JPS63134867A - Ocean temperature difference power generation set - Google Patents
Ocean temperature difference power generation setInfo
- Publication number
- JPS63134867A JPS63134867A JP61282469A JP28246986A JPS63134867A JP S63134867 A JPS63134867 A JP S63134867A JP 61282469 A JP61282469 A JP 61282469A JP 28246986 A JP28246986 A JP 28246986A JP S63134867 A JPS63134867 A JP S63134867A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- condenser
- working fluid
- boiling point
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims description 13
- 239000012530 fluid Substances 0.000 claims abstract description 92
- 238000009835 boiling Methods 0.000 claims abstract description 30
- 239000007788 liquid Substances 0.000 claims abstract description 22
- 239000013535 sea water Substances 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000011084 recovery Methods 0.000 claims abstract description 7
- 239000002918 waste heat Substances 0.000 claims abstract 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 23
- 238000009833 condensation Methods 0.000 abstract description 12
- 230000005494 condensation Effects 0.000 abstract description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract 2
- 229910021529 ammonia Inorganic materials 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は原動機製品の海洋温度差発電に適用される発電
装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power generation device applied to ocean temperature difference power generation for a motor product.
[従来の技術]
温海水(30℃前後)を高熱源とし、冷海水(10℃前
後)を低熱源とする海洋温度差発電サイクルを第2図に
示す。第2図に於いて、作動流体03としては、沸点の
低いアンモニア等の単成分流体が使われる。コンデンサ
06をでた液相アンモニアは給液ポンプ07で昇圧され
、蒸発器08で温海水01と熱交換され、アンモニアガ
スの作動流体03となり、これがタービン04で膨張仕
事をして、発電機05を回し、電気を発生した後、コン
デンサ06で冷海水02と熱交換して復液する。[Prior Art] Figure 2 shows an ocean temperature difference power generation cycle in which warm seawater (around 30°C) is used as a high heat source and cold seawater (around 10°C) is used as a low heat source. In FIG. 2, a single component fluid such as ammonia having a low boiling point is used as the working fluid 03. The liquid phase ammonia that has exited the condenser 06 is pressurized by the supply pump 07 and exchanged heat with warm seawater 01 in the evaporator 08 to become an ammonia gas working fluid 03, which undergoes expansion work in the turbine 04 and is powered by the generator 05. After rotating to generate electricity, it exchanges heat with cold seawater 02 in a condenser 06 and condenses.
復液したアンモニアは給液ポンプ07で再び循環される
。The condensed ammonia is circulated again by the liquid supply pump 07.
[発明が解決しようとする問題点]
海洋温度差発電では、前述の如く、高温熱源側の温度が
低く、かつ、高温源と低温源との間の温度差が小さく、
プラント効率は2〜3%と低い値にある。[Problems to be solved by the invention] As described above, in ocean temperature difference power generation, the temperature on the high-temperature heat source side is low, and the temperature difference between the high-temperature source and the low-temperature source is small.
Plant efficiency is at a low value of 2-3%.
これは、高温熱源と低温熱源との温度差が小さいばかり
でなく、単一成分作動流体を使用する事に伴なう凝縮過
程における低熱源利用法の非効率性にもよる。即ち、単
一成分流体では凝縮過程は等温変化となり、凝縮温度は
コンデンサ冷却水(低熱源)の出口側温度に依存する。This is due not only to the small temperature difference between the high-temperature heat source and the low-temperature heat source, but also to the inefficiency of low heat source utilization in the condensation process due to the use of a single component working fluid. That is, in the case of a single component fluid, the condensation process is an isothermal change, and the condensation temperature depends on the temperature on the outlet side of the condenser cooling water (low heat source).
コンデンサ冷却水凝縮過程の潜熱を吸収し、出口側温度
は入口側温度より高くなる。従って凝縮温度をコンデン
サ冷却水入口側温度に依存させれば、冷熱源温度が低下
したことに相当し、サイクル効率は上昇する。The latent heat of the condenser cooling water condensation process is absorbed, and the temperature on the outlet side becomes higher than the temperature on the inlet side. Therefore, if the condensation temperature is made to depend on the condenser cooling water inlet temperature, this corresponds to a decrease in the cold source temperature, and the cycle efficiency increases.
[問題点を解決するための手段及び作用コ前述の問題点
に対して、本発明は、差動流体として、低沸点流体と、
高沸点流体との混合流体を作動流体とし、低沸点流体は
高沸点流体に温度、圧力、濃度に応じて吸収されるもの
を使い、コンデンサ入口で高濃度高沸点流体・低沸点流
体混合流体を作動流体に混合し、流体の低沸点流体の濃
度を低下させてコンデンサで吸収凝縮させる。こうすれ
ばコンデンサ内の凝縮は非等温変化で行なわれ、出口付
近で凝縮が完了する。即ち凝縮は冷却水の入力側温度に
依存しく単一作動流体では冷却水出口側に依存する凝縮
となる)、単一作動流体の凝縮に比べ冷却水温度を低く
したことに相当する効果があり、コンデンサ内圧は低下
する。更にコンデンサ入口での混合により、低沸点流体
の濃度が低下する為、混合以上の作動流体に比べ、同一
温度の場合、飽和液圧力(即ち、コンデンサ内圧)は相
対的に低下される。これらの効果から上述の作動流体は
、単一成分作動流体よりコンデンサ内圧を低下させるこ
とが出来、タービンにてより大きい仕事をさせることが
出来る。作動流体中の低沸点流体は、通常の温海水を熱
源としてボイラにて蒸発出来るが、高沸点流体(例えば
水など)の蒸発には十分でないので、温海水より高温な
熱源として、太陽熱等を利用して、蒸発させる。[Means and effects for solving the problems] In order to solve the above-mentioned problems, the present invention provides a low boiling point fluid as a differential fluid;
The working fluid is a mixed fluid with a high boiling point fluid, and the low boiling point fluid is one that is absorbed by the high boiling point fluid according to its temperature, pressure, and concentration. It is mixed with the working fluid to reduce the concentration of the low boiling point fluid and is absorbed and condensed in the condenser. In this way, condensation within the condenser occurs with non-isothermal changes, and condensation is completed near the outlet. In other words, condensation depends on the temperature on the input side of the cooling water, and in the case of a single working fluid, condensation depends on the temperature on the cooling water outlet side), which has an effect equivalent to lowering the temperature of the cooling water compared to condensation of a single working fluid. , the internal pressure of the capacitor decreases. Furthermore, since the concentration of the low boiling point fluid is reduced by mixing at the condenser inlet, the saturated liquid pressure (that is, the condenser internal pressure) is relatively reduced at the same temperature compared to the working fluid that is mixed or higher. Because of these effects, the above-mentioned working fluid can lower the internal pressure of the condenser and perform more work in the turbine than a single-component working fluid. Low-boiling point fluids in the working fluid can be evaporated in a boiler using normal warm seawater as a heat source, but this is not sufficient to evaporate high-boiling point fluids (such as water), so solar heat, etc., can be used as a heat source higher than warm seawater. Use it and evaporate it.
こうすれば太陽熱等の高温な熱源は低温域の低沸点流体
の加熱・蒸発に使うことなく、高温域の用途に使われる
ので熱力学的損失が小さく出来る。In this way, a high-temperature heat source such as solar heat is not used for heating and evaporating a low-boiling point fluid in a low-temperature range, but instead is used for high-temperature applications, thereby reducing thermodynamic loss.
[実施例]
以下第1図を参照して本発明の一実施例を説明する。こ
こでは、低沸点流体としてアンモニア、高沸点流体とし
て水を使い、これ等の混合流体アンモニア水を作動流体
とした海洋温度差発電への適用例を示している。[Embodiment] An embodiment of the present invention will be described below with reference to FIG. Here, ammonia is used as a low boiling point fluid, water is used as a high boiling point fluid, and an example of application to ocean temperature difference power generation is shown in which a mixture of these fluids, ammonia water, is used as a working fluid.
給液ポンプ7により供給される作動流体3は給水熱交換
器21にて加温された後、蒸発器8に入る。ここでは温
海水を熱源として主として作動流体3中のアンモニアを
蒸発させる。The working fluid 3 supplied by the feed pump 7 is heated in the feed water heat exchanger 21 and then enters the evaporator 8 . Here, ammonia in the working fluid 3 is mainly evaporated using warm seawater as a heat source.
蒸発器8を出た作動流体3中の液相成分は、太陽熱等の
熱源によって、蒸発し、作動流体ガスはタービン4に入
る。The liquid phase component in the working fluid 3 leaving the evaporator 8 is evaporated by a heat source such as solar heat, and the working fluid gas enters the turbine 4.
タービン4にて作動流体3は膨張仕事をして、発電機5
を廻し、電気を発生させる。The working fluid 3 performs expansion work in the turbine 4, and the generator 5
rotates and generates electricity.
タービン4出口の作動流体3は排熱回収器11で冷却さ
れた後、低濃度のアンモニア水混合の液状流体14と混
合され、混合後のアンモニア水流体のアンモニア濃度は
作動流体3のアンモニア濃度より低くなっており、コン
デンサ6で冷海水2を低熱源として冷却され、凝縮復液
する。After the working fluid 3 at the outlet of the turbine 4 is cooled by the exhaust heat recovery device 11, it is mixed with a liquid fluid 14 of a low concentration ammonia water mixture, and the ammonia concentration of the mixed ammonia water fluid is lower than the ammonia concentration of the working fluid 3. It is cooled by the condenser 6 using the cold seawater 2 as a low heat source, and is condensed and condensed.
コンデンサ6で復液したアンモニア水混合液体は、ポン
プ12で昇圧された後、一部は排気熱回収器11へ送ら
れ、加温されて気液混合流体となる。The ammonia-water mixed liquid condensed in the condenser 6 is pressurized by the pump 12, and then a portion is sent to the exhaust heat recovery device 11, where it is heated and becomes a gas-liquid mixed fluid.
この気液混合流体は気液分離器13で気相成分と、液相
成分とに分れる。気相成分は低沸点のアンモニアが大部
分を占めるアンモニア水混合ガスであり、液相成分であ
る液状流体14のアンモニア濃度は気液分離器13前の
流体のアンモニア濃度より低くなる。This gas-liquid mixed fluid is separated into a gas phase component and a liquid phase component in the gas-liquid separator 13. The gas phase component is an ammonia-water mixed gas containing mostly ammonia with a low boiling point, and the ammonia concentration of the liquid fluid 14, which is the liquid phase component, is lower than the ammonia concentration of the fluid before the gas-liquid separator 13.
上述の液相成分である液状流体14は熱交換器15で冷
海水2により、効率的な液熱交換方式で冷却され、膨張
弁22で減圧後、作動流体3に混合する低濃度のアンモ
ニア水混合流体として使う。The liquid fluid 14, which is the liquid phase component mentioned above, is cooled by the cold seawater 2 in the heat exchanger 15 using an efficient liquid heat exchange method, and after being depressurized by the expansion valve 22, it is mixed with the working fluid 3 into low concentration ammonia water. Use as a mixed fluid.
気相成分は給水熱交換器21にて冷却された後、コンデ
ンサ6の復液の一部と混合され、作動流体3の組成を作
る。この作動流体3は凝縮器23で冷海水2により冷却
凝縮する。凝縮した作動流体3は給液ポンプ7に入り、
循環を繰り返す。After the gas phase components are cooled in the feed water heat exchanger 21, they are mixed with a portion of the condensate from the condenser 6 to form the composition of the working fluid 3. This working fluid 3 is cooled and condensed by cold seawater 2 in a condenser 23 . The condensed working fluid 3 enters the feed pump 7,
Repeat the cycle.
[発明の効果]
上述した本発明の温度差発電に於いては以下のような効
果をもつ。[Effects of the Invention] The temperature difference power generation according to the present invention described above has the following effects.
(1)低沸点流体は圧力、温度に応じて高沸点流体に吸
収される特性を有する低沸点流体及び高沸点流体とから
成る混合流体を海洋温度差発電作動流体とする。これに
よりコンデンサでの作動流体の凝縮が冷却水入口温度に
よって決定されることとなり、低温熱源が有効に使われ
、プラント効率が上昇する。(1) The low boiling point fluid has the characteristic of being absorbed by the high boiling point fluid depending on the pressure and temperature. A mixed fluid consisting of a low boiling point fluid and a high boiling point fluid is used as the ocean temperature difference power generation working fluid. As a result, the condensation of the working fluid in the condenser is determined by the cooling water inlet temperature, and the low-temperature heat source is used effectively, increasing plant efficiency.
(2) 又、コンデンサ入口で作動流体に高濃度高沸
点流体濃度の高い混合流体を混合し、混合後の流体中の
低沸点流体濃度を低下させ、コンデンサ内圧を混合しな
い場合より、低下せしめ、タービンでの膨張仕事を増大
せしめる。(2) Also, by mixing a mixed fluid with a high concentration and high boiling point fluid concentration with the working fluid at the condenser inlet, the concentration of the low boiling point fluid in the mixed fluid is lowered, and the internal pressure of the condenser is lower than when not mixed, Increases the work of expansion in the turbine.
(3)上記(1)項に示した作動流体中の高沸点流体の
蒸発を達成する為、太陽熱等の熱源を併用する。(3) In order to achieve the evaporation of the high boiling point fluid in the working fluid as described in item (1) above, a heat source such as solar heat is used in combination.
ここで併用する熱源は主として高沸点流体の蒸発の用途
に使い、温度の低い低沸点流体の蒸発用へはミニマムに
抑えることによって熱力学的ロスを低減させる。The heat source used in combination here is mainly used for evaporating high-boiling point fluids, and is kept to a minimum for evaporating low-boiling point fluids at low temperatures, thereby reducing thermodynamic loss.
(4)上記(2)項に示す作動流体に混合する流体はタ
ービン排熱によってコンデンサ復液より再生する。(4) The fluid mixed with the working fluid shown in item (2) above is regenerated from condenser condensate using turbine exhaust heat.
以上によってタービンにより大きな仕事をさせることが
でき、効率の良い海洋温度差発電プラントが実現される
。With the above, the turbine can perform a large amount of work, and an efficient ocean temperature difference power generation plant can be realized.
第1図は本発明の一実施料による発電サイクルを説明す
るためのシステムブロック図、第2図は従来の発電サイ
クルを説明するためのシステムブロック図である。
1・・・温海水・・・、2・・・冷海水、3・・・作動
流体、4・・・タービン、5・・・発電機、6・・・コ
ンデンサ、7・・・給液ポンプ、8・・・蒸発器、11
・・・排熱回収器、12・・・循環ポンプ、13・・・
気液分離器、14・・・液状流体、15・・・熱交換器
、16・・・熱源、21・・・給水熱交換器、22・・
・膨張弁、23・・・凝縮器。
出願人復代理人 弁理士 鈴 江 武 彦第2図FIG. 1 is a system block diagram for explaining a power generation cycle according to one embodiment of the present invention, and FIG. 2 is a system block diagram for explaining a conventional power generation cycle. 1... Warm seawater..., 2... Cold seawater, 3... Working fluid, 4... Turbine, 5... Generator, 6... Capacitor, 7... Liquid supply pump , 8... evaporator, 11
...Exhaust heat recovery device, 12...Circulation pump, 13...
Gas-liquid separator, 14...Liquid fluid, 15...Heat exchanger, 16...Heat source, 21...Feed water heat exchanger, 22...
- Expansion valve, 23... condenser. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 2
Claims (1)
電装置に於いて、発電機を作動させるタービンと、同タ
ービン出口の作動の作動流体を受ける排熱回収器と、同
排熱回収器出口の作動流体を受けて凝縮するコンデンサ
と、同コンデンサで凝縮された作動流体を昇圧する循環
ポンプと、同循環ポンプで昇圧された作動流体の一部を
上記排熱回収器を介して受ける気液分離器と、同気液分
離器で分離された液状流体を受ける熱交換器と、同熱交
換器出口の流体を上記コンデンサ入口の作動流体に混合
する手段と、上記循環ポンプで昇圧された作動流体を受
ける凝縮器と、同凝縮器出口の流体を上記タービン入口
の作動流体として循環するための給液ポンプ、給水熱交
換器、及び蒸発器とを有し、上記タービン入口の作動流
体は、圧力を高くするか或いは温度を低くすると液状高
沸点流体中に吸収凝縮される特性を有する低沸点流体と
高沸点流体の混合流体でなり、同作動流体中、主として
低沸点流体の気化には温海水を熱源として用い、高沸点
流体の気化には温海水の他に太陽熱或いはその他の熱源
を用いることを特徴とした海洋温度差発電装置。In an ocean temperature difference power generation device that uses warm seawater as a high heat source and cold seawater as a low heat source, there is a turbine that operates the generator, an exhaust heat recovery device that receives the working fluid from the outlet of the turbine, and a waste heat recovery device that operates the generator. A condenser that receives and condenses the working fluid at the outlet of the chamber, a circulation pump that boosts the pressure of the working fluid condensed by the condenser, and a part of the working fluid that has been boosted in pressure by the circulation pump is received via the exhaust heat recovery device. a gas-liquid separator; a heat exchanger for receiving the liquid fluid separated by the gas-liquid separator; a means for mixing the fluid at the outlet of the heat exchanger with the working fluid at the inlet of the condenser; a condenser for receiving the working fluid at the outlet of the condenser, a feed pump, a feed water heat exchanger, and an evaporator for circulating the fluid at the outlet of the condenser as the working fluid at the inlet of the turbine; is a mixed fluid of a low boiling point fluid and a high boiling point fluid that has the characteristic of being absorbed and condensed into a liquid high boiling point fluid when the pressure is increased or the temperature is decreased. An ocean temperature difference power generation device characterized in that warm seawater is used as a heat source, and solar heat or other heat source is used in addition to the warm seawater to vaporize a high boiling point fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61282469A JPS63134867A (en) | 1986-11-27 | 1986-11-27 | Ocean temperature difference power generation set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61282469A JPS63134867A (en) | 1986-11-27 | 1986-11-27 | Ocean temperature difference power generation set |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63134867A true JPS63134867A (en) | 1988-06-07 |
Family
ID=17652833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61282469A Pending JPS63134867A (en) | 1986-11-27 | 1986-11-27 | Ocean temperature difference power generation set |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63134867A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008522081A (en) * | 2004-11-30 | 2008-06-26 | キャリア コーポレイション | Waste heat power generation method and apparatus |
CN103727000A (en) * | 2014-01-06 | 2014-04-16 | 李定忠 | Temperature differential power generating method and deep well water temperature differential generator achieving same |
CN104848596A (en) * | 2015-04-24 | 2015-08-19 | 浙江理工大学 | Membrane type thermal power circulating device and method adopting low-grade heat source |
-
1986
- 1986-11-27 JP JP61282469A patent/JPS63134867A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008522081A (en) * | 2004-11-30 | 2008-06-26 | キャリア コーポレイション | Waste heat power generation method and apparatus |
CN103727000A (en) * | 2014-01-06 | 2014-04-16 | 李定忠 | Temperature differential power generating method and deep well water temperature differential generator achieving same |
CN104848596A (en) * | 2015-04-24 | 2015-08-19 | 浙江理工大学 | Membrane type thermal power circulating device and method adopting low-grade heat source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2123606C1 (en) | Method and device to realize thermodynamic cycle | |
RU95358U1 (en) | DEVICE FOR IMPLEMENTING A THERMODYNAMIC CYCLE PROCESS | |
CN102003827B (en) | Absorption type power and refrigeration cogeneration circulatory system and absorption type power and refrigeration cogeneration method | |
US4803958A (en) | Absorption heat pumped cogeneration engine | |
US20170275190A1 (en) | System using heat energy to produce power and pure water | |
KR20060054394A (en) | Method and device for carrying out a thermodynamic cycle | |
JPH05340342A (en) | Ocean thermal energy conversion device | |
CN107939548A (en) | Internal combustion engine UTILIZATION OF VESIDUAL HEAT IN cooling heating and power generation system and its method of work | |
WO2009045117A2 (en) | A method of utilising low- and medium-temperature heat sources and media and a system for utilising low- and medium-temperature heat sources and media | |
JPS61149507A (en) | Heat recovery device | |
JP3011669B2 (en) | Mixed media cycle power generation system | |
CN107642383B (en) | Medium-low temperature waste heat utilization system coupling kalina cycle and Rankine cycle | |
KR101917430B1 (en) | Power generating apparatus | |
CN110159368B (en) | ORC magnetic suspension power generation system and method utilizing geothermal energy at medium and low temperatures in gradient mode | |
Patil et al. | Thermodynamic analysis and optimisation of double effect absorption type combined power and cooling cycle using LiBr-water as working fluid | |
JPH10274010A (en) | Binary power generating system | |
JPS63134867A (en) | Ocean temperature difference power generation set | |
Kumar et al. | Thermodynamic analysis of a single effect lithium bromide water absorption system using waste heat in sugar industry | |
CN107339822A (en) | Steam condensate afterheat utilizing system and residual-heat utilization method | |
CN210033546U (en) | ORC magnetic suspension power generation system for cascade utilization of medium-low temperature terrestrial heat | |
CN207081245U (en) | Steam condensate afterheat utilizing system | |
RU2787622C1 (en) | Thermal power plant with a regeneration system and method of its operation | |
JPH0454206A (en) | Power plant | |
US20070193271A1 (en) | Methods of generating exergy | |
RU2165055C1 (en) | Water vapor power refrigerating plant |