JP5727951B2 - Steam supply system and method for controlling steam supply system - Google Patents

Steam supply system and method for controlling steam supply system Download PDF

Info

Publication number
JP5727951B2
JP5727951B2 JP2012019912A JP2012019912A JP5727951B2 JP 5727951 B2 JP5727951 B2 JP 5727951B2 JP 2012019912 A JP2012019912 A JP 2012019912A JP 2012019912 A JP2012019912 A JP 2012019912A JP 5727951 B2 JP5727951 B2 JP 5727951B2
Authority
JP
Japan
Prior art keywords
steam
reheat
pipe
turbine
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012019912A
Other languages
Japanese (ja)
Other versions
JP2012233679A (en
Inventor
大士 伊豆川
大士 伊豆川
宏明 前川
宏明 前川
山口 敦史
敦史 山口
輝政 高木
輝政 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012019912A priority Critical patent/JP5727951B2/en
Publication of JP2012233679A publication Critical patent/JP2012233679A/en
Application granted granted Critical
Publication of JP5727951B2 publication Critical patent/JP5727951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

本発明は、電力と蒸気の供給を同時に行うボイラタービン発電設備から工場設備へ高圧蒸気の供給を行う蒸気供給システム及び蒸気供給システムの制御方法に関するものである。   The present invention relates to a steam supply system that supplies high-pressure steam from a boiler turbine power generation facility that simultaneously supplies power and steam to factory equipment, and a control method for the steam supply system.

従来、例えば製鉄所などの工場設備内に設置されるボイラタービン発電設備では、ボイラで発生した蒸気を用いてタービン発電機で発電し、発電した電力を工場設備に供給すると共に、工場設備で使用するプロセス用蒸気の供給を行っている。このプロセス用蒸気としては、ボイラで発生した高温高圧の過熱蒸気である主蒸気や、タービンから排気された低圧の蒸気などが工場設備側の需要に応じて供給される。   Conventionally, in a boiler turbine power generation facility installed in a factory facility such as a steel mill, for example, steam generated in the boiler is used to generate power with a turbine generator, and the generated power is supplied to the factory facility and used in the factory facility. Supplying steam for process. As this process steam, main steam that is high-temperature and high-pressure superheated steam generated in a boiler, low-pressure steam exhausted from a turbine, or the like is supplied according to demand on the factory equipment side.

ところで、プロセス用蒸気の供給源としてのボイラが、例えば図2に示すような、発電機100に接続された高圧タービン101で仕事を行った後の低圧蒸気を加熱する再熱器102を有するボイラ103である場合、当該ボイラ103の主蒸気管104から工場設備105へ供給するプロセス用蒸気として主蒸気を抽気すると、高圧タービン101へ流入する主蒸気の流量が減少する。そのため、高圧タービン101の排気側へ排出される蒸気量も減少し、その結果、再熱器102を通過する蒸気量も減少する。その一方で、ボイラ103に投入される燃料の量は、ボイラ103から発生させる主蒸気、換言すれば過熱器106を通過する蒸気の流量や圧力に応じて決定される。そのため、主蒸気管104から工場設備105にプロセス用蒸気を供給することで再熱器102を通過する蒸気量が減少しても、ボイラ103から発生する主蒸気の量そのものが変化しない場合は、ボイラ103に供給される燃料の流量にも変化は生じない。かかる場合、再熱器102を通過する蒸気量に対してボイラ103に投入される燃料の量が相対的に増加し、再熱器102の温度が上昇することとなる。   By the way, the boiler as a process steam supply source has a reheater 102 for heating low-pressure steam after work is performed in a high-pressure turbine 101 connected to a generator 100 as shown in FIG. In the case of 103, when the main steam is extracted as the process steam supplied from the main steam pipe 104 of the boiler 103 to the factory facility 105, the flow rate of the main steam flowing into the high-pressure turbine 101 decreases. Therefore, the amount of steam discharged to the exhaust side of the high-pressure turbine 101 also decreases, and as a result, the amount of steam passing through the reheater 102 also decreases. On the other hand, the amount of fuel input to the boiler 103 is determined according to the flow rate and pressure of the main steam generated from the boiler 103, in other words, the steam passing through the superheater 106. Therefore, even if the amount of steam passing through the reheater 102 is reduced by supplying process steam from the main steam pipe 104 to the factory equipment 105, the amount of main steam generated from the boiler 103 does not change, There is no change in the flow rate of the fuel supplied to the boiler 103. In such a case, the amount of fuel input to the boiler 103 is relatively increased with respect to the amount of steam passing through the reheater 102, and the temperature of the reheater 102 is increased.

あるいは、主蒸気管104から主蒸気を抽気する際、高圧タービン101へ流入する主蒸気の流量が減少しないように、ボイラ103に投入される給水と燃料の量を増加させることもできる。この場合も、再熱器102を通過する蒸気量が一定であるのに対してボイラ103に投入される燃料の量が相対的に増加し、再熱器102の温度が上昇することとなる。   Alternatively, when the main steam is extracted from the main steam pipe 104, the amount of feed water and fuel introduced into the boiler 103 can be increased so that the flow rate of the main steam flowing into the high-pressure turbine 101 does not decrease. Also in this case, while the amount of steam passing through the reheater 102 is constant, the amount of fuel input to the boiler 103 relatively increases, and the temperature of the reheater 102 rises.

再熱器102の温度上昇に対しては、再熱器102の上流側に設けられた減温器107により再熱蒸気管108への注水が行われるのが通常であり、例えば特許文献1に示されるように、再熱器102の温度が規定値を超えないように減温器107からの注水量が調整される。   In response to the temperature rise of the reheater 102, water is normally poured into the reheat steam pipe 108 by a temperature reducer 107 provided on the upstream side of the reheater 102. As shown, the amount of water injected from the temperature reducer 107 is adjusted so that the temperature of the reheater 102 does not exceed a specified value.

特開平8−135908号公報JP-A-8-135908

ところで、上述のようにボイラ103から発生した高温高圧の主蒸気を主蒸気管104からプロセス用蒸気として抽気すると、高圧タービン101に流入する蒸気量が減少する。その結果、タービン100に接続された発電機100による発電量が減少する。   By the way, when the high-temperature and high-pressure main steam generated from the boiler 103 is extracted from the main steam pipe 104 as process steam as described above, the amount of steam flowing into the high-pressure turbine 101 decreases. As a result, the amount of power generated by the generator 100 connected to the turbine 100 is reduced.

一方、工場設備105への安定的な電力供給という観点から、発電機100による発電量は、主蒸気の抽気量に左右されることなく工場設備105の需要に対応させて一定に維持されることが望まれる。かかる要求に対応する場合、主蒸気管104からの抽気が行われると、発電機100の発電量を一定に維持するために、高圧タービン101の入口側に設けられた主蒸気加減弁109が開方向に操作され、それにより高圧タービン101への主蒸気の流入量が回復されると共に、主蒸気加減弁109の開方向への操作により主蒸気管104の圧力が低下するので、低下した主蒸気管104の圧力を回復させるため、抽気量に対応する量の給水と燃料がボイラ103に更に供給される。   On the other hand, from the viewpoint of stable power supply to the factory equipment 105, the amount of power generated by the generator 100 should be kept constant according to the demand of the factory equipment 105 without being influenced by the amount of main steam extracted. Is desired. In order to meet this requirement, when extraction from the main steam pipe 104 is performed, the main steam control valve 109 provided on the inlet side of the high-pressure turbine 101 is opened in order to keep the power generation amount of the generator 100 constant. As a result, the amount of main steam flowing into the high-pressure turbine 101 is recovered, and the operation of the main steam control valve 109 in the opening direction reduces the pressure of the main steam pipe 104. In order to recover the pressure in the pipe 104, water supply and fuel in an amount corresponding to the extraction amount are further supplied to the boiler 103.

