JP2004198006A - Iron ion crystallization restricting system and superheated steam plant - Google Patents

Iron ion crystallization restricting system and superheated steam plant Download PDF

Info

Publication number
JP2004198006A
JP2004198006A JP2002365536A JP2002365536A JP2004198006A JP 2004198006 A JP2004198006 A JP 2004198006A JP 2002365536 A JP2002365536 A JP 2002365536A JP 2002365536 A JP2002365536 A JP 2002365536A JP 2004198006 A JP2004198006 A JP 2004198006A
Authority
JP
Japan
Prior art keywords
iron
circulation path
water supply
water
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002365536A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatsu
和夫 中津
Satoru Kitayama
さとる 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2002365536A priority Critical patent/JP2004198006A/en
Publication of JP2004198006A publication Critical patent/JP2004198006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of malfunction due to the iron particles by preventing the generation of large iron particles having a particle diameter exceeding 30 μm in a circulating water supply passage. <P>SOLUTION: A chemicals throw-in means for throwing a PH adjusting chemical (for example, ammonia) is provided to adjust PH inside the circulating water supply passage 22. The chemicals throw-in means 26 is provided with a control means 26d for controlling a throw-in quantity of the chemical, and controls the throw-in quantity of the chemical so that PH inside the circulating water supply passage 22 becomes 9.30-9.45. This iron ion crystallization restricting system can restrict hydraulic accelerating corrosion, and since PH of the circulating water supply passage 22 is adjusted in a critical range wherein crystallization of the iron ion and growth of the crystallized iron particle can be restricted, crystallization of iron ions and growth of the crystallized iron particles can be restricted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、排熱を利用して水を加熱する排熱回収プラントなどで鉄イオンの晶析粒子が成長するのを抑制する鉄イオン晶析抑制システムに関するものであり、具体的には、ガスタービンと、ガスタービンの排熱を利用した排熱回収プラントと、蒸気タービンを組み合わせたコンバインド発電プラントにおける排熱回収プラントに適用することができるものである。また、本発明は、蒸気ボイラと、蒸気ボイラから供給された蒸気を過熱する過熱器とを備えた過熱蒸気を発生させる過熱蒸気プラントにおいて、蒸気系統に鉄の晶析粒子が拡散することによる不具合を防止した過熱蒸気プラントを提供するものである。
【0002】
【従来の技術】
排熱回収プラントは、ガスタービンやゴミの焼却施設に設置され、節炭器(エコノマイザ)や蒸気ボイラや過熱器を備えており、排熱を利用して水を加熱し、熱水や過熱蒸気を生成している。
【0003】
ガスタービンから排気された直後の排ガスは非常に高温である。このため、排熱回収プラントは、ガスタービンの排出ガスの熱を高温段階から低温段階まで段階的に利用することができるように、ガスタービンの排気筒に装置を順に設置している。このような排熱回収プラントについては下記の特許文献1に記載されている。排熱回収プラントで生成した蒸気や熱水は、例えば、蒸気タービンの動力になったり、熱交換器を介して温水プールなどの施設やビル空調などの熱源に利用されたりし、その後、復水器で水に戻されて再び給水経路に導入されている。また、過熱蒸気を生成するものもある。
【0004】
排熱回収プラントには、排熱を利用して給水を予め加熱するため、ガスタービンの排気筒の低温領域に、給水を循環させる循環給水経路と、低圧節炭器を備えたものがある。低圧節炭器の循環給水経路では、給水を循環させる循環ポンプを備えており、所定の圧力、かつ、所定の流速(流量)で給水が循環している。また、低圧節炭器では給水は150℃〜160℃程度に加熱され、循環給水経路の水も同様に高温であるため、循環給水経路の配管には鋼管を用いており、アルカリ処理(水処理)を施して配管内の侵食・腐食(エロージョン・コロージョン)を防止している。低圧節炭器の循環給水経路では、通常、PHが8.8〜9.3程度になるようにアルカリ処理をしている。通常、揮発性物質処理法(AVT)により、配管内の侵食・腐食(エロージョン・コロージョン)を防止しているが、それでも配管内で侵食・腐食(エロージョン・コロージョン)が発生し、20〜30μm未満の微小な鉄の晶析粒子が発生することがある。
【0005】
【特許文献1】特開平6−272805号公報
【0006】
【発明が解決しようとする課題】
鉄イオンの溶解度は、図7に示すように、温度との関係では150℃の近傍で最も高くなり、またPH8.8〜PH9.6の間ではPH8.8で最も高くなり、PHが大きくなるにつれて徐々に低くなる。このため、本発明者らは、PH8.8〜PH9.6の間では、PHが小さいほど鉄の溶解度が大きくなるので、PHを大きくすれば溶解度が小さくなり腐食が抑制できると考えた。
【0007】
本発明者らは化学的な腐食が広がるのを防止するため、低温節炭器の循環給水経路のPHを9.6に上げて排熱回収プラントを運転する実験を行った。その結果、低温節炭器の循環給水経路内に、粒径が30μmを越える鉄粒子が生じた。この鉄粒子は、排熱回収プラントの低圧系統や中圧系統や高圧系統の給水経路に流出・拡散して、排熱回収プラントのシール部材やバルブなどに傷を付ける不具合が生じた。また、排熱回収プラントが蒸発器と過熱器を備えている場合には、過熱器の蒸気の温度を制御するために、排熱回収プラントの給水経路の水を過熱器内の過熱蒸気に供給している場合があった。このため、鉄粒子を含む水が、過熱器に供給されて過熱蒸気系統にも不具合が生じた。循環給水経路で粒径が30μm以上の晶析粒子が生じることは、従来無かったことであり、循環給水経路で粒径が30μm以上の晶析粒子が生じたのは、PHを9.6にしたことが原因であると考えられる。
【0008】
そこで、本発明は、粒径が30μmを越えるような大きな鉄粒子が発生するのを防止し、また、鉄粒子が発生した場合でも、それが下流系統に拡散するのを防止することにより、上記のような不具合を解消することを目的としている。
