JPH05340342A - Ocean thermal energy conversion device - Google Patents

Ocean thermal energy conversion device

Info

Publication number
JPH05340342A
JPH05340342A JP4147063A JP14706392A JPH05340342A JP H05340342 A JPH05340342 A JP H05340342A JP 4147063 A JP4147063 A JP 4147063A JP 14706392 A JP14706392 A JP 14706392A JP H05340342 A JPH05340342 A JP H05340342A
Authority
JP
Japan
Prior art keywords
temperature
water pump
turbine
seawater
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4147063A
Other languages
Japanese (ja)
Inventor
Eiji Sekiya
英士 関矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4147063A priority Critical patent/JPH05340342A/en
Publication of JPH05340342A publication Critical patent/JPH05340342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PURPOSE:To decrease a loss factor of plant-home use by driving hot and cold water pump by turbines, and providing a separate cycle from that for driving a generator, to improve heat cycle efficiency. CONSTITUTION:When hot seawater in an oceanic surface is successively fed to evaporators 3a, 3b, 3c by a hot water pump 2, operating media 4a, 4b, 4c of low boiling point are heated by the hot seawater and evaporated. This medium steam is guided to turbines 5a, 5b, 5c, to drive the hot water pump 2 by the turbine 5a, generator 6 by the turbine 5b and a cold water pump 9 by the turbine 5c. The medium steam of decreasing pressure and temperature by giving energy is advanced into condensers 7a, 7b, 7c, cooled by cold seawater 8 fed from the cold water pump 9 and successively condensed to become media liquid, and it is returned respectively to the evaporators 3a, 3b, 3c by media pumps 10a, 10b, 10c. In this way, evaporating and condensing temperatures of the operating media can be generated to approach a heat source temperature in high and low temperature sides, and heat cycle efficiency of a generating unit can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、海洋表面の温海水と深
海の冷海水との温度差を利用する発電装置に係わり、特
に発電装置の効率向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator that utilizes the temperature difference between warm seawater on the surface of the ocean and cold seawater in the deep sea, and more particularly to improving the efficiency of the power generator.

【0002】[0002]

【従来の技術】海洋表面の温海水と深海の冷海水との温
度差を利用する発電装置は、自然エネルギーを活用する
発電装置の一技術として知られており、例えば機械学会
誌Vol.93,No.360,P.560 〜563 に紹介されている。
2. Description of the Related Art A power generator that utilizes the temperature difference between warm seawater on the surface of the ocean and cold seawater in the deep sea is known as one technique of a power generator that utilizes natural energy. No.360, P.560-563.

【0003】この技術の概要を図3で説明すると、海洋
表面の温海水1は温水ポンプ2で蒸発器3に送られる。
蒸発器3ではアンモニアのような低沸点の作動媒体4が
温海水1で加熱され、蒸発する。この媒体蒸気はタービ
ン5に導かれ、タービン5を駆動するので、それに結合
された発電機6が回転して、電気が発生する。タービン
5にエネルギーを与えて圧力、温度が低下した媒体蒸気
は凝縮器7に入る。一方、深海の冷海水8が冷水ポンプ
9で凝縮器7に供給されるので、凝縮器7に入った媒体
蒸気は冷海水8で冷やされ、凝縮して媒体液となり、媒
体ポンプ10で蒸発器3に戻る。温水ポンプ2、冷水ポン
プ9、媒体ポンプ10はそれぞれ温水ポンプモータ11、冷
水ポンプモータ12、媒体ポンプモータ13で駆動されるの
で、発電機6で発生した電力の一部はこれらの動力とし
て発電所所内で使われ、発電所所内の余剰分が所外に送
電される。
To explain the outline of this technique with reference to FIG. 3, warm seawater 1 on the ocean surface is sent to an evaporator 3 by a warm water pump 2.
In the evaporator 3, a low boiling point working medium 4 such as ammonia is heated by the warm seawater 1 and evaporated. This medium vapor is guided to the turbine 5 and drives the turbine 5, so that the generator 6 coupled thereto rotates to generate electricity. The medium vapor that has been given energy to the turbine 5 and whose pressure and temperature have dropped enters the condenser 7. On the other hand, since the cold seawater 8 in the deep sea is supplied to the condenser 7 by the cold water pump 9, the medium vapor entering the condenser 7 is cooled by the cold seawater 8 and condensed to become the medium liquid, and the medium pump 10 evaporates it. Return to 3. The hot water pump 2, the cold water pump 9, and the medium pump 10 are driven by the hot water pump motor 11, the cold water pump motor 12, and the medium pump motor 13, respectively. Therefore, a part of the electric power generated by the generator 6 is used as the power for these power plants. It is used inside the plant, and the surplus inside the plant is transmitted to the outside.

