JP2011208875A - Hydraulic test method of high-pressure water supply system in power generation facility - Google Patents

Hydraulic test method of high-pressure water supply system in power generation facility Download PDF

Info

Publication number
JP2011208875A
JP2011208875A JP2010077000A JP2010077000A JP2011208875A JP 2011208875 A JP2011208875 A JP 2011208875A JP 2010077000 A JP2010077000 A JP 2010077000A JP 2010077000 A JP2010077000 A JP 2010077000A JP 2011208875 A JP2011208875 A JP 2011208875A
Authority
JP
Japan
Prior art keywords
water supply
valve
pressure
water
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077000A
Other languages
Japanese (ja)
Other versions
JP5479976B2 (en
Inventor
Takahiro Kono
孝博 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010077000A priority Critical patent/JP5479976B2/en
Publication of JP2011208875A publication Critical patent/JP2011208875A/en
Application granted granted Critical
Publication of JP5479976B2 publication Critical patent/JP5479976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a hydraulic pressure of a boiler water supply pump from being applied to a high-pressure water supply system at once.SOLUTION: In this hydraulic test method in performing hydraulic test of the high-pressure water supply system of power generation facilities, a water supply bypass valve B8a for starting composed of a needle valve is gradually opened by closing an economizer inlet valve B10, opening an economizer inlet valve bypass valve B10a, opening a water supply flow rate regulation valve B9 for starting, and closing a water supply flow rate regulation valve prevalve B8 for starting, and the economizer inlet valve bypass valve B10a is gradually closed when the water supply bypass valve B8a for starting is fully opened.

Description

本発明は、例えば、火力発電設備における高圧給水系統の水圧試験方法に関する。   The present invention relates to a water pressure test method for a high-pressure water supply system in a thermal power generation facility, for example.

従来のこの種の高圧給水系統の水圧試験方法は、ボイラ給水ポンプの出口から高圧給水加熱器の入口に繋がる起動用給水管路、該起動用給水管路に設けられた起動用給水流量調節弁前弁および起動用給水流量調節弁、高圧給水加熱器の出口から節炭器の入口に繋がる高圧給水管路、該高圧給水管路に設けられた節炭器入口弁を有する高圧給水系統と、起動用給水流量調節弁前弁を迂回するようにして起動用給水管路に繋がる第1迂回管路、該第1迂回管路に設けられた起動用給水バイパス弁を有する起動用給水バイパス系統と、節炭器入口弁を迂回するようにして高圧給水管路に繋がる第2迂回管路、該第2迂回管路に設けられた節炭器入口弁バイパス弁を有する節炭器入口バイパス系統とを備えている。   A conventional water pressure test method for this type of high-pressure water supply system includes a start-up water supply line connected from the outlet of the boiler water pump to the inlet of the high-pressure water heater, and a start-up water supply flow rate control valve provided in the start-up water supply line A high pressure water supply system having a front valve and a start water supply flow rate adjustment valve, a high pressure water supply line connected from the outlet of the high pressure water heater to the inlet of the economizer, and a economizer inlet valve provided in the high pressure water supply line; A starting water supply bypass system having a first bypass pipe connected to the starting water supply pipe so as to bypass the start water supply flow rate control valve, and a starting water supply bypass valve provided in the first bypass pipe; A second bypass line that bypasses the economizer inlet valve and connects to the high-pressure water supply pipe, and a economizer inlet bypass system that includes the economizer inlet valve bypass valve provided in the second bypass pipe; It has.

そして、節炭器入口弁を閉、節炭器入口弁バイパス弁を閉、起動用給水バイパス弁を閉、起動用給水流量調節弁前弁を開、起動用給水流量調節弁を徐々に開操作することで、高圧給水系統の水圧試験を行っていた。   Then, close the economizer inlet valve, close the economizer inlet valve bypass valve, close the startup feedwater bypass valve, open the startup feedwater flow rate control valve, and gradually open the startup feedwater flow rate control valve By doing so, the water pressure test of the high pressure water supply system was conducted.

また、従来の水圧試験装置として、例えば、脱気器内で生成した温水を、加圧ポンプで配管などに給水して水圧試験を行うものが公知になっている(特許文献1)。   Further, as a conventional water pressure test apparatus, for example, a water pressure test is performed by supplying hot water generated in a deaerator to a pipe or the like with a pressure pump (Patent Document 1).

実開昭62−12849号公報Japanese Utility Model Publication No. 62-12849

しかしながら、従来の水圧試験方法を行う際、節炭器入口弁、節炭器入口弁バイパス弁、起動用給水バイパス弁を閉にし、起動用給水流量調節弁で開操作しているので、ボイラ給水ポンプの水圧が一気に高圧給水系統にかかってしまい、高圧給水加熱器の高圧ヒータが損傷してしまうという問題がある。   However, when performing the conventional water pressure test method, the economizer inlet valve, economizer inlet valve bypass valve, and starter feedwater bypass valve are closed and opened by the starter feedwater flow rate control valve. There is a problem that the water pressure of the pump is applied to the high-pressure water supply system at once, and the high-pressure heater of the high-pressure water heater is damaged.

そこで、本発明は、高圧給水系統にボイラ給水ポンプの水圧が一気にかからないように水圧試験を行えるようにした、発電設備における高圧給水系統の水圧試験方法を提供することを課題とする。   Then, this invention makes it a subject to provide the water pressure test method of the high voltage | pressure water supply system in power generation equipment which can perform a water pressure test so that the water pressure of a boiler feed water pump may not apply to a high pressure water supply system at a stretch.

本発明に係る発電設備における高圧給水系統の水圧試験方法は、ボイラ給水ポンプ50の出口から高圧給水加熱器70の入口に繋がる起動用給水管路80、該起動用給水管路80に設けられた起動用給水流量調節弁前弁B8および起動用給水流量調節弁B9、高圧給水加熱器70の出口から節炭器11の入口に繋がる高圧給水管路85、該高圧給水管路85に設けられた節炭器入口弁B10を有する高圧給水系統WLbと、起動用給水流量調節弁前弁B8を迂回するようにして起動用給水管路80に繋がる第1迂回管路80a、該第1迂回管路80aに設けられたニードル弁からなる起動用給水バイパス弁B8aを有する起動用給水バイパス系統WLb1と、節炭器入口弁B10を迂回するようにして高圧給水管路85に繋がる第2迂回管路85a、該第2迂回管路85aに設けられた節炭器入口弁バイパス弁B10aを有する節炭器入口バイパス系統WLb2とを備えた発電設備における高圧給水系統の水圧試験方法であって、起動用給水流量調節弁前弁B8を閉、ニードル弁からなる起動用給水バイパス弁B8aを閉、起動用給水流量調節弁B9を開、節炭器入口弁B10を閉、節炭器入口弁バイパス弁B10aを開にした状態で、起動用給水バイパス弁B8aを徐々に開にし、起動用給水バイパス弁B8aを全開した後に、節炭器入口弁バイパス弁B10aを徐々に閉にするようにしたことを特徴とする。   The water pressure test method for the high-pressure water supply system in the power generation facility according to the present invention is provided in the start-up water supply line 80 connected from the outlet of the boiler water supply pump 50 to the inlet of the high-pressure water heater 70, and the start-up water supply line 80. The start feed water flow rate control valve B8 and the start feed water flow rate control valve B9, the high pressure feed water line 85 connected from the outlet of the high pressure feed water heater 70 to the inlet of the economizer 11, and the high pressure feed water line 85 are provided. A high-pressure water supply system WLb having a economizer inlet valve B10, a first bypass pipe 80a that bypasses the start-up water supply flow control valve B8 and connects to the start-up water supply pipe 80, and the first bypass pipe A water supply bypass system WLb1 for activation having a water supply bypass valve for activation B8a composed of a needle valve provided at 80a, and a second bypass pipe connected to the high pressure water supply pipe 85 so as to bypass the economizer inlet valve B10. 5a, a water pressure test method for a high-pressure water supply system in a power generation facility provided with a economizer inlet bypass system WLb2 having an economizer inlet valve bypass valve B10a provided in the second bypass pipe 85a, The front feed water flow control valve B8 is closed, the start water feed bypass valve B8a comprising a needle valve is closed, the start feed water flow control valve B9 is opened, the economizer inlet valve B10 is closed, and the economizer inlet valve bypass valve B10a is closed. The start water supply bypass valve B8a is gradually opened in the open state, and after the start water supply bypass valve B8a is fully opened, the economizer inlet valve bypass valve B10a is gradually closed. And