【0009】
【課題を解決するための手段】
本発明者らが実験に用いた第1のプラントでは、起動開始直後からプラントフル運転の間において、低圧節炭器管内の流速は、起動直後が0.06m/sで、フル運転状態が0.30m/sであり、約5倍の流速変化が生じていた。また、本発明者らが実験に用いた第2のプラントも、起動開始直後からプラントフル運転の間において、低圧節炭器管内の流速は、起動直後が0.25m/sで、フル運転状態の流速が1.24m/sであり、約5倍の流速変化が生じていた。本発明者らが調査したところ、鉄濃度は、起動開始直後からプラントフル運転の間において増加したが、フル運転状態で流速が安定すると増加しなくなり徐々に低下することが判った。また、本発明者らは、低温節炭器の循環給水経路の配管の腐食について、流量と温度と腐食量の間に、図5に示す関係があるとの知見を得た。
【0010】
これらの知見に基づいて、本発明者らは、低温節炭器の循環給水経路では、流速が増加するにつれて、物理的損傷現象である侵食が生じ、かつ、この侵食で保護皮膜が剥離した箇所において化学的な損傷現象である腐食が生じる流動加速腐食と言われる現象が生じていると考察した。図6は、流動加速腐食を模式化したものである。なお、流動加速腐食については、水野、「火力原子力発電」、社団法人火力原子力発電技術協会、平成13年2月25日、2001年2月号、P132〜P133に記載されている。
【0011】
また、本発明者らは、実験の結果、鉄粒子の発生源が主に150℃〜160℃の温度で運転される低圧節炭器およびその循環給水経路であるとの知見を得た。
【0012】
低圧節炭器の循環経路では、温度が150℃近くになるので、流動加速腐食で鉄イオンが最も溶出し易い環境にある。また、給水が循環しているので、流動加速腐食で溶出した鉄イオンの濃度が高くなり易く、鉄イオンが過飽和の状態になり易い環境でもある。このような環境の中で、PHを9.6まで大きくした運転した結果、流動加速腐食で溶出した鉄イオンが循環給水経路内に晶析し、さらに晶析した鉄粒子が成長し、粒径が30μm以上の鉄粒子が生じたのである。
【0013】
本発明者らは、鉄粒子が発生する経緯を上記のように考察し、以下のような発明を想起するに至った。
【0014】
本発明に係る鉄イオン晶析抑制システムは、第1に、循環経路の水を加圧した状態で加熱する加熱装置において、前記循環経路のPHを9.30〜9.45に調整し、前記循環経路中で鉄イオンの晶析粒子が成長するのを抑制することを特徴としている。これによりPH9.6のときに比べて、溶解度が少し大きくなるので、鉄イオンの晶析を抑制することができ、また晶析した鉄粒子の成長を抑制することができる。また、PH8.8〜PH9.3のときに比べて、鉄イオンの溶解度が低いので、流動加速腐食で鉄イオンが溶出するのを抑えることができ、鉄イオンが過飽和状態になることを抑制することができる。これにより、鉄イオンの晶析や、晶析した鉄粒子の成長を抑えることができ、粒径が30μmを越えるような鉄粒子が生じるのを防止することができる。この場合、より好ましくはPHを9.30〜9.40にするのが良く、さらに好ましくは9.35〜9.40にするのが良い。
【0015】
また、本発明に係る鉄イオン晶析抑制システムは、第2に、循環経路の水を加圧した状態で加熱する加熱装置において、循環経路の鉄の晶析粒子を除去するフィルタを設けたことを特徴としている。これにより、晶析粒子の成長の核となる晶析初期の粒子を除去することができるので、粒径が30μmを越えるような鉄粒子が生じるのを防止することができる。また、鉄の晶析粒子を発生源で捕捉することができるので、鉄の晶析粒子が他の配管に拡散するのを防止でき、鉄の晶析粒子による不具合を解消することができる。
【0016】
また、本発明に係る鉄イオン晶析抑制システムは、第3に、循環経路の水を加圧した状態で加熱する加熱装置において、前記循環経路の鉄濃度を測定する鉄濃度測定手段と、循環経路の鉄濃度を調整する鉄濃度調整手段と、前記鉄濃度測定手段の測定値に基づいて、循環経路の鉄濃度が溶解度以下となるように前記鉄濃度調整手段を制御する制御手段とを備えたことを特徴としている。これにより、循環経路内の鉄濃度を下げることができるので、鉄イオンの晶析、および、晶析粒子の成長を抑えることができ、粒径が30μmを越えるような鉄粒子が生じるのを防止することができる。
【0017】
この場合、鉄濃度調整手段が、循環経路に給水する給水手段と、給水量を調整する給水量調整手段と、循環経路の水を排水する排水手段と、排水量を調整する排水量調整手段を備えており、制御手段が鉄濃度測定手段の測定値に基づいて、循環経路の鉄濃度が溶解度以下となるように循環経路の給水と排水を制御するようにするとよい。上記の各鉄イオン晶析抑制手段は、これらを併用して鉄イオンの晶析および成長を防止することもできる。
【0018】
また、本発明に係る過熱プラントは、循環経路の水を加圧した状態で加熱する加熱装置と、循環経路から供給された水を加熱して蒸気を発生させる蒸発器と、蒸発器から供給された蒸気を過熱する過熱器と、過熱器内の蒸気の温度を制御する温度制御装置とを備えた過熱蒸気プラントにおいて、温度制御手段が蒸発器で生じた蒸気を過熱器内で過熱された蒸気に供給するものであることを特徴としている。この過熱蒸気プラントによれば、蒸気系統への鉄粒子の拡散を防止することができ、蒸気系統での鉄粒子に起因する不具合の発生を防止することができる。斯かる過熱プラントには、加熱装置に上述した鉄イオン晶析抑制システムを採用することが望ましい。
【0019】
【発明の実施の形態】
以下、本発明の鉄イオン晶析抑制システムの一実施形態を図面に基づいて説明する。
【0020】
この実施形態は、ガスタービンと、ガスタービンの排熱を利用した排熱回収プラントと、蒸気タービンを組み合わせたコンバインド発電プラントに本発明に係る鉄イオン晶析抑制システムを適用したものである。
【0021】
このコンバインド発電プラント1は、図1に示すように、ガスタービン2と、ガスタービン2の排熱を利用して蒸気を生成する排熱回収プラント3と、蒸気タービン4と、蒸気タービン4で作動した蒸気を再び水に戻す復水器5と、排熱回収プラント3と蒸気タービン4と復水器5を循環する復水流路6と、復水流路6の水を循環させる復水ポンプ7を備えている。
【0022】
この排熱回収プラント3は、図2に示すように、ガスタービン2の排出ガスの熱を高温段階から低温段階まで段階的に利用するため、ガスタービン2の排気筒11内に、高温側から順に、高圧過熱器12、再熱器13、高圧蒸発器14、高圧節炭器15、中圧過熱器16、低圧過熱器17、中圧蒸発器18、中圧節炭器19、高圧一次節炭器15’、低圧蒸発器20、低圧節炭器21を配設している。また、この実施形態では、蒸気タービン4は、高圧蒸気タービン4aと、中圧蒸気タービン4b、低圧蒸気タービン4cとを備えている。なお、図中、7は復水ポンプを示している。
【0023】
低圧節炭器21は、循環給水経路22を備えており、復水器5から供給された水を循環させながら加熱している。循環給水経路22には、循環ポンプ23によって約3MPaの圧力が掛かっている。低圧節炭器21から循環給水経路22に排出される水は150℃〜160℃程度である。低圧節炭器21で加熱した水の一部を低圧蒸発器20に供給し、他の一部を配管24、25で中圧系統又は高圧系統に供給し、残りを再び循環給水経路22に戻している。そして、再び循環給水経路22に戻された水に、復水器5から供給される水を混合して約60℃にして再び低圧節炭器21に供給している。
【0024】
循環給水経路22には、循環給水経路22内のPHを調整するため、PH調整用の薬剤(例えば、アンモニア)を投入する薬剤投入手段26を備えている。この実施形態では、循環給水経路22内のPHが9.30〜9.45になるように、薬剤の投入量を制御している。この実施形態では、薬剤投入手段26は、薬剤タンク26aと、薬剤投入ポンプ26bと、薬剤投入後の復水のPHを測定するPH測定装置26c(例えば、電気伝導率測定装置)と、PH測定装置26cの測定結果を基に薬剤投入ポンプ26bを作動させて薬剤の投入量を調整する制御装置26dを備えている。なお、この実施形態では、PH測定装置26cで薬剤投入後の復水のPHを測定し、制御装置26dでその測定結果を薬剤投入ポンプ26bの動作にフィードバックさせているが、本発明においてはこれに限定されず、例えば、循環給水経路22中の循環水のPHを測定してその測定結果を薬剤投入ポンプ26bにフィードバックさせるようにしてもよい。
【0025】
