である。
With this switching method, by operating the changeover switch by the operator, one valve can be automatically closed at a set speed, and the other valve can be automatically opened to compensate. It is.

第2図に、この給水流量保持法による給水調節弁切替え
時の制御系ブロック線図を示す。切替え前は、スイッチ
A、、A、は共に通常状態の調節計50.52側に入っ
ており、通常状態の調節計50.52からの信号により
制御されている状態にある。
FIG. 2 shows a block diagram of the control system when switching the water supply regulating valve using this method of maintaining the water supply flow rate. Before switching, both switches A and A are connected to the controller 50.52 in the normal state, and are controlled by the signal from the controller 50.52 in the normal state.

ここで主給水調節弁から低流量給水調節弁へ切替える場
合を例にとる。切替え命令のスイッチ操作により、スイ
ッチA + 、 A tはカスケードPI動作54.5
6側に入り、主給水調節弁及び低流量給水調節弁は切替
え時の調節計の制御下におかれる。同時にスイッチCか
自己保持側に入り、カスケードPI動作への目標値とし
てその時の給水流量が入力され、以降切替えが終了する
まで自己保持される。次にスイッチBが主給水調節弁自
動開閉速度設定器58側に入り、スイッチB、はカスケ
ードPI動作56側に入る。この状態で給水流量保持回
路が成立し、以降は主給水調節弁自動開閉速度設定器5
8で設定された速度で主給水調節弁は自動的に閉められ
ていく。主給水調節弁が閉まってくると、主給水調節弁
流量演算60の流量か小さくなるため加算器62の出力
か小さくなり、それを補償するようにカスケードPl動
作56か働いて低流量給水調節弁を開く。これを主給水
調節弁が全閉するまで行い、切替えが終了したらスイッ
チAt、Atは共に通常状態の調節計50゜52偏に入
って、以後通常状態の調節計の制御に移行する。
Here, we will take the case of switching from the main water supply control valve to the low flow water supply control valve as an example. Due to the switch operation of the switching command, switches A + and A t perform cascade PI operation54.5
6 side, the main water supply control valve and the low flow water supply control valve are placed under the control of the controller at the time of switching. At the same time, switch C enters the self-holding side, and the water supply flow rate at that time is input as a target value to the cascade PI operation, and is self-held until the switching is completed. Next, switch B enters the main water supply control valve automatic opening/closing speed setting device 58 side, and switch B enters the cascade PI operation 56 side. In this state, the water supply flow rate holding circuit is established, and from then on, the main water supply control valve automatic opening/closing speed setting device 5
The main water supply control valve is automatically closed at the speed set in step 8. When the main water supply control valve closes, the flow rate of the main water supply control valve flow rate calculation 60 becomes small, so the output of the adder 62 becomes small, and the cascade Pl operation 56 works to compensate for this, and the low flow rate control valve open. This is continued until the main water supply control valve is fully closed, and when the switching is completed, both switches At and At enter the normal state of the controller 50°52, and thereafter the control shifts to the normal state of the controller.

低流量給水調節弁から主給水調節弁への切替えも、基本
的には上記と同様の手順で行われるから、それについて
の説明は省略する。
Switching from the low flow rate water supply control valve to the main water supply control valve is also basically performed in the same procedure as described above, so a description thereof will be omitted.

ここで、弁前後差圧ΔPは次式で求まる。Here, the differential pressure ΔP across the valve is determined by the following equation.

ΔP =P、−Pl−PI−P。ΔP=P, -Pl-PI-P.

Pl:給水ポンプ出口圧力 P、:蒸気ドラム圧力 P、:蒸気ドラム中心から給水調節弁までの静水頭 P4:給水調節弁から蒸気ドラムまでの流体摩擦損失 また、弁のCV値から流量を求める式は次の通りである
Pl: Water supply pump outlet pressure P,: Steam drum pressure P,: Hydrostatic head from the center of the steam drum to the water supply control valve P4: Fluid friction loss from the water supply control valve to the steam drum Also, the formula for calculating the flow rate from the CV value of the valve is as follows.