高圧タービン101に流入する主蒸気の流量が一定に保たれることで、再熱蒸気管108へ排気される蒸気の流量も一定に保たれるが、その一方でボイラ103への燃料の供給量は増加しているため、再熱器101を通過する蒸気量に対する燃料供給量の比率は相対的に増加する。この場合、上述のように減温器107により注水することで再熱器102の温度上昇が抑えられるが、注水に伴い再熱器102を通過する蒸気量が増加するため、タービン100へ流入する蒸気量も増加し、結果として発電機101の発電量が増加する。そして、発電機出力が増加すると、タービン100に流入する主蒸気量を制限して発電機出力を一定に維持するように、タービン100の入口側に設けられた主蒸気加減弁109は閉方向に操作される。   Since the flow rate of the main steam flowing into the high-pressure turbine 101 is kept constant, the flow rate of the steam exhausted to the reheat steam pipe 108 is also kept constant, but on the other hand, the amount of fuel supplied to the boiler 103 Therefore, the ratio of the fuel supply amount to the steam amount passing through the reheater 101 is relatively increased. In this case, the temperature rise of the reheater 102 is suppressed by pouring water with the temperature reducer 107 as described above, but the amount of steam passing through the reheater 102 increases with water injection, and therefore flows into the turbine 100. The amount of steam also increases, and as a result, the amount of power generated by the generator 101 increases. When the generator output increases, the main steam control valve 109 provided on the inlet side of the turbine 100 is closed in a closing direction so that the amount of main steam flowing into the turbine 100 is limited and the generator output is kept constant. Operated.

しかしながら、主蒸気加減弁109の開度が低下するとボイラ103の主蒸気圧力が上昇するため、主蒸気系統に圧力変動が発生してしまう。圧力変動が発生すると、圧力を所定の値に維持するために燃料流量や給水流量の調整が行われるが、ボイラ103は時定数が大きいため、主蒸気加減弁109の操作による主蒸気の圧力変化に対応できず、結果として主蒸気圧力の変動が収束して再び安定するまでには時間がかかる。この傾向は、主蒸気加減弁109の操作速度が速いほど、即ち減温器107からの注水量の変化率が大きいほど顕著となる。   However, when the opening degree of the main steam control valve 109 decreases, the main steam pressure of the boiler 103 increases, and pressure fluctuations occur in the main steam system. When the pressure fluctuation occurs, the fuel flow rate and the feed water flow rate are adjusted to maintain the pressure at a predetermined value. However, since the boiler 103 has a large time constant, the pressure change of the main steam due to the operation of the main steam control valve 109. As a result, it takes time for the main steam pressure fluctuations to converge and stabilize again. This tendency becomes more prominent as the operation speed of the main steam control valve 109 is faster, that is, as the rate of change in the amount of water injected from the temperature reducer 107 is larger.

そのため、通常は減温器107からの注水量が急激に変化することを防ぐために、工場設備105側へのプロセス用蒸気の送気量の変化速度や変化幅を低く抑えて運用している。しかしながら、送気量を制限すると工場設備105で要求する蒸気量が確保できない場合があり、工場設備105の操業上問題となる。   Therefore, normally, in order to prevent the water injection amount from the temperature reducer 107 from changing suddenly, the change rate and the change width of the amount of process steam supplied to the factory equipment 105 are kept low. However, if the amount of air supply is limited, the amount of steam required by the factory facility 105 may not be ensured, which causes a problem in the operation of the factory facility 105.

本発明はかかる点に鑑みてなされたものであり、再熱器を有するボイラの主蒸気系統から工場設備へプロセス用蒸気を供給するにあたり、当該ボイラの圧力変動を抑制することで、プロセス用蒸気の供給制限を従来よりも緩和することを目的としている。   The present invention has been made in view of such points, and in supplying process steam from a main steam system of a boiler having a reheater to factory equipment, by suppressing pressure fluctuation of the boiler, process steam is provided. The purpose is to ease the supply restrictions.

本発明の要旨は以下の通りである。
(1)主蒸気系統13と再熱蒸気系統14を有するボイラ10と、前記ボイラ10で発生した蒸気の熱エネルギーを回転エネルギーに変換するタービン11と、前記タービン11の回転エネルギーを電力に変換する発電機12とを備えたボイラタービン発電設備1を用い、
主蒸気系統13からの蒸気(以下、「主蒸気」という。)はタービン11に送られその一部を抽気して工場設備2へプロセス用蒸気を供給する蒸気供給系統3と、
ボイラ10の再熱蒸気系統14からの蒸気はタービン11に送られその一部を抽気して工場設備2に供給する再熱蒸気抽気系統50と、
を有する蒸気供給システムの制御方法であって、
再熱蒸気系統14は、再熱器27と、再熱器27と前記タービン11とを接続する再熱蒸気管29と、当該再熱蒸気管29における再熱器27の上流側に設けられた減温器28と、減温器28に注水する注水制御弁34を備え、
蒸気供給系統3は、ボイラ10から発生した主蒸気の一部を主蒸気管24から取り出して蒸気の使用先へ供給する主蒸気抽気管41と、主蒸気抽気管41に設けられた主蒸気抽気弁40とを備え、
再熱蒸気抽気系統50は、再熱蒸気管29における再熱器27の下流側であって、且つタービンの上流側に接続された再熱蒸気抽気管60と、再熱蒸気抽気管60に設けられた再熱蒸気抽気弁61とを有し、
主蒸気抽気弁41が開かれて工場設備へ蒸気が供給され、注水制御弁34が開かれて減温器28から再熱蒸気管に注水が行われた場合に、再熱蒸気抽気弁61を開いて再熱蒸気管29から蒸気を工場設備2に供給することを特徴とする蒸気供給システムの制御方法。
(2)再熱蒸気抽気弁61の開度は、減温器28への注水量に基づいて決定されることを特徴とする、(1)に記載の蒸気供給システムの制御方法。
(3)再熱蒸気抽気弁61の開度は、再熱蒸気管29における再熱器27の下流側であって、且つタービン11の上流側に設置された圧力検出機構30により計測された圧力に基づいて決定されることを特徴とする(1)に記載の蒸気供給システムの制御方法。
(4)主蒸気系統13と再熱蒸気系統14を有するボイラ10と、前記ボイラ10で発生した蒸気の熱エネルギーを回転エネルギーに変換するタービン11と、前記タービン11の回転エネルギーを電力に変換する発電機12とを備えたボイラタービン発電設備1を用い、
主蒸気系統13からの蒸気(以下、「主蒸気」という。)はタービン11に送られその一部を抽気して工場設備2へプロセス用蒸気を供給する蒸気供給系統3と、
ボイラ10の再熱蒸気系統14からの蒸気はタービン11に送られその一部を抽気して工場設備2に供給する再熱蒸気抽気系統50と、
を有する蒸気供給システムであって、
再熱蒸気系統14は、再熱器27と、再熱器27と前記タービン11とを接続する再熱蒸気管29と、再熱蒸気管29における再熱器27の上流側に設けられた減温器28と、減温器28に注水する注水制御弁34を備え、
前記蒸気供給系統3は、前記ボイラ10から発生した主蒸気の一部を主蒸気管24から取り出して蒸気の使用先へ供給する主蒸気抽気管41と、前記主蒸気抽気管41に設けられた主蒸気抽気弁40とを備え、
前記再熱蒸気抽気系統50は、前記再熱蒸気管29における前記再熱器27の下流側であって、且つタービンの上流側に接続された再熱蒸気抽気管60と、前記再熱蒸気抽気管60に設けられた再熱蒸気抽気弁61とを有することを特徴とする蒸気供給システム。
(5)前記蒸気供給システムはさらに制御装置4を有し、制御装置4は、主蒸気抽気弁41が開かれて工場設備へ蒸気が供給され、注水制御弁34が開かれて減温器28から再熱蒸気管に注水が行われた場合に、再熱蒸気抽気弁61を開いて再熱蒸気管29から蒸気を工場設備2に供給することを特徴とする上記(4)に記載の蒸気供給システム。
(6)再熱蒸気抽気弁61の開度は、減温器28への注水量に基づいて決定されることを特徴とする、(5)に記載の蒸気供給システム。
(6)再熱蒸気抽気弁61の開度は、再熱蒸気管29における再熱器27の下流側であって、且つタービン11の上流側に設置された圧力検出機構30により計測された圧力に基づいて決定されることを特徴とする(5)に記載の蒸気供給システム。
The gist of the present invention is as follows.
(1) A boiler 10 having a main steam system 13 and a reheat steam system 14, a turbine 11 for converting the thermal energy of steam generated in the boiler 10 into rotational energy, and converting the rotational energy of the turbine 11 into electric power. Using a boiler turbine power generation facility 1 equipped with a generator 12,
The steam from the main steam system 13 (hereinafter referred to as “main steam”) is sent to the turbine 11 and a part thereof is extracted to supply process steam to the factory equipment 2;
Steam from the reheat steam system 14 of the boiler 10 is sent to the turbine 11 and a part of the steam is extracted and supplied to the factory facility 2;
A method for controlling a steam supply system comprising:
The reheat steam system 14 is provided on the upstream side of the reheater 27, the reheat steam pipe 29 that connects the reheater 27 and the turbine 11, and the reheat steam pipe 29. A temperature reducer 28 and a water injection control valve 34 for injecting water into the temperature reducer 28;
The steam supply system 3 includes a main steam extraction pipe 41 that extracts a part of the main steam generated from the boiler 10 from the main steam pipe 24 and supplies the steam to a use destination, and a main steam extraction provided in the main steam extraction pipe 41. A valve 40,
The reheat steam extraction system 50 is provided in the reheat steam extraction pipe 60 connected to the reheat steam pipe 29 on the downstream side of the reheater 27 and on the upstream side of the turbine, and the reheat steam extraction pipe 60. A reheat steam bleed valve 61,
When the main steam extraction valve 41 is opened and steam is supplied to the factory equipment, the water injection control valve 34 is opened and water is injected from the temperature reducer 28 to the reheat steam pipe, the reheat steam extraction valve 61 is turned on. A method for controlling a steam supply system, wherein the steam supply system is opened and steam is supplied from the reheat steam pipe 29 to the factory facility 2.
(2) The control method of the steam supply system according to (1), wherein the opening degree of the reheat steam extraction valve 61 is determined based on the amount of water injected into the temperature reducer 28.
(3) The opening degree of the reheat steam bleed valve 61 is a pressure measured by the pressure detection mechanism 30 installed downstream of the reheater 27 in the reheat steam pipe 29 and upstream of the turbine 11. The control method for the steam supply system according to (1), wherein the control method is determined based on
(4) A boiler 10 having a main steam system 13 and a reheat steam system 14, a turbine 11 for converting thermal energy of steam generated in the boiler 10 into rotational energy, and converting rotational energy of the turbine 11 into electric power. Using a boiler turbine power generation facility 1 equipped with a generator 12,
The steam from the main steam system 13 (hereinafter referred to as “main steam”) is sent to the turbine 11 and a part thereof is extracted to supply process steam to the factory equipment 2;
Steam from the reheat steam system 14 of the boiler 10 is sent to the turbine 11 and a part of the steam is extracted and supplied to the factory facility 2;
A steam supply system comprising:
The reheat steam system 14 includes a reheater 27, a reheat steam pipe 29 connecting the reheater 27 and the turbine 11, and a reduction provided in the reheat steam pipe 29 on the upstream side of the reheater 27. A water heater 28 and a water injection control valve 34 for injecting water into the temperature reducer 28;
The steam supply system 3 is provided in the main steam extraction pipe 41 for extracting a part of the main steam generated from the boiler 10 from the main steam pipe 24 and supplying the steam to a use destination, and the main steam extraction pipe 41. A main steam extraction valve 40;
The reheat steam extraction system 50 includes a reheat steam extraction pipe 60 connected to the reheat steam pipe 29 on the downstream side of the reheater 27 and on the upstream side of the turbine, and the reheat steam extraction system 50. A steam supply system comprising a reheat steam bleed valve 61 provided in the trachea 60.
(5) The steam supply system further includes a control device 4. The control device 4 opens the main steam extraction valve 41 to supply steam to the factory equipment, opens the water injection control valve 34, and opens the temperature reducer 28. The steam according to (4) above, wherein, when water is poured into the reheat steam pipe, the reheat steam bleed valve 61 is opened and steam is supplied from the reheat steam pipe 29 to the factory facility 2. Supply system.
(6) The steam supply system according to (5), wherein the opening degree of the reheat steam extraction valve 61 is determined based on the amount of water injected into the temperature reducer 28.
(6) The opening degree of the reheat steam bleed valve 61 is a pressure measured by the pressure detection mechanism 30 installed downstream of the reheater 27 in the reheat steam pipe 29 and upstream of the turbine 11. The steam supply system according to (5), which is determined based on