【0004】[0004]

【発明が解決しようとする課題】海洋の有するエネルギ
ーは莫大ではあるが、このような装置で利用しようとす
る温度差はわずか20℃程度であり、太陽熱や地熱など他
の自然エネルギーに比べても小さい温度差しかとれない
ので、作動媒体の蒸発温度、凝縮温度の温度差を如何に
大きくとるかが問題である。
The energy possessed by the ocean is enormous, but the temperature difference to be utilized in such a device is only about 20 ° C., which is even better than other natural energy such as solar heat and geothermal heat. Since a small temperature cannot be taken, the problem is how to increase the temperature difference between the evaporation temperature and the condensation temperature of the working medium.

【0005】また、タービン前後の作動媒体のエンタル
ピー差が小さいので、各系統の流体の流量が発生電力の
割りに大きくなり、各ポンプの動力が大きい。すなわち
所内動力の比率の大きな発電装置となるので、温度条件
や規模にもよるが、所内率が1/2〜2/3にも及ぶ可
能性があり、所内電源のために電気装置が異常に大きな
ものとなる。本発明の目的は、熱サイクル効率が大き
く、所内率の小さな海洋温度差発電装置を提供しようと
するものである。
Further, since the enthalpy difference between the working medium before and after the turbine is small, the flow rate of the fluid in each system is large relative to the generated power, and the power of each pump is large. That is, since the power generation device has a large ratio of power in the plant, the plant ratio may reach 1/2 to 2/3, depending on the temperature conditions and scale, and the electrical device becomes abnormal due to the power source in the plant. It will be big. An object of the present invention is to provide an ocean thermal energy conversion power generation device having a high thermal cycle efficiency and a small in-house ratio.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、温水ポンプと冷水ポンプをタービン駆動と
し、発電機駆動用とは別のサイクルを設けることを特徴
とするものである。
In order to achieve the above object, the present invention is characterized in that the hot water pump and the cold water pump are driven by a turbine, and a cycle different from that for driving the generator is provided.

【0007】[0007]

【作用】温水ポンプ駆動用、発電機駆動用、冷水ポンプ
駆動用の三つのサイクルを設けるので、温海水、冷海水
の温度変化に適合した3段階の媒体蒸発温度を設定する
ことができ、装置全体としての熱サイクル効率が改善さ
れる。
Since three cycles for driving the hot water pump, driving the generator, and driving the cold water pump are provided, it is possible to set the medium evaporation temperature in three stages suitable for the temperature changes of the hot seawater and the cold seawater. The overall thermal cycle efficiency is improved.

【0008】[0008]

【実施例】本発明の一実施例を図1を参照して説明す
る。本発明の根本原理に直接関係ない機器類は、図3同
様図示を省略している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG. Devices that are not directly related to the basic principle of the present invention are omitted as in FIG.

【0009】本実施例では海洋表面の温海水1は温水ポ
ンプ2で蒸発器3a,3b,3cに順次送られる。蒸発
器3a,3b,3cでは低沸点の作動媒体4a,4b,
4cが温海水1で加熱され、蒸発する。この媒体蒸気は
タービン5a,5b,5cに導かれ、タービン5a,5
b,5cを駆動する。タービン5aは温水ポンプ2を、
タービン5bは発電機6を、タービン5cは冷水ポンプ
9を駆動する。タービン5a,5b,5cにエネルギー
を与えて圧力、温度が低下した媒体蒸気は凝縮器7a,
7b,7cに入る。一方、深海の冷海水8が冷水ポンプ
9で凝縮器7a,7b,7cに冷海水8で冷やされ、順
次供給されるので、凝縮器7a,7b,7cに入った媒
体蒸気は冷海水8で冷やされ、凝縮して媒体液となり、
媒体ポンプ10a,10b,10cでそれぞれ蒸発器3a,3
b,3cに戻る。従来技術と本発明の熱サイクル効率の
違いを図2および図4で説明する。
In this embodiment, warm seawater 1 on the surface of the ocean is sequentially sent to the evaporators 3a, 3b and 3c by a warm water pump 2. In the evaporators 3a, 3b, 3c, the low boiling point working mediums 4a, 4b,
4c is heated with warm seawater 1 and evaporates. This medium vapor is guided to the turbines 5a, 5b, 5c, and the turbines 5a, 5b
Drive b and 5c. The turbine 5a uses the hot water pump 2,
The turbine 5b drives the generator 6, and the turbine 5c drives the chilled water pump 9. The medium vapor whose pressure and temperature have been lowered by applying energy to the turbines 5a, 5b, 5c is transferred to the condenser 7a,
Enter 7b and 7c. On the other hand, the cold seawater 8 in the deep sea is cooled by the cold water pump 9 to the condensers 7a, 7b, 7c by the cold seawater 8 and sequentially supplied, so that the medium vapor entering the condensers 7a, 7b, 7c is the cold seawater 8. When cooled, it condenses into a liquid medium,
The medium pumps 10a, 10b and 10c are used to form evaporators 3a and 3 respectively.
Return to b and 3c. The difference in thermal cycle efficiency between the conventional technique and the present invention will be described with reference to FIGS. 2 and 4.

