JP2007292414A - Combined cycle power generation facility and water quality management method for combined cycle power generation facility - Google Patents

Combined cycle power generation facility and water quality management method for combined cycle power generation facility Download PDF

Info

Publication number
JP2007292414A
JP2007292414A JP2006123064A JP2006123064A JP2007292414A JP 2007292414 A JP2007292414 A JP 2007292414A JP 2006123064 A JP2006123064 A JP 2006123064A JP 2006123064 A JP2006123064 A JP 2006123064A JP 2007292414 A JP2007292414 A JP 2007292414A
Authority
JP
Japan
Prior art keywords
low
combined cycle
power generation
cycle power
pressure drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123064A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tao
浩之 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006123064A priority Critical patent/JP2007292414A/en
Publication of JP2007292414A publication Critical patent/JP2007292414A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined cycle power generation facility and a water quality management method for maintaining the chemical concentration of a low pressure water supply system always to an appropriate value. <P>SOLUTION: In this supply water treatment method, a pH conditioner and an oxygen scavenger are directly injected into a low pressure drum 25 to control the water quality of supply water supplied into the low pressure drum 25 from a steam turbine plant through a condensate supply pipe 32. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンバインドサイクル発電設備の排熱回収ボイラの給水に注入するpH調整剤、脱酸素剤等の給水調整剤を適正な管理値に維持させ、プラント構成機器の腐食等を防止するための手段を有するコンバインドサイクル発電設備およびコンバインドサイクル発電設備の水質管理方法に関する。   The present invention maintains a water supply adjusting agent such as a pH adjusting agent and an oxygen scavenger injected into the water supply of an exhaust heat recovery boiler of a combined cycle power generation facility at an appropriate management value, and prevents corrosion of plant components. The present invention relates to a combined cycle power generation facility having means and a water quality management method for the combined cycle power generation facility.

従来、火力発電プラント、例えばコンバインドサイクル発電プラントに適用する排熱回収ボイラでは、給水中の溶存酸素濃度やpH値に制限値を設け、この制限値以下に維持させるよう水質管理を行い、系統、構成機器の腐食等を未然に防止している。   Conventionally, in an exhaust heat recovery boiler applied to a thermal power plant, for example, a combined cycle power plant, a limit value is provided for the dissolved oxygen concentration and pH value in the feed water, and water quality management is performed so as to maintain this limit value or less. Prevents corrosion of components.

これら溶存酸素やpHの水質管理のうち、溶存酸素濃度を制限値以下に維持させるには、排熱回収ボイラの低圧給水系統にヒドラジン等の脱酸素剤を注入し、給水に溶解している溶存酸素と化学反応させ、その濃度を低く抑えていた。   Of these water quality management of dissolved oxygen and pH, in order to maintain the dissolved oxygen concentration below the limit value, an oxygen scavenger such as hydrazine is injected into the low-pressure water supply system of the exhaust heat recovery boiler and dissolved in the water supply. The chemical reaction with oxygen kept the concentration low.

また、pH値については、アンモニアを主流とするpH調整剤を、脱酸素剤と同様に低圧給水系統に注入し、pH値の調整を行っていた。   Moreover, about pH value, the pH adjuster which made ammonia the mainstream was inject | poured into the low voltage | pressure water supply system like the deoxidizer, and pH value was adjusted.

また、排熱回収ボイラのドラム内の水質管理は、缶水にリン酸ソーダを清缶剤として注入し、缶水の硬度を低下させるとともに、缶水のpH値の調整を行っていた。   In addition, water quality control in the drum of the exhaust heat recovery boiler is injecting sodium phosphate as a cleansing agent into the can water, reducing the hardness of the can water, and adjusting the pH value of the can water.

もっとも、缶水の清缶剤として注入できるリン酸ソーダは、排熱回収ボイラの高圧ドラムおよび中圧ドラムまでであり、低圧ドラムの缶水に注入していなかった。低圧ドラムの缶水にリン酸ソーダを注入しなかったのは、以下の理由に基づく。   However, the sodium phosphate that can be injected as a cleansing agent for can water is up to the high-pressure drum and medium-pressure drum of the exhaust heat recovery boiler, and has not been injected into the low-pressure drum can water. The reason for not injecting sodium phosphate into the low pressure drum water is as follows.

リン酸ソーダは、元来、不揮発性物質であり、缶水中のミネラル分と反応して堆積物を生成するものである。   Sodium phosphate is originally a non-volatile substance that reacts with minerals in canned water to produce deposits.

