JP4233746B2 - Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method - Google Patents

Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method Download PDF

Info

Publication number
JP4233746B2
JP4233746B2 JP2000373866A JP2000373866A JP4233746B2 JP 4233746 B2 JP4233746 B2 JP 4233746B2 JP 2000373866 A JP2000373866 A JP 2000373866A JP 2000373866 A JP2000373866 A JP 2000373866A JP 4233746 B2 JP4233746 B2 JP 4233746B2
Authority
JP
Japan
Prior art keywords
drum
pressure
heat recovery
recovery boiler
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000373866A
Other languages
Japanese (ja)
Other versions
JP2002180804A (en
Inventor
仙市 椿崎
敬 森本
雅詞 長尾
正 栄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000373866A priority Critical patent/JP4233746B2/en
Publication of JP2002180804A publication Critical patent/JP2002180804A/en
Application granted granted Critical
Publication of JP4233746B2 publication Critical patent/JP4233746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は排熱回収ボイラ装置と蒸気タービンとを組み合わせたタービン設備及び熱源からの熱により蒸気を発生させる排熱回収ボイラ装置及び排熱回収ボイラのドラムの水処理を行う水処理方法に関する。
【0002】
【従来の技術】
エネルギー資源の有効利用と経済性の観点から、発電設備(発電プラント)では様々な高効率化が図られている。例えば、ガスタービンと蒸気タービンを組み合わせたタービン発電プラント(複合発電プラント)もその一つである。複合発電プラントでは、ガスタービンからの高温の排気ガスが排熱回収ボイラ装置に送られ、排熱回収ボイラ装置内で過熱ユニットを介して蒸気を発生させ、発生した蒸気を蒸気タービンに送って蒸気タービンで仕事をするようになっている。過熱ユニットは節炭器、過熱器、ボイラ(ドラム及び蒸発器)等を有しており、ボイラの熱回収率を向上させるため、複数段(例えば、高圧、中圧、低圧)の過熱ユニットが備えられている。そして、高圧、中圧、低圧の過熱ユニットのそれぞれに過熱器やドラム等が備えられている。
【0003】
排熱回収ボイラ装置では、過熱ユニットが圧力別に多重に設けられ、各ユニット間で水や蒸気等が送られる配管が多数設けられ、また、蒸気タービンとの間で蒸気が送られる配管が設けられている。これら配管はりん酸塩処理やアルカリ処理(水処理)が施されて浸食・腐食(エロージョン・コロージョン)等が防止されている。具体的には、過熱ユニットのドラム内にりん酸ナトリウムや苛性ソーダを注入してりん酸処理またはアルカリ処理を施し、配管内のエロージョン・コロージョンを防止している。
【0004】
【発明が解決しようとする課題】
従来の排熱回収ボイラ装置における水処理では、りん酸塩処理やアルカリ処理により配管内のエロージョン・コロージョンを防止しているが、過熱ユニットが圧力別に多重に設けられた排熱回収ボイラ装置では、注入したりん酸ナトリウムやアルカリが特に高圧ボイラ部で濃縮してアルカリ腐食が発生する問題が生じていた。また、近年は、環境問題等から排出されるリンの規制が問題になってきている。
【0005】
本発明は上記状況に鑑みてなされたもので、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができるタービン設備及び排熱回収ボイラ装置及び水処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明のタービン設備の構成は、
熱源からの熱によって蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラの蒸気により作動する蒸気タービンと、
蒸気タービンの排気を復水する復水器と、
復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラのドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け
復水器で凝縮された復水からアンモニアを回収するアンモニア回収手段を備えた
ことを特徴とする。
【0008】
また、上記目的を達成するための本発明のタービン設備の構成は、
熱源からの熱によって蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラの蒸気により作動する蒸気タービンと、
蒸気タービンの排気を復水する復水器と、
復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラのドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け
復水器で凝縮された復水からアンモニアを回収するアンモニア回収手段を備えた
ことを特徴とする。
【0009】
た、熱源からの熱はガスタービンの排気であるコンバインドプラントであることを特徴とする。
【0010】
上記目的を達成するための本発明の排熱回収ボイラ装置の構成は、
高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラに給水する給水系統とからなる排熱回収ボイラ装置において、
排熱回収ボイラの低圧側ユニットのドラム内の給水のpHを9.0以上とするように給水系統に薬剤を注入する薬剤注入手段を設け
排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、
中圧ドラムが低圧側ユニットのドラムとされ、
高圧ドラムが高圧側ユニットのドラムとされ、
中圧ドラム及び高圧ドラムに給水を行う高・中圧給水ポンプが備えられ、
低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされ、
中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、
高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けた
ことを特徴とする。
【0011】
また、上記目的を達成するための本発明の排熱回収ボイラ装置の構成は、
高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラに給水する給水系統とからなる排熱回収ボイラ装置において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラの低圧側ユニットのドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け
排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、
中圧ドラムが低圧側ユニットのドラムとされ、
高圧ドラムが高圧側ユニットのドラムとされ、
中圧ドラム及び高圧ドラムに給水を行う高・中圧給水ポンプが備えられ、
低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされ、
中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、
高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けた
ことを特徴とする。
【0012】
また、上記目的を達成するための本発明の排熱回収ボイラ装置の構成は、
高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラに給水する給水系統とからなる排熱回収ボイラ装置において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラの低圧側ユニットのドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け
排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、
中圧ドラムが低圧側ユニットのドラムとされ、
高圧ドラムが高圧側ユニットのドラムとされ、
中圧ドラム及び高圧ドラムに給水を行う高・中圧給水ポンプが備えられ、
低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされ、
中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、
高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けた
ことを特徴とする。
【0016】
上記目的を達成するための本発明の水処理方法は、
熱源からの熱によってドラムの給水を蒸発・過熱することで蒸気を発生させる排熱回収ボイラの水処理方法において、
ドラム内の給水のpHを9.0以上とするように、ドラムへ供給する給水に薬剤を注入して、ドラムへ供給する給水のpHを9.9、10.0、または10.3とする
ことを特徴とする。
【0019】
【発明の実施の形態】
図1には本発明の第1実施形態例に係る排熱回収ボイラ装置を備えたタービン設備の全体系統、図2にはアンモニアの分配率と圧力との関係を表すグラフ、図3にはボイラ水のpH及びアンモニア濃度を説明する表を示してある。
【0020】
図1に示すように、ガスタービン1からの排気ガスが排熱回収ボイラ2に送られるようになっており、排熱回収ボイラ2には高圧過熱ユニット3、中圧過熱ユニット4及び低圧過熱ユニット5が備えられている。排熱回収ボイラ2内では高圧過熱ユニット3、中圧過熱ユニット4及び低圧過熱ユニット5を介して蒸気を発生させ、発生した蒸気を蒸気タービン6に送って蒸気タービン6で仕事をするようになっている。蒸気タービン6の排気は復水器8で凝縮されて復水され、復水ポンプ9により排熱回収ボイラ2に導入される。排熱回収ボイラ装置は、排熱回収ボイラ2及び復水ポンプ9からの給水ライン7(給水系統)によって構成されている。
【0021】
高圧過熱ユニット3は、高圧過熱器11、高圧ドラム12、高圧蒸発器13及び高圧節炭器14を有している。高圧ドラム12の水は排熱回収ボイラ2内に配された高圧蒸発器13で過熱循環され、高圧ドラム12内で高圧蒸気を発生する。高圧ドラム12で発生した高圧蒸気は排熱回収ボイラ2内に配された高圧過熱器11で過熱されて蒸気タービン6に導入される。
【0022】
中圧過熱ユニット4は、中圧過熱器21、中圧ドラム22、中圧蒸発器23及び中圧節炭器24を有している。中圧ドラム22の水は排熱回収ボイラ2内に配された中圧蒸発器23で過熱循環され、中圧ドラム22内で中圧蒸気を発生する。中圧ドラム22で発生した中圧蒸気は中圧過熱器21を通って再熱器25に導入され、再熱器25で再熱されて蒸気タービン6に導入される。中圧過熱器21からの蒸気はガスタービン1の高温部(燃焼器や翼等)の冷却用としてガスタービン1側に導入される。
【0023】
低圧過熱ユニット5は、低圧過熱器31、低圧ドラム32、低圧蒸発器33及び低圧節炭器34を有している。低圧ドラム32の水は排熱回収ボイラ2内に配された低圧蒸発器33で過熱循環され、低圧ドラム32内で低圧蒸気を発生する。低圧ドラム32で発生した低圧蒸気は低圧過熱器21を通って蒸気タービン6に導入される。
【0024】
低圧ドラム32には、復水器8からの復水が脱気器10及び低圧節炭器34を介して給水される。低圧節炭器34の出口側の流路は高圧ドラム12及び中圧ドラム22につながる給水ライン41が設けられ、給水ライン41からは、高圧給水ポンプ42を介して高圧ドラム12に給水が行われ、中圧給水ポンプ43を介して中圧ドラム22に給水が行われる。即ち、低圧ドラム32及び中圧ドラム22及び高圧ドラム12に並行に給水が行われるようになっており、低圧ドラム32が低圧側ユニットのドラムとされ、中圧ドラム22及び高圧ドラム12が高圧側ユニットのドラムとされている。
【0025】
尚、脱気器10の入口側で復水の一部が復水器8に戻され、給水ライン41から分岐して脱気器10側に一部の水が戻されるようになっている。排熱回収ボイラ2内の各機器の配置は一例であり、節炭器や過熱器の台数や配置はガスタービン1の性能等により適宜変更されるものである。
【0026】
給水系統である給水ライン7にはpH調整剤のアンモニアと脱酸素剤のヒドラジンを注入する薬剤注入手段45が設けられている。薬剤注入手段45からはpH調整用として給水に所定量のアンモニアが注入され、低圧ドラム32内の給水のpHを9.0以上としていると共にアンモニア濃度を0.5ppm以上となるようにしている。
【0027】
一般に、給水のpHが9.0を下回ると流れによるエロージョン・コロージョン(腐食・浸食)の発生が懸念される。このため、低圧ドラム32内の給水のpHを9.0以上としている。低圧ドラム32内の給水の圧力は高圧ドラム12及び中圧ドラム22の給水の圧力よりも低く、アンモニアは蒸発しやすく圧力が低い程気相側に混合しやすい(液相に混合しにくい)ので、即ち、気相と液相との分配率の値が高いので、低圧ドラム32内の給水のpHを9.0以上とすることで高圧ドラム12及び中圧ドラム22の給水のpHを9.0よりも高い値にすることができる。
【0028】
図2に示すように、給水の圧力(kg/cm2 )が高くなるにしたがって、アンモニアの分配率[NH3 (V:気相)/NH3 (L:液相)]が低くなる。例えば、高圧ドラム12の圧力が130(kg/cm2 )、中圧ドラム22の圧力が30(kg/cm2 )、低圧ドラム32の圧力が5(kg/cm2 )と設定されている場合に、高圧ドラム12での分配率は2.8、中圧ドラム22での分配率が5.5、低圧ドラム32での分配率が10.0となる。このため、低圧ドラム32では、アンモニアが1:10の割合で給水の液相と気相とに分配され、中圧ドラム22ではアンモニアが1:5.5の割合で給水の液相と気相とに分配され、高圧ドラム12では、1:2.8の割合で給水の液相と気相とに分配されることになる。
【0029】
上述した排熱回収ボイラ2を備えたタービン設備の水処理方法では、薬剤注入手段45からは給水に所定量のアンモニアを注入し、給水のpHが、例えば、9.9になるようにし、アンモニア濃度が8ppmになるようにする。これにより、図3に示すように、低圧ドラム32の給水のpHが9.3でアンモニア濃度が0.8ppm(分配率が10.0のため)となる。また、中圧ドラム22の給水のpHが9.5でアンモニア濃度が約1.5ppm(分配率が5.5のため)となる。また、高圧ドラム12の給水のpHが9.7でアンモニア濃度が約2.9ppm(分配率が2.8のため)となる。
【0030】
従って、給水のpHが最低となる低圧ドラム32内の給水のpHを9.0以上(pH:9.3)とすることで、中圧ドラム22及び高圧ドラム12の給水のpHが9.0以上となる。また、アンモニアの分配率により、アンモニア濃度が最低となる低圧ドラム32内の給水のアンモニア濃度が0.5ppm以上(0.8ppm)となるようにアンモニアを注入することで、中圧ドラム22及び高圧ドラム12の給水のアンモニア濃度が0.5ppm以上となる。このため、適正なpH及びアンモニア濃度が維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる。また、低圧ドラム32及び中圧ドラム22及び高圧ドラム12に並行に給水が行われるため、最小限のアンモニアの量により適正なpH及びアンモニア濃度に維持することができる。
【0031】
尚、低圧ドラム32、中圧ドラム22及び高圧ドラム12の圧力設定により分配率は変わるものであり、薬剤注入手段45から注入するアンモニア量は分配率により適宜変化させ、低圧ドラム32内の給水のpHが9.0以上になると共にアンモニア濃度が0.5ppm以上となるようなpH及び濃度に給水ライン7の給水が調整される。
【0032】
図4、図5に基づいて本発明の第2実施形態例を説明する。図4には本発明の第2実施形態例に係る排熱回収ボイラ装置を備えたタービン設備の全体系統、図5にはボイラ水のpHを説明する表を示してある。尚、図1に示した第1実施形態例と同一部材には同一符号を付して重複する説明は省略してある。
【0033】
図示のタービン設備の排熱回収ボイラ2は、給水ライン7からの給水が低圧節炭器34に送られ、低圧節炭器34から脱気器10を介して低圧ドラム32に給水が行われる。そして、低圧ドラム32の水が給水ライン41から中圧過熱ユニット4の中圧節炭器24及び高圧過熱ユニット3の高圧節炭器14に送られ、給水ライン41には高・中圧給水ポンプ47が設けられている。即ち、低圧ドラム32の水が中圧ドラム22及び高圧ドラム12の給水とされ、中圧ドラム22が低圧側ユニットのドラムとされ、高圧ドラム12が高圧側ユニットのドラムとされている。
【0034】
給水系統である給水ライン7にはアンモニアを注入する薬剤注入手段45が設けられている。薬剤注入手段45からは給水に所定量のアンモニアが注入され、中圧ドラム22内の給水のpHを9.0以上としていると共にアンモニア濃度を0.5ppm以上となるようにしている。
【0035】
上述した排熱回収ボイラ2を備えたタービン設備の水処理方法では、低圧ドラム32の水が中圧ドラム22及び高圧ドラム12の給水とされているため、前述した分配率の関係から、薬剤注入手段45からは給水に所定量のアンモニアを注入し、給水のpHが、例えば、10.3になるようにし、アンモニア濃度が44ppmになるようにする。これにより、図5に示すように、低圧ドラム32の給水のpHが9.8でアンモニア濃度が4.4ppm(分配率が10.0のため)となる。また、中圧ドラム22の給水のpHが9.3でアンモニア濃度が約0.8ppm(分配率が5.5でアンモニア濃度が4.4ppmの低圧ドラム32の水が給水されるため)となる。また、高圧ドラム12の給水のpHが9.5でアンモニア濃度が約1.6ppm(分配率が2.8でアンモニア濃度が4.4ppmの低圧ドラム32の水が給水されるため)となる。
【0036】
従って、給水のpHが最低となる中圧ドラム22内の給水のpHを9.0以上(pH:9.3)とすることで、低圧ドラム32及び高圧ドラム12の給水のpHが9.0以上となる。また、アンモニアの分配率により、アンモニア濃度が最低となる中圧ドラム22内の給水のアンモニア濃度が0.5ppm以上(0.8ppm)となるようにアンモニアを注入することで、低圧ドラム32及び高圧ドラム12の給水のアンモニア濃度が0.5ppm以上となる。このため、給水ポンプを高・中圧給水ポンプ47の1台としてコストを低減させた排熱回収ボイラ装置で、適正なpH及びアンモニア濃度が維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる。
【0037】
図6に基づいて本発明の第3実施形態例を説明する。図6には本発明の第3実施形態例に係る排熱回収ボイラ装置を備えたタービン設備の全体系統を示してある。尚、図4に示した第2実施形態例と同一部材には同一符号を付して重複する説明は省略してある。
【0038】
図示の実施形態例では、高圧過熱ユニット3の高圧節炭器13の入口側の給水ライン41に高圧ドラム薬剤注入手段16が設けられ、中圧過熱ユニット4の中圧節炭器24の入口側の給水ライン41に中圧ドラム薬剤注入手段17が設けられている。高圧ドラム薬剤注入手段16及び中圧ドラム薬剤注入手段17からはアンモニアが注入され、高圧ドラム12の給水及び中圧ドラム22の給水にアンモニアがそれぞれ注入される。
【0039】
上述した排熱回収ボイラ2を備えたタービン設備の水処理方法では、薬剤注入手段45から給水ライン7の給水に所定量のアンモニアが注入されると共に、高圧ドラム薬剤注入手段16及び中圧ドラム薬剤注入手段17から高圧ドラム12の給水及び中圧ドラム22の給水にアンモニアがそれぞれ注入されることで、中圧ドラム22内の給水のpHを9.0以上としていると共にアンモニア濃度を0.5ppm以上となるようにしている。
【0040】
即ち、薬剤注入手段45からは給水に所定量のアンモニアを注入し、給水のpHが、例えば、10.0になるようにする。これにより、低圧ドラム32の給水のpHが9.3となる。また、高圧ドラム薬剤注入手段16及び中圧ドラム薬剤注入手段17からのアンモニアの注入により、中圧ドラム22の給水のpHが9.5となり、また、高圧ドラム12の給水のpHが9.7となる。また、アンモニア濃度についても0.5ppm以上に維持されている。
【0041】
従って、給水のpHが最低となる中圧ドラム22内の給水のpHを9.0以上(pH:9.3)とすることで、低圧ドラム32及び高圧ドラム12の給水のpHが9.0以上となる。このため、給水ポンプを高・中圧給水ポンプ47の1台としてコストを低減させた排熱回収ボイラ装置で、少ないアンモニアの量で適正なpH及びアンモニア濃度が維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる。
【0042】
上述した各実施形態例において、アンモニアを系外に排出しないようにするため、復水器8で凝縮された復水からアンモニアを分離・回収するアンモニア回収手段を設けることができる。図7にはアンモニア回収手段を備えた復水器の要部構成を示してある。
【0043】
図7に示すように、復水器8からの復水を真空ポンプ51で冷却器52に導入し、冷却器52で復水を冷却してアンモニアを分離する。分離されたアンモニアは図示しないタンクに回収されると共に、アンモニアが除かれた復水は系外に排出される。または、圧力が同等のラインに合流される。アンモニアを回収することで、アンモニアの排出がなくなり、環境に対して有利となる。
【0044】
上述した実施形態例は、ガスタービン1と蒸気タービン6を組み合わせたコンバインドサイクルの排熱回収ボイラ2として本願発明を適用した例を説明したが、多重圧力ボイラを有する排熱回収のボイラであれば、火力発電プラントのボイラに本発明を適用することも可能である。
【0045】
【発明の効果】
本発明のタービン設備は、熱源からの熱によって蒸気を発生させる排熱回収ボイラと、排熱回収ボイラの蒸気により作動する蒸気タービンと、蒸気タービンの排気を復水する復水器と、復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、排熱回収ボイラのドラム内の給水のpHを9.0以上とするように給水系統に薬剤を注入する薬剤注入手段を設けたので、ドラム内の給水のpHが9.0以上に維持される。この結果、配管内が適正なpHに維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができるタービン設備とすることが可能となる。
【0046】
また、本発明のタービン設備は、熱源からの熱によって蒸気を発生させる排熱回収ボイラと、排熱回収ボイラの蒸気により作動する蒸気タービンと、蒸気タービンの排気を復水する復水器と、復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、排熱回収ボイラのドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設けたので、ドラム内の給水のアンモニア濃度が0.5ppm以上に維持される。この結果、配管内が適正なアンモニア濃度に維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができるタービン設備とすることが可能となる。
【0047】
また、本発明のタービン設備は、熱源からの熱によって蒸気を発生させる排熱回収ボイラと、排熱回収ボイラの蒸気により作動する蒸気タービンと、蒸気タービンの排気を復水する復水器と、復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、排熱回収ボイラのドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設けたので、ドラム内の給水のpHが9.0以上に維持されると共に、アンモニア濃度が0.5ppm以上に維持される。この結果、配管内が適正なpH及びアンモニア濃度に維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができるタービン設備とすることが可能となる。
【0048】
そして、復水器で凝縮された復水からアンモニアを回収するアンモニア回収手段を備えたので、アンモニアの排出がなくなり、環境に対して有利となる。
【0049】
また、熱源からの熱はガスタービンの排気であるコンバインドプラントであるので、ガスタービンと蒸気タービンを組み合わせたコンバインドプラントでアルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができるタービン設備とすることが可能となる。
【0050】
本発明の排熱回収ボイラ装置は、高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、排熱回収ボイラに給水する給水系統と、からなる排熱回収ボイラ装置において、排熱回収ボイラの低圧側ユニットのドラム内の給水のpHを9.0以上とするように給水系統に薬剤を注入する薬剤注入手段を設けたので、pHが最低となる低圧側ユニットのドラム内の給水のpHが9.0以上に維持される。この結果、高圧側ユニットを含めてドラム内の給水のpHが9.0以上となり、配管内が適正なpHに維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる排熱回収ボイラ装置とすることが可能となる。
【0051】
また、本発明の排熱回収ボイラ装置は、高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、排熱回収ボイラに給水する給水系統と、からなる排熱回収ボイラ装置において、給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、排熱回収ボイラの低圧側ユニットのドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設けたので、気相側への分配率が高くアンモニア濃度が最低となる低圧側ユニットのドラム内の給水のアンモニア濃度が0.5ppm以上に維持される。この結果、高圧側ユニットを含めてドラム内の給水のアンモニア濃度が0.5ppm以上になり、配管内が適正なアンモニア濃度に維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる排熱回収ボイラ装置とすることが可能となる。
【0052】
また、本発明の排熱回収ボイラ装置は、高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、排熱回収ボイラに給水する給水系統と、からなる排熱回収ボイラ装置において、給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、排熱回収ボイラの低圧側ユニットのドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設けたので、pHが最低となる低圧側ユニットのドラム内の給水のpHが9.0以上に維持されると共に、気相側への分配率が高くアンモニア濃度が最低となる低圧側ユニットのドラム内の給水のアンモニア濃度が0.5ppm以上に維持される。この結果、高圧側ユニットを含めてドラム内の給水のpHが9.0以上となると共に給水のアンモニア濃度が0.5ppm以上になり、配管内が適正なpH及びアンモニア濃度に維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる排熱回収ボイラ装置とすることが可能となる。
【0053】
また、排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、低圧ドラムが低圧側ユニットのドラムとされ、中圧ドラム及び高圧ドラムが高圧側ユニットのドラムとされ、中圧ドラムに給水を行う中圧給水ポンプが備えられ、高圧ドラムに給水を行う高圧給水ポンプが備えられ、低圧ドラム及び中圧ドラム及び高圧ドラムに並行に給水が行われるので、少ないアンモニア系薬剤により適正なpH及びアンモニア濃度に配管内を維持することができる。
【0054】
また、排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、中圧ドラムが低圧側ユニットのドラムとされ、高圧ドラムが高圧側ユニットのドラムとされ、中圧ドラム及び高圧ドラムに給水をを行う高・中圧給水ポンプが備えられ、低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされているので、低コストの設備で適正なpH及びアンモニア濃度に配管内を維持することができる。
【0055】
また、中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けたので、 低コストの設備でしかも少ないアンモニア系薬剤により適正なpH及びアンモニア濃度に配管内を維持することができる。
【0056】
本発明の水処理方法は、熱源からの熱によってドラムの給水を蒸発・過熱することで蒸気を発生させる排熱回収ボイラの水処理方法において、ドラム内の給水のpHを9.0以上とするように給水に薬剤を注入するようにしたので、ドラム内の給水のpHが9.0以上に維持され、配管内が適正なpHに維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる。
【0057】
また、本発明の水処理方法は、熱源からの熱によってドラムの給水を蒸発・過熱することで蒸気を発生させる排熱回収ボイラの水処理方法において、ドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水にアンモニア系薬剤を注入するようにしたので、ドラム内の給水のアンモニア濃度が0.5ppm以上に維持され、配管内が適正なアンモニア濃度に維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる。
【0058】
また、本発明の水処理方法は、熱源からの熱によってドラムの給水を蒸発・過熱することで蒸気を発生させる排熱回収ボイラの水処理方法において、ドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水にアンモニア系薬剤を注入するようにしたので、ドラム内の給水のpHが9.0以上に維持されると共にアンモニア濃度が0.5ppm以上に維持され、配管内が適正なpH及びアンモニア濃度に維持され、アルカリ腐食の問題をなくして配管内のエロージョン・コロージョンを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例に係る排熱回収ボイラ装置を備えたタービン設備の全体系統図。
【図2】アンモニアの分配率と圧力との関係を表すグラフ。
【図3】ボイラ水のpH及びアンモニア濃度を説明する表図。
【図4】本発明の第2実施形態例に係る排熱回収ボイラ装置を備えたタービン設備の全体系統図。
【図5】ボイラ水のpHを説明する表図。
【図6】本発明の第3実施形態例に係る排熱回収ボイラ装置を備えたタービン設備の全体系統図。
【図7】アンモニア回収手段を備えた復水器の要部構成図。
【符号の説明】
1 ガスタービン
2 排熱回収ボイラ
3 高圧過熱ユニット
4 中圧過熱ユニット
5 低圧過熱ユニット
6 蒸気タービン
7 給水ライン
8 復水器
9 給水ポンプ
10 脱気器
11 高圧過熱器
12 高圧ドラム
13 高圧蒸発器
14 高圧節炭器
16 高圧ドラム薬剤注入手段
17 中圧ドラム薬剤注入手段
21 中圧過熱器
22 中圧ドラム
23 中圧蒸発器
24 中圧節炭器
25 再熱器
31 低圧過熱器
32 低圧ドラム
33 低圧蒸発器
34 低圧節炭器
41 給水ライン
42 高圧給水ポンプ
43 中圧給水ポンプ
45 薬剤注入手段
47 中・高圧給水ポンプ
51 真空ポンプ
52 冷却器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a turbine equipment that combines an exhaust heat recovery boiler apparatus and a steam turbine, an exhaust heat recovery boiler apparatus that generates steam by heat from a heat source, and a water treatment method that performs water treatment of a drum of the exhaust heat recovery boiler.
[0002]
[Prior art]
From the viewpoint of effective use of energy resources and economic efficiency, various efficiency improvements have been made in power generation facilities (power generation plants). For example, a turbine power plant (combined power plant) combining a gas turbine and a steam turbine is one of them. In a combined power plant, high-temperature exhaust gas from a gas turbine is sent to an exhaust heat recovery boiler device, steam is generated in the exhaust heat recovery boiler device via an overheating unit, and the generated steam is sent to a steam turbine to generate steam. I'm starting to work on a turbine. The superheating unit has a economizer, superheater, boiler (drum and evaporator), etc. In order to improve the heat recovery rate of the boiler, multiple stages (for example, high pressure, medium pressure, low pressure) Is provided. Each of the high pressure, medium pressure, and low pressure superheating units is provided with a superheater, a drum, and the like.
[0003]
In the exhaust heat recovery boiler apparatus, multiple superheat units are provided for each pressure, a number of pipes through which water and steam are sent between the units, and a pipe through which steam is sent to and from the steam turbine are provided. ing. These pipes are subjected to phosphate treatment and alkali treatment (water treatment) to prevent erosion and corrosion (erosion and corrosion). Specifically, sodium phosphate or caustic soda is injected into the drum of the superheating unit to perform phosphoric acid treatment or alkali treatment to prevent erosion / corrosion in the piping.
[0004]
[Problems to be solved by the invention]
In the water treatment in the conventional exhaust heat recovery boiler device, erosion and corrosion in the piping is prevented by phosphate treatment and alkali treatment, but in the exhaust heat recovery boiler device in which the overheating unit is provided in multiple according to pressure, There was a problem that the injected sodium phosphate and alkali were concentrated particularly in the high-pressure boiler section to cause alkali corrosion. In recent years, the regulation of phosphorus emitted from environmental problems has become a problem.
[0005]
The present invention has been made in view of the above situation, and it is an object of the present invention to provide a turbine equipment, an exhaust heat recovery boiler apparatus, and a water treatment method capable of preventing erosion / corrosion in piping by eliminating the problem of alkali corrosion. And
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, the configuration of the turbine equipment of the present invention includes:
  An exhaust heat recovery boiler that generates steam by heat from a heat source;
  A steam turbine operated by steam of the exhaust heat recovery boiler;
  A condenser for condensing the exhaust of the steam turbine;
  In turbine equipment consisting of a water supply system that supplies the condensate condensed in the condenser to the exhaust heat recovery boiler side,
  A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
  Provided chemical injection means for injecting ammonia chemicals into the water supply system so that the ammonia concentration in the drum of the heat recovery steam generator is 0.5 ppm or more,
  Equipped with ammonia recovery means for recovering ammonia from the condensate condensed in the condenser
It is characterized by that.
[0008]
  Moreover, the configuration of the turbine equipment of the present invention for achieving the above object is as follows:
  An exhaust heat recovery boiler that generates steam by heat from a heat source;
  A steam turbine operated by steam of the exhaust heat recovery boiler;
  A condenser for condensing the exhaust of the steam turbine;
  In turbine equipment consisting of a water supply system that supplies the condensate condensed in the condenser to the exhaust heat recovery boiler side,
  A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
  Provided with chemical injection means for injecting ammonia chemicals into the water supply system so that the pH of the feed water in the drum of the exhaust heat recovery boiler is 9.0 or higher and the ammonia concentration of the feed water is 0.5 ppm or higher,
  Equipped with ammonia recovery means for recovering ammonia from the condensate condensed in the condenser
It is characterized by that.
[0009]
  MaIn addition, the heat from the heat source is a combined plant that is exhaust of the gas turbine.
[0010]
  The configuration of the exhaust heat recovery boiler apparatus of the present invention for achieving the above object is as follows:
  An exhaust heat recovery boiler that consists of a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam to recover heat from the heat source and generate high-pressure side steam and low-pressure side steam;
  In an exhaust heat recovery boiler device comprising a water supply system for supplying water to an exhaust heat recovery boiler,
  Provided with chemical injection means for injecting chemical into the water supply system so that the pH of the water supply in the drum of the low pressure side unit of the exhaust heat recovery boiler is 9.0 or higher,
  The exhaust heat recovery boiler is equipped with a low pressure drum, an intermediate pressure drum and a high pressure drum,
  The medium pressure drum is the drum of the low pressure side unit,
  The high pressure drum is the drum of the high pressure side unit,
  High and medium pressure feed water pumps for supplying water to the medium and high pressure drums are provided.
  The low-pressure drum water is used as the water supply for the medium-pressure drum and the high-pressure drum,
  An intermediate pressure drum medicine injection means for injecting medicine into the water supply of the intermediate pressure drum is provided,
  High-pressure drum drug injection means for injecting drug into the high-pressure drum water supply was provided
It is characterized by that.
[0011]
  In addition, the configuration of the exhaust heat recovery boiler apparatus of the present invention for achieving the above object is as follows:
  An exhaust heat recovery boiler that consists of a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam to recover heat from the heat source and generate high-pressure side steam and low-pressure side steam;
  In an exhaust heat recovery boiler device comprising a water supply system for supplying water to an exhaust heat recovery boiler,
  A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
  A chemical injection means is provided for injecting an ammonia-based chemical into the water supply system so that the ammonia concentration of the water supply in the drum of the low-pressure side unit of the exhaust heat recovery boiler is 0.5 ppm or higher.,
  The exhaust heat recovery boiler is equipped with a low pressure drum, an intermediate pressure drum and a high pressure drum,
  The medium pressure drum is the drum of the low pressure side unit,
  The high pressure drum is the drum of the high pressure side unit,
  High and medium pressure feed water pumps for supplying water to the medium and high pressure drums are provided.
  The low-pressure drum water is used as the water supply for the medium-pressure drum and the high-pressure drum,
  An intermediate pressure drum medicine injection means for injecting medicine into the water supply of the intermediate pressure drum is provided,
  High-pressure drum drug injection means for injecting drug into the high-pressure drum water supply was provided
It is characterized by that.
[0012]
  In addition, the configuration of the exhaust heat recovery boiler apparatus of the present invention for achieving the above object is as follows:
  An exhaust heat recovery boiler that consists of a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam to recover heat from the heat source and generate high-pressure side steam and low-pressure side steam;
  In an exhaust heat recovery boiler device comprising a water supply system for supplying water to an exhaust heat recovery boiler,
  A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
  A chemical injection means is provided for injecting an ammonia-based chemical into the water supply system so that the pH of the water supply in the drum of the low-pressure side unit of the exhaust heat recovery boiler is 9.0 or higher and the ammonia concentration of the water supply is 0.5 ppm or higher.,
  The exhaust heat recovery boiler is equipped with a low pressure drum, an intermediate pressure drum and a high pressure drum,
  The medium pressure drum is the drum of the low pressure side unit,
  The high pressure drum is the drum of the high pressure side unit,
  High and medium pressure feed water pumps for supplying water to the medium and high pressure drums are provided.
  The low-pressure drum water is used as the water supply for the medium-pressure drum and the high-pressure drum,
  An intermediate pressure drum medicine injection means for injecting medicine into the water supply of the intermediate pressure drum is provided,
  High-pressure drum drug injection means for injecting drug into the high-pressure drum water supply was provided
It is characterized by that.
[0016]
  To achieve the above object, the water treatment method of the present invention comprises:
  In the water treatment method of the exhaust heat recovery boiler that generates steam by evaporating and overheating the drum feed water with the heat from the heat source,
  The pH of the feed water supplied to the drum is set to 9.9 by injecting the chemical into the feed water supplied to the drum so that the pH of the feed water in the drum is 9.0 or more.10.0, or 10.3To
It is characterized by that.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an entire system of turbine equipment provided with an exhaust heat recovery boiler apparatus according to a first embodiment of the present invention, FIG. 2 is a graph showing the relationship between ammonia distribution ratio and pressure, and FIG. 3 shows a boiler. A table illustrating the pH and ammonia concentration of water is shown.
[0020]
As shown in FIG. 1, exhaust gas from a gas turbine 1 is sent to an exhaust heat recovery boiler 2, and the exhaust heat recovery boiler 2 includes a high pressure superheat unit 3, an intermediate pressure superheat unit 4, and a low pressure superheat unit. 5 is provided. In the exhaust heat recovery boiler 2, steam is generated via the high pressure superheating unit 3, the medium pressure superheating unit 4, and the low pressure superheating unit 5, and the generated steam is sent to the steam turbine 6 to work on the steam turbine 6. ing. Exhaust gas from the steam turbine 6 is condensed and condensed by a condenser 8 and introduced into the exhaust heat recovery boiler 2 by a condensate pump 9. The exhaust heat recovery boiler device is configured by a water supply line 7 (a water supply system) from the exhaust heat recovery boiler 2 and the condensate pump 9.
[0021]
The high pressure superheater unit 3 includes a high pressure superheater 11, a high pressure drum 12, a high pressure evaporator 13, and a high pressure economizer 14. Water in the high-pressure drum 12 is superheated and circulated in a high-pressure evaporator 13 disposed in the exhaust heat recovery boiler 2 to generate high-pressure steam in the high-pressure drum 12. The high-pressure steam generated in the high-pressure drum 12 is heated by the high-pressure superheater 11 disposed in the exhaust heat recovery boiler 2 and introduced into the steam turbine 6.
[0022]
The intermediate pressure superheating unit 4 includes an intermediate pressure superheater 21, an intermediate pressure drum 22, an intermediate pressure evaporator 23, and an intermediate pressure economizer 24. Water in the intermediate pressure drum 22 is superheated and circulated in an intermediate pressure evaporator 23 disposed in the exhaust heat recovery boiler 2 to generate intermediate pressure steam in the intermediate pressure drum 22. The medium pressure steam generated in the medium pressure drum 22 is introduced into the reheater 25 through the medium pressure superheater 21, reheated by the reheater 25, and introduced into the steam turbine 6. The steam from the intermediate pressure superheater 21 is introduced to the gas turbine 1 side for cooling the high temperature portion (combustor, blades, etc.) of the gas turbine 1.
[0023]
The low pressure superheating unit 5 includes a low pressure superheater 31, a low pressure drum 32, a low pressure evaporator 33, and a low pressure economizer 34. Water in the low-pressure drum 32 is superheated and circulated by a low-pressure evaporator 33 disposed in the exhaust heat recovery boiler 2, and low-pressure steam is generated in the low-pressure drum 32. The low pressure steam generated in the low pressure drum 32 is introduced into the steam turbine 6 through the low pressure superheater 21.
[0024]
Condensate from the condenser 8 is supplied to the low pressure drum 32 via the deaerator 10 and the low pressure economizer 34. A water supply line 41 connected to the high pressure drum 12 and the intermediate pressure drum 22 is provided in the flow path on the outlet side of the low pressure economizer 34, and water is supplied from the water supply line 41 to the high pressure drum 12 via the high pressure water supply pump 42. The intermediate pressure drum 22 is supplied with water through the intermediate pressure water supply pump 43. That is, water is supplied to the low-pressure drum 32, the intermediate-pressure drum 22 and the high-pressure drum 12 in parallel. The low-pressure drum 32 is a low-pressure unit drum, and the intermediate-pressure drum 22 and the high-pressure drum 12 are the high-pressure side. It is considered as a unit drum.
[0025]
A part of the condensate is returned to the condenser 8 on the inlet side of the deaerator 10, and a part of the water is returned to the deaerator 10 side by branching from the water supply line 41. The arrangement of each device in the exhaust heat recovery boiler 2 is an example, and the number and arrangement of the economizers and superheaters are appropriately changed depending on the performance of the gas turbine 1 and the like.
[0026]
The water supply line 7 which is a water supply system is provided with a chemical injection means 45 for injecting ammonia as a pH adjusting agent and hydrazine as a deoxidizing agent. A predetermined amount of ammonia is injected into the water supply for adjusting the pH from the chemical injection means 45 so that the pH of the water supply in the low-pressure drum 32 is 9.0 or higher and the ammonia concentration is 0.5 ppm or higher.
[0027]
Generally, when the pH of the feed water is less than 9.0, there is a concern that erosion / corrosion (corrosion / erosion) due to flow occurs. For this reason, the pH of the feed water in the low-pressure drum 32 is set to 9.0 or more. The pressure of the feed water in the low-pressure drum 32 is lower than the pressure of the feed water in the high-pressure drum 12 and the intermediate-pressure drum 22, and ammonia is more likely to evaporate. Since the value of the partition ratio between the gas phase and the liquid phase is high, the pH of the feed water in the low pressure drum 32 is set to 9.0 or higher so that the pH of the feed water in the high pressure drum 12 and the intermediate pressure drum 22 is 9.0. Can also be high.
[0028]
As shown in FIG. 2, the pressure of the water supply (kg / cm2) Becomes higher, the ammonia partition rate [NHThree(V: gas phase) / NHThree(L: liquid phase)] becomes low. For example, the pressure of the high-pressure drum 12 is 130 (kg / cm2), The pressure of the intermediate pressure drum 22 is 30 (kg / cm2), The pressure of the low-pressure drum 32 is 5 (kg / cm2), The distribution ratio at the high pressure drum 12 is 2.8, the distribution ratio at the intermediate pressure drum 22 is 5.5, and the distribution ratio at the low pressure drum 32 is 10.0. Therefore, in the low pressure drum 32, ammonia is distributed into the feed water liquid phase and the gas phase in a ratio of 1:10, and in the intermediate pressure drum 22, the feed water liquid phase and the gas phase in a ratio of 1: 5.5. In the high-pressure drum 12, the liquid is distributed into the liquid phase and the gas phase at a ratio of 1: 2.8.
[0029]
In the water treatment method for a turbine facility provided with the exhaust heat recovery boiler 2 described above, a predetermined amount of ammonia is injected into the feed water from the chemical injection means 45 so that the pH of the feed water becomes, for example, 9.9. The concentration is 8 ppm. Thereby, as shown in FIG. 3, the pH of the feed water of the low-pressure drum 32 is 9.3 and the ammonia concentration is 0.8 ppm (because the distribution rate is 10.0). Further, the pH of the feed water of the intermediate pressure drum 22 is 9.5 and the ammonia concentration is about 1.5 ppm (because the distribution rate is 5.5). Further, the pH of the feed water of the high-pressure drum 12 is 9.7, and the ammonia concentration is about 2.9 ppm (because the distribution rate is 2.8).
[0030]
Therefore, by setting the pH of the feed water in the low pressure drum 32 where the pH of the feed water is minimum to 9.0 or more (pH: 9.3), the pH of the feed water of the intermediate pressure drum 22 and the high pressure drum 12 is 9.0. That's it. Further, by injecting ammonia so that the ammonia concentration of the feed water in the low-pressure drum 32 where the ammonia concentration becomes the minimum is 0.5 ppm or more (0.8 ppm) depending on the distribution ratio of ammonia, the intermediate-pressure drum 22 and the high-pressure drum 22 The ammonia concentration of the feed water of the drum 12 becomes 0.5 ppm or more. For this reason, appropriate pH and ammonia concentration are maintained, the problem of alkaline corrosion can be eliminated, and erosion / corrosion in the piping can be prevented. Further, since water supply is performed in parallel to the low-pressure drum 32, the intermediate-pressure drum 22, and the high-pressure drum 12, it is possible to maintain an appropriate pH and ammonia concentration with a minimum amount of ammonia.
[0031]
The distribution rate varies depending on the pressure settings of the low-pressure drum 32, the intermediate-pressure drum 22, and the high-pressure drum 12, and the amount of ammonia injected from the drug injection means 45 is appropriately changed according to the distribution rate, and the water supply in the low-pressure drum 32 is changed. The feed water of the feed water line 7 is adjusted to such a pH and concentration that the pH becomes 9.0 or more and the ammonia concentration becomes 0.5 ppm or more.
[0032]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 4 shows a whole system of turbine equipment provided with the exhaust heat recovery boiler apparatus according to the second embodiment of the present invention, and FIG. 5 shows a table for explaining the pH of boiler water. In addition, the same code | symbol is attached | subjected to the same member as the 1st Embodiment shown in FIG. 1, and the overlapping description is abbreviate | omitted.
[0033]
In the exhaust heat recovery boiler 2 of the turbine equipment shown in the figure, the feed water from the feed water line 7 is sent to the low pressure economizer 34, and the low pressure drum 32 is fed with water from the low pressure economizer 34 through the deaerator 10. Then, the water in the low pressure drum 32 is sent from the feed water line 41 to the medium pressure economizer 24 of the medium pressure superheat unit 4 and the high pressure economizer 14 of the high pressure superheat unit 3. 47 is provided. That is, water in the low-pressure drum 32 is supplied to the intermediate-pressure drum 22 and the high-pressure drum 12, the intermediate-pressure drum 22 is used as a drum in the low-pressure unit, and the high-pressure drum 12 is used as a drum in the high-pressure unit.
[0034]
The water supply line 7 which is a water supply system is provided with a chemical injection means 45 for injecting ammonia. A predetermined amount of ammonia is injected into the water supply from the chemical injection means 45 so that the pH of the water supply in the intermediate pressure drum 22 is 9.0 or higher and the ammonia concentration is 0.5 ppm or higher.
[0035]
In the water treatment method of the turbine equipment provided with the exhaust heat recovery boiler 2 described above, since the water in the low-pressure drum 32 is supplied to the intermediate-pressure drum 22 and the high-pressure drum 12, the chemical injection is performed from the relationship of the distribution rate described above. A predetermined amount of ammonia is injected into the water supply from the means 45 so that the pH of the water supply becomes 10.3, for example, and the ammonia concentration becomes 44 ppm. As a result, as shown in FIG. 5, the pH of the feed water of the low-pressure drum 32 is 9.8, and the ammonia concentration is 4.4 ppm (because the distribution rate is 10.0). Further, the pH of the water supply of the intermediate pressure drum 22 is 9.3 and the ammonia concentration is about 0.8 ppm (because the water of the low-pressure drum 32 having a distribution ratio of 5.5 and an ammonia concentration of 4.4 ppm is supplied). . Further, the pH of the feed water of the high-pressure drum 12 is 9.5 and the ammonia concentration is about 1.6 ppm (because the water of the low-pressure drum 32 having a distribution ratio of 2.8 and an ammonia concentration of 4.4 ppm is fed).
[0036]
Therefore, by setting the pH of the water supply in the intermediate pressure drum 22 at which the pH of the water supply is lowest to 9.0 or more (pH: 9.3), the pH of the water supply of the low pressure drum 32 and the high pressure drum 12 is 9.0. That's it. Further, by injecting ammonia so that the ammonia concentration of the feed water in the intermediate pressure drum 22 having the lowest ammonia concentration is 0.5 ppm or more (0.8 ppm) according to the distribution ratio of ammonia, the low pressure drum 32 and the high pressure drum The ammonia concentration of the feed water of the drum 12 becomes 0.5 ppm or more. For this reason, an exhaust heat recovery boiler apparatus that reduces the cost by using a feed water pump as one of the high- and medium-pressure feed water pumps 47, maintains an appropriate pH and ammonia concentration, eliminates the problem of alkaline corrosion, and erodes in the piping. -Corrosion can be prevented.
[0037]
A third embodiment of the present invention will be described based on FIG. FIG. 6 shows an entire system of turbine equipment provided with the exhaust heat recovery boiler apparatus according to the third embodiment of the present invention. The same members as those in the second embodiment shown in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.
[0038]
In the illustrated embodiment, the high pressure drum chemical injection means 16 is provided in the water supply line 41 on the inlet side of the high pressure economizer 13 of the high pressure superheater unit 3, and the inlet side of the medium pressure economizer 24 of the intermediate pressure superheater unit 4. The intermediate pressure drum chemical injection means 17 is provided in the water supply line 41. Ammonia is injected from the high-pressure drum chemical injection means 16 and the medium-pressure drum chemical injection means 17, and ammonia is injected into the supply water of the high-pressure drum 12 and the supply water of the intermediate-pressure drum 22, respectively.
[0039]
In the water treatment method for a turbine facility provided with the exhaust heat recovery boiler 2 described above, a predetermined amount of ammonia is injected from the chemical injection means 45 into the feed water of the water supply line 7, and the high pressure drum chemical injection means 16 and the medium pressure drum chemical are used. By injecting ammonia from the injection means 17 into the feed water of the high pressure drum 12 and the feed water of the intermediate pressure drum 22, the pH of the feed water in the intermediate pressure drum 22 is set to 9.0 or more and the ammonia concentration is set to 0.5 ppm or more. It is trying to become.
[0040]
That is, a predetermined amount of ammonia is injected into the water supply from the medicine injection means 45 so that the pH of the water supply becomes 10.0, for example. Thereby, the pH of the feed water of the low-pressure drum 32 becomes 9.3. In addition, due to the injection of ammonia from the high pressure drum chemical injection means 16 and the medium pressure drum chemical injection means 17, the pH of the water supply of the intermediate pressure drum 22 becomes 9.5, and the pH of the supply water of the high pressure drum 12 becomes 9.7. It becomes. The ammonia concentration is also maintained at 0.5 ppm or more.
[0041]
Therefore, by setting the pH of the water supply in the intermediate pressure drum 22 at which the pH of the water supply is lowest to 9.0 or more (pH: 9.3), the pH of the water supply of the low pressure drum 32 and the high pressure drum 12 is 9.0. That's it. For this reason, an exhaust heat recovery boiler unit that reduces the cost by using a feed water pump as one of the high- and medium-pressure feed water pumps 47, maintains an appropriate pH and ammonia concentration with a small amount of ammonia, and eliminates the problem of alkaline corrosion. Therefore, erosion / corrosion in the piping can be prevented.
[0042]
In each of the embodiments described above, ammonia recovery means for separating and recovering ammonia from the condensate condensed in the condenser 8 can be provided so as not to discharge ammonia out of the system. FIG. 7 shows a main configuration of a condenser having ammonia recovery means.
[0043]
As shown in FIG. 7, the condensate from the condenser 8 is introduced into the cooler 52 by the vacuum pump 51, and the condensate is cooled by the cooler 52 to separate ammonia. The separated ammonia is collected in a tank (not shown), and the condensate from which the ammonia has been removed is discharged out of the system. Alternatively, the pressures are merged into an equivalent line. By recovering ammonia, there is no ammonia emission, which is advantageous for the environment.
[0044]
In the above-described embodiment, the example in which the present invention is applied as the exhaust heat recovery boiler 2 of the combined cycle in which the gas turbine 1 and the steam turbine 6 are combined has been described. However, if the exhaust heat recovery boiler has a multiple pressure boiler. It is also possible to apply the present invention to a boiler of a thermal power plant.
[0045]
【The invention's effect】
The turbine equipment of the present invention includes an exhaust heat recovery boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the exhaust heat recovery boiler, a condenser that condenses the exhaust of the steam turbine, and a condensate In a turbine facility comprising a water supply system that feeds the condensate condensed in the boiler to the exhaust heat recovery boiler side, the chemical in the water supply system is adjusted so that the pH of the supply water in the drum of the exhaust heat recovery boiler is 9.0 or more. Since the medicine injecting means for injecting is provided, the pH of the feed water in the drum is maintained at 9.0 or more. As a result, the inside of the pipe can be maintained at an appropriate pH, and it is possible to provide a turbine equipment that can eliminate the problem of alkali corrosion and prevent erosion and corrosion in the pipe.
[0046]
Further, the turbine equipment of the present invention includes an exhaust heat recovery boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the exhaust heat recovery boiler, a condenser that condenses the exhaust of the steam turbine, In turbine equipment consisting of a water supply system that feeds the condensate condensed in the condenser to the exhaust heat recovery boiler side, a chemical injection means for injecting an ammonia-based chemical into the water supply system is provided, and inside the drum of the exhaust heat recovery boiler Since the chemical injection means for injecting the ammonia chemical into the water supply system is provided so that the ammonia concentration of the feed water is 0.5 ppm or more, the ammonia concentration of the feed water in the drum is maintained at 0.5 ppm or more. As a result, the inside of the pipe can be maintained at an appropriate ammonia concentration, and it is possible to provide a turbine equipment that can eliminate the problem of alkali corrosion and prevent erosion and corrosion in the pipe.
[0047]
Further, the turbine equipment of the present invention includes an exhaust heat recovery boiler that generates steam by heat from a heat source, a steam turbine that operates by steam of the exhaust heat recovery boiler, a condenser that condenses the exhaust of the steam turbine, In turbine equipment consisting of a water supply system that feeds the condensate condensed in the condenser to the exhaust heat recovery boiler side, a chemical injection means for injecting an ammonia-based chemical into the water supply system is provided, and inside the drum of the exhaust heat recovery boiler Since the chemical injection means for injecting the ammonia-based chemical into the water supply system is provided so that the pH of the feed water is 9.0 or more and the ammonia concentration of the feed water is 0.5 ppm or more, the pH of the feed water in the drum is 9 The ammonia concentration is maintained at 0.5 ppm or more. As a result, the inside of the pipe can be maintained at an appropriate pH and ammonia concentration, and it is possible to provide a turbine equipment that can eliminate the problem of alkali corrosion and prevent erosion and corrosion in the pipe.
[0048]
And since the ammonia collection | recovery means which collect | recovers ammonia from the condensate condensed with the condenser was provided, discharge | emission of ammonia is lost and it becomes advantageous with respect to an environment.
[0049]
In addition, since the heat from the heat source is a combined plant that is the exhaust of the gas turbine, the combined plant that combines the gas turbine and the steam turbine can eliminate the problem of alkali corrosion and prevent erosion and corrosion in the piping. It becomes possible to make it an equipment.
[0050]
The exhaust heat recovery boiler apparatus of the present invention comprises a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam, and recovers heat from a heat source to generate high-pressure side steam and low-pressure side steam. In an exhaust heat recovery boiler device comprising a heat recovery boiler and a water supply system for supplying water to the exhaust heat recovery boiler, water is supplied so that the pH of the water supply in the drum of the low pressure side unit of the exhaust heat recovery boiler is 9.0 or more. Since the medicine injection means for injecting the medicine into the system is provided, the pH of the feed water in the drum of the low pressure side unit where the pH is minimum is maintained at 9.0 or higher. As a result, the pH of the feed water in the drum including the high-pressure side unit becomes 9.0 or more, the inside of the pipe is maintained at an appropriate pH, and the problem of alkali corrosion can be eliminated to prevent erosion / corrosion in the pipe. It becomes possible to set it as the exhaust heat recovery boiler apparatus which can be performed.
[0051]
The exhaust heat recovery boiler apparatus according to the present invention includes a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam, and recovers heat from a heat source to generate high-pressure side steam and low-pressure side steam. A waste heat recovery boiler, and a water supply system for supplying water to the exhaust heat recovery boiler, wherein the waste heat recovery boiler apparatus is provided with a chemical injection means for injecting an ammonia chemical into the water supply system, and the low pressure side unit of the exhaust heat recovery boiler Since the chemical injection means for injecting the ammonia-based chemical into the water supply system is provided so that the ammonia concentration of the feed water in the drum is 0.5 ppm or more, the low pressure at which the distribution ratio to the gas phase side is high and the ammonia concentration is the lowest The ammonia concentration of the feed water in the drum of the side unit is maintained at 0.5 ppm or more. As a result, the ammonia concentration of the feed water in the drum including the high-pressure side unit is 0.5 ppm or more, the inside of the piping is maintained at an appropriate ammonia concentration, and the problem of alkaline corrosion is eliminated to prevent erosion and corrosion in the piping. It becomes possible to set it as the waste heat recovery boiler apparatus which can do.
[0052]
The exhaust heat recovery boiler apparatus according to the present invention includes a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam, and recovers heat from a heat source to generate high-pressure side steam and low-pressure side steam. A waste heat recovery boiler apparatus comprising: a waste heat recovery boiler to be supplied; and a water supply system for supplying water to the exhaust heat recovery boiler. Since the medicine injection means for injecting the ammonia-based medicine into the water supply system is provided so that the pH of the water supply in the drum is 9.0 or more and the ammonia concentration of the feed water is 0.5 ppm or more, the pH becomes the lowest Low-pressure unit drum in which the pH of the feed water in the low-pressure unit drum is maintained at 9.0 or higher, and the distribution ratio to the gas phase is high and the ammonia concentration is minimum. Ammonia concentration of the water supply is maintained at or above 0.5ppm. As a result, the pH of the feed water in the drum including the high-pressure unit becomes 9.0 or more and the ammonia concentration of the feed water becomes 0.5 ppm or more, and the inside of the pipe is maintained at an appropriate pH and ammonia concentration. Thus, it becomes possible to provide an exhaust heat recovery boiler apparatus that can eliminate the above problem and prevent erosion and corrosion in the pipe.
[0053]
The exhaust heat recovery boiler includes a low-pressure drum, an intermediate-pressure drum, and a high-pressure drum. The low-pressure drum is a low-pressure unit drum, the medium-pressure drum and the high-pressure drum are high-pressure unit drums, and the medium-pressure drum. Is equipped with a medium-pressure feed pump that feeds water, a high-pressure feed pump that feeds water to the high-pressure drum, and feeds water in parallel to the low-pressure drum, medium-pressure drum, and high-pressure drum. The piping can be maintained at pH and ammonia concentration.
[0054]
The exhaust heat recovery boiler includes a low-pressure drum, an intermediate-pressure drum, and a high-pressure drum. The intermediate-pressure drum is a low-pressure unit drum, the high-pressure drum is a high-pressure unit drum, and the intermediate-pressure drum and high-pressure drum. High- and medium-pressure feed water pumps that supply water are provided, and low-pressure drum water is used for medium-pressure and high-pressure drums, so that the inside of the piping is maintained at an appropriate pH and ammonia concentration with low-cost equipment. be able to.
[0055]
In addition, the medium-pressure drum chemical injection means for injecting chemicals into the medium-pressure drum water supply and the high-pressure drum chemical injection means for injecting chemicals into the high-pressure drum water supply are provided. Therefore, the inside of the pipe can be maintained at an appropriate pH and ammonia concentration.
[0056]
The water treatment method of the present invention is a water treatment method for an exhaust heat recovery boiler in which steam is generated by evaporating and overheating drum feed water by heat from a heat source. The pH of the feed water in the drum is 9.0 or more. In this way, the pH of the feed water in the drum is maintained at 9.0 or higher, the pH in the pipe is maintained at an appropriate pH, and there is no problem of alkaline corrosion. Corrosion can be prevented.
[0057]
Further, the water treatment method of the present invention is a water treatment method for an exhaust heat recovery boiler that generates steam by evaporating and overheating drum feed water by heat from a heat source. As described above, the ammonia-based chemical is injected into the feed water, so that the ammonia concentration of the feed water in the drum is maintained at 0.5 ppm or more, the inside of the pipe is maintained at an appropriate ammonia concentration, and the problem of alkali corrosion is eliminated. Without erosion / corrosion in the piping can be prevented.
[0058]
The water treatment method of the present invention is a water treatment method for an exhaust heat recovery boiler in which steam is generated by evaporating and overheating drum feed water by heat from a heat source. The pH of the feed water in the drum is 9.0 or more. Since the ammonia chemical agent is injected into the feed water so that the ammonia concentration in the feed water is 0.5 ppm or more, the pH of the feed water in the drum is maintained at 9.0 or more, and the ammonia concentration is set to 0.00. It is maintained at 5 ppm or more, the inside of the pipe is maintained at an appropriate pH and ammonia concentration, and the problem of alkaline corrosion can be eliminated to prevent erosion / corrosion in the pipe.
[Brief description of the drawings]
FIG. 1 is an overall system diagram of a turbine facility provided with an exhaust heat recovery boiler apparatus according to a first embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the distribution ratio of ammonia and pressure.
FIG. 3 is a table for explaining the pH and ammonia concentration of boiler water.
FIG. 4 is an overall system diagram of a turbine facility provided with an exhaust heat recovery boiler apparatus according to a second embodiment of the present invention.
FIG. 5 is a table illustrating the pH of boiler water.
FIG. 6 is an overall system diagram of a turbine facility provided with an exhaust heat recovery boiler apparatus according to a third embodiment of the present invention.
FIG. 7 is a main part configuration diagram of a condenser provided with ammonia recovery means.
[Explanation of symbols]
1 Gas turbine
2 Waste heat recovery boiler
3 High pressure heating unit
4 Medium pressure overheating unit
5 Low pressure overheating unit
6 Steam turbine
7 Water supply line
8 Condenser
9 Water supply pump
10 Deaerator
11 High pressure superheater
12 High pressure drum
13 High-pressure evaporator
14 High pressure economizer
16 High pressure drum medicine injection means
17 Medium pressure drum medicine injection means
21 Medium pressure superheater
22 Medium pressure drum
23 Medium pressure evaporator
24 Medium pressure economizer
25 Reheater
31 Low pressure superheater
32 Low pressure drum
33 Low pressure evaporator
34 Low pressure economizer
41 Water supply line
42 High pressure water supply pump
43 Medium pressure water supply pump
45 Drug injection means
47 Medium / high pressure feed pump
51 vacuum pump
52 Cooler

Claims (7)

熱源からの熱によって蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラの蒸気により作動する蒸気タービンと、
蒸気タービンの排気を復水する復水器と、
復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラのドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
復水器で凝縮された復水からアンモニアを回収するアンモニア回収手段を備えた
ことを特徴とするタービン設備。
An exhaust heat recovery boiler that generates steam by heat from a heat source;
A steam turbine operated by steam of the exhaust heat recovery boiler;
A condenser for condensing the exhaust of the steam turbine;
In turbine equipment consisting of a water supply system that supplies the condensate condensed in the condenser to the exhaust heat recovery boiler side,
A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
A chemical injection means is provided for injecting an ammonia-based chemical into the water supply system so that the ammonia concentration of the water supply in the drum of the exhaust heat recovery boiler is 0.5 ppm or more,
A turbine equipment comprising ammonia recovery means for recovering ammonia from condensate condensed in a condenser.
熱源からの熱によって蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラの蒸気により作動する蒸気タービンと、
蒸気タービンの排気を復水する復水器と、
復水器で凝縮された復水を排熱回収ボイラ側に送給する給水系統とからなるタービン設備において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラのドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
復水器で凝縮された復水からアンモニアを回収するアンモニア回収手段を備えた
ことを特徴とするタービン設備。
An exhaust heat recovery boiler that generates steam by heat from a heat source;
A steam turbine operated by steam of the exhaust heat recovery boiler;
A condenser for condensing the exhaust of the steam turbine;
In turbine equipment consisting of a water supply system that supplies the condensate condensed in the condenser to the exhaust heat recovery boiler side,
A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
A chemical injection means is provided for injecting an ammonia-based chemical into the water supply system so that the pH of the feed water in the drum of the exhaust heat recovery boiler is 9.0 or more and the ammonia concentration of the feed water is 0.5 ppm or more,
A turbine equipment comprising ammonia recovery means for recovering ammonia from condensate condensed in a condenser.
請求項1または請求項2において、
熱源からの熱はガスタービンの排気であるコンバインドプラントである
ことを特徴とするタービン設備。
In claim 1 or claim 2,
A turbine facility characterized in that the heat from the heat source is a combined plant that is exhaust of a gas turbine.
高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラに給水する給水系統と、からなる排熱回収ボイラ装置において、
排熱回収ボイラの低圧側ユニットのドラム内の給水のpHを9.0以上とするように給水系統に薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、
中圧ドラムが低圧側ユニットのドラムとされ、
高圧ドラムが高圧側ユニットのドラムとされ、
中圧ドラム及び高圧ドラムに給水を行う高・中圧給水ポンプが備えられ、
低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされ、
中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、
高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けた
ことを特徴とする排熱回収ボイラ装置。
An exhaust heat recovery boiler that consists of a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam to recover heat from the heat source and generate high-pressure side steam and low-pressure side steam;
In a waste heat recovery boiler device comprising a water supply system for supplying water to a waste heat recovery boiler,
A chemical injection means for injecting chemical into the water supply system so that the pH of the water supply in the drum of the low pressure side unit of the exhaust heat recovery boiler is 9.0 or more;
The exhaust heat recovery boiler is equipped with a low pressure drum, an intermediate pressure drum and a high pressure drum,
The medium pressure drum is the drum of the low pressure side unit,
The high pressure drum is the drum of the high pressure side unit,
High and medium pressure feed water pumps for supplying water to the medium and high pressure drums are provided.
The low-pressure drum water is used as the water supply for the medium-pressure drum and the high-pressure drum,
An intermediate pressure drum medicine injection means for injecting medicine into the water supply of the intermediate pressure drum is provided,
An exhaust heat recovery boiler apparatus comprising high-pressure drum chemical injection means for injecting chemical into the water supply of the high-pressure drum.
高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラに給水する給水系統と、からなる排熱回収ボイラ装置において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラの低圧側ユニットのドラム内の給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、
中圧ドラムが低圧側ユニットのドラムとされ、
高圧ドラムが高圧側ユニットのドラムとされ、
中圧ドラム及び高圧ドラムに給水を行う高・中圧給水ポンプが備えられ、
低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされ、
中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、
高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けた
ことを特徴とする排熱回収ボイラ装置。
An exhaust heat recovery boiler that consists of a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam to recover heat from the heat source and generate high-pressure side steam and low-pressure side steam;
In a waste heat recovery boiler device comprising a water supply system for supplying water to a waste heat recovery boiler,
A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
Provided with a chemical injection means for injecting an ammonia-based chemical into the water supply system so that the ammonia concentration of the water supply in the drum of the low pressure side unit of the exhaust heat recovery boiler is 0.5 ppm or more,
The exhaust heat recovery boiler is equipped with a low pressure drum, an intermediate pressure drum and a high pressure drum,
The medium pressure drum is the drum of the low pressure side unit,
The high pressure drum is the drum of the high pressure side unit,
High and medium pressure feed water pumps for supplying water to the medium and high pressure drums are provided.
The low-pressure drum water is used as the water supply for the medium-pressure drum and the high-pressure drum,
An intermediate pressure drum medicine injection means for injecting medicine into the water supply of the intermediate pressure drum is provided,
An exhaust heat recovery boiler apparatus comprising high-pressure drum chemical injection means for injecting chemical into the water supply of the high-pressure drum.
高圧側蒸気を発生させる高圧側ユニット及び低圧側蒸気を発生させる低圧側ユニットからなり熱源からの熱を回収して高圧側蒸気及び低圧側蒸気を発生させる排熱回収ボイラと、
排熱回収ボイラに給水する給水系統と、からなる排熱回収ボイラ装置において、
給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラの低圧側ユニットのドラム内の給水のpHを9.0以上とすると共に給水のアンモニア濃度を0.5ppm以上にするように給水系統にアンモニア系薬剤を注入する薬剤注入手段を設け、
排熱回収ボイラには低圧ドラム及び中圧ドラム及び高圧ドラムが備えられ、
中圧ドラムが低圧側ユニットのドラムとされ、
高圧ドラムが高圧側ユニットのドラムとされ、
中圧ドラム及び高圧ドラムに給水を行う高・中圧給水ポンプが備えられ、
低圧ドラム水が中圧ドラム及び高圧ドラムの給水とされ、
中圧ドラムの給水に薬剤を注入する中圧ドラム薬剤注入手段を設け、
高圧ドラムの給水に薬剤を注入する高圧ドラム薬剤注入手段を設けた
ことを特徴とする排熱回収ボイラ装置。
An exhaust heat recovery boiler that consists of a high-pressure side unit that generates high-pressure side steam and a low-pressure side unit that generates low-pressure side steam to recover heat from the heat source and generate high-pressure side steam and low-pressure side steam;
In a waste heat recovery boiler device comprising a water supply system for supplying water to a waste heat recovery boiler,
A drug injection means for injecting an ammonia-based drug into the water supply system is provided,
A chemical injection means is provided for injecting an ammonia-based chemical into the water supply system so that the pH of the water supply in the drum of the low-pressure side unit of the exhaust heat recovery boiler is 9.0 or higher and the ammonia concentration of the water supply is 0.5 ppm or higher. ,
The exhaust heat recovery boiler is equipped with a low pressure drum, an intermediate pressure drum and a high pressure drum,
The medium pressure drum is the drum of the low pressure side unit,
The high pressure drum is the drum of the high pressure side unit,
High and medium pressure feed water pumps for supplying water to the medium and high pressure drums are provided.
The low-pressure drum water is used as the water supply for the medium-pressure drum and the high-pressure drum,
An intermediate pressure drum medicine injection means for injecting medicine into the water supply of the intermediate pressure drum is provided,
An exhaust heat recovery boiler apparatus comprising high-pressure drum chemical injection means for injecting chemical into the water supply of the high-pressure drum.
熱源からの熱によってドラムの給水を蒸発・過熱することで蒸気を発生させる排熱回収ボイラの水処理方法において、
ドラム内の給水のpHを9.0以上とするように、ドラムへ供給する給水に薬剤を注入して、ドラムへ供給する給水のpHを9.9、10.0、または10.3とする
ことを特徴とする水処理方法。
In the water treatment method of the exhaust heat recovery boiler that generates steam by evaporating and overheating the drum feed water with the heat from the heat source,
The chemical is injected into the feed water supplied to the drum so that the pH of the feed water in the drum is 9.0 or more, and the pH of the feed water supplied to the drum is set to 9.9 , 10.0, or 10.3 . A water treatment method characterized by the above.
JP2000373866A 2000-12-08 2000-12-08 Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method Expired - Lifetime JP4233746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000373866A JP4233746B2 (en) 2000-12-08 2000-12-08 Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000373866A JP4233746B2 (en) 2000-12-08 2000-12-08 Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method

Publications (2)

Publication Number Publication Date
JP2002180804A JP2002180804A (en) 2002-06-26
JP4233746B2 true JP4233746B2 (en) 2009-03-04

Family

ID=18843163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000373866A Expired - Lifetime JP4233746B2 (en) 2000-12-08 2000-12-08 Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method

Country Status (1)

Country Link
JP (1) JP4233746B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220024920A (en) 2019-09-25 2022-03-03 미츠비시 파워 가부시키가이샤 Steam turbine plant and control device and method for water quality management in steam turbine plant
DE112020003589T5 (en) 2019-09-25 2022-04-14 Mitsubishi Heavy Industries, Ltd. PROCEDURE FOR DETERMINING THE CONCENTRATION OF A SOLUTE, AND WATER QUALITY MANAGEMENT METHODS FOR A STEAM TURBINE POWER PLANT

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310241B2 (en) * 2004-06-10 2009-08-05 三菱重工業株式会社 System chemical recovery method and recovery device
JP4814077B2 (en) * 2006-12-27 2011-11-09 三菱重工業株式会社 Turbine equipment, exhaust heat recovery boiler device, and operation method of turbine equipment
JP4745990B2 (en) * 2007-01-31 2011-08-10 三菱重工業株式会社 Turbine equipment and initial switching method for oxygen treatment of turbine equipment
JP4909112B2 (en) * 2007-02-15 2012-04-04 三菱重工業株式会社 Turbine equipment
JP4918517B2 (en) * 2008-03-28 2012-04-18 三菱重工業株式会社 Turbine equipment water quality monitoring method
KR101226490B1 (en) * 2010-09-29 2013-01-25 한국전력공사 Chemical cleaning method heat recovery steam generator
JP6328916B2 (en) * 2013-11-29 2018-05-23 三菱日立パワーシステムズ株式会社 Waste heat recovery boiler and cleaning method
JP6355529B2 (en) * 2014-11-04 2018-07-11 三菱日立パワーシステムズ株式会社 Power plant and power plant operating method
JP6488171B2 (en) * 2015-04-01 2019-03-20 三菱日立パワーシステムズ株式会社 Exhaust heat recovery system and method of operating the exhaust heat recovery system
JP6766090B2 (en) * 2018-04-19 2020-10-07 三菱パワー株式会社 Exhaust heat recovery boiler and cleaning method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220024920A (en) 2019-09-25 2022-03-03 미츠비시 파워 가부시키가이샤 Steam turbine plant and control device and method for water quality management in steam turbine plant
DE112020003225T5 (en) 2019-09-25 2022-03-31 Mitsubishi Power, Ltd. STEAM TURBINE POWER PLANT AND CONTROL DEVICE, AND WATER QUALITY MANAGEMENT METHODS FOR A STEAM TURBINE POWER PLANT
DE112020003589T5 (en) 2019-09-25 2022-04-14 Mitsubishi Heavy Industries, Ltd. PROCEDURE FOR DETERMINING THE CONCENTRATION OF A SOLUTE, AND WATER QUALITY MANAGEMENT METHODS FOR A STEAM TURBINE POWER PLANT
US11834969B2 (en) 2019-09-25 2023-12-05 Mitsubishi Power, Ltd. Steam turbine plant and control device, and water quality management method for steam turbine plant

Also Published As

Publication number Publication date
JP2002180804A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
US8539750B2 (en) Energy recovery and steam supply for power augmentation in a combined cycle power generation system
US6269626B1 (en) Regenerative fuel heating system
KR100323398B1 (en) Combined Cycle Power Unit
JP4233746B2 (en) Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method
US5007240A (en) Hybrid Rankine cycle system
JP2009197808A (en) Apparatus for producing power using geothermal fluid
JP5062380B2 (en) Waste heat recovery system and energy supply system
RU2153081C1 (en) Combined-cycle-plant and its operating process
CN110593977A (en) Dual-working-medium Rankine cycle waste heat power generation method and system and generator
US6089013A (en) Configuration for deaerating a condensate
US6125634A (en) Power plant
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
JP2013221508A (en) Combined power and water production system and method
US5904039A (en) Method and configuration for deaerating a condensate
JPH0821210A (en) Power generating facility in incinerator
RU2214518C2 (en) Method of operation of thermal power station
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
CN210948820U (en) Dual-working-medium Rankine cycle waste heat power generation system and generator
JPH0454206A (en) Power plant
JP4088391B2 (en) Turbine power generation equipment
RU2214516C2 (en) Thermal power station
JP2003013708A (en) Turbine equipment
JPH0988516A (en) Exhaust heat recovery boiler
RU2211341C1 (en) Method of operation of thermal power station
JP2007292414A (en) Combined cycle power generation facility and water quality management method for combined cycle power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4233746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term