FELow (t)  :低流量給水調節弁流量FEP
III (t)・主給水調節弁流量ρ 流体密度 CVLov (FV LQ−(t)) :低流量給水調
節弁開度FVLo* (t)に対するCV値を与える関
数CVp*+ (FV pal (t)) :主給水調
節弁開度FVp−(1)に対するCV値を与える関数 更に給水流量保持法で自動切替えを行った後、給水温度
監視法による給水温度一定制御を暫く行ってから、通常
制御に切替える複合方法も可能である。それによって給
水流量保持法の流量評価誤差に基づく水位変動を給水温
度監視法の給水温度で補正し、変動をより小さく抑える
ことが可能となる。
FELow (t): Low flow water supply control valve flow rate FEP
III (t)・Main water supply control valve flow rate ρ Fluid density CVLov (FV LQ-(t)): Function that gives the CV value for low flow rate water control valve opening FVLo* (t) CVp** (FV pal (t) ): Function that gives the CV value for the main water supply control valve opening degree FVp-(1) After automatic switching is performed using the water supply flow rate maintenance method, the water supply temperature is controlled to be constant using the water supply temperature monitoring method for a while, and then normal control is performed. Combined methods of switching are also possible. This makes it possible to correct water level fluctuations due to flow rate evaluation errors in the water supply flow rate maintenance method using the water supply temperature in the water supply temperature monitoring method, thereby making it possible to suppress fluctuations to a smaller level.

なお、これらの制御系はアナログ回路により実現できる
か、制御用デジタルコントローラによっても容易に構成
できることは言うまでもない。また、ここでは制御信号
を得る調節計としてカスケードPI調節計を使用した例
を示したか、目標値に入力信号を合わせる制御信号を得
る手段を備えた調節計であれば他の形式の調節計であっ
てもよい。
It goes without saying that these control systems can be realized by analog circuits or easily configured by a digital controller for control. In addition, here we have shown an example in which a cascade PI controller is used as a controller to obtain control signals, but other types of controllers may be used as long as they are equipped with a means to obtain control signals that match input signals to target values. There may be.

[発明の効果] 本発明により、炉の給水調節弁の切替え操作において、
蒸気流量や給水流量の測定値か得られなくても、間接的
に給水流量を求めてその値を保持するように制御するこ
とか可能となり、蒸気ドラム水位変動を小さく抑える給
水調節弁切替え操作が可能となる。また同時に切替え時
間の短縮と運転員の負担軽減を図ることかできる。
[Effects of the Invention] According to the present invention, in the switching operation of the water supply control valve of the furnace,
Even if the measured values of steam flow rate or feed water flow rate cannot be obtained, it is possible to indirectly determine the feed water flow rate and control the value to be maintained, and the feed water control valve switching operation can suppress fluctuations in the steam drum water level to a minimum. It becomes possible. At the same time, it is possible to shorten the switching time and reduce the burden on the operator.

更に給水流量保持法によって、給水調節弁の自動切替え
が可能となり、プラント運転制御性能の向上と運転員の
負担軽減に大きく貢献できる。
Furthermore, the water supply flow rate maintenance method enables automatic switching of the water supply control valve, which can greatly contribute to improving plant operation control performance and reducing the burden on operators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の給水温度監視法を適用した給水調節弁
切替え時の制御系ブロック線図、第2図は本発明の給水
流量保持法を適用した給水調節弁切替え時の制御系ブロ
ック線図、第3図は給水調節弁まわりの配管系の概略図
、第4図は新型転換炉プラントの給水・蒸気系統概略図
である。 lO・・・原子炉、12・・・蒸気ドラム、20・・・
タービン、34・・・主給水調節弁、35・・・低流量
給水調節弁。 特許出願人 動力炉・核燃料開発事業団代  理  人
     茂  見     積第 図
Fig. 1 is a block diagram of the control system when switching the water supply regulating valve to which the feed water temperature monitoring method of the present invention is applied, and Fig. 2 is a block diagram of the control system when switching the water supply regulating valve to which the method of maintaining the water supply flow rate of the present invention is applied. Figure 3 is a schematic diagram of the piping system around the water supply control valve, and Figure 4 is a schematic diagram of the water supply and steam system of the new converter plant. lO...Nuclear reactor, 12...Steam drum, 20...
Turbine, 34... Main water supply control valve, 35... Low flow water supply control valve. Patent applicant Shigeru Hitoshi, representative of Power Reactor and Nuclear Fuel Development Corporation Estimate diagram