本発明によれば、再熱器を有するボイラの主蒸気系統から工場設備へプロセス用蒸気を供給するにあたり、当該ボイラの圧力変動を抑制することで、プロセス用蒸気の供給制限を従来よりも緩和することができる。   According to the present invention, when supplying process steam from the main steam system of a boiler having a reheater to factory equipment, the supply restriction of process steam is relaxed more than before by suppressing pressure fluctuation of the boiler. can do.

本実施の形態にかかるボイラタービン発電設備を含む蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the steam supply system containing the boiler turbine power generation equipment concerning this embodiment. 従来の蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the conventional steam supply system.

本発明の実施形態は、主蒸気系統13と再熱蒸気系統14を有するボイラ10と、ボイラ10で発生した蒸気の熱エネルギーを回転エネルギーに変換するタービン11と、前記タービン11の回転エネルギーを電力に変換する発電機12とを備えたボイラタービン発電設備1を用い、主蒸気系統13からの蒸気(主蒸気)はタービン11に送られその一部を抽気して工場設備2へプロセス用蒸気を供給する蒸気供給系統3と、ボイラ10の再熱蒸気系統14からの蒸気はタービン11に送られその一部を抽気して前記工場設備2に供給する再熱蒸気抽気系統50と、を有する蒸気供給システムの制御方法である。   The embodiment of the present invention includes a boiler 10 having a main steam system 13 and a reheat steam system 14, a turbine 11 that converts thermal energy of steam generated in the boiler 10 into rotational energy, and rotational energy of the turbine 11 as electric power. Using a boiler turbine power generation facility 1 having a generator 12 for converting into steam, steam (main steam) from the main steam system 13 is sent to the turbine 11 and a part of the steam is extracted to supply process steam to the factory facility 2. Steam having a steam supply system 3 to be supplied, and a steam from the reheat steam system 14 of the boiler 10 is sent to the turbine 11 and a part thereof is extracted and supplied to the factory equipment 2. It is a control method of a supply system.

具体的には、再熱蒸気系統14は、再熱器27と、再熱器27とタービン11とを接続する再熱蒸気管29と、再熱蒸気管29における再熱器27の上流側に設けられた減温器28と、減温器28に注水する注水制御弁34を備え、蒸気供給系統3は、ボイラ10から発生した主蒸気の一部を主蒸気管24から取り出して蒸気の使用先へ供給する主蒸気抽気管41と、主蒸気抽気管41に設けられた主蒸気抽気弁40とを備え、再熱蒸気抽気系統50は、再熱蒸気管29における再熱器27の下流側であって、且つタービンの上流側に接続された再熱蒸気抽気管60と、再熱蒸気抽気管60に設けられた再熱蒸気抽気弁61とを有し、主蒸気抽気弁41が開かれて工場設備へ蒸気が供給され、注水制御弁34が開かれて減温器28から再熱蒸気管に注水が行われた場合に、再熱蒸気抽気弁61を開いて再熱蒸気管29から蒸気を工場設備2に供給する蒸気供給システムの制御方法である。   Specifically, the reheat steam system 14 includes a reheater 27, a reheat steam pipe 29 that connects the reheater 27 and the turbine 11, and an upstream side of the reheater 27 in the reheat steam pipe 29. A provided temperature reducer 28 and a water injection control valve 34 for injecting water into the temperature reducer 28 are provided. The steam supply system 3 takes out a part of the main steam generated from the boiler 10 from the main steam pipe 24 and uses the steam. The reheat steam extraction system 50 includes a main steam extraction pipe 41 to be supplied first and a main steam extraction valve 40 provided in the main steam extraction pipe 41. The reheat steam extraction system 50 is downstream of the reheater 27 in the reheat steam pipe 29. And a reheat steam bleed pipe 60 connected to the upstream side of the turbine, and a reheat steam bleed valve 61 provided in the reheat steam bleed pipe 60, and the main steam bleed valve 41 is opened. The steam is supplied to the factory equipment, the water injection control valve 34 is opened, and the reheat steam is supplied from the temperature reducer 28. When the water injection tube is performed, it is steam reheat steam extraction valve 61 from reheat steam pipe 29 by opening a control method of supplying steam supply system to factory equipment 2.

再熱蒸気抽気弁61の開度は、前記減温器28への注水量に基づいて決定することができる。   The opening degree of the reheat steam bleed valve 61 can be determined based on the amount of water injected into the temperature reducer 28.