この場合、起動用給水流量調節弁前弁B8を閉、ニードル弁からなる起動用給水バイパス弁B8aを閉、起動用給水流量調節弁B9を開、節炭器入口弁B10を閉、節炭器入口弁バイパス弁B10aを開にした状態で、起動用給水バイパス弁B8aを徐々に開にするようにしたので、節炭器入口弁バイパス弁B10aを開にすることで、予め高圧給水系統に圧力の逃がし経路がつくられるようになり、小径の起動用給水バイパス弁B8aにより、高圧給水系統WLbの内部が徐々に昇圧されるようになる。そして、起動用給水バイパス弁B8aを全開した後に、節炭器入口弁バイパス弁B10aを徐々に閉にするようにしたので、高圧給水系統WLbに設けられた高圧給水加熱器70の高圧ヒータなどに支障をきたすことなく、昇圧された圧力、即ち水圧試験の圧力に保持できる。つまり、高圧給水加熱器70の高圧ヒータなどに損傷を与えることなく、水圧試験を行うことができるようになる。   In this case, the start water supply flow rate adjustment valve B8 is closed, the start water supply bypass valve B8a consisting of a needle valve is closed, the start water supply flow rate adjustment valve B9 is opened, and the economizer inlet valve B10 is closed. Since the starting water supply bypass valve B8a is gradually opened while the inlet valve bypass valve B10a is opened, the economizer inlet valve bypass valve B10a is opened, so that the pressure is applied to the high-pressure water supply system in advance. A relief path is created, and the inside of the high-pressure water supply system WLb is gradually boosted by the small-diameter start-up water supply bypass valve B8a. Then, after the start water supply bypass valve B8a is fully opened, the economizer inlet valve bypass valve B10a is gradually closed, so that the high pressure water heater 70 provided in the high pressure water supply system WLb can be used as a high pressure heater. The pressure can be maintained at the increased pressure, that is, the pressure of the water pressure test without causing any trouble. That is, the water pressure test can be performed without damaging the high pressure heater of the high pressure feed water heater 70 and the like.

以上のように、本発明によれば、起動用給水流量調節弁前弁を閉、ニードル弁からなる起動用給水バイパス弁を閉、起動用給水流量調節弁を開、節炭器入口弁を閉、節炭器入口弁バイパス弁を開にした状態で、起動用給水バイパス弁を徐々に開にし、起動用給水バイパス弁を全開した後に、節炭器入口バイパス弁を徐々に閉にするようにしたので、小径の起動用給水バイパス弁による開操作により、ボイラ給水ポンプの水圧が高圧給水系統に一気にかからないようになり、高圧給水加熱器の高圧ヒータなどの損傷を防止できるという優れた効果を奏し得る。   As described above, according to the present invention, the start-up feed water flow rate control valve is closed, the start-up feed water bypass valve including the needle valve is closed, the start-up feed water flow rate control valve is opened, and the economizer inlet valve is closed. With the economizer inlet valve bypass valve open, gradually start the feedwater bypass valve for start-up, fully open the feedwater bypass valve for start-up, and then close the economizer inlet bypass valve gradually Therefore, the opening operation with the small-diameter feed water bypass valve prevents the water pressure of the boiler feed pump from being applied to the high-pressure water supply system at a stretch, and has the excellent effect of preventing damage to the high-pressure heater of the high-pressure feed water heater. obtain.

本発明の一実施形態に係る火力発電設備の概略概念図を示す。1 shows a schematic conceptual diagram of a thermal power generation facility according to an embodiment of the present invention. 同実施形態に係る高圧給水系統を主とした詳細概念図を示す。The detailed conceptual diagram mainly showing the high-pressure water supply system concerning the embodiment is shown. 本発明の一実施形態に係るボイラ給水装置における高圧給水系統の構成を示す図。The figure which shows the structure of the high voltage | pressure water supply system in the boiler water supply apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るボイラ給水装置における高圧給水系統の水圧試験方法のフローを示す図。The figure which shows the flow of the water pressure test method of the high voltage | pressure water supply system in the boiler water supply apparatus which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る火力発電設備について添付図面を参照しつつ説明する。   Hereinafter, a thermal power generation facility according to an embodiment of the present invention will be described with reference to the accompanying drawings.

かかる火力発電設備は、図1に示す如く、水を加熱して蒸気にするボイラ10と、該ボイラ10で発生させた蒸気で駆動する蒸気タービン20,21,22,23と、該蒸気タービン20,21,22,23の駆動を受けて発電する発電機30と、蒸気タービン20,21,22,23から排出される蒸気を冷却して水(飽和水)にするための復水器40と、復水器40で得られた水をボイラ10に供給するボイラ給水ポンプ50と、復水器40に冷却水を供給する循環ポンプ65とを備えている。   As shown in FIG. 1, such a thermal power generation facility includes a boiler 10 that heats water into steam, steam turbines 20, 21, 22, 23 driven by steam generated in the boiler 10, and the steam turbine 20. , 21, 22, 23 to generate electric power, and a condenser 40 for cooling the steam discharged from the steam turbines 20, 21, 22, 23 into water (saturated water), A boiler feed pump 50 that supplies water obtained by the condenser 40 to the boiler 10 and a circulation pump 65 that supplies cooling water to the condenser 40 are provided.

すなわち、火力発電設備1は、復水器40で得られた水をボイラ給水ポンプ50に送るべく、復水器40とボイラ給水ポンプ50とを繋ぐ復水系統WLaと、復水系統WLaからの水をボイラ10に供給すべく、ボイラ給水ポンプ50とボイラ10とを繋ぐ高圧給水系統WLbと、ボイラ10で発生させた蒸気を蒸気タービン20,21,22,23に供給し、該蒸気タービン20,21,22,23が排出した蒸気を復水器40に送るべく、蒸気タービン20,21,22,23を介してボイラ10と復水器40とを繋ぐ蒸気系統SLと、水源(本実施形態においては海)の水を復水器40に送るべく、水源と復水器40とを繋ぐ循環系統RLを備えている。   That is, the thermal power generation facility 1 includes a condensate line WLa that connects the condenser 40 and the boiler feed pump 50, and a condensate line WLa so as to send the water obtained by the condenser 40 to the boiler feed pump 50. In order to supply water to the boiler 10, the high-pressure water supply system WLb connecting the boiler feed pump 50 and the boiler 10, and the steam generated in the boiler 10 are supplied to the steam turbines 20, 21, 22, and 23. , 21, 22, 23, a steam system SL that connects the boiler 10 and the condenser 40 via the steam turbines 20, 21, 22, 23, and a water source (this implementation) In order to send water of the sea) to the condenser 40, a circulation system RL that connects the water source and the condenser 40 is provided.