このため、低圧ドラムから出た缶水は、途中で中圧用、高圧用の熱交換器を経て蒸気タービンに流れるルートと、減温器を経て直接蒸気タービンに流れるルートとがあり、熱交換器や蒸気タービンに堆積物が流れると、堆積物の影響を受けて蒸気の流れが悪くなり、この結果、熱交換器の伝熱管の損傷や蒸気タービンの効率低下を招くことを恐れたものである。   For this reason, the can water discharged from the low-pressure drum has a route that flows to the steam turbine through a heat exchanger for medium pressure and high pressure, and a route that flows directly to the steam turbine through a temperature reducer. If the deposits flow into the steam turbine, the steam flow will be affected by the deposits, resulting in damage to the heat exchanger tubes of the heat exchanger and reduced efficiency of the steam turbine. .

このような事象から、排熱回収ボイラの低圧ドラムでは、従来から揮発性の高いヒドラジンを脱酸素剤として使用し、またアンモニアをpH調整剤として専ら使用していた。   From such an event, in the low pressure drum of the exhaust heat recovery boiler, hydrazine having high volatility has been conventionally used as an oxygen scavenger, and ammonia has been exclusively used as a pH adjuster.

なお、火力発電プラントの水質調整にアンモニアやヒドラジン等を使用した技術には、特許文献1、特許文献2等が開示されている。
特開2002−180804号公報 特開2005−313116号公報
Patent Literature 1, Patent Literature 2 and the like are disclosed as technologies using ammonia, hydrazine or the like for water quality adjustment of a thermal power plant.
JP 2002-180804 A JP-A-2005-313116

上述の事情に基づいて、排熱回収ボイラの低圧ドラムは、専らアンモニア、ヒドラジン等の揮発性物質による水質管理に依存していたが、揮発性物質には幾つかの問題があり、その一つにアンモニアによる構成機器の腐食、減肉がある。   Based on the above situation, the low-pressure drum of the exhaust heat recovery boiler relied solely on water quality management with volatile substances such as ammonia and hydrazine, but there are several problems with volatile substances. There is also corrosion and thinning of components due to ammonia.

すなわち、排熱回収ボイラの低圧ドラムから出た蒸気は、揮発性物質とともに、途中で数多くの熱交換器を経て蒸気タービンに至る。この場合、薬品の特性上、蒸気中の薬品濃度は、水の薬品濃度に較べて高くなっている。特に、アンモニア濃度は、pHと密接な関係があり、pH値が制限値を超えたまま長期間に亘って運転を続けると、いわゆるアンモニアアタックと称して構成機器を腐食させ、減肉させる要因になっていた。   That is, the steam emitted from the low-pressure drum of the exhaust heat recovery boiler reaches the steam turbine through a number of heat exchangers along with the volatile substances. In this case, the chemical concentration in the steam is higher than the chemical concentration of water due to the characteristics of the chemical. In particular, the ammonia concentration is closely related to pH, and if the operation is continued for a long period of time while the pH value exceeds the limit value, it is called a so-called ammonia attack, which causes corrosion and thinning of the component equipment. It was.

このため、給水中に含まれるアンモニア濃度の制限値を超えることなく十分に水質の管理をしておく必要がある。   For this reason, it is necessary to sufficiently manage the water quality without exceeding the limit value of the ammonia concentration contained in the water supply.

本発明は、このような事情を考慮してなされたもので、大きく配管系統を変えることなくて低圧給水系統の薬品濃度を常に適正値に維持させることができるコンバインドサイクル発電設備およびコンバインドサイクル発電設備の水質管理方法を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and combined cycle power generation equipment and combined cycle power generation equipment that can always maintain the chemical concentration of the low-pressure water supply system at an appropriate value without greatly changing the piping system. The purpose is to provide water quality management methods.

本発明に係るコンバインドサイクル発電設備は、上述の目的を達成するため、低圧蒸気タービンと、この低圧蒸気タービンの排気蒸気が凝縮した復水を低圧ドラムに供給する復水給水管と、ポンプを介してこの復水給水管に接続され、水質管理のためのpH調整剤と脱酸素剤とを前記復水に注入する薬品注入系統と、を有するコンバインドサイクル発電設備において、前記低圧ドラムに直接、または前記低圧ドラムに接続される配管のいずれか1箇所に水質管理のためのpH調整剤と脱酸素剤とを注入する注入口を設けたことを特徴とするものである。   In order to achieve the above object, a combined cycle power generation facility according to the present invention includes a low-pressure steam turbine, a condensate water supply pipe for supplying condensate condensed with exhaust steam of the low-pressure steam turbine to a low-pressure drum, and a pump. A combined cycle power generation facility connected to the condensate water supply pipe and having a chemical injection system for injecting a pH adjusting agent and a deoxygenating agent for water quality management into the condensate, directly to the low pressure drum, or An injection port for injecting a pH adjusting agent and a deoxygenating agent for water quality management is provided in any one of the pipes connected to the low-pressure drum.