また、再熱蒸気抽気弁61の開度は、再熱蒸気管29における再熱器27の下流側であって、且つタービン11の上流側に設置された圧力検出機構30により計測された圧力に基づいて決定することができる。   The opening degree of the reheat steam bleed valve 61 is the pressure measured by the pressure detection mechanism 30 installed downstream of the reheater 27 in the reheat steam pipe 29 and upstream of the turbine 11. Can be determined based on.

(蒸気供給システム)
蒸気供給システムについて図1を用いて説明する。
(Steam supply system)
The steam supply system will be described with reference to FIG.

図1は、ボイラタービン発電設備1から、プロセス用蒸気の使用先としての工場設備2へプロセス用蒸気を供給する蒸気供給システム5であって、主蒸気系統13から蒸気を供給する蒸気供給系統3、再熱蒸気系統14から蒸気を供給する再熱蒸気抽気系統50及び制御装置4を備えた、本実施の形態にかかる蒸気供給システム5の構成を示すプロセスフロー図である。   FIG. 1 shows a steam supply system 5 that supplies process steam from a boiler turbine power generation facility 1 to a factory facility 2 that uses the process steam. The steam supply system 3 supplies steam from a main steam system 13. FIG. 2 is a process flow diagram showing a configuration of a steam supply system 5 according to the present embodiment, which includes a reheat steam extraction system 50 for supplying steam from a reheat steam system 14 and a control device 4.

ボイラタービン発電設備1は、投入された燃料を燃焼させて蒸気を発生させるボイラ10と、ボイラ10から発生した蒸気の熱エネルギーを回転エネルギーに変換するタービン11と、タービン11の回転エネルギーを電力に変換する発電機12を有している。   The boiler turbine power generation facility 1 includes a boiler 10 that burns input fuel to generate steam, a turbine 11 that converts thermal energy of steam generated from the boiler 10 into rotational energy, and rotational energy of the turbine 11 as electric power. It has a generator 12 for conversion.

なお、本実施の形態におけるボイラ10は、給水を蒸発させて高温高圧の過熱蒸気である主蒸気を発生させる主蒸気系統13と、タービン11で仕事をして圧力と温度が低下した蒸気を過熱して高温低圧の再熱蒸気を発生させる再熱蒸気系統14とを有する、いわゆる再熱式ボイラである。また、タービン11は、主蒸気系統から流入する高温高圧の主蒸気に対応する高圧タービン15と、再熱蒸気系統14からの高温低圧の高温再熱蒸気に対応する低圧タービン16と、を有している。   The boiler 10 according to the present embodiment superheats a main steam system 13 that evaporates feed water to generate main steam that is high-temperature and high-pressure superheated steam, and steam that has been reduced in pressure and temperature by working in the turbine 11. Thus, it is a so-called reheat boiler having a reheat steam system 14 for generating high temperature and low pressure reheat steam. The turbine 11 includes a high-pressure turbine 15 corresponding to high-temperature and high-pressure main steam flowing from the main steam system, and a low-pressure turbine 16 corresponding to high-temperature and low-pressure high-temperature reheat steam from the reheat steam system 14. ing.

(制御装置4の概要)
制御装置4は、ボイラタービン発電設備1の各機器を制御するものであり、例えば燃料供給設備(図示せず)からボイラ10への燃料供給量、ボイラ10への給水量、発電機12の発電量などを制御する
ボイラ10の主蒸気系統13は、給水管20からの給水を蒸発させる蒸発器21と、蒸発器から発生した蒸気を過熱する過熱器22と、過熱器22の入口に注水を行い過熱器22出口の温度を制御する減温器23と、を有している。過熱器22と高圧タービン15とは、主蒸気管24により接続されている。主蒸気管24における高圧タービン15の入口には高圧タービン15に導入する主蒸気の流量を制御する主蒸気加減弁25が設けられている。また、主蒸気管24には、ボイラで発生した主蒸気の温度ないし圧力を検出する温度・圧力検出機構26が設けられている。温度・圧力検出機構26で検出された温度は、制御装置4に入力される。
(Outline of the control device 4)
The control device 4 controls each device of the boiler turbine power generation facility 1. For example, the amount of fuel supplied from the fuel supply facility (not shown) to the boiler 10, the amount of water supplied to the boiler 10, and the power generation by the generator 12. The main steam system 13 of the boiler 10 that controls the amount and the like includes an evaporator 21 that evaporates feed water from the feed water pipe 20, a superheater 22 that superheats steam generated from the evaporator, and water injection at the inlet of the superheater 22. And a temperature reducer 23 for controlling the temperature at the outlet of the superheater 22. The superheater 22 and the high-pressure turbine 15 are connected by a main steam pipe 24. A main steam control valve 25 for controlling the flow rate of the main steam introduced into the high pressure turbine 15 is provided at the inlet of the high pressure turbine 15 in the main steam pipe 24. The main steam pipe 24 is provided with a temperature / pressure detection mechanism 26 for detecting the temperature or pressure of the main steam generated in the boiler. The temperature detected by the temperature / pressure detection mechanism 26 is input to the control device 4.

再熱蒸気系統14は、高圧タービン15で仕事をして圧力と温度が低下した蒸気を過熱する再熱器27と、再熱器27の入口に注水を行い再熱器27出口の蒸気温度を制御する減温器28と、を有している。高圧タービン15の排気口と再熱器27、及び再熱器27と低圧タービン16とは、再熱蒸気管29により接続されている。再熱蒸気管29における再熱器27の下流側であって、且つ低圧タービン16の上流側には、当該再熱蒸気管29を流れる再熱蒸気の温度ないし圧力を検出する温度・圧力検出機構30が設けられている。温度・圧力検出機構30で検出された圧力は、制御装置4に入力される。   The reheat steam system 14 works by the high pressure turbine 15 to superheat the steam whose pressure and temperature are reduced, and water is injected into the inlet of the reheater 27 to set the steam temperature at the outlet of the reheater 27. And a temperature reducer 28 to be controlled. The exhaust port of the high-pressure turbine 15 and the reheater 27, and the reheater 27 and the low-pressure turbine 16 are connected by a reheat steam pipe 29. A temperature / pressure detection mechanism for detecting the temperature or pressure of the reheat steam flowing through the reheat steam pipe 29 on the reheat steam pipe 29 downstream of the reheater 27 and upstream of the low pressure turbine 16. 30 is provided. The pressure detected by the temperature / pressure detection mechanism 30 is input to the control device 4.

低圧タービン16の排気側には、当該低圧タービン16で仕事をして圧力と温度が低下した蒸気を水に戻し、この水を復水として貯留する復水器31が設けられている。復水器31とボイラ10は給水管20により接続されている。給水管20には、復水器31に貯留された復水をボイラ10に給水する給水ポンプ32が設けられている。減温器23、28への注水には、例えば給水ポンプ32からの給水が用いられる。各減温器23、28への注水量は、制御装置4により注水制御弁33、34の開度をそれぞれ調整することにより制御される。   On the exhaust side of the low-pressure turbine 16, a condenser 31 is provided that returns steam that has been reduced in pressure and temperature by working in the low-pressure turbine 16 to water, and stores this water as condensate. The condenser 31 and the boiler 10 are connected by a water supply pipe 20. The water supply pipe 20 is provided with a water supply pump 32 for supplying the boiler 10 with the condensate stored in the condenser 31. For example, water supplied from the water supply pump 32 is used for water injection into the temperature reducers 23 and 28. The amount of water injected into each of the temperature reducers 23 and 28 is controlled by adjusting the opening degree of the water injection control valves 33 and 34 by the control device 4.

蒸気供給系統3は、一端部が主蒸気管24に接続され、当該主蒸気管24を流れる主蒸気の一部を取り出す抽気管40と、抽気管40に設けられた抽気弁41を有している。抽気管40の他の端部は、工場設備2に接続されており、制御装置4により抽気弁41の開度を調整することで、工場設備2へのプロセス用蒸気としての主蒸気の供給量を制御することができる。   The steam supply system 3 has one end connected to the main steam pipe 24, a bleed pipe 40 for taking out part of the main steam flowing through the main steam pipe 24, and a bleed valve 41 provided in the bleed pipe 40. Yes. The other end of the extraction pipe 40 is connected to the factory equipment 2, and the amount of main steam supplied as process steam to the factory equipment 2 is adjusted by adjusting the opening of the extraction valve 41 by the control device 4. Can be controlled.