前記ボイラ10は、図1及び図2に示す如く、高圧給水系統WLbから供給される水を加熱する節炭器11と、該節炭器11で加熱された給水をさらに加熱して飽和蒸気を集める蒸気ドラム12と、蒸気ドラム12からの飽和蒸気を過熱して過熱蒸気を発生させる過熱器13と、蒸気ドラム12において分離された水を、下流側の水ドラム15に給水するボイラ循環ポンプ14と、該水ドラム15において減温された給水を加熱して蒸気ドラム12に循環させ、蒸気ドラム12の蒸気温度を調整する火炉16と、蒸気ドラム12の上流側に設けられ、蒸発タービン(後述する高圧タービン)20からの排気(蒸気)を過熱する再熱器17とを備えている。   As shown in FIG. 1 and FIG. 2, the boiler 10 further comprises a economizer 11 that heats water supplied from the high-pressure water supply system WLb, and water that is heated by the economizer 11 to generate saturated steam. A steam drum 12 to be collected, a superheater 13 that superheats saturated steam from the steam drum 12 to generate superheated steam, and a boiler circulation pump 14 that supplies water separated in the steam drum 12 to a downstream water drum 15. And a furnace 16 for adjusting the steam temperature of the steam drum 12 by heating the feed water having a temperature reduced in the water drum 15 and circulating it to the steam drum 12, and an evaporating turbine (described later). And a reheater 17 that superheats exhaust gas (steam) from the high pressure turbine 20.

なお、蒸気ドラム12は、内部に蒸気と水とを分離する分離器が設けられている(図示せず)。また、過熱器13は、内部に、炉壁放射型過熱器13a、蒸気冷却壁型過熱器13b、横置型過熱器13c、低温吊下型過熱器13d、隔壁放射型過熱器13e、板型過熱器13f、高温吊下型過熱器13gを有している。これら過熱器13a〜13gは便宜上、図面ではNO.1〜7と表記している。また、再熱器17は、内部に、炉壁放射型再熱器17a、吊下型再熱器17bを有している。これら再熱器17a,17bは便宜上、図面ではNO.1、2と表記している。   The steam drum 12 is provided with a separator (not shown) for separating steam and water. The superheater 13 includes a furnace wall radiant superheater 13a, a steam cooling wall superheater 13b, a horizontal superheater 13c, a low-temperature suspended superheater 13d, a partition radiant superheater 13e, and a plate superheater. 13f and a high-temperature suspended superheater 13g. These superheaters 13a to 13g are shown as NO. It is written as 1-7. The reheater 17 includes a furnace wall radiant reheater 17a and a suspended reheater 17b. These reheaters 17a and 17b are shown as NO. It is written as 1,2.

そして、本実施形態に係るボイラ10は、過熱器13によって過熱した蒸気を蒸気タービン(高圧タービン)20に供給し、再熱器17によって過熱した蒸気を別の蒸気タービン(後述する中圧タービン)21に供給するようになっている。   And the boiler 10 which concerns on this embodiment supplies the steam superheated by the superheater 13 to the steam turbine (high pressure turbine) 20, and the steam superheated by the reheater 17 is another steam turbine (intermediate pressure turbine mentioned later). 21 is supplied.

本実施形態に係る火力発電設備1は、蒸気タービン20,21,22,23として、高圧タービン20、中圧タービン21及び低圧タービン22,23を備えており、高圧タービン20及び中圧タービン21が一台ずつ設けられ、低圧タービン22,23が二台設けられている。   The thermal power generation facility 1 according to the present embodiment includes a high-pressure turbine 20, an intermediate-pressure turbine 21, and low-pressure turbines 22 and 23 as steam turbines 20, 21, 22, and 23. The high-pressure turbine 20 and the intermediate-pressure turbine 21 are One unit is provided, and two low-pressure turbines 22 and 23 are provided.

そして、これらの蒸気タービン20,21,22,23は、高圧タービン20、中圧タービン21、低圧タービン22,23の順でそれぞれの出力軸が同軸になるように直列に配置され、出力軸が隣り合う蒸気タービン20,21,22,23の出力軸に連結されている。そして、前記発電機30は、蒸気タービン20,21,22,23に対して横並びに配置されており、入力軸が低圧タービン23の出力軸に接続されている。これにより、発電機30は、高圧タービン20、中圧タービン21及び低圧タービン22,23の駆動を受けて発電するようになっている。   The steam turbines 20, 21, 22, and 23 are arranged in series so that the output shafts of the high-pressure turbine 20, the intermediate-pressure turbine 21, and the low-pressure turbines 22 and 23 are coaxial with each other. It is connected to output shafts of adjacent steam turbines 20, 21, 22 and 23. The generator 30 is arranged side by side with respect to the steam turbines 20, 21, 22, and 23, and the input shaft is connected to the output shaft of the low-pressure turbine 23. Thereby, the generator 30 receives the drive of the high pressure turbine 20, the intermediate pressure turbine 21, and the low pressure turbines 22 and 23 to generate power.

前記復水器40は、蒸気タービン22,23の排気(蒸気)を冷却して水にするもので、本実施形態においては、蒸気タービン22,23(低圧タービン22,23)からの蒸気が導入される内部空間を画定するハウジング400と、該ハウジング400内に配設され、前記循環系統RLからの冷却水を流通させる冷却管(図示せず)とを備え、ハウジング400内に導入された蒸気を冷却管内の冷却水によって間接的に冷却し、これによって蒸気を凝縮させて水にするようになっている。すなわち、本実施形態に係る復水器40には、表面復水器が採用されている。   The condenser 40 cools the exhaust (steam) of the steam turbines 22 and 23 into water, and in this embodiment, steam from the steam turbines 22 and 23 (low-pressure turbines 22 and 23) is introduced. The steam introduced into the housing 400 is provided with a housing 400 that defines an internal space that is defined, and a cooling pipe (not shown) that is disposed in the housing 400 and that circulates the cooling water from the circulation system RL. Is indirectly cooled by cooling water in the cooling pipe, thereby condensing the steam into water. That is, the surface condenser is employ | adopted for the condenser 40 which concerns on this embodiment.

ここで上記各系統WLa,WLb,SL,RLについて具体的に説明する。各系統WLa,WLb,SL,RLは、前記ボイラ10、復水器40、ボイラ給水ポンプ50を基準に区画されている。   Here, the systems WLa, WLb, SL, and RL will be described in detail. Each system WLa, WLb, SL, RL is divided based on the boiler 10, the condenser 40, and the boiler feed pump 50.