また、本発明に係るコンバインドサイクル発電設備の水質管理方法は、上述の目的を達成するため、低圧蒸気タービンの排気蒸気が凝縮した復水にpH調整剤および脱酸素剤を加えてその水質管理を行う際に、低圧タービンから低圧ドラムに前記復水を供給する復水給水管に設けた薬品注入系統を介して注入するのに加え、前記低圧ドラムに直接、または前記低圧ドラムに接続される配管のいずれか1箇所に設けた注入口から前記pH調整剤と脱酸素剤とを注入することを特徴とする方法である。   In addition, the water quality management method for the combined cycle power generation facility according to the present invention adds the pH adjuster and the oxygen scavenger to the condensate condensed with the exhaust steam of the low-pressure steam turbine in order to achieve the above-mentioned purpose. When performing, in addition to injecting through the chemical injection system provided in the condensate water supply pipe for supplying the condensate from the low-pressure turbine to the low-pressure drum, piping connected directly to the low-pressure drum or to the low-pressure drum The pH adjusting agent and the oxygen scavenger are injected from an injection port provided at any one of the above.

本発明に係るコンバインドサイクル発電設備は、蒸気タービンプラントから復水給水管を介して低圧ドラムに供給する給水の水質を調整するとき、復水給水管に加え、低圧ドラムに直接、または低圧ドラムに接続される配管のいずれか1箇所にpH調整剤と脱酸素剤とを注入するので、揮発性の高いpH調整剤および脱酸素剤であっても、常に補充することができ、水質の濃度を常に適正値に維持させて系統、構成機器の腐食等を抑制してプラントの安定運転を行わせることができる。   The combined cycle power generation facility according to the present invention, when adjusting the quality of the feed water supplied from the steam turbine plant to the low pressure drum via the condensate feed water pipe, in addition to the condensate feed pipe, directly to the low pressure drum or to the low pressure drum. Since the pH adjuster and oxygen scavenger are injected into any one of the connected pipes, even highly volatile pH adjusters and oxygen scavengers can always be replenished, and the water quality concentration can be increased. It can be maintained at an appropriate value at all times to suppress the corrosion of the system and components, and to make the plant operate stably.

以下、本発明に係るコンバインドサイクル発電設備およびコンバインドサイクル発電設備の水質管理方法の実施形態を図面および図面に付した符号を引用して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a combined cycle power generation facility and a water quality management method for a combined cycle power generation facility according to the present invention will be described with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係るコンバインドサイクル発電プラントの概略系統図である。   FIG. 1 is a schematic system diagram of a combined cycle power plant according to the present invention.

このコンバインドサイクル発電プラントは、ガスタービンプラント1と蒸気タービンプラント2とを共通の回転軸3で結合させるとともに、排熱回収ボイラ4を別置き配置としている。   In this combined cycle power plant, the gas turbine plant 1 and the steam turbine plant 2 are coupled by a common rotating shaft 3, and the exhaust heat recovery boiler 4 is disposed separately.

ガスタービンプラント1は、空気圧縮機6、燃焼器7、ガスタービン8を備え、空気圧縮機6で吸い込んだ大気ARを高圧の圧縮空気にして燃焼器7に案内し、ここで燃料Fを加えて燃焼ガスを生成し、この燃焼ガスをガスタービン8で膨張させ、その際発生する動力で同軸に接続された発電機5を駆動する。   The gas turbine plant 1 includes an air compressor 6, a combustor 7, and a gas turbine 8. The atmosphere AR sucked by the air compressor 6 is converted into high-pressure compressed air and guided to the combustor 7, where fuel F is added. Combustion gas is generated, the combustion gas is expanded by the gas turbine 8, and the generator 5 connected coaxially is driven by the power generated at that time.

蒸気タービンプラント2は、高圧タービン9、中圧タービン10、低圧タービン11、復水器12をそれぞれ備え、高圧タービン9で膨張後の排気蒸気を排熱回収ボイラ4の再熱器13に案内して過熱させ、再熱蒸気として中圧タービン10に案内して膨張させ、この排気蒸気を低圧タービン11で再び膨張させた後、復水器12で復水に凝縮させ、給水としてポンプ13aを介して排熱回収ボイラ4に供給している。   The steam turbine plant 2 includes a high-pressure turbine 9, an intermediate-pressure turbine 10, a low-pressure turbine 11, and a condenser 12, and guides the exhaust steam expanded by the high-pressure turbine 9 to the reheater 13 of the exhaust heat recovery boiler 4. Then, it is guided to the intermediate pressure turbine 10 and expanded as reheated steam, and the exhaust steam is expanded again by the low-pressure turbine 11, and then condensed into condensate by the condenser 12, and supplied as water via the pump 13 a. To the exhaust heat recovery boiler 4.

一方、排熱回収ボイラ4は、ガスタービンプラント1の排ガスGの流れに沿ってその上流側から下流側に向って順に、第1高圧過熱器14、再熱器13、第2高圧過熱器15、第3高圧過熱器16、高圧ドラム17を備えた高圧蒸発器18、中圧過熱器19、高圧節炭器20、低圧過熱器21、中圧ドラム22を備えた中圧蒸発器23、中圧節炭器24、低圧ドラム25を備えた低圧蒸発器26、低圧節炭器27をそれぞれ収容し、各熱交換器と排ガスGとの熱交換により蒸気を発生させている。   On the other hand, the exhaust heat recovery boiler 4 has a first high pressure superheater 14, a reheater 13, and a second high pressure superheater 15 in order from the upstream side to the downstream side along the flow of the exhaust gas G of the gas turbine plant 1. A third high-pressure superheater 16, a high-pressure evaporator 18 with a high-pressure drum 17, an intermediate-pressure superheater 19, a high-pressure economizer 20, a low-pressure superheater 21, an intermediate-pressure evaporator 23 with an intermediate-pressure drum 22, A pressure-saving economizer 24, a low-pressure evaporator 26 having a low-pressure drum 25, and a low-pressure economizer 27 are accommodated, and steam is generated by heat exchange between each heat exchanger and the exhaust gas G.

また、排熱回収ボイラ4は、蒸気タービンプラント2の復水器12からポンプ13aを介して供給される復水・給水を低圧節炭器27で予熱させて低圧ドラム25に案内し、ここで缶水の密度差を利用して低圧蒸発器26に循環させて蒸気を生成し、この蒸気を低圧過熱器21を介して低圧タービン11に供給している。   Further, the exhaust heat recovery boiler 4 preheats the condensate / feed water supplied from the condenser 12 of the steam turbine plant 2 via the pump 13a by the low pressure economizer 27 and guides it to the low pressure drum 25, where Using the density difference of the can water, it is circulated to the low-pressure evaporator 26 to generate steam, and this steam is supplied to the low-pressure turbine 11 via the low-pressure superheater 21.

また、低圧節炭器27は、出口側で分流させその一部を低圧ポンプ28、中圧節炭器24を介して中圧ドラム22に案内し、ここでも缶水の密度差を利用して中圧蒸発器23に循環させて蒸気を生成し、この蒸気を中圧過熱器19を介して低温再熱管28aに供給している。   Further, the low pressure economizer 27 is diverted on the outlet side, and a part thereof is guided to the intermediate pressure drum 22 via the low pressure pump 28 and the intermediate pressure economizer 24, and again using the density difference of the can water. The steam is circulated through the intermediate pressure evaporator 23 to generate steam, and this steam is supplied to the low-temperature reheat pipe 28 a through the intermediate pressure superheater 19.

低温再熱管28aは、高圧タービン9からの排熱蒸気および中圧過熱器19からの蒸気を第2高圧過熱器15を介して再熱器減温器30に案内し、ここで低圧ポンプ28からの給水をスプレーさせて再熱蒸気を減温し、再熱器13に供給している。   The low temperature reheat pipe 28a guides the exhaust heat steam from the high pressure turbine 9 and the steam from the intermediate pressure superheater 19 to the reheater desuperheater 30 via the second high pressure superheater 15, where Water is sprayed to reduce the temperature of the reheated steam and is supplied to the reheater 13.

また、低圧節炭器27は、その出口側で分流させた残りを高圧ポンプ29、高圧節炭器20を介して高圧ドラム17に案内し、高圧蒸発器18で循環させて蒸気を生成し、この蒸気を第3高圧過熱器16に案内している。   Further, the low pressure economizer 27 guides the remainder branched on the outlet side to the high pressure drum 17 via the high pressure pump 29 and the high pressure economizer 20, and circulates the high pressure evaporator 18 to generate steam. This steam is guided to the third high pressure superheater 16.

第3高圧過熱器16は、高圧過熱器減温器31を備えており、高圧ポンプ29からの給水をスプレーさせて過熱蒸気を減温し、第1高圧過熱器14を介して蒸気タービンプラント2の高圧タービン9に案内している。   The third high-pressure superheater 16 includes a high-pressure superheater desuperheater 31, sprays the feed water from the high-pressure pump 29 to reduce the temperature of the superheated steam, and the steam turbine plant 2 via the first high-pressure superheater 14. To the high-pressure turbine 9.

また、蒸気タービンプラント2の復水器12と排熱回収ボイラ4の低圧節炭器27とを結ぶ復水給水管32には、薬品注入系統としてpH調整剤を注入するpH調整剤注入ポンプ33とリン酸ソーダを注入するリン酸ソーダ注入ポンプ34とを介して、薬品が復水給水に注入される。   Further, a pH adjusting agent injection pump 33 for injecting a pH adjusting agent as a chemical injection system into a condensate water supply pipe 32 connecting the condenser 12 of the steam turbine plant 2 and the low pressure economizer 27 of the exhaust heat recovery boiler 4. And the sodium phosphate injection pump 34 for injecting sodium phosphate, the chemical is injected into the condensate water supply.

また、高圧ドラム17および中圧ドラム22のそれぞれには、リン酸ソーダを注入する高圧ドラムリン酸ソーダ注入ポンプ35、中圧ドラムリン酸ソーダ注入ポンプ36のそれぞれが設けられている。   Each of the high-pressure drum 17 and the intermediate-pressure drum 22 is provided with a high-pressure drum sodium phosphate injection pump 35 for injecting sodium phosphate and an intermediate-pressure drum sodium phosphate injection pump 36, respectively.

このような構成を備えたコンバインドサイクル発電において、本実施形態は、図2に示すように排熱回収ボイラ4の低圧ドラム25にpH調整剤(アンモニア)および脱酸素剤(ヒドラジン)のそれぞれを直接注入するpH調整剤注入口37、脱酸素剤注入口38を設けたものである。なお、pH調整剤注入口37および脱酸素剤注入口38のそれぞれにはポンプ(図示せず)が設けられている。   In the combined cycle power generation having such a configuration, in the present embodiment, as shown in FIG. 2, each of the pH adjuster (ammonia) and the oxygen scavenger (hydrazine) is directly applied to the low pressure drum 25 of the exhaust heat recovery boiler 4. A pH adjusting agent inlet 37 and an oxygen scavenger inlet 38 for injection are provided. Each of the pH adjusting agent inlet 37 and the oxygen scavenger inlet 38 is provided with a pump (not shown).

このように、本実施形態は、低圧ドラム25にpH調整剤および脱酸素剤を直接注入し、揮発性の高い薬品を補う手段を講じているので、適正濃度に維持させて給水の水質管理を十分に行うことができる。   As described above, in this embodiment, since the pH adjusting agent and the oxygen scavenger are directly injected into the low-pressure drum 25 and the means for supplementing the highly volatile chemical is taken, the water quality management of the supplied water is maintained by maintaining the proper concentration. Well done.

なお、本実施形態は、低圧ドラム25に直接pH調整剤と脱酸素剤を注入させているが、この例に限らず、図3に示すように、低圧ドラム25と低圧蒸発器26とを結ぶ降水管40にpH調整剤注入口37および脱酸素剤注入口38をそれぞれ設けポンプ(図示せず)の圧送力を利用してpH調整剤および脱酸素剤のそれぞれを注入してもよく、図4に示すように、低圧ドラム25と中圧ポンプ28および高圧ポンプ29とを結ぶ中高圧給水管41にpH調整剤注入口37および脱酸素剤注入口38をそれぞれ設け、ポンプの圧送力を利用してpH調整剤と脱酸素剤を注入してもよい。   In this embodiment, the pH adjusting agent and the oxygen scavenger are directly injected into the low pressure drum 25. However, the present invention is not limited to this example, and the low pressure drum 25 and the low pressure evaporator 26 are connected as shown in FIG. A pH adjusting agent inlet 37 and an oxygen scavenger inlet 38 may be provided in the downcomer 40, respectively, and the pH adjusting agent and the oxygen absorber may be injected using the pumping force of a pump (not shown). As shown in FIG. 4, a pH adjusting agent inlet 37 and a deoxygenating agent inlet 38 are respectively provided in the medium and high pressure water supply pipe 41 connecting the low pressure drum 25, the intermediate pressure pump 28 and the high pressure pump 29, and the pump pressure is utilized. Then, a pH adjuster and an oxygen scavenger may be injected.

また、本実施形態は、図5に示すように、低圧節炭器27と低圧ドラム25とを結ぶ中間位置に脱気器42を設けるとともに、低圧ドラム25にpH調整剤注入口37および脱酸素剤注入口38を設けポンプの圧送力を利用してpH調整剤と脱酸素剤を投入させてもよく、図6に示すように、低圧ドラム25と脱気器42との間のpH調整剤注入口37および脱酸素剤注入口38を設けそれぞれにポンプの圧送力を利用してpH調整剤と脱酸素剤を注入させてもよく、図7に示すように、低圧ドラム25を介して脱気器42と低圧蒸発器26を結ぶ降水管40にpH調整剤注入口37および脱酸素剤注入口38を設けそれぞれにポンプの圧送力を利用してpH調整剤と脱酸素剤を注入させてもよく、図8に示すように、低圧ドラム25を介して脱気器42と接続する中高圧給水管41にpH調整剤注入口37および脱酸素剤注入口38を設けそれぞれにポンプの圧送力を利用してpH調整剤と脱酸素剤を注入してもよい。   Further, in the present embodiment, as shown in FIG. 5, a deaerator 42 is provided at an intermediate position connecting the low pressure economizer 27 and the low pressure drum 25, and the pH adjusting agent inlet 37 and the deoxygenation are provided in the low pressure drum 25. A pH adjusting agent and a deoxygenating agent may be introduced by using a pumping force provided with an agent injection port 38, and the pH adjusting agent between the low pressure drum 25 and the deaerator 42 as shown in FIG. An inlet 37 and an oxygen scavenger inlet 38 may be provided, and the pH adjusting agent and the oxygen scavenger may be injected into each by utilizing the pumping force of the pump. As shown in FIG. A pH adjusting agent inlet 37 and an oxygen scavenger inlet 38 are provided in the downcomer 40 connecting the vaporizer 42 and the low pressure evaporator 26, and a pH adjusting agent and an oxygen scavenger are injected into each by using the pumping force of the pump. As shown in FIG. Even if a pH adjusting agent inlet 37 and an oxygen scavenger inlet 38 are provided in the medium-high pressure water supply pipe 41 connected to the deaerator 42 and the pH adjusting agent and the oxygen scavenger are injected into each by using the pumping force of the pump. Good.

本発明に係る給水処理方法および給水処理装置を組み込んだコンバインドサイクル発電プラントの全体概略系統図。BRIEF DESCRIPTION OF THE DRAWINGS The whole schematic system diagram of the combined cycle power plant incorporating the water supply processing method and water supply processing apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第1実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 1st Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第2実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 2nd Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第3実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 3rd Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第4実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 4th Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第5実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 5th Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第6実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 6th Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention. 本発明に係る水質管理方法および水質管理装置を組み込んだ第7実施形態を示すコンバインドサイクル発電設備の部分概略系統図。The partial schematic system diagram of the combined cycle power generation equipment which shows 7th Embodiment incorporating the water quality management method and water quality management apparatus which concern on this invention.

符号の説明Explanation of symbols

1 ガスタービンプラント
2 蒸気タービンプラント
3 回転軸
4 排熱回収ボイラ
5 発電機
6 空気圧縮機
7 燃焼器
8 ガスタービン
9 高圧タービン
10 中圧タービン
11 低圧タービン
12 復水器
13 再熱器
13a ポンプ
14 第1高圧過熱器
15 第2高圧過熱器
16 第3高圧過熱器
17 高圧ドラム
18 高圧蒸発器
19 中圧過熱器
20 高圧節炭器
21 低圧過熱器
22 中圧ドラム
23 中圧蒸発器
24 中節炭器
25 低圧ドラム
26 低圧蒸発器
27 低圧節炭器
28 低圧ポンプ
28a 低温再熱管
29 高圧ポンプ
30 再熱器減温器
31 高圧過熱器減温器
32 復水給水管
33 pH調整剤注入ポンプ
34 リン酸ソーダ注入ポンプ
35 高圧ドラムリン酸ソーダ注入ポンプ
36 中圧ドラムリン酸ソーダ注入ポンプ
37 pH調整剤注入口
38 脱酸素剤注入口
39 ポンプ
40 降水管
41 中高圧給水管
42 脱気器
DESCRIPTION OF SYMBOLS 1 Gas turbine plant 2 Steam turbine plant 3 Rotating shaft 4 Waste heat recovery boiler 5 Generator 6 Air compressor 7 Combustor 8 Gas turbine 9 High pressure turbine 10 Medium pressure turbine 11 Low pressure turbine 12 Condenser 13 Reheater 13a Pump 14 First high pressure superheater 15 Second high pressure superheater 16 Third high pressure superheater 17 High pressure drum 18 High pressure evaporator 19 Medium pressure superheater 20 High pressure economizer 21 Low pressure superheater 22 Medium pressure drum 23 Medium pressure evaporator 24 Medium joint Charcoal unit 25 Low pressure drum 26 Low pressure evaporator 27 Low pressure economizer 28 Low pressure pump 28a Low temperature reheat pipe 29 High pressure pump 30 Reheater temperature reducer 31 High pressure superheater temperature reducer 32 Condensate feed pipe 33 pH adjuster injection pump 34 Sodium phosphate injection pump 35 High pressure drum sodium phosphate injection pump 36 Medium pressure drum sodium phosphate injection pump 37 pH adjuster injection port 38 Deoxygenation Agent inlet 39 Pump 40 Precipitation pipe 41 Medium-high pressure water supply pipe 42 Deaerator