循環給水経路22内のPHを調整した結果、循環給水経路22内の鉄イオンの晶析現象を抑制することができた。特に、従前に比べ、粒径が30μm程度に成長した鉄の晶析粒子は発生しなくなった。これにより、鉄粒子が排熱回収プラント3の他の給水経路に流出して、排熱回収プラント3のシール部材やバルブに傷を付ける不具合を防止することができた。これはPHを9.30〜9.45にすることにより、PH9.60のときに比べて溶解度が高くなり、鉄イオンの晶析を抑制し、かつ、晶析した鉄粒子の粒径が30μm以上に成長するのを抑制することができる。
【0026】
すなわち、この実施形態は、循環給水経路22のPHを9.30〜9.45にすることにより、鉄イオンの晶析および晶析した鉄粒子の成長を抑制したのである。なお、循環給水経路22内のPHは9.4およびその近傍になるように制御すると、鉄イオンの晶析現象および鉄イオンが晶析した鉄粒子の成長を抑制する効果がより良好であった。
【0027】
このように第1実施形態に係る鉄イオン晶析抑制システムは、流体加速腐食を抑制することができ、かつ、鉄イオンの晶析および晶析した鉄粒子の成長を抑制することができる臨界的な範囲に循環給水経路のPHを調整することによって、鉄イオンの晶析および晶析した鉄粒子の成長を抑制することができるのである。
【0028】
次に、第2実施形態に係る鉄イオン晶析抑制システムは、図3に示すように、循環給水経路22に、鉄の晶析粒子を除去するフィルタ31を設けたものである。フィルタ31は、所定の粒径(例えば、10μm以上)の鉄の晶析粒子を捕捉する性能を供えたもので、金属製フィルタ、セラミック性フィルタ、電磁フィルタや遠心セパレータなどを用いるとよく、例えば、日本ポール株式会社製、「メタルメンプレンフィルタ」、「ポーラスメタルフィルタ」、「メタルファイバーフィルタ」を採用することができる。なお、フィルタ31の使用条件に、150℃程度の温度に耐えることができないなど、温度の制約がある場合(例えば、熱可撓性のプラスチック樹脂繊維を用いているものである場合)には、循環給水経路22の復水器5からの水が流入する流入部から低圧節炭器21の入口までの間に、フィルタ31を設置するとよい。
【0029】
このように循環給水経路22にフィルタ31を設けた場合、フィルタ31によって、晶析の核(鉄粒子成長の核)となる10μm程度の粒径を有する鉄の晶析粒子を捕捉することができるので、循環給水経路22で30μm程度の粒径を有する鉄の晶析粒子が発生するのを防止できる。
【0030】
なお、このようにフィルタ31を設けることにより、30μm程度の粒径を有する鉄の晶析粒子の発生を防止できるので、循環給水経路22内のPHを9.6程度或いはそれ以上に高くすることができる。すなわち、フィルタ31を設け、かつ、PHを9.6程度或いはそれ以上にすれば、鉄の晶析粒子による不具合を防止することができるとともに、溶解度の増加による腐食量を抑えることができる。
【0031】
次に、第3実施形態に係る鉄イオン晶析抑制システムは、図4に示すように、循環給水経路22の鉄濃度を測定する鉄濃度測定手段(図示省略)と、循環給水経路22から循環している水を排出する排出部32と、排出部32から排出する水の排出量を調整する排出量調整手段33と、鉄濃度測定手段における鉄濃度の測定値に基づいて、循環給水経路22の鉄濃度が溶解度以下となるように、排出部32から排出する排出量を適時に制御する制御手段34を備えたものである。なお、鉄濃度測定手段としては、循環給水経路22の水を(例えば、30分又は一時間毎の)定期サンプリングすることにより、循環給水経路22の鉄濃度を測定し、鉄濃度の現状を把握しながら鉄濃度の経時的な変化を予測する手段を用いることができる。
【0032】
この第3実施形態に係る鉄イオン晶析抑制システムは、循環給水経路22内の鉄濃度が上昇したときは、過飽和になる前に、制御手段34によって排出量を調整しつつ、排出部32から鉄イオンおよび鉄の微小晶析粒子を含む水を排出し、復水器5からより多くの水を循環給水経路22に流入させるようにしたものである。これにより、復水器5から流入する水により、循環給水経路22内の水の鉄濃度が下がり、鉄濃度を溶解度以下にすることができる。すなわち、循環給水経路22内を鉄イオンが晶析し難い環境および鉄の晶析粒子が成長し難い環境にすることができるので、30μm程度の粒径を有する鉄の晶析粒子が発生するのを防止できる。
【0033】
このとき、鉄濃度を下げすぎると、流動加速腐食で腐食し易い状態になるので、鉄濃度を飽和溶解度の95〜80%程度にする制御するとよい。
【0034】
また、このように循環給水経路22内の鉄濃度を調整する手段を設けることにより、30μm程度の粒径を有する鉄の晶析粒子の発生を防止できるので、循環給水経路22内のPHを9.6程度或いはそれ以上に高くすることができる。すなわち、鉄濃度を調整する手段を設け、かつ、PHを9.6程度或いはそれ以上にすることにより、流動加速腐食を抑え、かつ、鉄の晶析粒子が成長することによる不具合を防止することができる。
【0035】
また、排熱回収プラント3の熱効率を低下させないため、排出部32から排出した水は、復水器5から供給された水との間で熱交換するとよい。
【0036】
上記の第1から第3の実施形態の鉄イオン晶析抑制システムは、それぞれ独立して、鉄の晶析粒子の発生および成長を防止する効果を奏するが、これらを併用して鉄の晶析粒子の発生および成長を防止することもできる。
【0037】
以上、本発明の一実施形態に係る鉄イオン晶析抑制システムを説明したが、本発明に係る鉄イオン晶析抑制システムは、上記の実施の形態に限定されない。
【0038】
上記の実施形態では、コンバインド発電プラントに適用した実施形態を説明したが、本発明に係る鉄イオン晶析抑制システムは、上記コンバインド発電プラントに限定されず、循環経路の水を加熱する種々の加熱装置(特に、加圧した状態で水を加熱する加熱装置)に適用することができ、例えば、ゴミ焼却場などの排熱回収プラントにも適用することができる。
【0039】
次に、本発明の一実施形態に係る過熱蒸気プラントを説明する。
【0040】
過熱蒸気プラントは、上記のような循環給水経路と、給水された水から蒸気を作る蒸発器と、蒸発器の蒸気から過熱蒸気を作る過熱器とを備えたものがある。(例えば、図2〜図4に示す排熱回収プラントは、何れも蒸気タービンに過熱蒸気を供給する過熱蒸気プラントとして構成されている。)
【0041】
従来、このような過熱蒸気プラントでは、過熱器内の蒸気の温度を制御するため、蒸発器の給水経路の水を過熱器内で噴霧するスプレー装置と、過熱器内の蒸気の温度に基づいて適時にスプレー装置を作動させる制御装置を備えた温度制御装置を備えていた。しかし、上述した温度制御装置では、循環給水経路で粒径が30μm以上に成長した鉄粒子が生じた場合に、スプレー装置を介して鉄粒子が過熱器に侵入し、過熱器から下流の蒸気系統に鉄粒子が拡散し、蒸気系統に不具合を発生させる可能性がある。
【0042】
このため、本発明に係る過熱蒸気プラントは、図2〜4に示すように、蒸発器で発生した蒸気の一部A、Bを取出して、過熱器に設けた温度制御装置のスプレー装置に供給するようにした。この過熱蒸気プラントによれば、鉄粒子が含まれない蒸発器で発生した蒸気を温度制御装置に供給しているので、蒸気系統に鉄粒子が拡散するのを防止することができる。これにより、蒸気系統において鉄粒子に起因する不具合が発生するのを確実に防止することができる。特に、本発明に係る過熱プラントは、図2〜4に示すように、上述した鉄イオン晶析抑制システムと併用することにより、過熱蒸気プラントの給水系統および蒸気系統の両方で鉄粒子に起因する不具合が発生するのを確実に防止することができる。
【0043】
【発明の効果】
本発明に係る鉄イオン晶析抑制システムによれば、循環経路の水を加圧した状態で加熱する種々の加熱装置において、循環経路における鉄の晶析粒子の発生や成長を抑制することができ、鉄の晶析粒子に基因する種々の不具合を防止することができる。また、本発明に係る過熱蒸気プラントによれば、蒸発器で発生した蒸気を取出して、過熱器に設けた温度制御装置に供給するようにしたので、蒸気系統に鉄粒子が拡散するのを防止することができる。
【図面の簡単な説明】
【図1】コンバインド発電プラントの概略図。
【図2】第1実施形態に係る鉄イオン晶析抑制システムを示す図。
【図3】第2実施形態に係る鉄イオン晶析抑制システムを示す図。
【図4】第3実施形態に係る鉄イオン晶析抑制システムを示す図。
【図5】流量と温度と腐食量の関係を示す図。
【図6】流動加速腐食の概略図。
【図7】鉄イオンの溶解度と温度とPHの関係を示す図。
【符号の説明】
1 コンバインド発電プラント
2 ガスタービン
3 排熱回収プラント