なお、抽気弁41の開度は、抽気管40を流れる蒸気量を一定の範囲内に維持するように調整してもよいし、抽気管40の圧力を一定の範囲内に維持するように調整してもよい。   The opening degree of the bleed valve 41 may be adjusted so as to maintain the amount of steam flowing through the bleed pipe 40 within a certain range, or adjusted so as to maintain the pressure of the bleed pipe 40 within a certain range. May be.

再熱蒸気系統14には、本発明の特徴である再熱蒸気管29から蒸気を抽気する再熱蒸気抽気系統50が設けられており、この再熱蒸気抽気系統50は蒸気供給システム5の一部を構成している。再熱蒸気抽気系統50は、再熱蒸気管29から再熱蒸気を抽気する再熱蒸気抽気管60と、再熱蒸気抽気管60に設けられた再熱蒸気抽気弁61を有している。再熱蒸気抽気管60は、その一端部が再熱蒸気管29における再熱器27の下流側であって且つ低圧タービン16の上流側に接続されている。また、再熱蒸気抽気管60の他端部は例えば工場設備2などの、他の設備に接続されている。   The reheat steam system 14 is provided with a reheat steam extraction system 50 for extracting steam from the reheat steam pipe 29, which is a feature of the present invention. This reheat steam extraction system 50 is a part of the steam supply system 5. Part. The reheat steam extraction system 50 includes a reheat steam extraction pipe 60 that extracts reheat steam from the reheat steam pipe 29, and a reheat steam extraction valve 61 provided in the reheat steam extraction pipe 60. One end of the reheat steam extraction pipe 60 is connected to the downstream side of the reheater 27 in the reheat steam pipe 29 and to the upstream side of the low pressure turbine 16. The other end of the reheat steam extraction pipe 60 is connected to other equipment such as the factory equipment 2.

本発明の蒸気供給システムは、このような再熱蒸気抽気系統を備えている結果として、蒸気供給系統3において主蒸気管から抽気管40を経由して蒸気を抽気するに際し、再熱蒸気系統の減温器28から注水によって再熱器27を通過する蒸気の流量が増加しても、この増加分を再熱蒸気抽気系統から抽気するので低圧タービンへの蒸気量の増加を抑えることができ、発電機12の発電量が増加することがない。   The steam supply system of the present invention is provided with such a reheat steam extraction system. As a result, when steam is extracted from the main steam pipe via the extraction pipe 40 in the steam supply system 3, the reheat steam extraction system Even if the flow rate of the steam passing through the reheater 27 by water injection from the temperature reducer 28 is increased, this increase is extracted from the reheat steam extraction system, so that an increase in the amount of steam to the low pressure turbine can be suppressed, The power generation amount of the generator 12 does not increase.

(具体的制御方法)
本実施の形態にかかる蒸気供給システム5は以上のように構成されており、次に、本実施の形態にかかるボイラタービン発電設備1から工場設備2へプロセス用蒸気を供給する際の蒸気供給システム5の好ましい制御方法について説明する。
(Specific control method)
The steam supply system 5 according to the present embodiment is configured as described above. Next, the steam supply system for supplying process steam from the boiler turbine power generation facility 1 to the factory facility 2 according to the present embodiment. A preferred control method 5 will be described.

なお、以下においては、工場設備2へプロセス用蒸気を供給する際に、発電機12の発電量及び主蒸気管24の圧力を所定の値に一定制御する、いわゆるボイラタービン協調制御モードにより制御する場合を例にして説明する。   In the following description, when supplying the process steam to the factory equipment 2, the power generation amount of the generator 12 and the pressure of the main steam pipe 24 are controlled to a predetermined value and controlled by a so-called boiler turbine cooperative control mode. A case will be described as an example.

先ず、ボイラタービン発電設備1がボイラタービン協調制御モードにより主蒸気管24を流れる主蒸気の流量と圧力、及び発電機12の発電量を一定に制御されている状態で、抽気弁41を開操作して抽気管40からプロセス用蒸気の使用先である工場設備2への送気を開始する。   First, the boiler turbine power generation facility 1 opens the extraction valve 41 while the flow rate and pressure of the main steam flowing through the main steam pipe 24 and the power generation amount of the generator 12 are controlled to be constant by the boiler turbine cooperative control mode. Then, air supply from the extraction pipe 40 to the factory facility 2 where the process steam is used is started.

抽気管40から主蒸気が抽気されると、主蒸気管24を流れる蒸気の圧力が低下し、高圧タービン15へ流入する主蒸気の流量が減少するため、発電機12の発電量が低下するが、発電機12の発電量低下に伴い制御装置4は、発電機12の発電量を抽気開始前の状態に回復させるために、主蒸気加減弁25を開方向に操作する。また、主蒸気加減弁25の開操作により主蒸気管24の圧力が低下するため、制御装置4は、ボイラ10への燃料供給量及び給水流量を増加させる。それにより、主蒸気管24の圧力は一定に保たれ、発電機12の発電量も維持されるが、ボイラ10への燃料供給量は増加しているので、燃料供給量は再熱器27を通過する蒸気量に対して相対的に過剰となり、再熱器27の温度、換言すれば再熱蒸気管29における再熱器27出口の再熱蒸気温度が上昇する。   When the main steam is extracted from the extraction pipe 40, the pressure of the steam flowing through the main steam pipe 24 decreases, and the flow rate of the main steam flowing into the high-pressure turbine 15 decreases, so the power generation amount of the generator 12 decreases. As the power generation amount of the generator 12 decreases, the control device 4 operates the main steam control valve 25 in the opening direction in order to restore the power generation amount of the generator 12 to the state before starting the extraction. Further, since the pressure of the main steam pipe 24 is reduced by opening the main steam control valve 25, the control device 4 increases the fuel supply amount and the feed water flow rate to the boiler 10. Thereby, the pressure of the main steam pipe 24 is kept constant, and the power generation amount of the generator 12 is also maintained. However, since the fuel supply amount to the boiler 10 is increased, the fuel supply amount is reduced by the reheater 27. The temperature of the reheater 27, in other words, the reheat steam temperature at the outlet of the reheater 27 in the reheat steam pipe 29 rises relative to the amount of steam that passes.

そして、再熱蒸気の温度が規定値以上になると、制御装置4からの指令により注水制御弁34が開操作され、減温器28からの注水により再熱器27の温度上昇が抑制される。その一方で、減温器28から注水により、この注水量分だけ再熱器27を通過する蒸気の流量が増加する。再熱器27を通過する蒸気の流量が増加すると、低圧タービン17へ流入する再熱蒸気の流量も増加し、結果として発電機12の発電量が増加するので、制御装置4は再熱蒸気抽気弁61を開操作して、注水により増加した分の再熱蒸気を工場設備2へ送気する。この場合、再熱蒸気の増加分が低圧タービン17へ流入することがなく、発電機12の発電量が増加することがないので、上述のような主蒸気加減弁25の動作に伴う主蒸気管24の圧力変動が抑制される。なお、再熱蒸気抽気弁61の開度は、例えば注水制御弁34の開度に基づいて調整されてもよいし、再熱蒸気管29に設けられた圧力検出機構30による検出値に基づいて調整されてもよい。   When the temperature of the reheat steam becomes equal to or higher than the specified value, the water injection control valve 34 is opened by a command from the control device 4, and the temperature rise of the reheater 27 is suppressed by water injection from the temperature reducer 28. On the other hand, by the water injection from the temperature reducer 28, the flow rate of the steam passing through the reheater 27 is increased by this amount of water injection. When the flow rate of the steam passing through the reheater 27 increases, the flow rate of the reheat steam flowing into the low-pressure turbine 17 also increases. As a result, the power generation amount of the generator 12 increases. The valve 61 is opened to supply the reheated steam increased by the water injection to the factory equipment 2. In this case, the increased amount of the reheat steam does not flow into the low-pressure turbine 17 and the power generation amount of the generator 12 does not increase. Therefore, the main steam pipe accompanying the operation of the main steam control valve 25 as described above. 24 pressure fluctuations are suppressed. Note that the opening degree of the reheat steam extraction valve 61 may be adjusted based on, for example, the opening degree of the water injection control valve 34, or based on a detection value by the pressure detection mechanism 30 provided in the reheat steam pipe 29. It may be adjusted.