前記復水系統WLaは、復水ポンプ53の下流側(復水ポンプ53とボイラ給水ポンプ50との間)に、復水器40で得られた水と蒸気タービン20,21,22,23の軸受け冷却水として使用された水とを熱交換させる復水熱交換器54や、発電機30の水素ガスを冷却する水素クーラ55、復水器40の真空度を維持するために内部の空気を抽出するエゼクタ56、蒸気タービン20,21,22,23の軸シール蒸気と熱交換するグランドコンデンサ57、蒸気タービン20,21,22,23からの抽気で水を加熱する低圧給水加熱器59、蒸気によって水を直接加熱し、水に含まれる溶存ガスを物理的に分離除去する脱気器60等が設けられている。また、低圧給水加熱器59は、第1〜第3の低圧ヒータ59a〜59cを有している。   The condensate system WLa is disposed downstream of the condensate pump 53 (between the condensate pump 53 and the boiler feed pump 50) and the water obtained by the condenser 40 and the steam turbines 20, 21, 22, 23. The condensate heat exchanger 54 that exchanges heat with the water used as the bearing cooling water, the hydrogen cooler 55 that cools the hydrogen gas of the generator 30, and the internal air to maintain the vacuum degree of the condenser 40 are used. Ejector 56 for extraction, ground condenser 57 for exchanging heat with the shaft seal steam of steam turbines 20, 21, 22, 23, low-pressure feed water heater 59 for heating water by extraction from steam turbines 20, 21, 22, 23, steam Is provided with a deaerator 60 or the like for directly heating water and physically separating and removing dissolved gas contained in the water. The low-pressure feed water heater 59 has first to third low-pressure heaters 59a to 59c.

前記高圧給水系統WLbは、ボイラ給水ポンプ50で送り出された水を蒸気タービン20,21,22,23からの抽気で加熱する高圧給水加熱器70を備えている。また、高圧給水加熱器70は、第5〜第7の高圧ヒータ70a〜70cを有している。この高圧給水系統WLbについては、後述にて詳細に説明する。   The high-pressure feed water system WLb includes a high-pressure feed water heater 70 that heats the water pumped out by the boiler feed pump 50 by extraction from the steam turbines 20, 21, 22, and 23. The high-pressure feed water heater 70 has fifth to seventh high-pressure heaters 70a to 70c. The high-pressure water supply system WLb will be described in detail later.

前記蒸気系統SLは、蒸気タービン20,21,22,23が上述のように配列されることを前提に、ボイラ10内の過熱器13と高圧タービン20の吸気側とを接続した第1スチーム管路SL1、高圧タービン20の排気側と中圧タービン21の吸気側とを接続した第2スチーム管路SL2、中圧タービン21の排気側とボイラ10内の再熱器17とを接続した第3スチーム管路SL3、ボイラ10内の再熱器17と低圧タービン22,23の吸気側とを接続した第4スチーム管路SL4、低圧タービン22,23の排気側と復水器40とを接続した第5スチーム管路SL5を備えている。   The steam system SL is a first steam pipe that connects the superheater 13 in the boiler 10 and the intake side of the high-pressure turbine 20 on the assumption that the steam turbines 20, 21, 22, and 23 are arranged as described above. The second steam line SL2 connecting the path SL1, the exhaust side of the high-pressure turbine 20 and the intake side of the intermediate-pressure turbine 21; the third steam line connecting the exhaust side of the intermediate-pressure turbine 21 and the reheater 17 in the boiler 10; The steam line SL3, the fourth steam line SL4 connecting the reheater 17 in the boiler 10 and the intake side of the low pressure turbines 22, 23, the exhaust side of the low pressure turbines 22, 23, and the condenser 40 are connected. A fifth steam line SL5 is provided.

前記循環系統RLは、水源(本実施形態においては海)に繋がる取水路と、水源から取水路82に取り入れた冷却水を復水器40に供給する循環ポンプ65と、復水器40で熱交換(蒸気の冷却)に利用された冷却水を水源に戻す放水路とを備えている。なお、本実施形態において循環系統RLの水源は海であるが、発電設備1の立地条件によっては、河川が循環系統RLの水源とされる場合がある。   The circulation system RL includes a water intake channel connected to a water source (the sea in the present embodiment), a circulation pump 65 that supplies cooling water taken from the water source to the water intake channel 82 to the condenser 40, and heat generated by the condenser 40. And a water discharge channel for returning the cooling water used for the exchange (steam cooling) to the water source. In this embodiment, the water source of the circulation system RL is the sea. However, depending on the location conditions of the power generation facility 1, the river may be used as the water source of the circulation system RL.

つぎに本実施形態に係る火力発電設備1の運転方法について図1〜図3を参照して説明する。   Next, an operation method of the thermal power generation facility 1 according to the present embodiment will be described with reference to FIGS.

まず、火力発電設備1の運転を開始する起動運転について説明する。火力発電設備1は、運転を開始する起動運転において、まず、循環系統RLを駆動し、その後に復水系統WLaを駆動する。   First, the start-up operation for starting the operation of the thermal power generation facility 1 will be described. The thermal power generation facility 1 first drives the circulation system RL and then drives the condensate system WLa in the start-up operation to start the operation.

そして、ボイラ給水ポンプ50を駆動して復水系統WLaからの水をボイラ10に供給する。そうすると、ボイラ10内に水が溜まり、その水が蒸気となって蒸気系統SL(第1スチーム管路SL1)に供給される。これにより、蒸気タービン20,21,22,23が駆動して発電機30が発電を開始し、蒸気タービン20,21,22,23から排出された蒸気が復水器40に送られることになる。   Then, the boiler feed water pump 50 is driven to supply water from the condensate system WLa to the boiler 10. If it does so, water will accumulate in the boiler 10, and the water turns into a vapor | steam, and is supplied to steam system | strain SL (1st steam pipe line SL1). As a result, the steam turbines 20, 21, 22, 23 are driven to start the power generation by the generator 30, and the steam discharged from the steam turbines 20, 21, 22, 23 is sent to the condenser 40. .

そして、発電機30が発電を開始すると、発電した電力の送電が開始される。また、
該発電機30の出力が次第に増し、予め設定された出力値になる。
And when the generator 30 starts electric power generation, transmission of the generated electric power will be started. Also,
The output of the generator 30 gradually increases to a preset output value.

そして、発電機30の出力が徐々に高まることになるため、発電機30の出力に応じた水量の水(復水器40の水)が必要となり、起動用給水流量調節弁B9が開動作となる。発電機30がある値まで上昇すると、起動用給水流量調節弁B9から主給水流量調節弁B12に切り替わる。すなわち通常運転中は起動用給水流量調節弁B9および起動用給水流量調節弁前弁B8は閉止であり、主給水流量調節弁B12および主給水流量調節弁前弁B11が開で運転する。   And since the output of the generator 30 will increase gradually, the amount of water corresponding to the output of the generator 30 (water of the condenser 40) is required, and the start water supply flow rate adjustment valve B9 is opened. Become. When the generator 30 rises to a certain value, the start water supply flow rate adjustment valve B9 is switched to the main water supply flow rate adjustment valve B12. That is, during normal operation, the start water supply flow rate control valve B9 and the start water supply flow rate control valve B8 are closed, and the main water flow rate control valve B12 and the main water flow rate control valve front valve B11 are opened.