Claims (10)

低圧蒸気タービンと、
この低圧蒸気タービンの排気蒸気が凝縮した復水を低圧ドラムに供給する復水給水管と、
ポンプを介してこの復水給水管に接続され、水質管理のためのpH調整剤と脱酸素剤とを前記復水に注入する薬品注入系統と、
を有するコンバインドサイクル発電設備において、
前記低圧ドラムに直接、または前記低圧ドラムに接続される配管のいずれか1箇所に水質管理のためのpH調整剤と脱酸素剤とを注入する注入口を設けたこと
を特徴とするコンバインドサイクル発電設備。
A low pressure steam turbine;
A condensate water supply pipe for supplying condensate condensed with the exhaust steam of the low-pressure steam turbine to the low-pressure drum;
A chemical injection system that is connected to the condensate water supply pipe via a pump and injects a pH adjusting agent and an oxygen scavenger for water quality management into the condensate;
In a combined cycle power generation facility having
A combined cycle power generation characterized in that an inlet for injecting a pH adjusting agent and a deoxygenating agent for water quality management is provided either directly on the low pressure drum or on a pipe connected to the low pressure drum. Facility.
請求項1記載のコンバインドサイクルプラント設備において、
前記低圧ドラムに接続される配管は低圧ドラムの降水管であること
を特徴とするコンバインドサイクル発電設備。
In the combined cycle plant equipment according to claim 1,
The combined cycle power generation facility is characterized in that the pipe connected to the low pressure drum is a downcomer of the low pressure drum.
請求項1記載のコンバインドサイクル発電設備において、
前記低圧ドラムに接続される配管は低圧ドラム下流側に接続される中高圧給水管であること
を特徴とするコンバインドサイクル発電設備。
In the combined cycle power generation facility according to claim 1,
The combined cycle power generation facility characterized in that the pipe connected to the low-pressure drum is a medium-high pressure water supply pipe connected to the downstream side of the low-pressure drum.
請求項1記載のコンバインドサイクル発電設備において、
前記低圧ドラム上流側に脱気器を設けるとともに、
前記低圧ドラムに接続される配管はこの脱気器と低圧ドラムとを接続される配管であること
を特徴とするコンバインドサイクル発電設備。
In the combined cycle power generation facility according to claim 1,
While providing a deaerator upstream of the low-pressure drum,
The combined cycle power generation facility characterized in that the pipe connected to the low pressure drum is a pipe connecting the deaerator and the low pressure drum.
請求項1記載のコンバインドサイクル発電設備において、
前記低圧ドラム上流側に脱気器を設けるとともに、
前記低圧ドラムに接続される配管はこの脱気器と
低圧ドラムとを接続される配管と、前記脱気器に接続させる復水給水管とであること
を特徴とするコンバインドサイクル発電設備。
In the combined cycle power generation facility according to claim 1,
While providing a deaerator upstream of the low-pressure drum,
The pipe connected to the low-pressure drum is a pipe connecting the deaerator and the low-pressure drum and a condensate water supply pipe connected to the deaerator.
請求項5記載のコンバインドサイクル発電設備において、
前記復水給水管は、低圧節炭器を備えたこと
を特徴とするコンバインドサイクル発電設備。
In the combined cycle power generation facility according to claim 5,
The combined cycle power generation facility, wherein the condensate water supply pipe includes a low-pressure economizer.
低圧蒸気タービンの排気蒸気が凝縮した復水にpH調整剤および脱酸素剤を加えてその水質管理を行う際に、
低圧タービンから低圧ドラムに前記復水を供給する復水給水管に設けた薬品注入系統を介して注入するのに加え、
前記低圧ドラムに直接、または前記低圧ドラムに接続される配管のいずれか1箇所に設けた注入口から前記pH調整剤と脱酸素剤とを注入すること
を特徴とするコンバインドサイクル発電設備の水質管理方法。
When adding a pH adjuster and oxygen scavenger to the condensate where the exhaust steam from the low-pressure steam turbine is condensed,
In addition to injecting through a chemical injection system provided in a condensate water supply pipe for supplying the condensate from a low pressure turbine to a low pressure drum,
Water quality management of a combined cycle power generation facility, wherein the pH adjusting agent and the oxygen scavenger are injected directly into the low pressure drum or from an inlet provided in any one of pipes connected to the low pressure drum. Method.
請求項7記載のコンバインドサイクル発電設備の水質管理方法において、
前記低圧ドラムに接続される配管は低圧ドラムの降水管であること
を特徴とするコンバインドサイクル発電設備の水質管理方法。
In the water quality management method of the combined cycle power generation facility according to claim 7,
The pipe connected to the low-pressure drum is a downcomer of the low-pressure drum, and is a water quality management method for a combined cycle power generation facility.
請求項7記載のコンバインドサイクル発電設備の水質管理方法において、
前記低圧ドラムに接続される配管は低圧ドラム下流側に接続される中高圧給水管であること
を特徴とするコンバインドサイクル発電設備の水質管理方法。
In the water quality management method of the combined cycle power generation facility according to claim 7,
The pipe connected to the low-pressure drum is a medium-high pressure water supply pipe connected to the downstream side of the low-pressure drum, and is a water quality management method for a combined cycle power generation facility.
請求項7記載のコンバインドサイクル発電設備の水質管理方法において、
前記低圧ドラム上流側に脱気器を設けるとともに、
前記低圧ドラムに接続される配管はこの脱気器と低圧ドラムとを接続される配管であること
を特徴とするコンバインドサイクル発電設備の水質管理方法。
In the water quality management method of the combined cycle power generation facility according to claim 7,
While providing a deaerator upstream of the low-pressure drum,
The pipe connected to the low-pressure drum is a pipe connected to the deaerator and the low-pressure drum.
JP2006123064A 2006-04-27 2006-04-27 Combined cycle power generation facility and water quality management method for combined cycle power generation facility Pending JP2007292414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123064A JP2007292414A (en) 2006-04-27 2006-04-27 Combined cycle power generation facility and water quality management method for combined cycle power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123064A JP2007292414A (en) 2006-04-27 2006-04-27 Combined cycle power generation facility and water quality management method for combined cycle power generation facility