具体的には、注水制御弁34の開度と流量との関係、及び再熱蒸気抽気弁61の開度と流量との関係は、注水制御弁34、再熱蒸気抽気弁61の性能曲線により予め把握可能なので、注水制御弁34の開度に基づいて再熱蒸気抽気弁61の開度を調整する場合は、制御装置4で注水制御弁34の開度から注水されている流量を求め、次いで、この流量に相当する開度指令が再熱蒸気抽気弁61に出力される。なお、注水制御弁34からの注水量を求めるに当たっては、注水制御弁34の上流に流量計を設けて実流量を測定するようにしてもよい。   Specifically, the relationship between the opening degree and the flow rate of the water injection control valve 34 and the relationship between the opening degree and the flow rate of the reheat steam extraction valve 61 depend on the performance curves of the water injection control valve 34 and the reheat steam extraction valve 61. Since it can be grasped in advance, when adjusting the opening degree of the reheat steam bleed valve 61 based on the opening degree of the water injection control valve 34, the flow rate of water injected from the opening degree of the water injection control valve 34 is obtained by the control device 4, Next, an opening degree command corresponding to this flow rate is output to the reheat steam bleed valve 61. In determining the amount of water injected from the water injection control valve 34, a flow meter may be provided upstream of the water injection control valve 34 to measure the actual flow rate.

また、再熱蒸気抽気弁61の開度を再熱蒸気管29に設けられた圧力検出機構30による検出値に基づいて調整する場合は、減温器28からの注水が開始された時点、換言すれば注水制御弁34の開操作が開始された時点での圧力検出機構30での検出値が制御装置4により圧力設定値として記憶される。そして、制御装置4により、再熱蒸気管29の圧力が圧力設定値から所定の範囲内に収まるように再熱蒸気抽気弁61の開度が調整される。   When the opening degree of the reheat steam bleed valve 61 is adjusted based on the detection value by the pressure detection mechanism 30 provided in the reheat steam pipe 29, the time when water injection from the temperature reducer 28 is started, in other words, Then, the detected value of the pressure detection mechanism 30 at the time when the opening operation of the water injection control valve 34 is started is stored as a pressure set value by the control device 4. Then, the opening degree of the reheat steam extraction valve 61 is adjusted by the control device 4 so that the pressure of the reheat steam pipe 29 falls within a predetermined range from the pressure set value.

以上の実施の形態によれば、再熱蒸気管29における再熱器27の下流側であって、且つ低圧タービン16の上流側に再熱蒸気抽気管60が接続されているので、主蒸気管24からの抽気に伴う再熱蒸気管29への注水によって再熱器27を通過する蒸気が増加した際に、再熱蒸気管29から増加分の蒸気を抽気することができる。これにより、低圧タービン16へ流入する蒸気量の増加を防ぐことができるので、発電機12の発電量増加に伴う主蒸気加減弁25の絞り込み動作を防ぎ、主蒸気系統13の圧力変動を抑えることができる。したがって本発明によれば、ボイラタービン発電設備1から工場設備2へプロセス用蒸気を供給するにあたり、プロセス用蒸気の供給制限を従来よりも緩和することができる。   According to the above embodiment, the reheat steam extraction pipe 60 is connected to the reheat steam pipe 29 on the downstream side of the reheater 27 and on the upstream side of the low-pressure turbine 16. When the steam passing through the reheater 27 increases due to the water injection to the reheat steam pipe 29 accompanying the extraction from 24, the increased steam can be extracted from the reheat steam pipe 29. As a result, an increase in the amount of steam flowing into the low-pressure turbine 16 can be prevented, so that the narrowing operation of the main steam control valve 25 accompanying the increase in the power generation amount of the generator 12 is prevented, and the pressure fluctuation of the main steam system 13 is suppressed. Can do. Therefore, according to the present invention, when supplying the process steam from the boiler turbine power generation facility 1 to the factory facility 2, the supply restriction of the process steam can be relaxed as compared with the conventional case.

また、再熱器27通過後の高温再熱蒸気を抽気して例えば工場設備2などの蒸気使用先に供給するので、工場設備2側で高温の蒸気を発生させるために使用していた他の蒸気発生源の燃料を節約することができる。   Further, since the high-temperature reheated steam after passing through the reheater 27 is extracted and supplied to a steam usage destination such as the factory equipment 2, for example, the factory equipment 2 side is used to generate high-temperature steam. Steam source fuel can be saved.

なお、以上の実施の形態においては、主蒸気加減弁25の絞り込み動作により主蒸気管24の圧力変動が起こる場合として、主蒸気管24からの抽気を開始した場合を例にして説明したが、本発明にかかる制御方法が適用される場面は本実施の形態の内容に限定されるものではない。例えば主蒸気管24からの抽気中に、当該抽気量を急激に増加させ、それにより減温器28からの注水量が急激に増加した場合は、発電機12の発電量も急激に増加する。かかる場合、主蒸気加減弁25は発電量の増加を抑えるために急速に絞り込まれるが、このような場合は、発電機12の発電量の変化幅が小さい場合であっても主蒸気管24の圧力に大きな影響を与える。また、減温器28からの注水量が急激に減少した場合も、主蒸気加減弁25は急速に開方向に操作されるので、やはり主蒸気管24の圧力に大きな影響がある。したがって本発明は、減温器28からの注水を行っている間に注水量が急激に変化した際に、注水量の変化に合わせて再熱蒸気抽気弁61の開度を調整することで主蒸気管13の圧力変動を抑える場合にも用いることができる。   In the above embodiment, the case where the extraction of the main steam pipe 24 starts as an example of the case where the pressure fluctuation of the main steam pipe 24 occurs due to the narrowing operation of the main steam control valve 25 has been described as an example. The scene to which the control method according to the present invention is applied is not limited to the contents of the present embodiment. For example, when the amount of extraction is rapidly increased during extraction from the main steam pipe 24, and thus the amount of water injected from the temperature reducer 28 is increased rapidly, the amount of power generation by the generator 12 also increases abruptly. In such a case, the main steam control valve 25 is rapidly throttled to suppress an increase in the amount of power generation. In such a case, even if the amount of change in the power generation amount of the generator 12 is small, the main steam pipe 24 The pressure is greatly affected. Further, even when the amount of water injected from the temperature reducer 28 is suddenly reduced, the main steam control valve 25 is rapidly operated in the opening direction, so that the pressure of the main steam pipe 24 is also greatly affected. Therefore, the present invention mainly adjusts the opening degree of the reheat steam bleed valve 61 in accordance with the change of the water injection amount when the water injection amount suddenly changes during the water injection from the temperature reducer 28. It can also be used to suppress the pressure fluctuation of the steam pipe 13.

なお、減温器28からの注水量の変化速度が遅く、ボイラ10の負荷変化により主蒸気管24の圧力変動を抑えることができる場合には、必ずしも再熱蒸気抽気系統50からの抽気を行う必要がない。かかる場合、例えば制御装置4により注水量の変化率を監視し、変化率が所定の値を上回った場合にのみ再熱蒸気抽気弁61を操作するようにしてもよい。注水量の変化率は、注水制御弁34の開度の変化率により求めてもよいし、例えば注水制御弁34の上流側に流量検出機構を設け、その検出値の変化率により求めてもよい。   In addition, when the change rate of the water injection amount from the temperature reducer 28 is slow and the pressure fluctuation of the main steam pipe 24 can be suppressed by the load change of the boiler 10, the extraction from the reheat steam extraction system 50 is necessarily performed. There is no need. In such a case, for example, the change rate of the water injection amount may be monitored by the control device 4, and the reheat steam extraction valve 61 may be operated only when the change rate exceeds a predetermined value. The rate of change of the water injection amount may be obtained from the rate of change of the opening degree of the water injection control valve 34. For example, a flow rate detection mechanism may be provided upstream of the water injection control valve 34 and the rate of change of the detected value may be obtained. .

なお、以上の実施の形態における再熱蒸気抽気系統50は、再熱蒸気の抽気を行うことで、再熱蒸気系統14への注水に伴う発電機12の発電量増加を抑えるために用いられたが、例えば、再熱蒸気の抽気中に発電機12の発電量増加の要求があった場合に、再熱蒸気抽気弁61を閉操作することで低圧タービン16への蒸気の流入量を増加させ、それにより発電機12の発電量を増加させるように用いることもできる。かかる場合、ボイラ10への燃料供給量を増加させることなく発電機12の発電量を増加させることができる。   In addition, the reheat steam extraction system 50 in the above embodiment was used to suppress an increase in the amount of power generated by the generator 12 due to water injection into the reheat steam system 14 by performing reheat steam extraction. However, for example, when there is a request to increase the power generation amount of the generator 12 during the extraction of the reheat steam, the inflow amount of steam to the low-pressure turbine 16 is increased by closing the reheat steam extraction valve 61. Thus, the power generation amount of the generator 12 can be increased. In this case, the power generation amount of the generator 12 can be increased without increasing the fuel supply amount to the boiler 10.