つぎにボイラ給水装置における高圧給水系統WLbの構成について、図3を参照して詳細に説明する。高圧給水系統WLbは、ボイラ給水ポンプ50の出口から高圧給水加熱器70の入口に繋がる起動用給水管路80と、該起動用給水管路80に設けられた起動用給水流量調節弁前弁B8および起動用給水流量調節弁B9と、ボイラ給水ポンプ50の出口(起動用給水管路80において、後述する起動用給水バイパス系統WLb1の手前)から分岐されて高圧給水加熱器70の入口(起動用給水流量調節弁B9の出口)に繋がる主給水管路81と、該主給水管路81に設けられた主給水流量調節弁前弁B11および主給水流量調節弁B12と、高圧給水加熱器70の出口から節炭器11の入口に繋がる高圧給水管路85と、該高圧給水管路85に設けられた節炭器入口弁B10とを備えている。また、高圧給水系統WLbは、起動用給水流量調節弁前弁B8を迂回するようにして(一端および他端が)起動用給水管路80に接続される(繋がる)第1迂回管路80a、及び該第1迂回管路80aに設けられた起動用給水バイパス弁(手動ニードル弁)B8aからなる起動用給水バイパス系統WLb1と、節炭器入口弁B10を迂回するようにして(一端および他端が)高圧給水管路85に接続される(繋がる)第2迂回管路85a、及び該第2迂回管路85aに設けられた節炭器入口弁バイパス弁B10aからなるボイラ入口バイパス系統WLb2とを備えている。   Next, the configuration of the high-pressure water supply system WLb in the boiler water supply apparatus will be described in detail with reference to FIG. The high-pressure water supply system WLb includes a start-up water supply line 80 connected from the outlet of the boiler water supply pump 50 to the inlet of the high-pressure water heater 70, and a start-up water supply flow rate control valve B8 provided in the start-up water supply line 80. And the start feed water flow rate control valve B9 and the outlet of the boiler feed pump 50 (in the start feed water conduit 80, before the start feed water bypass system WLb1, which will be described later) and branched to the high pressure feed water heater 70 (start up). A main water supply line 81 connected to the outlet of the water supply flow rate adjustment valve B9), a main water supply flow rate adjustment valve front valve B11 and a main water supply flow rate adjustment valve B12 provided in the main water supply line 81, and a high-pressure water supply heater 70 A high-pressure water supply pipe 85 connected from the outlet to the inlet of the economizer 11 and a economizer inlet valve B10 provided in the high-pressure water supply pipe 85 are provided. The high-pressure water supply system WLb is connected (connected) to the activation water supply line 80 so that the activation water supply flow rate control valve front valve B8 is bypassed (one end and the other end). The start water supply bypass system WLb1 including the start water supply bypass valve (manual needle valve) B8a provided in the first bypass pipe 80a and the economizer inlet valve B10 are bypassed (one end and the other end). A) a second bypass pipe 85a connected to (connected to) the high-pressure feed water pipe 85, and a boiler inlet bypass system WLb2 including the economizer inlet valve bypass valve B10a provided in the second bypass pipe 85a. I have.

そして、通常運転状態では、主給水流量調節弁前弁B11、主給水流量調節弁B12および節炭器入口弁B10は開、起動用給水流量調節弁前弁B8、起動用給水流量調節弁B9、起動用給水バイパス弁B8aおよび節炭器入口弁バイパス弁B10aは閉となっている。なお、図3において、開になっているものは▽と表記し、閉になっているものは▼と表記することにする。   In the normal operation state, the main feed water flow rate control valve front valve B11, the main feed water flow rate control valve B12 and the economizer inlet valve B10 are opened, the start feed water flow rate control valve front valve B8, the start feed water flow rate control valve B9, The starting water supply bypass valve B8a and the economizer inlet valve bypass valve B10a are closed. In FIG. 3, an open one is denoted by ▽, and a closed one is denoted by ▼.

つぎにボイラ給水装置における高圧給水系統WLbの水圧試験方法について、図4を参照して説明する。まず、起動用給水流量調節弁前弁B8を閉にし、起動用給水流量調節弁B9を全開にし、起動用給水バイパス弁B8aが閉になっていることを確認し、節炭器入口弁B10を閉にするとともに、節炭器入口弁バイパス弁B10aを例えば2回転開(全開は約5回転開であるから約40%開)操作して、ボイラ給水ポンプ50の圧力の逃げ道を予め作っておく(S1)。つぎに、3台あるうちの1台のボイラ給水ポンプ50を起動させる一方、残りのうちの1台のボイラ給水ポンプ(図示せず)を待機させる(S2)。   Next, a water pressure test method for the high pressure water supply system WLb in the boiler water supply apparatus will be described with reference to FIG. First, the start water supply flow rate control valve B8 is closed, the start water supply flow rate control valve B9 is fully opened, it is confirmed that the start water supply bypass valve B8a is closed, and the economizer inlet valve B10 is set. In addition to closing, the economizer inlet valve bypass valve B10a is opened, for example, by two rotations (the full opening is about 5% open, so about 40% is opened), and a pressure escape path for the boiler feed pump 50 is created in advance. (S1). Next, one of the three boiler feed pumps 50 is started, while the other boiler feed pump (not shown) is put on standby (S2).

その後、昇圧操作に移行する(S3)。即ち、節炭器入口弁バイパス弁B10aの2回転開を保持した状態で、起動用給水バイパス弁(手動ニードル弁)B8aを例えば1/6ずつ回転して、最終的に例えば全開(100%開=6回転開)にする(S31)。つまり、この起動用給水バイパス弁B8aは、ニードル弁であることから、小径であるため、ボイラ給水ポンプ50の圧力を高圧給水系統WLbに一気に掛けさせない構造になっているのである。これを徐々に操作すれば、高圧給水系統WLbの内部が所望の圧力に昇降できるのである。そして、起動用給水バイパス弁B8aの全開状態を維持する一方、節炭器入口弁バイパス弁B10aを例えば1/4ずつ閉めて、最終的には例えば5/12回転開状態(約8%開)にして、第7高圧ヒータ70cの圧力を24MPaにし(S32)、試験圧力計(図示せず)で測定して第7ヒータ70cの圧力を確認する(S33)。   Thereafter, the operation proceeds to a boosting operation (S3). That is, in the state where the economizer inlet valve bypass valve B10a is kept open by two rotations, the start water supply bypass valve (manual needle valve) B8a is rotated by, for example, 1/6, and finally, for example, fully opened (100% open). = 6 rotations open) (S31). That is, since this starting water supply bypass valve B8a is a needle valve and has a small diameter, the pressure of the boiler water supply pump 50 is not applied to the high-pressure water supply system WLb at a stretch. By gradually operating this, the inside of the high-pressure water supply system WLb can be raised or lowered to a desired pressure. Then, while maintaining the fully open state of the starting water supply bypass valve B8a, the economizer inlet valve bypass valve B10a is closed, for example, by 1/4, and finally, for example, 5/12 rotation open state (about 8% open) Then, the pressure of the seventh high-pressure heater 70c is set to 24 MPa (S32), and the pressure of the seventh heater 70c is confirmed by measuring with a test pressure gauge (not shown) (S33).

ここで、第7高圧ヒータ70cの前記圧力を例えば10分間保持して、脱気器60、第5高圧ヒータ70a、第6高圧ヒータ70b、第7高圧ヒータ70cの温度を測定する(S4)。   Here, the pressure of the seventh high pressure heater 70c is held for 10 minutes, for example, and the temperatures of the deaerator 60, the fifth high pressure heater 70a, the sixth high pressure heater 70b, and the seventh high pressure heater 70c are measured (S4).

つぎに、降圧操作に移行する(S5)。即ち、起動用給水バイパス弁B8aを例えば1/6ずつ閉操作して、全閉にする(S51)。   Next, the operation proceeds to step-down operation (S5). That is, the starting water supply bypass valve B8a is closed by 1/6, for example, and fully closed (S51).