Publications (1)

Publication Number Publication Date
JP2007292414A true JP2007292414A (en) 2007-11-08

Family

ID=38763186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123064A Pending JP2007292414A (en) 2006-04-27 2006-04-27 Combined cycle power generation facility and water quality management method for combined cycle power generation facility

Country Status (1)

Country Link
JP (1) JP2007292414A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146249A1 (en) * 2014-03-28 2015-10-01 三菱日立パワーシステムズ株式会社 Injection device and steam turbine equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146249A1 (en) * 2014-03-28 2015-10-01 三菱日立パワーシステムズ株式会社 Injection device and steam turbine equipment
JP2015190440A (en) * 2014-03-28 2015-11-02 三菱日立パワーシステムズ株式会社 Injection device, and steam turbine facility
US10107491B2 (en) 2014-03-28 2018-10-23 Mitsubishi Hitachi Power Systems, Ltd. Injection device and steam turbine system

Similar Documents

Publication Publication Date Title
US7793501B2 (en) Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
JP6245404B1 (en) Combustion equipment and power generation equipment
CN106122929B (en) A add medicine and sampling system for combined cycle generating set multi-pressure exhaust-heat boiler
JP4918517B2 (en) Turbine equipment water quality monitoring method
US10760453B2 (en) Feedwater system of combined cycle power plant
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
US6446440B1 (en) Steam injection and inlet fogging in a gas turbine power cycle and related method
US20070227154A1 (en) System and method for producing injection-quality steam for combustion turbine power augmentation
US9470112B2 (en) System and method for heat recovery and steam generation in combined cycle systems
JP4233746B2 (en) Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method
US7146795B2 (en) System and method for producing injection-quality steam for combustion turbine power augmentation
JP4814077B2 (en) Turbine equipment, exhaust heat recovery boiler device, and operation method of turbine equipment
JP5613921B2 (en) Exhaust heat recovery boiler and method for preventing corrosion in the can
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JP2007292414A (en) Combined cycle power generation facility and water quality management method for combined cycle power generation facility
JP2007224820A (en) Turbine facilities, heat recovery steam generator and water treatment method
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP2004198006A (en) Iron ion crystallization restricting system and superheated steam plant
JP2008075966A (en) Once-through exhaust heat recovery boiler
KR102295007B1 (en) Boiler system
JP2002371861A (en) Steam injection gas turbine generator
JP2005313116A (en) Apparatus and method for treating water of combined cycle electric power plant, and combined cycle electric power plant
JP2007064501A (en) Steaming method for boiler plant, boiler plant, and steaming device for boiler plant