また、以上の実施の形態においては、再熱器27の温度が上昇して減温器28による注水が起こる場合として、主蒸気管24からの抽気量を増加させた場合を例にして説明を行なったが、例えば主蒸気管24からの抽気量を一定に保った状態から、主蒸気流量を低下させた場合などにも、ボイラ102への燃料供給量に対する再熱器27を通過する蒸気量が相対的に減少し、再熱器27の温度上昇が起こるので、かかる場合においても、再熱蒸気抽気系統50から再熱蒸気を抽気することで、ボイラ10の圧力変動を抑制することができる。即ち、本実施の形態にかかる蒸気供給システム5は、減温器28による注水の発生原因によらず、ボイラ10の圧力変動を抑制することができる。   Moreover, in the above embodiment, the case where the amount of extraction from the main steam pipe 24 is increased as an example where the temperature of the reheater 27 rises and water injection by the temperature reducer 28 occurs will be described as an example. The amount of steam that passes through the reheater 27 with respect to the amount of fuel supplied to the boiler 102 even when, for example, the main steam flow rate is reduced from the state in which the amount of extraction from the main steam pipe 24 is kept constant. Is relatively decreased and the temperature of the reheater 27 rises. Even in such a case, the pressure fluctuation of the boiler 10 can be suppressed by extracting the reheat steam from the reheat steam extraction system 50. . That is, the steam supply system 5 according to the present embodiment can suppress pressure fluctuations in the boiler 10 regardless of the cause of water injection by the temperature reducer 28.

本発明は、ボイラタービン発電設備から工場設備へプロセス用蒸気を供給する際に有用である。   The present invention is useful when supplying process steam from boiler turbine power generation equipment to factory equipment.

1 ボイラタービン発電設備
2 工場設備
3 蒸気供給系統
4 制御装置
5 蒸気供給システム
10 ボイラ
11 タービン
12 発電機
13 主蒸気系統
14 再熱蒸気系統
15 高圧タービン
16 低圧タービン
20 給水管
21 蒸発器
22 過熱器
23 減温器
24 主蒸気管
25 主蒸気加減弁
26 温度・圧力検出機構
27 再熱器
28 減温器
29 再熱蒸気管
30 温度・圧力検出機構
31 復水器
32 給水ポンプ
33、34 注水制御弁
40 抽気管
41 抽気弁
50 再熱蒸気抽気系統
60 再熱蒸気抽気管
61 再熱蒸気抽気弁
DESCRIPTION OF SYMBOLS 1 Boiler turbine power generation equipment 2 Factory equipment 3 Steam supply system 4 Control apparatus 5 Steam supply system 10 Boiler 11 Turbine 12 Generator 13 Main steam system 14 Reheat steam system 15 High pressure turbine 16 Low pressure turbine 20 Water supply pipe 21 Evaporator 22 Superheater 23 Temperature reducer 24 Main steam pipe 25 Main steam control valve 26 Temperature / pressure detection mechanism 27 Reheater 28 Temperature reducer 29 Reheat steam pipe 30 Temperature / pressure detection mechanism 31 Condenser 32 Water supply pump 33, 34 Water injection control Valve 40 Extraction pipe 41 Extraction valve 50 Reheat steam extraction system 60 Reheat steam extraction pipe 61 Reheat steam extraction valve

Claims (7)

主蒸気系統と再熱蒸気系統を有するボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備えたボイラタービン発電設備を用い、
前記主蒸気系統からの蒸気(以下、「主蒸気」という。)はタービンに送られその一部を抽気して工場設備へプロセス用蒸気を供給する蒸気供給系統と、
前記再熱蒸気系統からの蒸気はタービンに送られその一部を抽気して前記工場設備に供給する再熱蒸気抽気系統と、
を有する蒸気供給システムの制御方法であって、
前記再熱蒸気系統は、再熱器と、当該再熱器と前記タービンとを接続する再熱蒸気管と、当該再熱蒸気管における再熱器の上流側に設けられた減温器と、減温器に注水する注水制御弁を備え、
前記蒸気供給系統は、前記ボイラから発生した主蒸気の一部を主蒸気管から取り出して蒸気の使用先へ供給する主蒸気抽気管と、前記主蒸気抽気管に設けられた主蒸気抽気弁とを備え、
前記再熱蒸気抽気系統は、前記再熱蒸気管における前記再熱器の下流側であって、且つタービンの上流側に接続された再熱蒸気抽気管と、前記再熱蒸気抽気管に設けられた再熱蒸気抽気弁とを有し、
前記主蒸気抽気弁が開かれて工場設備へ蒸気が供給され、注水制御弁が開かれて前記減温器から前記再熱蒸気管に注水が行われた場合に、前記再熱蒸気抽気弁を開いて前記再熱蒸気管から蒸気を工場設備に供給することを特徴とする蒸気供給システムの制御方法。
Boiler turbine power generation comprising a boiler having a main steam system and a reheat steam system, a turbine for converting thermal energy of steam generated in the boiler into rotational energy, and a generator for converting rotational energy of the turbine into electric power Using equipment,
Steam from the main steam system (hereinafter referred to as “main steam”) is sent to a turbine, and a part of the steam is extracted to supply process steam to factory equipment;
The steam from the reheat steam system is sent to a turbine and a part thereof is extracted and supplied to the factory equipment, and a reheat steam extraction system,
A method for controlling a steam supply system comprising:
The reheat steam system includes a reheater, a reheat steam pipe connecting the reheater and the turbine, and a temperature reducer provided on the upstream side of the reheater in the reheat steam pipe, It has a water injection control valve that injects water into the temperature reducer,
The steam supply system includes a main steam extraction pipe for taking out a part of main steam generated from the boiler from a main steam pipe and supplying the steam to a use destination, and a main steam extraction valve provided in the main steam extraction pipe; With
The reheat steam bleed system is provided in the reheat steam bleed pipe connected to the reheat steam pipe downstream of the reheater and upstream of the turbine, and the reheat steam bleed pipe. And a reheat steam bleed valve
When the main steam bleed valve is opened and steam is supplied to factory equipment, the water injection control valve is opened and water is injected from the temperature reducer to the reheat steam pipe, the reheat steam bleed valve is A method for controlling a steam supply system, wherein the steam supply system is opened and steam is supplied to factory equipment from the reheat steam pipe.
前記再熱蒸気抽気弁の開度は、前記減温器への注水量に基づいて決定されることを特徴とする、請求項1に記載の蒸気供給システムの制御方法。   The method of controlling a steam supply system according to claim 1, wherein the opening degree of the reheat steam bleed valve is determined based on an amount of water injected into the temperature reducer. 前記再熱蒸気抽気弁の開度は、前記再熱蒸気管における前記再熱器の下流側であって、且つタービンの上流側に設置された圧力検出機構により計測された圧力に基づいて決定されることを特徴とする請求項1に記載の蒸気供給システムの制御方法。   The opening degree of the reheat steam bleed valve is determined based on the pressure measured by the pressure detection mechanism installed downstream of the reheater in the reheat steam pipe and upstream of the turbine. The method for controlling a steam supply system according to claim 1. 主蒸気系統と再熱蒸気系統を有するボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備えたボイラタービン発電設備を用い、
前記主蒸気系統からの蒸気(以下、「主蒸気」という。)はタービンに送られその一部を抽気して工場設備へプロセス用蒸気を供給する蒸気供給系統と、
前記再熱蒸気系統からの蒸気はタービンに送られその一部を抽気して前記工場設備に供給する再熱蒸気抽気系統と、
を有する蒸気供給システムであって、
前記再熱蒸気系統は、再熱器と、当該再熱器と前記タービンとを接続する再熱蒸気管と、当該再熱蒸気管における再熱器の上流側に設けられた減温器と、減温器に注水する注水制御弁を備え、
前記蒸気供給系統は、前記ボイラから発生した主蒸気の一部を主蒸気管から取り出して蒸気の使用先へ供給する主蒸気抽気管と、前記主蒸気抽気管に設けられた主蒸気抽気弁とを備え、
前記再熱蒸気抽気系統は、前記再熱蒸気管における前記再熱器の下流側であって、且つタービンの上流側に接続された再熱蒸気抽気管と、前記再熱蒸気抽気管に設けられた再熱蒸気抽気弁とを有することを特徴とする蒸気供給システム。
Boiler turbine power generation comprising a boiler having a main steam system and a reheat steam system, a turbine for converting thermal energy of steam generated in the boiler into rotational energy, and a generator for converting rotational energy of the turbine into electric power Using equipment,
Steam from the main steam system (hereinafter referred to as “main steam”) is sent to a turbine, and a part of the steam is extracted to supply process steam to factory equipment;
The steam from the reheat steam system is sent to a turbine and a part thereof is extracted and supplied to the factory equipment, and a reheat steam extraction system,
A steam supply system comprising:
The reheat steam system includes a reheater, a reheat steam pipe connecting the reheater and the turbine, and a temperature reducer provided on the upstream side of the reheater in the reheat steam pipe, It has a water injection control valve that injects water into the temperature reducer,
The steam supply system includes a main steam extraction pipe for taking out a part of main steam generated from the boiler from a main steam pipe and supplying the steam to a use destination, and a main steam extraction valve provided in the main steam extraction pipe; With
The reheat steam bleed system is provided in the reheat steam bleed pipe connected to the reheat steam pipe downstream of the reheater and upstream of the turbine, and the reheat steam bleed pipe. And a reheating steam bleed valve.
前記蒸気供給システムはさらに制御装置を有し、該制御装置は、前記主蒸気抽気弁が開かれて工場設備へ蒸気が供給され、注水制御弁が開かれて前記減温器から前記再熱蒸気管に注水が行われた場合に、前記再熱蒸気抽気弁を開いて前記再熱蒸気管から蒸気を工場設備に供給することを特徴とする請求項4に記載の蒸気供給システム。   The steam supply system further includes a control device, which opens the main steam extraction valve to supply steam to factory equipment, opens a water injection control valve, and opens the reheat steam from the temperature reducer. The steam supply system according to claim 4, wherein when water is injected into the pipe, the reheat steam bleed valve is opened to supply steam from the reheat steam pipe to factory equipment. 前記再熱蒸気抽気弁の開度は、前記減温器への注水量に基づいて決定されることを特徴とする、請求項5に記載の蒸気供給システム。   The steam supply system according to claim 5, wherein the opening degree of the reheat steam bleed valve is determined based on a water injection amount to the temperature reducer. 前記再熱蒸気抽気弁の開度は、前記再熱蒸気管における前記再熱器の下流側であって、且つタービンの上流側に設置された圧力検出機構により計測された圧力に基づいて決定されることを特徴とする請求項5に記載の蒸気供給システム。   The opening degree of the reheat steam bleed valve is determined based on the pressure measured by the pressure detection mechanism installed downstream of the reheater in the reheat steam pipe and upstream of the turbine. The steam supply system according to claim 5.
JP2012019912A 2011-04-20 2012-02-01 Steam supply system and method for controlling steam supply system Active JP5727951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019912A JP5727951B2 (en) 2011-04-20 2012-02-01 Steam supply system and method for controlling steam supply system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011094409 2011-04-20
JP2011094409 2011-04-20
JP2012019912A JP5727951B2 (en) 2011-04-20 2012-02-01 Steam supply system and method for controlling steam supply system