その後、節炭器入口バイパス弁B10aを例えば1/2ずつ開操作して、節炭器入口弁バイパス弁B10aを例えば水圧試験前の状態(2回転開)にして、ボイラ給水ポンプ50を停止する(S52)。   Thereafter, the economizer inlet bypass valve B10a is opened by, for example, 1/2, so that the economizer inlet valve bypass valve B10a is, for example, in a state before the water pressure test (two rotations open), and the boiler feed pump 50 is stopped. (S52).

(実施例)
前記試験方法に基づいて行った実施例について説明する。
前提条件として、3台あるうちの1台のボイラ給水ポンプ50を起動させ、残りのうちの1台のボイラ給水ポンプをバックアップとして待機させる。また、起動用給水バイパス弁B8aの最大ストロークを6回転とし、節炭器入口バイパス弁B10aの最大ストロークを5回転と3/12回転とする。また、事前準備として、復水系統WLa、給水系統WLb、ボイラ10の水張りを完了状態にする。そして、水張り完了後、計器のエアー抜きを完了させるとともに、試験圧力計(図示せず)の仮設を完了させる。
(Example)
Examples carried out based on the test method will be described.
As a precondition, one of the three boiler feed pumps 50 is started, and the remaining one boiler feed pump is put on standby as a backup. Further, the maximum stroke of the start-up water supply bypass valve B8a is 6 rotations, and the maximum stroke of the economizer inlet bypass valve B10a is 5 rotations and 3/12 rotations. Moreover, the water filling of the condensate system WLa, the water supply system WLb, and the boiler 10 is made into a completed state as advance preparation. Then, after completion of water filling, the air removal of the instrument is completed, and the temporary installation of the test pressure gauge (not shown) is completed.

水圧試験前において、起動用給水バイパス弁B8aを全閉とし、節炭器入口バイパス弁B10aを2回転開させた(S1)状態において、第7高圧ヒータ70cの圧力が0.19となり、ボイラ給水ポンプ50の出口の圧力が0.19MPaとなっている。   Before the water pressure test, in the state where the start water supply bypass valve B8a is fully closed and the economizer inlet bypass valve B10a is opened twice (S1), the pressure of the seventh high pressure heater 70c becomes 0.19, and the boiler water supply The pressure at the outlet of the pump 50 is 0.19 MPa.

この状態から、3台のうちの1台のボイラ給水ポンプ50を起動(残りのうちの1台のボイラ給水ポンプは待機)させる(S2)と、第7高圧ヒータ70cの初期圧力が0.71(以下、昇圧時の基準圧力値とする)となり、その圧力増加量は0.52になる。その際、節炭器入口バイパス弁B10aから通水音がする。この場合のボイラ給水ポンプ50の出口圧力は25.61MPaである。   From this state, when one of the three boiler feed pumps 50 is activated (the remaining one boiler feed pump is on standby) (S2), the initial pressure of the seventh high-pressure heater 70c is 0.71. (Hereinafter referred to as a reference pressure value at the time of pressure increase), and the pressure increase amount is 0.52. At that time, a noise is generated from the economizer inlet bypass valve B10a. In this case, the outlet pressure of the boiler feed pump 50 is 25.61 MPa.

その後、昇圧操作(S3)に移行して、全閉状態の起動用給水バイパス弁B8aを1/6ずつ開操作(昇圧操作)する一方、節炭器入口バイパス弁B10aの2回転開は保持する(S31)。   After that, the operation proceeds to the pressure increasing operation (S3), and the fully-closed start-up water supply bypass valve B8a is opened by 1/6 at a time (pressure increasing operation), while the economizer inlet bypass valve B10a is kept open twice. (S31).

そして、起動用給水バイパス弁B8aを1回転させると、第7高圧ヒータ70cの圧力が7.74になり、前記基準圧力値からの増加量は7.03になり、給水流量は20.8になる。起動用給水バイパス弁B8aを2回転させると、第7高圧ヒータ70cの圧力が12.55になり、その圧力増加量は11.84になり、給水流量は30.4になる。起動用給水バイパス弁B8aを3回転させると、第7高圧ヒータ70cの圧力が14.17になり、その圧力増加量は13.46になり、給水流量は33.2になる。起動用給水バイパス弁B8aを4回転させると、第7高圧ヒータ70cの圧力が14.53になり、その圧力増加量は13.82になり、給水流量は32.8になる。起動用給水バイパス弁B8aを5回転させると、第7高圧ヒータ70cの圧力が14.55になり、その圧力増加量は13.84になり、給水流量は33.4になる。   When the starting water supply bypass valve B8a is rotated once, the pressure of the seventh high pressure heater 70c becomes 7.74, the increase from the reference pressure value becomes 7.03, and the water supply flow rate becomes 20.8. Become. When the starting water supply bypass valve B8a is rotated twice, the pressure of the seventh high-pressure heater 70c becomes 12.55, the pressure increase amount becomes 11.84, and the water supply flow rate becomes 30.4. When the start-up water supply bypass valve B8a is rotated three times, the pressure of the seventh high-pressure heater 70c becomes 14.17, the pressure increase amount becomes 13.46, and the water supply flow rate becomes 33.2. When the start water supply bypass valve B8a is rotated four times, the pressure of the seventh high pressure heater 70c becomes 14.53, the pressure increase amount becomes 13.82, and the water supply flow rate becomes 32.8. When the starting water supply bypass valve B8a is rotated five times, the pressure of the seventh high-pressure heater 70c becomes 14.55, the pressure increase amount becomes 13.84, and the water supply flow rate becomes 33.4.

ボイラ給水ポンプ50の起動から約30分後、起動用給水バイパス弁B8aは6回転になって全開状態になる。この時点で、第7高圧ヒータ70cの圧力が14.62になり、その圧力増加量は13.89になり、給水流量は33.8になる。   About 30 minutes after the boiler feed pump 50 is started, the start-up water supply bypass valve B8a is rotated six times and is fully opened. At this time, the pressure of the seventh high-pressure heater 70c becomes 14.62, the pressure increase amount becomes 13.89, and the feed water flow rate becomes 33.8.

そして、起動用給水バイパス弁B8aの全開状態を維持する一方、節炭器入口バイパス弁B10aの閉操作を開始する。即ち、節炭器入口バイパス弁B10aを2回転開から1/4ずつ閉操作する(S32)。   Then, the operation of closing the economizer inlet bypass valve B10a is started while maintaining the fully opened state of the start water supply bypass valve B8a. That is, the economizer inlet bypass valve B10a is closed by 1/4 from two rotations open (S32).

節炭器入口バイパス弁B10aを1回転させると、第7高圧ヒータ70cの圧力が21.62になり、その圧力増加量は20.91になり、給水流量は、14.1になる。そして、節炭器入口バイパス弁B10aが全閉になると、第7高圧ヒータ70cの圧力が23.77(以下、降圧時の基準圧力値とする)になり、その圧力増加量は23.06になり、給水流量は、7.9になる。   When the economizer inlet bypass valve B10a is rotated once, the pressure of the seventh high-pressure heater 70c becomes 21.62, the pressure increase amount becomes 20.91, and the feed water flow rate becomes 14.1. When the economizer inlet bypass valve B10a is fully closed, the pressure of the seventh high pressure heater 70c becomes 23.77 (hereinafter referred to as a reference pressure value at the time of pressure reduction), and the pressure increase amount becomes 23.06. Thus, the feed water flow rate becomes 7.9.