4 蒸気タービン
5 復水器
6 復水流路
7 復水ポンプ
11 排気筒
21 低圧節炭器
22 循環給水経路
23 循環ポンプ
26 薬剤投入手段
31 フィルタ
32 排出部
33 排出量調整手段
34 制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an iron ion crystallization suppression system that suppresses the growth of crystallization particles of iron ions in an exhaust heat recovery plant or the like that heats water using exhaust heat, specifically, The present invention can be applied to a waste heat recovery plant in a combined power generation plant combining a turbine, a waste heat recovery plant using waste heat of a gas turbine, and a steam turbine. Further, the present invention provides a superheated steam plant that generates a superheated steam including a steam boiler and a superheater that superheats the steam supplied from the steam boiler, and has a disadvantage that iron crystallized particles diffuse into a steam system. It is intended to provide a superheated steam plant in which the above is prevented.
[0002]
[Prior art]
Exhaust heat recovery plants are installed in gas turbines and garbage incineration facilities, and are equipped with economizers, steam boilers and superheaters, which use exhaust heat to heat water and generate hot water and superheated steam. Has been generated.
[0003]
The exhaust gas immediately after being exhausted from the gas turbine has a very high temperature. For this reason, the exhaust heat recovery plant sequentially installs the devices in the exhaust stack of the gas turbine so that the heat of the exhaust gas of the gas turbine can be used in stages from a high temperature stage to a low temperature stage. Such an exhaust heat recovery plant is described in Patent Document 1 below. The steam and hot water generated by the waste heat recovery plant are used, for example, to power steam turbines or to be used as heat sources for facilities such as hot water pools and building air conditioning via heat exchangers. It is returned to the water in the vessel and is again introduced into the water supply path. Some generate superheated steam.
[0004]
Some exhaust heat recovery plants are provided with a circulating water supply path for circulating feedwater and a low-pressure economizer in a low-temperature region of the exhaust pipe of a gas turbine in order to preheat the feedwater using exhaust heat. The circulation water supply path of the low-pressure economizer is provided with a circulation pump for circulating the water supply, and the water supply is circulated at a predetermined pressure and a predetermined flow rate (flow rate). In the low-pressure economizer, the feedwater is heated to about 150 ° C to 160 ° C, and the water in the circulating water supply path is similarly high in temperature. ) To prevent erosion and corrosion in the piping. In the circulating water supply path of the low-pressure economizer, usually, alkali treatment is performed so that the PH becomes about 8.8 to 9.3. Normally, erosion / corrosion (erosion / corrosion) in the piping is prevented by the volatile substance treatment method (AVT), but erosion / corrosion (erosion / corrosion) still occurs in the piping, and is less than 20 to 30 μm. Fine crystallization particles of iron may be generated.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 6-272805
[Problems to be solved by the invention]
As shown in FIG. 7, the solubility of iron ions becomes highest in the vicinity of 150 ° C. in relation to temperature, and becomes highest at PH 8.8 between PH 8.8 and PH 9.6, and the PH increases. As it gradually decreases. For this reason, the present inventors considered that, between PH 8.8 and PH 9.6, the smaller the PH, the higher the solubility of iron, and therefore, the higher the PH, the lower the solubility, and thought that corrosion could be suppressed.