Publications (2)

Publication Number Publication Date
JP2012233679A JP2012233679A (en) 2012-11-29
JP5727951B2 true JP5727951B2 (en) 2015-06-03

Family

ID=47434152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019912A Active JP5727951B2 (en) 2011-04-20 2012-02-01 Steam supply system and method for controlling steam supply system

Country Status (1)

Country Link
JP (1) JP5727951B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690384B1 (en) * 2014-12-26 2016-12-28 재단법인 포항산업과학연구원 Waste heat recovery apparatus for combustion furnace and method thereof
CN108019246A (en) * 2016-10-31 2018-05-11 中国电力工程顾问集团华北电力设计院有限公司 Suitable for the therrmodynamic system and its peak regulating method of thermal power plant unit depth peak regulation
CN107956517B (en) * 2017-10-24 2023-07-25 联合瑞升(北京)科技有限公司 Thermodynamic system and method for deep thermal decoupling
CN108468575B (en) * 2018-04-20 2024-03-08 中国联合工程有限公司 System for changing extraction condensing unit into back pressure unit based on injection heat pump and operation method thereof
CN108592136B (en) * 2018-07-13 2023-10-31 大连亨利测控仪表工程有限公司 Double-cylinder decoupling depth peak shaving system for thermal power plant flexible transformation
CN110656991B (en) * 2019-11-05 2024-06-18 清华大学 Injection distribution thermal electrolytic coupling mode based on axial thrust balance and reheat balance
CN111396155B (en) * 2020-03-24 2024-04-19 清华大学 Injection self-balancing type high-pressure steam supply full-load thermal decoupling method with medium-pressure valve being regulated
CN112525535A (en) * 2020-09-30 2021-03-19 广西电网有限责任公司电力科学研究院 Testing device and method for multi-pressure-grade steam extraction and heat supply steam turbine generator unit
CN112594776B (en) * 2020-12-30 2024-09-06 华电郑州机械设计研究院有限公司 Control method and system suitable for load adjustment of heat supply unit
CN113324599B (en) * 2021-04-21 2022-06-24 广西电网有限责任公司电力科学研究院 FCB function thermal power generating unit bypass capacity test system
CN113431653B (en) * 2021-07-23 2022-11-04 山东丰源生物质发电股份公司 Industrial steam equipment with first-stage steam extraction and external supply for steam turbine
CN113864750B (en) * 2021-08-30 2024-02-09 国核电力规划设计研究院有限公司 Nuclear power plant heating system
CN114087045B (en) * 2021-11-17 2023-03-07 连云港石化有限公司 Energy utilization system for ethylene oxide glycol device steam and use method thereof
CN114200973A (en) * 2021-11-22 2022-03-18 国能(福州)热电有限公司 Pressure adjusting system and pressure adjusting method for desuperheating water
CN114110736B (en) * 2021-11-25 2023-02-28 广西电网有限责任公司电力科学研究院 Non-contact heat exchange steam supply method for extracting steam at different steam temperatures
CN114321880A (en) * 2022-01-11 2022-04-12 上海敬琛电力科技中心 Safe operation method of boiler reheater and denitration system during deep peak shaving of thermal power generating unit
CN115324661B (en) * 2022-08-31 2024-08-16 西安热工研究院有限公司 System for separating shaft and cutting high-pressure cylinder of steam turbine of thermal power plant and operation method
CN115898574B (en) * 2022-10-25 2024-06-11 东方电气集团东方汽轮机有限公司 Multi-parameter heat supply steam cascade utilization system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181381A (en) * 1992-07-08 1993-01-26 Ahlstrom Pyropower Corporation Power plant with dual pressure reheat system for process steam supply flexibility
JP4325307B2 (en) * 2003-07-25 2009-09-02 株式会社Ihi Boiler reheater protection method and apparatus
JP4503995B2 (en) * 2003-12-02 2010-07-14 株式会社東芝 Reheat steam turbine plant and operation method thereof
JP4818391B2 (en) * 2009-04-16 2011-11-16 中国電力株式会社 Steam turbine plant and operation method thereof

Also Published As

Publication number Publication date
JP2012233679A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5727951B2 (en) Steam supply system and method for controlling steam supply system
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
US10287921B2 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP2010163892A (en) Steam turbine facility, and method of operating feed water pump drive turbine
JP5591377B2 (en) Steam rankin plant
JP6071421B2 (en) Combined cycle plant, method for stopping the same, and control device therefor
JP5792087B2 (en) Steam supply system and control method thereof
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP2010196473A (en) Electric power plant water supply device, and method for controlling the same
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
JP6516993B2 (en) Combined cycle plant and boiler steam cooling method
JP4718333B2 (en) Once-through exhaust heat recovery boiler
JP4415189B2 (en) Thermal power plant
JP2010019449A (en) Power generating system
WO2020255719A1 (en) Power plant
JP2012140910A (en) Combined cycle power generation plant and gas turbine system, and gas turbine fuel gas heating system
JP7183130B2 (en) HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
JP5804748B2 (en) Steam supply system and steam supply method
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2008292119A (en) Power generator
JP4560481B2 (en) Steam turbine plant
JP5656753B2 (en) Power generation facility for waste incinerator and control method thereof
JP2007285220A (en) Combined cycle power generation facility
JP2010223105A (en) Steam turbine system and method and program for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5727951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250