この時点で、試験圧力計で第7高圧ヒータ70cの圧力を測定する(S33)と、略24MPaを示しており、この圧力を10分間保持し、脱気器60、高圧給水系統(第5〜第7高圧ヒータ70a〜70c)WLbの温度を測定する(S4)と、脱気器60が41度、第5高圧ヒータ70aが48度、第6高圧ヒータ70bが46.7度、第7高圧ヒータ70cが45.9度を示し、異常はみられない。   At this time, when the pressure of the seventh high-pressure heater 70c is measured with the test pressure gauge (S33), it shows about 24 MPa, this pressure is maintained for 10 minutes, the deaerator 60, the high-pressure water supply system (5th to 5th). When the temperature of the seventh high pressure heaters 70a to 70c) WLb is measured (S4), the deaerator 60 is 41 degrees, the fifth high pressure heater 70a is 48 degrees, the sixth high pressure heater 70b is 46.7 degrees, and the seventh high pressure The heater 70c shows 45.9 degrees, and no abnormality is observed.

測定後、降圧操作(S5)に移行して、全開状態の起動用給水バイパス弁B8aを閉操作(降圧操作)する(S51)と、第7高圧ヒータ70cの圧力が徐々に下がり始める。そして、起動用給水バイパス弁B8aを3回転させると、第7高圧ヒータ70cの圧力が23.68になり、その圧力増加量は0.09になり、給水流量は7.7になる。起動用給水バイパス弁B8aを4回転させると、第7高圧ヒータ70cの圧力が23.2になり、その圧力増加量は−0.09になり、給水流量は、7.7になる。起動用給水バイパス弁B8aを5回転させると、第7高圧ヒータ70cの圧力が21.64になり、その圧力増加量は−2.13になり、給水流量は3.6になる。起動用給水バイパス弁B8aを全閉にすると、第7高圧ヒータ70cの圧力が6.56になり、その圧力増加量は−17.21になり、給水流量は4.1になる。   After the measurement, the process proceeds to a step-down operation (S5), and when the start-up water supply bypass valve B8a in the fully opened state is closed (step-down operation) (S51), the pressure of the seventh high-pressure heater 70c starts to gradually decrease. Then, when the starting water supply bypass valve B8a is rotated three times, the pressure of the seventh high-pressure heater 70c becomes 23.68, the pressure increase amount becomes 0.09, and the water supply flow rate becomes 7.7. When the starting water supply bypass valve B8a is rotated four times, the pressure of the seventh high-pressure heater 70c becomes 23.2, the pressure increase amount becomes -0.09, and the water supply flow rate becomes 7.7. When the starting water supply bypass valve B8a is rotated five times, the pressure of the seventh high-pressure heater 70c becomes 21.64, the pressure increase amount becomes -2.13, and the water supply flow rate becomes 3.6. When the starting water supply bypass valve B8a is fully closed, the pressure of the seventh high-pressure heater 70c becomes 6.56, the pressure increase amount becomes -17.21, and the water supply flow rate becomes 4.1.

その後、節炭器入口バイパス弁B10aを1/4ずつ回転させて、節炭器入口バイパス弁B10aを2回転開の状態、即ち水圧試験前の状態にして、ボイラ給水ポンプ50を停止する(S52)。   Thereafter, the economizer inlet bypass valve B10a is rotated by ¼ to bring the economizer inlet bypass valve B10a into a state in which the economizer inlet bypass valve B10a is opened twice, that is, the state before the water pressure test, and the boiler feed pump 50 is stopped (S52). ).

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、適宜変更することは可能である。   In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably.

1…火力発電設備、10…ボイラ、11…節炭器、12…蒸気ドラム、13…過熱器、13a…炉壁放射型過熱器、13b…蒸気冷却壁型過熱器、13c…横置型過熱器、13d…低温吊下型過熱器、13e…隔壁放射型過熱器、13f…板型過熱器、13g…高温吊下型過熱器、14…ボイラ循環ポンプ、15…水ドラム、16…火炉、17…再熱器、17a…炉壁放射型再熱器、17b…吊下型再熱器、20…高圧タービン(蒸気タービン)、21…中圧タービン(蒸気タービン)、22,23…低圧タービン(蒸気タービン)、30…発電機、40…復水器、50…ボイラ給水ポンプ、53…復水ポンプ、54…復水熱交換器、55…水素クーラ、56…エゼクタ、57…グランドコンデンサ、59…低圧給水加熱器、59a〜59c…第1〜第3低圧ヒータ、60…脱気器、65…循環ポンプ、70…高圧給水加熱器、70a〜70c…第5〜第7高圧ヒータ、80…起動用給水管路、80a…第1迂回管路、81…主給水管路、85…高圧給水管路、85a…第2迂回管路、400…ハウジング、B8…起動用給水流量調節弁前弁、B8a…起動用給水バイパス弁(ニードル弁)、B9…起動用給水流量調節弁、B10…節炭器入口弁、B10a…節炭器入口弁バイパス弁、B11…主給水流量調節弁前弁、B12…主給水流量調節弁、WLa…復水系統、WLb…高圧給水系統、SL…蒸気系統、SL1…第1スチーム管路、SL2…第2スチーム管路、SL3…第3スチーム管路、SL4…第4スチーム管路、SL5…第5スチーム管路、RL…循環系統、WLb1…起動用給水バイパス系統、WLb2…節炭器入口バイパス系統   DESCRIPTION OF SYMBOLS 1 ... Thermal power generation equipment, 10 ... Boiler, 11 ... Carbon-saving device, 12 ... Steam drum, 13 ... Superheater, 13a ... Furnace wall radiation type superheater, 13b ... Steam cooling wall type superheater, 13c ... Horizontal type superheater , 13d ... low temperature suspended superheater, 13e ... partition radiant superheater, 13f ... plate type superheater, 13g ... high temperature suspended superheater, 14 ... boiler circulation pump, 15 ... water drum, 16 ... furnace, 17 ... reheater, 17a ... furnace wall radiant reheater, 17b ... suspended reheater, 20 ... high pressure turbine (steam turbine), 21 ... medium pressure turbine (steam turbine), 22, 23 ... low pressure turbine ( Steam turbine), 30 ... Generator, 40 ... Condenser, 50 ... Boiler feed pump, 53 ... Condensate pump, 54 ... Condensate heat exchanger, 55 ... Hydrogen cooler, 56 ... Ejector, 57 ... Ground condenser, 59 ... Low pressure water heater, 59a-59c 1st-3rd low pressure heater, 60 ... deaerator, 65 ... circulation pump, 70 ... high pressure feed water heater, 70a-70c ... 5th-7th high pressure heater, 80 ... feed water line for starting, 80a ... 1st Detour pipe, 81 ... main water supply pipe, 85 ... high pressure water supply pipe, 85a ... second bypass pipe, 400 ... housing, B8 ... front water supply flow control valve, B8a ... start water supply bypass valve (needle) Valve), B9 ... start-up feed water flow rate control valve, B10 ... economizer inlet valve, B10a ... economizer inlet valve bypass valve, B11 ... main feed water flow rate control valve front valve, B12 ... main feed water flow rate control valve, WLa ... Condensate system, WLb ... high pressure water supply system, SL ... steam system, SL1 ... first steam line, SL2 ... second steam line, SL3 ... third steam line, SL4 ... fourth steam line, SL5 ... first 5 steam lines, RL ... circulation system, WLb1 Start-up water supply bypass system, WLb2 ... economizer inlet bypass system