Claims (1)

【特許請求の範囲】 1、炉から生じる蒸気と水との混合流体を気水分離する
蒸気ドラムと、発生した蒸気をタービン系へ送る蒸気系
と、タービン系から前記蒸気ドラムに至る給水系と、蒸
気ドラムの水を浄化して戻す炉浄化系を具備するシステ
ムで、前記給水系に容量の異なる2種の給水調節弁を並
設して、それら給水調節弁を炉出力に応じて切替える時
に前記蒸気ドラムの水位を制御する方法において、給水
調節弁入口の給水温度をT_1、炉浄化系戻り水の温度
をT_2、蒸気ドラム入口の給水温度をT_3とし、炉
浄化系戻り水の流量をF_2としたとき、給水調節弁入
口の給水流量F_1を、次式 F_1={(T_3−T_2)/(T_1−T_3)}
×F_2で求め、その値と炉出力に応じた目標給水流量
との偏差により給水調節弁開度を調節することを特徴と
する給水調節弁切替時の蒸気ドラム水位制御方法。 2、炉から生じる蒸気と水との混合流体を気水分離する
蒸気ドラムと、発生した蒸気をタービン系へ送る蒸気系
と、タービン系から前記蒸気ドラムに至る給水系を具備
するシステムで、前記給水系に容量の異なる2種の給水
調節弁を並設して、それら給水調節弁を炉出力に応じて
切替える時に前記蒸気ドラムの水位を制御する方法にお
いて、前記給水調節弁の前後の差圧を求め、各給水調節
弁の開度に対するCV値と前記弁前後の差圧から給水流
量を求め、両給水調節弁の給水流量の和が一定になるよ
うに弁開度を自動制御することを特徴とする給水調節弁
切替時の蒸気ドラム水位制御方法。 3、請求項2の方法で自動制御した後、その流量評価誤
差に基づく水位変動を、請求項1の方法で補正する給水
調節弁切替時の蒸気ドラム水位制御方法。
[Claims] 1. A steam drum that separates a mixed fluid of steam and water generated from a furnace, a steam system that sends the generated steam to a turbine system, and a water supply system that extends from the turbine system to the steam drum. , a system equipped with a furnace purification system that purifies and returns water in the steam drum, in which two types of water supply control valves with different capacities are installed in parallel in the water supply system, and the water supply control valves are switched according to the furnace output. In the method for controlling the water level of the steam drum, the temperature of the feed water at the inlet of the feed water control valve is T_1, the temperature of the return water of the reactor purification system is T_2, the temperature of the feed water at the inlet of the steam drum is T_3, and the flow rate of the return water of the reactor purification system is F_2. Then, the water supply flow rate F_1 at the inlet of the water supply control valve is calculated using the following formula F_1={(T_3-T_2)/(T_1-T_3)}
×F_2, and the opening degree of the feed water control valve is adjusted based on the deviation between the value and a target feed water flow rate according to the furnace output. 2. A system comprising a steam drum that separates a mixed fluid of steam and water generated from a furnace, a steam system that sends the generated steam to a turbine system, and a water supply system that extends from the turbine system to the steam drum. In a method for controlling the water level of the steam drum when two types of feed water control valves with different capacities are arranged in parallel in a water supply system and the feed water control valves are switched according to the furnace output, the differential pressure before and after the feed water control valve is The water supply flow rate is determined from the CV value for the opening degree of each water supply control valve and the differential pressure before and after the valve, and the valve opening degree is automatically controlled so that the sum of the water supply flow rates of both water supply control valves is constant. Features: Steam drum water level control method when switching the water supply control valve. 3. A method for controlling the water level of a steam drum when switching a water supply control valve, in which after automatically controlling the water level by the method of claim 2, the water level fluctuation based on the flow rate evaluation error is corrected by the method of claim 1.
JP2273600A 1990-10-12 1990-10-12 Steam drum water level control method when water supply control valve is switched Expired - Fee Related JP2599026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273600A JP2599026B2 (en) 1990-10-12 1990-10-12 Steam drum water level control method when water supply control valve is switched