[0007]
The present inventors conducted an experiment in which the pH of the circulating water supply path of the low-temperature economizer was increased to 9.6 to operate the exhaust heat recovery plant in order to prevent chemical corrosion from spreading. As a result, iron particles having a particle size exceeding 30 μm were generated in the circulating water supply path of the low-temperature economizer. The iron particles flowed out and diffused into a low-pressure system, a medium-pressure system, and a high-pressure system water supply path of the exhaust heat recovery plant, causing a problem of damaging seal members and valves of the exhaust heat recovery plant. If the waste heat recovery plant has an evaporator and a superheater, the water in the water supply path of the waste heat recovery plant is supplied to the superheated steam in the superheater to control the temperature of the steam in the superheater. There was a case. For this reason, the water containing iron particles was supplied to the superheater, causing a problem in the superheated steam system. Crystallized particles having a particle size of 30 μm or more in the circulating water supply path have never been present, and crystallized particles having a particle size of 30 μm or more in the circulating water supply path have a PH of 9.6. It is thought that this was the cause.
[0008]
Therefore, the present invention prevents the generation of large iron particles having a particle size of more than 30 μm and, even when the iron particles are generated, prevents the iron particles from diffusing into the downstream system, whereby The purpose is to eliminate such problems.
[0009]
[Means for Solving the Problems]
In the first plant used in the experiment by the present inventors, the flow rate in the low pressure economizer pipe was 0.06 m / s immediately after the start and 0 in the full operation state immediately after the start of the operation and during the plant full operation. .30 m / s, and a flow rate change of about 5 times occurred. In addition, the second plant used in the experiment by the present inventors also had a flow rate in the low-pressure economizer pipe of 0.25 m / s immediately after the start-up and during the plant full operation immediately after the start of the start-up. Was 1.24 m / s, and a flow rate change of about 5 times occurred. The present inventors have investigated and found that the iron concentration increased during the plant full operation immediately after the start of the start, but did not increase when the flow velocity was stabilized in the full operation state, and gradually decreased. In addition, the present inventors have found that there is a relationship shown in FIG. 5 between the flow rate, the temperature, and the amount of corrosion with respect to the corrosion of the piping in the circulating water supply path of the low-temperature economizer.
[0010]
Based on these findings, the present inventors have found that in the circulating water supply path of a low-temperature economizer, as the flow velocity increases, erosion, which is a physical damage phenomenon, occurs, and where the protective coating is peeled off due to this erosion. It was considered that a phenomenon called flow accelerated corrosion, in which corrosion, which is a chemical damage phenomenon, occurs in the steel. FIG. 6 schematically illustrates flow accelerated corrosion. The flow accelerated corrosion is described in Mizuno, "Thermal Nuclear Power Generation", Japan Society for Thermal and Nuclear Power Generation Technology, February 25, 2001, February 2001, pages P132 to P133.
[0011]
In addition, the present inventors have obtained, as a result of the experiment, a finding that the source of iron particles is mainly a low-pressure economizer operated at a temperature of 150 ° C to 160 ° C and a circulation water supply route thereof.
[0012]
Since the temperature is close to 150 ° C. in the circulation path of the low-pressure economizer, there is an environment in which iron ions are most easily eluted by flow accelerated corrosion. In addition, since the feedwater is circulating, the concentration of iron ions eluted by the flow accelerated corrosion is likely to be high, and this is an environment in which iron ions are likely to be in a supersaturated state. In such an environment, as a result of an operation in which the pH was increased to 9.6, iron ions eluted by the flow accelerated corrosion were crystallized in the circulating water supply path, and the crystallized iron particles grew, Was found to have iron particles of 30 μm or more.
[0013]
The present inventors have considered the circumstances in which iron particles are generated as described above, and have come up with the following invention.
[0014]
First, the iron ion crystallization suppression system according to the present invention adjusts the pH of the circulation path to 9.30 to 9.45 in a heating device that heats the water in the circulation path under pressure. It is characterized in that crystallites of iron ions are prevented from growing in the circulation path. Thereby, the solubility is slightly increased as compared with the case of PH 9.6, so that the crystallization of iron ions can be suppressed, and the growth of crystallized iron particles can be suppressed. In addition, since the solubility of iron ions is lower than in the case of pH 8.8 to PH 9.3, elution of iron ions by flow accelerated corrosion can be suppressed, and the iron ions are prevented from becoming supersaturated. be able to. Thereby, crystallization of iron ions and growth of crystallized iron particles can be suppressed, and generation of iron particles having a particle size exceeding 30 μm can be prevented. In this case, the PH is more preferably set to 9.30 to 9.40, and further preferably set to 9.35 to 9.40.
[0015]
Secondly, in the iron ion crystallization suppression system according to the present invention, in the heating device for heating the water in the circulation path under pressure, a filter for removing crystallized iron particles in the circulation path is provided. It is characterized by. This makes it possible to remove particles in the early stages of crystallization, which are the nuclei for the growth of the crystallized particles, thereby preventing the formation of iron particles having a particle size exceeding 30 μm. In addition, since the crystallized particles of iron can be captured by the generation source, the crystallized particles of iron can be prevented from diffusing into other pipes, and problems caused by the crystallized particles of iron can be eliminated.
[0016]
Thirdly, the iron ion crystallization suppression system according to the present invention comprises, in a heating device for heating the water in the circulation path in a pressurized state, an iron concentration measuring means for measuring an iron concentration in the circulation path; Iron concentration adjusting means for adjusting the iron concentration of the path, and control means for controlling the iron concentration adjusting means based on the measurement value of the iron concentration measuring means, so that the iron concentration of the circulation path is less than the solubility. It is characterized by having. As a result, the iron concentration in the circulation path can be reduced, so that crystallization of iron ions and growth of crystallized particles can be suppressed, and the generation of iron particles having a particle size exceeding 30 μm can be prevented. can do.
[0017]
In this case, the iron concentration adjusting means includes water supply means for supplying water to the circulation path, water supply amount adjustment means for adjusting the water supply amount, drainage means for draining water in the circulation path, and drainage amount adjustment means for adjusting the drainage amount. Preferably, the control means controls water supply and drainage of the circulation path based on the measurement value of the iron concentration measurement means so that the iron concentration of the circulation path becomes lower than the solubility. The above-mentioned means for suppressing crystallization of iron ions can also be used in combination to prevent crystallization and growth of iron ions.
[0018]
Further, the superheating plant according to the present invention is a heating device for heating the water in the circulation path in a pressurized state, an evaporator for heating the water supplied from the circulation path to generate steam, and supplied from the evaporator. In a superheated steam plant equipped with a superheater for superheating the heated steam and a temperature control device for controlling the temperature of the steam in the superheater, the temperature control means superheats the steam generated in the evaporator in the superheater. It is characterized by being supplied to According to this superheated steam plant, it is possible to prevent iron particles from diffusing into the steam system, and to prevent problems caused by iron particles in the steam system. In such a superheated plant, it is desirable to employ the above-described iron ion crystallization suppression system for the heating device.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an iron ion crystallization suppression system of the present invention will be described with reference to the drawings.
[0020]
In this embodiment, the iron ion crystallization suppression system according to the present invention is applied to a combined power generation plant in which a gas turbine, an exhaust heat recovery plant using exhaust heat of the gas turbine, and a steam turbine are combined.
[0021]
As shown in FIG. 1, this combined power generation plant 1 operates with a gas turbine 2, an exhaust heat recovery plant 3 that generates steam by using exhaust heat of the gas turbine 2, a steam turbine 4, and a steam turbine 4. A condenser 5 for returning the recovered steam to water, a condensate passage 6 for circulating the exhaust heat recovery plant 3, the steam turbine 4 and the condenser 5, and a condensate pump 7 for circulating water in the condensate passage 6. Have.
[0022]
As shown in FIG. 2, the exhaust heat recovery plant 3 uses the heat of the exhaust gas of the gas turbine 2 in stages from a high temperature stage to a low temperature stage. In order, high-pressure superheater 12, reheater 13, high-pressure evaporator 14, high-pressure economizer 15, medium-pressure superheater 16, low-pressure superheater 17, medium-pressure evaporator 18, medium-pressure economizer 19, high-pressure primary section A charcoal unit 15 ', a low-pressure evaporator 20, and a low-pressure economizer 21 are provided. In this embodiment, the steam turbine 4 includes a high-pressure steam turbine 4a, a medium-pressure steam turbine 4b, and a low-pressure steam turbine 4c. In the drawing, reference numeral 7 denotes a condensate pump.
[0023]
The low-pressure economizer 21 has a circulating water supply path 22 and heats the water supplied from the condenser 5 while circulating the water. A pressure of about 3 MPa is applied to the circulation water supply path 22 by the circulation pump 23. The water discharged from the low-pressure economizer 21 to the circulating water supply path 22 has a temperature of about 150 ° C. to 160 ° C. Part of the water heated by the low-pressure economizer 21 is supplied to the low-pressure evaporator 20, another part is supplied to the medium-pressure system or high-pressure system by pipes 24 and 25, and the rest is returned to the circulation water supply path 22 again. ing. Then, the water supplied from the condenser 5 is mixed with the water returned to the circulating water supply path 22 again to about 60 ° C. and supplied to the low-pressure economizer 21 again.
[0024]
The circulation water supply path 22 is provided with a medicine supply means 26 for supplying a PH adjustment medicine (for example, ammonia) in order to adjust the pH in the circulation water supply path 22. In this embodiment, the dosage of the medicine is controlled so that the PH in the circulating water supply path 22 becomes 9.30 to 9.45. In this embodiment, the medicine introduction means 26 includes a medicine tank 26a, a medicine introduction pump 26b, a PH measurement device 26c (for example, an electric conductivity measurement device) for measuring the condensed water PH after the medicine introduction, and a PH measurement A control device 26d is provided which operates the medicine supply pump 26b based on the measurement result of the device 26c to adjust the amount of medicine to be supplied. In this embodiment, the PH of the condensed water after the introduction of the medicine is measured by the PH measurement device 26c, and the measurement result is fed back to the operation of the medicine introduction pump 26b by the control device 26d. The present invention is not limited to this. For example, the pH of the circulating water in the circulating water supply path 22 may be measured, and the measurement result may be fed back to the chemical injection pump 26b.
[0025]
As a result of adjusting the pH in the circulation water supply passage 22, the crystallization phenomenon of iron ions in the circulation water supply passage 22 was able to be suppressed. In particular, no crystallized iron particles having a grain size of about 30 μm were generated as compared with the prior art. Thereby, it was possible to prevent a problem that the iron particles flowed out to another water supply path of the exhaust heat recovery plant 3 and damaged the seal member and the valve of the exhaust heat recovery plant 3. This is because by setting the pH to 9.30 to 9.45, the solubility becomes higher as compared with the pH of 9.60, the crystallization of iron ions is suppressed, and the particle size of the crystallized iron particles is 30 μm. Growth can be suppressed as described above.
[0026]
That is, in this embodiment, the crystallization of iron ions and the growth of the crystallized iron particles are suppressed by setting the pH of the circulation water supply path 22 to 9.30 to 9.45. When the pH in the circulation water supply passage 22 was controlled to be 9.4 and its vicinity, the effect of suppressing the crystallization phenomenon of iron ions and the growth of iron particles crystallized with iron ions was better. .
[0027]
As described above, the iron ion crystallization suppression system according to the first embodiment can suppress fluid accelerated corrosion, and can suppress crystallization of iron ions and growth of crystallized iron particles. By adjusting the pH of the circulating water supply path to an appropriate range, crystallization of iron ions and growth of crystallized iron particles can be suppressed.
[0028]
Next, in the iron ion crystallization suppression system according to the second embodiment, as shown in FIG. 3, a circulating water supply path 22 is provided with a filter 31 for removing crystallized particles of iron. The filter 31 has a function of capturing crystallized particles of iron having a predetermined particle size (for example, 10 μm or more), and may be a metal filter, a ceramic filter, an electromagnetic filter, a centrifugal separator, or the like. And "Metal Membrane Filter", "Porous Metal Filter", and "Metal Fiber Filter" manufactured by Pall Corporation. In addition, when there are temperature restrictions such as a condition that the filter 31 cannot withstand a temperature of about 150 ° C. (for example, when using a heat-flexible plastic resin fiber), A filter 31 may be installed between the inlet of the circulating water supply path 22 where water from the condenser 5 flows and the inlet of the low-pressure economizer 21.
[0029]
When the filter 31 is provided in the circulation water supply path 22 in this manner, the filter 31 can capture the crystallized iron particles having a particle size of about 10 μm, which are nuclei of crystallization (nuclei of iron particle growth). Therefore, it is possible to prevent crystallization particles of iron having a particle size of about 30 μm from being generated in the circulation water supply path 22.
[0030]
By providing the filter 31 in this way, it is possible to prevent the generation of crystallized iron particles having a particle size of about 30 μm. Therefore, it is necessary to increase the PH in the circulation water supply passage 22 to about 9.6 or more. Can be. That is, if the filter 31 is provided and the PH is set to about 9.6 or more, it is possible to prevent problems caused by iron crystallization particles and to suppress the amount of corrosion due to an increase in solubility.
[0031]
Next, as shown in FIG. 4, the iron ion crystallization suppression system according to the third embodiment includes an iron concentration measurement unit (not shown) that measures the iron concentration of the circulation water supply path 22, and circulates from the circulation water supply path 22. A discharge unit 32 for discharging the water being discharged, a discharge adjusting unit 33 for adjusting the discharge amount of the water discharged from the discharge unit 32, and a circulating water supply path 22 based on the iron concentration measured by the iron concentration measuring unit. And a control means 34 for appropriately controlling the discharge amount discharged from the discharge section 32 so that the iron concentration becomes equal to or lower than the solubility. The iron concentration measuring means measures the iron concentration in the circulating water supply path 22 by periodically sampling the water in the circulating water supply path 22 (for example, every 30 minutes or every hour) to grasp the current state of the iron concentration. Means for estimating changes over time in iron concentration can be used.
[0032]
In the iron ion crystallization suppression system according to the third embodiment, when the iron concentration in the circulating water supply path 22 increases, before the supersaturation, the control unit 34 adjusts the discharge amount while controlling the discharge amount from the discharge unit 32. Water containing iron ions and fine crystallized particles of iron is discharged, and more water flows from the condenser 5 into the circulation water supply path 22. Thereby, the iron concentration of the water in the circulating water supply path 22 is reduced by the water flowing from the condenser 5, and the iron concentration can be reduced to the solubility or less. That is, the environment in which iron ions hardly crystallize and the environment in which iron crystallized particles are unlikely to grow can be made in the circulation water supply passage 22, so that iron crystallized particles having a particle size of about 30 μm are generated. Can be prevented.
[0033]
At this time, if the iron concentration is excessively lowered, a state in which the iron is easily corroded by flow accelerated corrosion is obtained. Therefore, the iron concentration may be controlled to be about 95 to 80% of the saturation solubility.
[0034]
Further, by providing the means for adjusting the iron concentration in the circulating water supply passage 22 as described above, it is possible to prevent the generation of iron crystallization particles having a particle diameter of about 30 μm. .6 or higher. That is, by providing a means for adjusting the iron concentration, and by setting the pH to about 9.6 or more, it is possible to suppress the flow accelerated corrosion and to prevent the trouble caused by the growth of crystallized iron particles. Can be.
[0035]
In addition, in order not to lower the thermal efficiency of the waste heat recovery plant 3, the water discharged from the discharge unit 32 may exchange heat with the water supplied from the condenser 5.
[0036]
The iron ion crystallization suppression systems of the first to third embodiments have the effect of independently preventing the generation and growth of iron crystallization particles. Particle generation and growth can also be prevented.
[0037]
The iron ion crystallization suppression system according to one embodiment of the present invention has been described above, but the iron ion crystallization suppression system according to the present invention is not limited to the above embodiment.
[0038]
In the above embodiment, the embodiment applied to the combined power generation plant is described. However, the iron ion crystallization suppression system according to the present invention is not limited to the combined power generation plant, and various types of heating for heating water in the circulation path may be used. The present invention can be applied to an apparatus (in particular, a heating apparatus that heats water in a pressurized state), and can be applied to, for example, an exhaust heat recovery plant such as a garbage incineration plant.
[0039]
Next, a superheated steam plant according to an embodiment of the present invention will be described.
[0040]
Some superheated steam plants include a circulation water supply path as described above, an evaporator for producing steam from supplied water, and a superheater for producing superheated steam from the vapor of the evaporator. (For example, each of the exhaust heat recovery plants shown in FIGS. 2 to 4 is configured as a superheated steam plant that supplies superheated steam to a steam turbine.)
[0041]
Conventionally, in such a superheated steam plant, in order to control the temperature of the steam in the superheater, a spray device that sprays water in a water supply path of the evaporator in the superheater and a temperature of the steam in the superheater are used. It had a temperature controller with a controller to activate the sprayer in a timely manner. However, in the temperature control device described above, when iron particles having a particle size of 30 μm or more are generated in the circulation water supply path, the iron particles enter the superheater via the spray device, and the steam system downstream from the superheater is used. Iron particles may diffuse into the steam system and cause problems in the steam system.
[0042]
For this reason, the superheated steam plant according to the present invention, as shown in FIGS. 2 to 4, takes out part A and B of the steam generated in the evaporator and supplies it to the spray device of the temperature control device provided in the superheater. I did it. According to this superheated steam plant, since the steam generated in the evaporator containing no iron particles is supplied to the temperature control device, it is possible to prevent the iron particles from diffusing into the steam system. Thus, it is possible to reliably prevent the occurrence of a problem caused by iron particles in the steam system. In particular, as shown in FIGS. 2 to 4, the superheated plant according to the present invention is caused by iron particles in both the water supply system and the steam system of the superheated steam plant by using the iron ion crystallization suppression system described above. It is possible to reliably prevent the occurrence of a failure.
[0043]
【The invention's effect】
According to the iron ion crystallization suppression system according to the present invention, it is possible to suppress the generation and growth of iron crystal particles in the circulation path in various heating devices that heat the water in the circulation path in a pressurized state. In addition, it is possible to prevent various problems caused by iron crystallization particles. Further, according to the superheated steam plant according to the present invention, since the steam generated in the evaporator is taken out and supplied to the temperature control device provided in the superheater, the iron particles are prevented from diffusing into the steam system. can do.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a combined power generation plant.
FIG. 2 is a diagram showing an iron ion crystallization suppression system according to the first embodiment.
FIG. 3 is a diagram showing an iron ion crystallization suppression system according to a second embodiment.
FIG. 4 is a diagram showing an iron ion crystallization suppression system according to a third embodiment.
FIG. 5 is a diagram showing a relationship among a flow rate, a temperature, and a corrosion amount.
FIG. 6 is a schematic view of flow accelerated corrosion.
FIG. 7 is a graph showing a relationship between solubility of iron ions, temperature and PH.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combined power generation plant 2 Gas turbine 3 Exhaust heat recovery plant 4 Steam turbine 5 Condenser 6 Condensate flow path 7 Condensate pump
11 Exhaust stack
21 Low pressure economizer
22 Circulation water supply route
23 Circulation pump
26 Drug injection means
31 filters
32 discharge section
33 Emission adjustment means
34 Control means

Claims (6)

循環経路の水を加圧した状態で加熱する加熱装置において、前記循環経路のPHを9.30〜9.45に調整し、前記循環経路中で鉄イオンの晶析粒子が成長するのを抑制することを特徴とする鉄イオン晶析抑制システム。In the heating device for heating the water in the circulation path in a pressurized state, the pH of the circulation path is adjusted to 9.30 to 9.45 to suppress the growth of crystal particles of iron ions in the circulation path. An iron ion crystallization suppression system characterized in that: 循環経路の水を加圧した状態で加熱する加熱装置において、前記循環経路の鉄の晶析粒子を除去するフィルタを設けたことを特徴とする鉄イオン晶析抑制システム。An iron ion crystallization suppression system, characterized in that a heating device that heats water in a circulation path under pressure is provided with a filter for removing crystallized particles of iron in the circulation path. 循環経路の水を加圧した状態で加熱する加熱装置において、前記循環経路の鉄濃度を測定する鉄濃度測定手段と、循環経路の鉄濃度を調整する鉄濃度調整手段と、前記鉄濃度測定手段の測定値に基づいて、循環経路の鉄濃度が溶解度以下となるように前記鉄濃度調整手段を制御する制御手段とを備えたことを特徴とする鉄イオン晶析抑制システム。In a heating device for heating water in a circulation path in a pressurized state, iron concentration measurement means for measuring iron concentration in the circulation path, iron concentration adjustment means for adjusting iron concentration in the circulation path, and said iron concentration measurement means Control means for controlling the iron concentration adjusting means such that the iron concentration in the circulation path is equal to or lower than the solubility based on the measured value of the iron ion crystallization. 前記鉄濃度調整手段が、循環経路に給水する給水手段と、給水量を調整する給水量調整手段と、循環経路の水を排水する排水手段と、排水量を調整する排水量調整手段を備えており、前記制御手段が前記鉄濃度測定手段の測定値に基づいて、循環経路の鉄濃度が溶解度以下となるように循環経路の給水と排水を制御することを特徴とする請求項3に記載の鉄イオン晶析抑制システム。The iron concentration adjusting means includes a water supply means for supplying water to the circulation path, a water supply amount adjustment means for adjusting the water supply amount, a drainage means for draining water in the circulation path, and a drainage amount adjustment means for adjusting the drainage amount, 4. The iron ion according to claim 3, wherein the control unit controls water supply and drainage in the circulation path based on the measurement value of the iron concentration measurement unit such that the iron concentration in the circulation path is equal to or lower than the solubility. 5. Crystallization control system. 循環経路の水を加圧した状態で加熱する加熱装置と、前記循環経路から供給された水を加熱して蒸気を発生させる蒸発器と、前記蒸発器から供給された蒸気を過熱する過熱器と、過熱器内の蒸気の温度を制御する温度制御装置とを備えた過熱蒸気プラントにおいて、
前記温度制御手段が前記蒸発器で生じた蒸気を過熱器内で過熱された蒸気に供給するものであることを特徴とする過熱蒸気プラント。
A heating device that heats the water in the circulation path in a pressurized state, an evaporator that heats the water supplied from the circulation path to generate steam, and a superheater that superheats the steam supplied from the evaporator. In a superheated steam plant comprising a temperature control device for controlling the temperature of steam in the superheater,
A superheated steam plant, wherein the temperature control means supplies steam generated in the evaporator to steam superheated in a superheater.
前記加熱装置が、請求項1から4の何れかに記載の鉄イオン晶析抑制システムを備えていることを特徴とする請求項5に記載の過熱蒸気プラント。The superheated steam plant according to claim 5, wherein the heating device includes the iron ion crystallization suppression system according to any one of claims 1 to 4.
JP2002365536A 2002-12-17 2002-12-17 Iron ion crystallization restricting system and superheated steam plant Pending JP2004198006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365536A JP2004198006A (en) 2002-12-17 2002-12-17 Iron ion crystallization restricting system and superheated steam plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365536A JP2004198006A (en) 2002-12-17 2002-12-17 Iron ion crystallization restricting system and superheated steam plant

Publications (1)

Publication Number Publication Date
JP2004198006A true JP2004198006A (en) 2004-07-15

Family

ID=32763068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365536A Pending JP2004198006A (en) 2002-12-17 2002-12-17 Iron ion crystallization restricting system and superheated steam plant

Country Status (1)

Country Link
JP (1) JP2004198006A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017186A (en) * 2005-07-05 2007-01-25 Babcock Hitachi Kk Calculation method of thinning rate of flow-accelerated corrosion, and diagnosis method of residual service life
JP2007183068A (en) * 2006-01-10 2007-07-19 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2008075966A (en) * 2006-09-21 2008-04-03 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2008107040A (en) * 2006-10-26 2008-05-08 Chugoku Electric Power Co Inc:The Boiler system and control method of boiler system
JP2008164208A (en) * 2006-12-27 2008-07-17 Mitsubishi Heavy Ind Ltd Turbine equipment, exhaust heat recovering boiler device and operation method of turbine equipment
JP2008196833A (en) * 2007-02-15 2008-08-28 Mitsubishi Heavy Ind Ltd Turbine equipment, exhaust heat recovering boiler apparatus and operation method for turbine equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017186A (en) * 2005-07-05 2007-01-25 Babcock Hitachi Kk Calculation method of thinning rate of flow-accelerated corrosion, and diagnosis method of residual service life
JP4630745B2 (en) * 2005-07-05 2011-02-09 バブコック日立株式会社 Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method
JP2007183068A (en) * 2006-01-10 2007-07-19 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP4718333B2 (en) * 2006-01-10 2011-07-06 バブコック日立株式会社 Once-through exhaust heat recovery boiler
JP2008075966A (en) * 2006-09-21 2008-04-03 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2008107040A (en) * 2006-10-26 2008-05-08 Chugoku Electric Power Co Inc:The Boiler system and control method of boiler system
JP2008164208A (en) * 2006-12-27 2008-07-17 Mitsubishi Heavy Ind Ltd Turbine equipment, exhaust heat recovering boiler device and operation method of turbine equipment
JP2008196833A (en) * 2007-02-15 2008-08-28 Mitsubishi Heavy Ind Ltd Turbine equipment, exhaust heat recovering boiler apparatus and operation method for turbine equipment

Similar Documents

Publication Publication Date Title
JP2008121483A (en) Heat medium supply device, composite solar heat electricity generation device, and method of controlling them
US10760453B2 (en) Feedwater system of combined cycle power plant
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP2004198006A (en) Iron ion crystallization restricting system and superheated steam plant
JP4814077B2 (en) Turbine equipment, exhaust heat recovery boiler device, and operation method of turbine equipment
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
JP5613921B2 (en) Exhaust heat recovery boiler and method for preventing corrosion in the can
JP2012092734A (en) Blow fluid treatment equipment in ejector main steam system
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JP2000257806A (en) Drain recovery system for heat exchanger
JP2007292414A (en) Combined cycle power generation facility and water quality management method for combined cycle power generation facility
JPS61213401A (en) Waste-heat recovery boiler
JP2001033004A (en) Method of draining for waste heat recovery boiler
JP2007064501A (en) Steaming method for boiler plant, boiler plant, and steaming device for boiler plant
JP2949287B2 (en) Auxiliary steam extraction method for waste heat recovery boiler
KR20100054672A (en) Waste heat recovery device for incinerator plant
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JP3276247B2 (en) Boiler / turbine condensate and water supply equipment
JP2004076651A (en) Steam turbine plant
JPS6176802A (en) Method of stopping waste-heat recovery boiler
JP2002098306A (en) Boiler equipment, and its operation method
JP2951294B2 (en) How to stop the waste heat recovery boiler
JP2637194B2 (en) Combined plant startup bypass system and its operation method
JPH0949606A (en) Variable pressure once-through boiler
JP4909112B2 (en) Turbine equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051003

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Effective date: 20071004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212