Claims (1)

ボイラ給水ポンプ(50)の出口から高圧給水加熱器(70)の入口に繋がる起動用給水管路(80)、該起動用給水管路(80)に設けられた起動用給水流量調節弁前弁(B8)および起動用給水流量調節弁(B9)、高圧給水加熱器(70)の出口から節炭器(11)の入口に繋がる高圧給水管路(85)、該高圧給水管路(85)に設けられた節炭器入口弁(B10)を有する高圧給水系統(WLb)と、
起動用給水流量調節弁前弁(B8)を迂回するようにして起動用給水管路(80)に繋がる第1迂回管路(80a)、該第1迂回管路(80a)に設けられた起動用給水バイパス弁(B8a)を有する起動用給水バイパス系統(WLb1)と、
節炭器入口弁(B10)を迂回するようにして高圧給水管路(85)に繋がる第2迂回管路(85a)、該第2迂回管路(85a)に設けられた節炭器入口弁バイパス弁(B10a)を有する節炭器入口バイパス系統(WLb2)とを備えた発電設備における高圧給水系統の水圧試験方法であって、
起動用給水流量調節弁前弁(B8)を閉、ニードル弁からなる起動用給水バイパス弁(B8a)を閉、起動用給水流量調節弁(B9)を開、節炭器入口弁(B10)を閉、節炭器入口弁バイパス弁(B10a)を開にした状態で、起動用給水バイパス弁(B8a)を徐々に開にし、
起動用給水バイパス弁(B8a)を全開した後に、節炭器入口弁バイパス弁(B10a)を徐々に閉にするようにしたことを特徴とする発電設備における高圧給水系統の水圧試験方法。
A starting water supply pipe (80) connected from the outlet of the boiler feed pump (50) to the inlet of the high pressure feed water heater (70), and a starting feed water flow rate regulating valve provided in the starting water supply pipe (80) (B8), the starting feed water flow rate adjustment valve (B9), the high pressure feed water line (85) connected from the outlet of the high pressure feed water heater (70) to the inlet of the economizer (11), the high pressure feed water pipe (85) A high pressure water supply system (WLb) having a economizer inlet valve (B10) provided in
A first bypass pipe (80a) connected to the startup water supply pipe (80) so as to bypass the front valve (B8) for starting the supply water flow rate adjustment valve, and the startup provided in the first bypass pipe (80a) A starting water supply bypass system (WLb1) having a water supply bypass valve (B8a);
A second detour pipe (85a) connected to the high pressure water supply pipe (85) so as to bypass the economizer inlet valve (B10), and a economizer inlet valve provided in the second detour pipe (85a) A water pressure test method for a high-pressure water supply system in a power generation facility including a economizer inlet bypass system (WLb2) having a bypass valve (B10a),
Close the start feed water flow rate control valve (B8), close the start feed water bypass valve (B8a) consisting of a needle valve, open the start feed water flow rate control valve (B9), and open the economizer inlet valve (B10). Closed, with the economizer inlet valve bypass valve (B10a) opened, gradually open the start water supply bypass valve (B8a),
A water pressure test method for a high pressure water supply system in a power generation facility, wherein the starter water supply bypass valve (B8a) is fully opened and then the economizer inlet valve bypass valve (B10a) is gradually closed.
JP2010077000A 2010-03-30 2010-03-30 Water pressure test method for high pressure water supply system in power generation facilities Active JP5479976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077000A JP5479976B2 (en) 2010-03-30 2010-03-30 Water pressure test method for high pressure water supply system in power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077000A JP5479976B2 (en) 2010-03-30 2010-03-30 Water pressure test method for high pressure water supply system in power generation facilities

Publications (2)

Publication Number Publication Date
JP2011208875A true JP2011208875A (en) 2011-10-20
JP5479976B2 JP5479976B2 (en) 2014-04-23

Family

ID=44940125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077000A Active JP5479976B2 (en) 2010-03-30 2010-03-30 Water pressure test method for high pressure water supply system in power generation facilities

Country Status (1)

Country Link
JP (1) JP5479976B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214926A (en) * 2013-04-24 2014-11-17 中国電力株式会社 Boiler water filling method
CN104615068A (en) * 2014-12-24 2015-05-13 中华人民共和国余姚出入境检验检疫局 Water heater overtemperature protection durability test system
CN114263901A (en) * 2021-12-02 2022-04-01 中国电建集团贵州电力设计研究院有限公司 Adjusting method of pipeline system for adjusting boosting rate in boiler overpressure experiment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120773A (en) * 2005-10-24 2007-05-17 Chugoku Electric Power Co Inc:The Blowing operation method for power generation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120773A (en) * 2005-10-24 2007-05-17 Chugoku Electric Power Co Inc:The Blowing operation method for power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214926A (en) * 2013-04-24 2014-11-17 中国電力株式会社 Boiler water filling method
CN104615068A (en) * 2014-12-24 2015-05-13 中华人民共和国余姚出入境检验检疫局 Water heater overtemperature protection durability test system
CN104615068B (en) * 2014-12-24 2017-04-26 中华人民共和国余姚出入境检验检疫局 Water heater overtemperature protection durability test system
CN114263901A (en) * 2021-12-02 2022-04-01 中国电建集团贵州电力设计研究院有限公司 Adjusting method of pipeline system for adjusting boosting rate in boiler overpressure experiment

Also Published As

Publication number Publication date
JP5479976B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5227352B2 (en) System and method for pre-warming a heat recovery steam generator and associated steam line
JP4540472B2 (en) Waste heat steam generator
KR101984438B1 (en) A water supply method, a water supply system that executes this method, and a steam generation facility having a water supply system
US20210095572A1 (en) Combined cycle plant and method for operating same
JP5725913B2 (en) Combined cycle plant
JP2011179494A (en) Systems and methods for prewarming heat recovery steam generator piping
EP2511486A2 (en) Combined cycle power plant
JP5479976B2 (en) Water pressure test method for high pressure water supply system in power generation facilities
JP2009293871A (en) Start bypass system in steam power generation facility and its operating method
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP7120839B2 (en) STEAM TURBINE PLANT AND START-UP METHOD THEREOF
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP5334885B2 (en) Boiler heat recovery apparatus and heat recovery method in power generation facilities
JP2011157855A (en) Power generation facility and operating method for power generation facility
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP2011157854A (en) Heat recovery device and heat recovery method for steam generator in power generation facility
JP5388884B2 (en) Heat recovery apparatus and heat recovery method for turbine in power generation equipment
JP6556648B2 (en) Power plant operation method
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP2006009787A (en) Cooling method for steam turbine
Radin et al. Effectiveness of large power reduction for a combined-cycle power plant with several gas turbines and one steam turbine and some of the shutdown equipment used as hot reserve
JP2008075966A (en) Once-through exhaust heat recovery boiler
JP5348883B2 (en) Leakage inspection method for high pressure feed water heater
JP6317652B2 (en) Plant control device and combined cycle power plant
JP2016506472A (en) Method for controlling a thermal power plant using a regulating valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R150 Certificate of patent or registration of utility model

Ref document number: 5479976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250