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273600A JP2599026B2 (en) 1990-10-12 1990-10-12 Steam drum water level control method when water supply control valve is switched

Publications (2)

Publication Number Publication Date
JPH04148101A true JPH04148101A (en) 1992-05-21
JP2599026B2 JP2599026B2 (en) 1997-04-09

Family

ID=17530029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273600A Expired - Fee Related JP2599026B2 (en) 1990-10-12 1990-10-12 Steam drum water level control method when water supply control valve is switched

Country Status (1)

Country Link
JP (1) JP2599026B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102705811A (en) * 2012-03-28 2012-10-03 广东电网公司电力科学研究院 Feed water control method for supercritical concurrent boiler without boiler-water circulating pump
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator
WO2015186274A1 (en) * 2014-06-04 2015-12-10 三菱重工業株式会社 Water supply control device and water supply device
CN115264485A (en) * 2022-09-27 2022-11-01 国网山西省电力公司电力科学研究院 Water level automatic control system for water storage tank of supercritical boiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092476A (en) * 2011-10-26 2013-05-16 Mitsubishi Heavy Ind Ltd Auxiliary feed water valve control device of steam generator
US9208905B2 (en) 2011-10-26 2015-12-08 Mitsubishi Heavy Industries, Ltd. Auxiliary feedwater valve control apparatus of steam generator
CN102705811A (en) * 2012-03-28 2012-10-03 广东电网公司电力科学研究院 Feed water control method for supercritical concurrent boiler without boiler-water circulating pump
WO2015186274A1 (en) * 2014-06-04 2015-12-10 三菱重工業株式会社 Water supply control device and water supply device
CN115264485A (en) * 2022-09-27 2022-11-01 国网山西省电力公司电力科学研究院 Water level automatic control system for water storage tank of supercritical boiler

Also Published As

Publication number Publication date
JP2599026B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US4104117A (en) Nuclear reactor power generation
US4424186A (en) Power generation
CN107664300B (en) Multi-target steam temperature control
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
KR920007744B1 (en) Automatic steam generator control at low power
EP4257878A1 (en) Steam generator system, steam generator pressure control system, and control method therefor
JPH04148101A (en) Controlling method for steam drum water level at time of switching of feed water control valve
JPS6239919B2 (en)
JPS6027883B2 (en) Boiler temperature increase control method
JPS5923921Y2 (en) Temperature control device for heated fluid
JPS6132403Y2 (en)
JP2758245B2 (en) Drain water level control device for feed water heater
JPH04115195A (en) Fuzzy method for controlling water level of steam drum
JPS59212606A (en) Controller for temperature of steam
JPH0335922Y2 (en)
JPH06117602A (en) Pressure controller
JPH01127805A (en) Controller for boiller and turbine plant
KR840000688B1 (en) Revision method of caloty
JPS63295997A (en) Warming control apparatus of plant
JPH02103301A (en) Device for supporting boiler operation
JPH01269093A (en) Feed water controller for nuclear reactor
KR20010039185A (en) Apparatus controlling of steam temperature
JPH0461241B2 (en)
JPS59103104A (en) Process control method
JPH06317304A (en) Steam temperature controller with automatic bias circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees