JPH0454206A - Power plant - Google Patents

Power plant

Info

Publication number
JPH0454206A
JPH0454206A JP16420690A JP16420690A JPH0454206A JP H0454206 A JPH0454206 A JP H0454206A JP 16420690 A JP16420690 A JP 16420690A JP 16420690 A JP16420690 A JP 16420690A JP H0454206 A JPH0454206 A JP H0454206A
Authority
JP
Japan
Prior art keywords
heat
steam
condenser
temperature
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16420690A
Other languages
Japanese (ja)
Inventor
Takao Ishizuka
隆雄 石塚
Keiji Murata
村田 圭治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16420690A priority Critical patent/JPH0454206A/en
Publication of JPH0454206A publication Critical patent/JPH0454206A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hold thermal energy which is taken away by hot waste water at a mini mum so as to enhance the thermal efficiency by extracting the latent heat of steam in a condenser with the use of a chemical heat pump so as to raise the temperature in order to heat condensate which is recirculated and fed. CONSTITUTION:In a nuclear power plant, steam having a high temperature and a high pressure generated from a nuclear reactor 1 is fed to a turbine 3 which therefore performs a work, that is, drives a generator 4. The steam 5 which has done the work, is cooled and condensed in a condenser 6 so as to be turned into water 8. In this case, there are provided a chemical heat pump for extracting the latent heat of the steam which is condensed in the condenser 6, and a feed water heater 19 which is heated by a high temperature heat source given by the latent heat. Further, the con denser 6 in a first heat transmission loop 20 receives the latent heat which is then transmitted to a second heat transmission loop 21 by way of a plurality of heat- exchangers 22, 23, and the temperature thereof is boosted up by the chemical heat pump in the second heat transmission loop. Further, the latent heat is then transmitted to a third heat transmission loop 25 by way of a heat-exchanger in order to preheat the feed water through the feed water heater 19.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力、化石火力等をエネルギ源とし、水を作
動流体とする発電プラントに係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a power generation plant that uses nuclear power, fossil thermal power, etc. as an energy source and water as a working fluid.

(従来の技術) 蒸気を作動流体とする従来の発電プラントにつき、原子
力発電プラントを例として説明する。第3図はその概略
系統図であり、この図において原子炉1は作動流体であ
る水に熱エネルギを与え、これを高温高圧の蒸気2とし
てタービン3に供゛給する。前記高温高圧の蒸気5はタ
ービン3内で断熱膨張を行い動力を発生し、タービン3
を回転させる。タービン3はこれに連結されている発電
機4を駆動し、電力を発生させる。タービン3において
仕事をし低温低圧となった蒸気5は復水器6に導かれ、
ここで例えば海水等の冷却水7によって冷却され凝縮し
て水8となる。前記の復水に際して冷却水7は作動流体
の蒸気潜熱を吸収し、温度上昇して温排水9として外部
に排出される。復水器6で液化凝縮して形成された水8
は復水ポンプ10、給水ポンプ11により原子炉1に圧
入、帰戻されて加熱昇温され再び蒸気とされる。以下。
(Prior Art) A nuclear power plant will be described as an example of a conventional power plant that uses steam as a working fluid. FIG. 3 is a schematic diagram of the system. In this diagram, a nuclear reactor 1 gives thermal energy to water, which is a working fluid, and supplies this to a turbine 3 as high-temperature, high-pressure steam 2. The high-temperature, high-pressure steam 5 undergoes adiabatic expansion within the turbine 3 and generates power.
Rotate. The turbine 3 drives a generator 4 connected thereto to generate electric power. The steam 5 that has done work in the turbine 3 and has become low temperature and low pressure is led to the condenser 6.
Here, it is cooled and condensed into water 8 by cooling water 7 such as seawater. During the condensation, the cooling water 7 absorbs the latent heat of steam from the working fluid, increases in temperature, and is discharged to the outside as heated waste water 9. Water 8 formed by liquefaction and condensation in the condenser 6
The water is forced into the reactor 1 by the condensate pump 10 and the feedwater pump 11, and is returned to the reactor where it is heated and heated to become steam again. below.

上記のサイクルは繰り返される。The above cycle is repeated.

第3@からも分かるようにタービン計に供給された蒸気
の全部が復水器6に導かれるわけではなく、前記蒸気の
一部はタービン3の中途段で抽気される。その中の比較
的高温高圧の蒸気12は給水ポンプ11の下流側に設置
された高圧給水加熱器13に、また比較的低温低圧の蒸
気14は前記給水ポンプ11上流側の低圧給水加熱器1
5にそれぞれ送られ、復水器6がら圧送されて来る作動
流体である水8を予熱する。前記各給水加熱器13.1
5で給水を予熱した前記抽出された蒸気12.14は凝
縮して水16.17となるが、これ等の水は通常給水ポ
ンプ11の上流側に導かれ、復水器6からの水と合流さ
れる。
As can be seen from the third @, not all of the steam supplied to the turbine meter is led to the condenser 6, and a portion of the steam is extracted at an intermediate stage of the turbine 3. The relatively high temperature and high pressure steam 12 is sent to the high pressure feed water heater 13 installed downstream of the feed water pump 11, and the relatively low temperature and low pressure steam 14 is sent to the low pressure feed water heater 1 upstream of the feed water pump 11.
5, and water 8, which is a working fluid that is pumped from a condenser 6, is preheated. Each of the feed water heaters 13.1
The extracted steam 12.14 that preheated the feed water in step 5 is condensed into water 16.17, which is normally led upstream of the feed water pump 11 and combined with the water from the condenser 6. will be merged.

しかしながら、圧力の関係上前記低圧給水加熱器15か
らの水17はそのままでは給水ラインに合流させること
はできず、ドリップポンプ18により加圧注入すること
が必要である。
However, due to the pressure, the water 17 from the low-pressure feed water heater 15 cannot be directly added to the water supply line, and must be injected under pressure using the drip pump 18.

なお、第3図においては図示の簡単化のため油気は高圧
、低圧の2段としであるが、実際の大型発電プラントに
あっては7〜9段の多段の油気がなされており、給水加
熱器もそれに対応して設置されている。
In addition, in Fig. 3, the oil and gas are shown in two stages, high pressure and low pressure, to simplify the illustration, but in actual large-scale power plants, oil and gas are multistaged, with 7 to 9 stages. Water heaters are also installed accordingly.

上記説明した蒸気発電プラントのサイクルは再生サイク
ルと呼ばれ、タービン油気による給水加熱器の効果によ
り復水器において冷却水に捨てる熱量を比較的小とする
ことができ、発電プラントの熱効率を二相サイクルの基
本であるランキンサイクルよりも著しく高くすることが
できる。
The cycle of the steam power generation plant explained above is called a regeneration cycle, and due to the effect of the feed water heater using turbine oil and air, the amount of heat discarded to the cooling water in the condenser can be made relatively small, thereby increasing the thermal efficiency of the power generation plant. It can be made significantly higher than the Rankine cycle, which is the basis of the phase cycle.

(発明が解決しようとする課題) しかしながら、上記のように熱効率の比較的高い発電プ
ラントであっても、復水器6から外部に排出される温排
水(通常日本では海水)9の有する熱エネルギは非常に
多く5通常原子炉1で使用された熱エネルギの約50%
にも達する。この温排水の有する多量の熱エネルギが従
来の発電プラントの熱効率向上の妨げとなっており、発
電経済上および資源の有効利用上の極めて重要な問題と
なっている。
(Problem to be Solved by the Invention) However, even in a power generation plant with relatively high thermal efficiency as described above, the thermal energy possessed by the heated waste water (usually seawater in Japan) 9 discharged from the condenser 6 to the outside. is very large 5 approximately 50% of the thermal energy used in a normal nuclear reactor 1
reach even. The large amount of thermal energy contained in this heated wastewater is an obstacle to improving the thermal efficiency of conventional power plants, and is an extremely important problem in terms of the economics of power generation and the effective use of resources.

本発明は上記の事情に基づきなされたもので、温排水に
より持ち去られる熱エネルギを最小限にとどめ、熱効率
を向上させた発電プラントを提供することを目的として
いる。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a power generation plant with improved thermal efficiency by minimizing the thermal energy carried away by heated waste water.

[発明の構成] (課題を解決するための手段) 本発明の発電プラントは、蒸気発生源により高温高圧の
蒸気を発生させ、これを作動流体としてタービンを回転
させて発電させ、前記タービンから排出された蒸気を復
水器において復水させ、この復水を前記蒸気発生源に還
流給水するものにおいて、前記復水器内の蒸気潜熱をケ
ミカルヒートポンプによって汲み出し昇温し、これによ
り前記還流給水される復水を加熱することを特徴とする
[Structure of the Invention] (Means for Solving the Problems) The power generation plant of the present invention generates high-temperature, high-pressure steam from a steam generation source, uses this as a working fluid to rotate a turbine to generate electricity, and discharges the steam from the turbine. In a device that condenses the generated steam in a condenser and supplies this condensate as reflux water to the steam generation source, the steam latent heat in the condenser is pumped out by a chemical heat pump to raise the temperature of the reflux water. It is characterized by heating the condensate.

(作用) 上記構成の本発明の発電プラントにおいては、従来温排
水として排出されていた復水器内の蒸気率の高い発電プ
ラントとすることができる。
(Function) In the power generation plant of the present invention having the above configuration, the power generation plant can have a high steam rate in the condenser, which was conventionally discharged as heated waste water.

(実施例) 第3図と同一部分には同一符号を付した第1図は本発明
一実施例の系統図、第2図はその要部の概略を示す系統
図である。第1図において1本実施例にあっては従来の
発電プラントの低圧給水加熱器に代え、復水器6内で凝
縮される蒸気潜熱を汲み上げるケミカルヒートポンプに
よって高温熱源を作り、これにより加熱される給水加熱
器19を設置している。
(Embodiment) FIG. 1 is a system diagram of an embodiment of the present invention, in which the same parts as those in FIG. In this embodiment, instead of the low-pressure feed water heater of a conventional power plant, a high-temperature heat source is created using a chemical heat pump that pumps up the steam latent heat condensed in the condenser 6, and the heat is thereby heated. A feed water heater 19 is installed.

第2図は前記ケミカルヒートポンプの概略を示すもので
ある。ヒートポンプは複数の伝熱ループを有する。第1
の伝熱ループ20は復水器6において潜熱を受は取り、
これを複数の熱交換器22.23を介して第2の伝熱ル
ープ21に伝達する。
FIG. 2 schematically shows the chemical heat pump. Heat pumps have multiple heat transfer loops. 1st
The heat transfer loop 20 receives and removes latent heat in the condenser 6,
This is transferred to the second heat transfer loop 21 via a plurality of heat exchangers 22,23.

前記の熱を受けた第2の伝熱ループ21はケミカルヒー
トポンプによりこれを昇温し、熱交換器24を介して第
3の伝熱ループ25に伝達する。第3の伝熱ループ25
は給水加熱器19において原子炉給水を予熱する。
The second heat transfer loop 21 that has received the heat raises its temperature using a chemical heat pump, and transfers it to the third heat transfer loop 25 via the heat exchanger 24. Third heat transfer loop 25
The reactor feed water is preheated in the feed water heater 19.

以下、上記第1〜第3の伝熱ループ20.21.25に
つき項を分けて説明する。
Hereinafter, the first to third heat transfer loops 20, 21, and 25 will be explained separately.

1の  ループ20 現在の原子力発電所においては復水器6の圧力は通常的
40−Kg(絶対圧力)であり、この時の水の飽和温度
は約33℃である。そこで第1の伝熱ループ20では作
動流体として、例えばR123のような冷媒を使用する
。この冷媒は復水器6内で沸騰し気相または気液二相と
なり、熱交換器22.23において第2の伝熱ループ2
1に熱を与え、その部分で液相に戻り第1の伝熱ループ
20内を循環する。冷媒R123は温度30℃での飽和
圧力は約1 kg / aJ aであり、この冷媒を作
動流体とすれば第1の伝熱ループ20の内圧を大気圧程
度にすることができる。
1. Loop 20 In current nuclear power plants, the pressure of the condenser 6 is normally 40-Kg (absolute pressure), and the saturation temperature of water at this time is about 33°C. Therefore, in the first heat transfer loop 20, a refrigerant such as R123 is used as the working fluid. This refrigerant boils in the condenser 6 and becomes a gas phase or a gas-liquid two phase, and is transferred to the second heat transfer loop 2 in the heat exchanger 22, 23.
1, returns to a liquid phase at that portion and circulates within the first heat transfer loop 20. The saturation pressure of the refrigerant R123 at a temperature of 30° C. is approximately 1 kg/aJ a, and if this refrigerant is used as the working fluid, the internal pressure of the first heat transfer loop 20 can be brought to about atmospheric pressure.

2の伝 ループ21 第2の伝熱ループ21はケミカルヒートポンプを構成す
るループである。この実施例では、チオシアン酸アンモ
ニウムのアンモニア化合物(NH4SCN−nNH,)
のアンモニアガス解離・吸収反応を利用したケミカルヒ
ートポンプとされている。
2. Transfer Loop 21 The second heat transfer loop 21 is a loop that constitutes a chemical heat pump. In this example, the ammonia compound of ammonium thiocyanate (NH4SCN-nNH,)
It is said to be a chemical heat pump that utilizes the ammonia gas dissociation and absorption reaction.

常温・常圧下においては固体であるチオシアン酸アンモ
ニウム(NH4SCN)は、アンモニア(NH,)と反
応して液体アンモニア化物(NH4SCN−nNH,)
を生成する。前記液体アンモニア化物は液体であるため
、熱伝導性に優れておリシステムの連続操作を可能とし
ている。第2図における熱交換器23と24との間のフ
ローは、チオシアン酸アンモニウムのアンモニア化物の
流れであり、熱交換器23→同27→同22→同24の
フローは、アンモニアの流れである。
Ammonium thiocyanate (NH4SCN), which is solid at room temperature and pressure, reacts with ammonia (NH,) to form liquid ammonium (NH4SCN-nNH,).
generate. Since the liquid ammonium compound is a liquid, it has excellent thermal conductivity and enables continuous operation of the system. The flow between heat exchangers 23 and 24 in FIG. 2 is a flow of ammonium thiocyanate, and the flow between heat exchangers 23 -> 27 -> 22 -> 24 is a flow of ammonia. .

熱交換m(蒸発器)22で冷媒R123により加熱され
蒸発したアンモニア蒸気は熱交換ll(発熱反応器)2
4に流入し、ここでNH4SCN・nNH,に吸収され
下記の発熱反応を生じる。
Ammonia vapor heated and evaporated by refrigerant R123 in heat exchanger m (evaporator) 22 is transferred to heat exchanger ll (exothermic reactor) 2
4, where it is absorbed by NH4SCN·nNH, and the following exothermic reaction occurs.

NH45CN−nNH3+mNH。NH45CN-nNH3+mNH.

→NH4SCN・ (m+n)NH2 この発熱反応により生じた熱は熱交換器24を介して第
3の伝熱ループ25に与えられる。
→NH4SCN・(m+n)NH2 The heat generated by this exothermic reaction is given to the third heat transfer loop 25 via the heat exchanger 24.

熱交換器24を経由したNH,SCN・ (m+n)N
H,は膨張部26において減圧した後、熱交換器(吸熱
反応器)23に送られる。ここで、冷媒R123によっ
て加熱され下記の吸熱反応を生じる。
NH, SCN/(m+n)N via heat exchanger 24
After the pressure of H, is reduced in the expansion section 26, it is sent to the heat exchanger (endothermic reactor) 23. Here, it is heated by refrigerant R123 and the following endothermic reaction occurs.

NH4SCN・ (m+n)NH。NH4SCN・(m+n)NH.

→NH,5CN−nNH,+mNH。→NH, 5CN-nNH, +mNH.

この反応により解離したNH3ガスは熱交換器(凝縮器
)27に入り、ここで冷却水(例えば海水)28により
冷却されて凝縮・液化する。液化したNH,はポンプ2
9で昇圧されて再び熱交換器(凝縮器)22に送られる
The NH3 gas dissociated by this reaction enters a heat exchanger (condenser) 27, where it is cooled by cooling water (for example, seawater) 28 and is condensed and liquefied. The liquefied NH is pump 2
The pressure is increased at step 9 and sent to the heat exchanger (condenser) 22 again.

前記の吸熱反応の結果生じたNH45CN−nNH3は
ポンプ30で昇圧された後、再び熱交換It(発熱反応
器)24に送られる。
The NH45CN-nNH3 produced as a result of the endothermic reaction is pressurized by the pump 30 and then sent to the heat exchange It (exothermic reactor) 24 again.

上記から分かるように、この第2の伝熱ループ21は、
復水器6内の30℃程度の低温の熱源から吸熱しく熱交
換器22.23) 、これをより高い温度(例えば10
0℃)で放熱する(熱交換器24)昇温サイクルを形成
している。
As can be seen from the above, this second heat transfer loop 21 is
The heat exchanger 22.23) absorbs heat from a low temperature heat source of about 30°C in the condenser 6, and transfers it to a higher temperature (e.g. 10°C).
0° C.) to radiate heat (heat exchanger 24), forming a temperature increasing cycle.

3の伝、ループ25 熱交換器24から熱を受け、給水加熱W119において
これを放出して原子炉給水の温度を上昇させる。第3の
伝熱ループ25の作動流体としては、この伝熱ループが
原子炉の一次系水のある給水加熱器に接することと、流
体温度が30℃〜100℃前後であることとから、例え
ば水を使用することができる。
3, Loop 25 Heat is received from the heat exchanger 24 and released in the feed water heating W119 to increase the temperature of the reactor feed water. The working fluid of the third heat transfer loop 25 is, for example, because this heat transfer loop is in contact with the feed water heater containing the reactor's primary water and the fluid temperature is around 30°C to 100°C. Water can be used.

上記構成の本発明実施例の熱収支を評価すると。The heat balance of the embodiment of the present invention having the above configuration will be evaluated.

第1の伝熱ループ20から第3の伝熱ループ25までに
おいて、それ等への熱供給は復水816における蒸気潜
熱に相当する熱エネルギであり、この熱エネルギは従来
は温排水として例えば海中に投棄されていたものである
。このほかに、前記各伝熱ループにおいて、作動流体循
環用の動力源用のエネルギを必要とするがこのエネルギ
は僅少である。
From the first heat transfer loop 20 to the third heat transfer loop 25, the heat supplied to them is thermal energy corresponding to the steam latent heat in the condensate 816, and this thermal energy has conventionally been used as heated wastewater, for example, in the sea. It had been dumped. In addition, each of the heat transfer loops requires energy for a power source for circulating the working fluid, but this energy is small.

また、解離したNH,ガスを液状に復帰させる熱交換器
(凝縮器)27の冷却源としては、従来通り海水を使用
することができる。この海水によってNH,ガスから除
去される熱量は、従来の復水器冷却水によって蒸気から
除去される熱量に比し、極めて僅かである。
Further, as a cooling source for the heat exchanger (condenser) 27 that returns the dissociated NH and gas to a liquid state, seawater can be used as usual. The amount of heat removed from the NH and gas by this seawater is extremely small compared to the amount of heat removed from the steam by conventional condenser cooling water.

結局、上記実施例によれば従来温排水として排出されて
いた復水器内の蒸気潜熱を有効に利用して原子炉給水を
昇温させることができ、熱効率の高い発電プラントとす
ることができる6なお、上記実施例においては復水器6
における蒸気圧力を約40■Hg(飽和温度33℃)と
しているが、復水器6内の圧力を高くすればする程蒸気
飽和温度も高くなり、同時にタービン最終段のタービン
翼が小さくなりタービン機器の設備コストを低下させる
ことができる。
In the end, according to the above embodiment, the reactor feed water can be heated by effectively utilizing the latent heat of steam in the condenser, which was conventionally discharged as heated waste water, and a power generation plant with high thermal efficiency can be achieved. 6 In addition, in the above embodiment, the condenser 6
The steam pressure in the condenser 6 is approximately 40 ■Hg (saturation temperature 33 degrees Celsius), but the higher the pressure in the condenser 6, the higher the steam saturation temperature. equipment costs can be reduced.

例えば復水器6内の蒸気圧力を50■Hg〜60 am
 Hgとすれば、蒸気飽和温度を40℃前後とすること
ができる。この場合にあっても冷媒R123は飽和圧力
約1−6 kg / aj aであり、概略大気圧に近
い低圧で作動させることができる。また、NH,の飽和
状態は0℃で約4 kg / d a、40℃で約20
kg/aIfa以下であるから、第2、第3の伝熱ルー
プ21.25の内圧もそれ程高くはなく、通常の工業界
で使用さ九ている圧力であるから、安全上その他の問題
を生じるおそれはない。
For example, the steam pressure in the condenser 6 is 50■Hg to 60 am.
If Hg is used, the steam saturation temperature can be around 40°C. Even in this case, the refrigerant R123 has a saturation pressure of about 1-6 kg/aj a, and can be operated at a low pressure approximately close to atmospheric pressure. In addition, the saturation state of NH is about 4 kg/da at 0°C and about 20 kg/da at 40°C.
kg/a Ifa or less, the internal pressure of the second and third heat transfer loops 21.25 is also not that high, and since it is the pressure used in normal industry, it causes other safety problems. There's no fear.

また、上記実施例においてはケミカルヒートポンプの吸
収剤として腐蝕性の高いNH,SCN・nNH,を使用
しているため、伝熱ループを第1〜第3の3段階として
いるが、吸収材として腐蝕性の低いものを選定すれば単
一の伝熱ループによって本発明を構成することができる
In addition, in the above embodiment, the highly corrosive NH, SCN/nNH, is used as the absorbent of the chemical heat pump, so the heat transfer loop has three stages, 1st to 3rd. By selecting a heat transfer loop with low heat transfer characteristics, the present invention can be constructed with a single heat transfer loop.

さらに、復水器6に従来の海水等による冷却を併用する
ことも可能である。
Furthermore, it is also possible to use conventional cooling with seawater or the like in the condenser 6.

[発明の効果] 上記から明らかなように本発明の発電プラントにおいて
は、従来温排水として排出されていた復水器内の蒸気潜
熱を有効に利用して原子炉給水を昇温させることかでき
、熱効率の高い発電プラントとすることができる。
[Effects of the Invention] As is clear from the above, in the power plant of the present invention, it is possible to raise the temperature of reactor feed water by effectively utilizing the latent heat of steam in the condenser, which was conventionally discharged as heated waste water. , it is possible to create a power generation plant with high thermal efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の系統図、第2図はその要部の
概略を示す系統図、第3図はその概略系統図である。 1・・・・・・原子炉 2・・・・・・蒸気 3・・・
・・・タービン4・・・・・・発電機 5・・・・・・
低圧蒸気 6・・・・・・復水器7.28・・・・・・
冷却水 8.16.17・・・・・・水 9・・・・・
・温排水 10・・・・・・復水ポンプ 11・旧・・
給水ポンプ 12.14・・・・・・蒸気 13・・・
・・・高圧給水加熱器 15・・・・・・低圧給水給水
加熱器 18・・・・・・ドリップポンプ 19・・・
・・・給水加熱器 20・・・・・・第1の伝熱ループ
 21・・・・・・第2の伝熱ループ22.23.24
,27・・・・・・熱交換器 25・旧・・第3の伝熱
ループ 26・・・・・・膨張部 29.30・・・・
・・ポンプ
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a system diagram showing an outline of its main parts, and FIG. 3 is a schematic system diagram thereof. 1... Nuclear reactor 2... Steam 3...
... Turbine 4 ... Generator 5 ...
Low pressure steam 6... Condenser 7.28...
Cooling water 8.16.17... Water 9...
・Heat water drainage 10...Condensate pump 11.Old...
Water supply pump 12.14...Steam 13...
...High pressure feed water heater 15...Low pressure feed water heater 18...Drip pump 19...
...Feed water heater 20...First heat transfer loop 21...Second heat transfer loop 22.23.24
, 27... Heat exchanger 25. Old... Third heat transfer loop 26... Expansion section 29.30...
··pump

Claims (1)

【特許請求の範囲】[Claims] 蒸気発生源により高温高圧の蒸気を発生させ、これを作
動流体としてタービンを回転させて発電させ、前記ター
ビンから排出された蒸気を復水器において復水させ、こ
の復水を前記蒸気発生源に還流給水するものにおいて、
前記復水器内の蒸気潜熱をケミカルヒートポンプによっ
て汲み出し昇温し、これにより前記還流給水される復水
を加熱することを特徴とする発電プラント。
High-temperature, high-pressure steam is generated by a steam generation source, and this is used as a working fluid to rotate a turbine to generate electricity.The steam discharged from the turbine is condensed in a condenser, and this condensate is supplied to the steam generation source. In those that supply reflux water,
A power generation plant characterized in that the latent heat of steam in the condenser is pumped out by a chemical heat pump to raise the temperature, thereby heating the condensate supplied as return water.
JP16420690A 1990-06-25 1990-06-25 Power plant Pending JPH0454206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16420690A JPH0454206A (en) 1990-06-25 1990-06-25 Power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16420690A JPH0454206A (en) 1990-06-25 1990-06-25 Power plant

Publications (1)

Publication Number Publication Date
JPH0454206A true JPH0454206A (en) 1992-02-21

Family

ID=15788685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16420690A Pending JPH0454206A (en) 1990-06-25 1990-06-25 Power plant

Country Status (1)

Country Link
JP (1) JPH0454206A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064048A (en) * 2005-08-30 2007-03-15 Hitachi Eng Co Ltd Waste heat recovery facility of power plant
JP2011058486A (en) * 2009-09-08 2011-03-24 Korea Electric Power Corp Heat recovery device of power plant using heat pump
JP2012163306A (en) * 2011-02-09 2012-08-30 Chugai Ro Co Ltd Burner device and industrial furnace with the same
JP2017502249A (en) * 2013-12-11 2017-01-19 カレンタ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、オッフェネ、ハンデルスゲゼルシャフトCurrenta Gmbh & Co. Ohg Steam storage with latent heat storage and steam heat compressor
WO2018198836A1 (en) * 2017-04-28 2018-11-01 三菱日立パワーシステムズ株式会社 Power generation plant and operation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064048A (en) * 2005-08-30 2007-03-15 Hitachi Eng Co Ltd Waste heat recovery facility of power plant
JP2011058486A (en) * 2009-09-08 2011-03-24 Korea Electric Power Corp Heat recovery device of power plant using heat pump
JP2012163306A (en) * 2011-02-09 2012-08-30 Chugai Ro Co Ltd Burner device and industrial furnace with the same
JP2017502249A (en) * 2013-12-11 2017-01-19 カレンタ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、オッフェネ、ハンデルスゲゼルシャフトCurrenta Gmbh & Co. Ohg Steam storage with latent heat storage and steam heat compressor
WO2018198836A1 (en) * 2017-04-28 2018-11-01 三菱日立パワーシステムズ株式会社 Power generation plant and operation method therefor
JP2018189276A (en) * 2017-04-28 2018-11-29 三菱日立パワーシステムズ株式会社 Power generation plant and method for operating the same

Similar Documents

Publication Publication Date Title
EP2751395B1 (en) Cascaded power plant using low and medium temperature source fluid
US9341086B2 (en) Cascaded power plant using low and medium temperature source fluid
JP4891369B2 (en) Power generation equipment using geothermal fluid
US9671138B2 (en) Cascaded power plant using low and medium temperature source fluid
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
US7305829B2 (en) Method and apparatus for acquiring heat from multiple heat sources
JP5062380B2 (en) Waste heat recovery system and energy supply system
JP2009221961A (en) Binary power generating system
JP4388067B2 (en) Method and apparatus for performing a thermodynamic cycle
US7523621B2 (en) System for heat refinement
CN103790732B (en) Medium and high temperature flue gas waste heat dual-working-medium combined cycle power generation device
CA2019748C (en) Combined gas and steam turbine plant with coal gasification
WO2023178872A1 (en) System and method for realizing transformation of thermal power generating unit on basis of combined high- and low-parameter fused salts
JP4233746B2 (en) Turbine equipment, exhaust heat recovery boiler apparatus, and water treatment method
JP2011208569A (en) Temperature difference power generation device
JP2010038160A (en) System and method for use in combined or rankine cycle power plant
US8117844B2 (en) Method and apparatus for acquiring heat from multiple heat sources
JPH0454206A (en) Power plant
US4393657A (en) Method for recovering waste heat as motive power
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
WO2015075537A2 (en) Cascaded power plant using low and medium temperature source fluid
JPH04318207A (en) Steam turbine exhaust heat power generation equipment
JPS63134867A (en) Ocean temperature difference power generation set
CN208749417U (en) Double heat source organic Rankine cycle power generation systems
JPH04116346A (en) Condenser