【0010】図4は従来技術の場合の収熱線図であり、
縦軸は温度、横軸は蒸発器3および凝縮器7での交換熱
量である。温海水1はAの温度で蒸発器3に入り、作動
媒体4に熱を与える結果、Bの温度で蒸発器3を出る。
作動媒体4はCの温度で蒸発器3に入り、Dの温度で蒸
発し、タービン5に導かれる。タービン5の排気はEの
温度で凝縮器7に入り、作動媒体4の種類にもよるが、
その温度はほぼ飽和温度なので、ほぼその温度で凝縮す
る。すなわち、EとCの温度はほぼ等しい。冷海水8は
Fの温度で凝縮器7に入り、作動媒体4を冷却すること
によって自らは温度が上昇し、Gの温度で凝縮器7を出
る。
FIG. 4 is a heat absorption diagram of the prior art,
The vertical axis represents temperature, and the horizontal axis represents the amount of heat exchanged in the evaporator 3 and the condenser 7. The warm seawater 1 enters the evaporator 3 at a temperature of A and gives heat to the working medium 4 so that it exits the evaporator 3 at a temperature of B.
The working medium 4 enters the evaporator 3 at a temperature of C, evaporates at a temperature of D, and is guided to the turbine 5. Exhaust gas from the turbine 5 enters the condenser 7 at a temperature of E and depends on the type of the working medium 4,
Since the temperature is almost the saturation temperature, the condensation occurs at almost that temperature. That is, the temperatures of E and C are almost equal. The cold seawater 8 enters the condenser 7 at a temperature of F, the temperature thereof rises by cooling the working medium 4, and exits the condenser 7 at a temperature of G.

【0011】この間、蒸発器3ではQE −Qo の熱が温
海水1から作動媒体4に与えられる。その熱のごく一部
は、作動媒体4を温度Cから温度Dまで予熱するのに使
われ、大部分は作動媒体4を温度Dで蒸発させるのに使
われる。一方、凝縮器7ではQC −Qo の熱を冷海水8
が作動媒体4から奪い去るので、作動媒体4は温度Cで
凝縮する。作動媒体4が蒸発器3から得た熱の一部はタ
ービン5で動力に変換されるため、凝縮器7の交換熱量
は、蒸発器3の交換熱量よりも小さい。
During this time, the heat of Q E -Q o is given to the working medium 4 from the warm seawater 1 in the evaporator 3. A small part of the heat is used to preheat the working medium 4 from the temperature C to the temperature D, and a large part is used to vaporize the working medium 4 at the temperature D. On the other hand, the condenser 7, Q C -Q o heat the cold seawater 8
Take away from the working medium 4, the working medium 4 condenses at the temperature C. Part of the heat obtained by the working medium 4 from the evaporator 3 is converted into power by the turbine 5, so that the heat exchange amount of the condenser 7 is smaller than the heat exchange amount of the evaporator 3.

【0012】A〜Gの温度は海洋の温度条件にもよる
が、一例をあげると第1表のようになる。これから明ら
かなように、蒸発および凝縮の現象が一定温度で行われ
るのに対し、熱源である温海水1、冷海水8の温度は、
熱交換の過程で変化するので、蒸発温度D、凝縮温度E
をそれぞれ熱源温度AおよびFに十分近くすることがで
きない。
Although the temperatures A to G depend on the temperature conditions of the ocean, one example is shown in Table 1. As is clear from this, while the phenomena of evaporation and condensation are performed at a constant temperature, the temperatures of the hot seawater 1 and the cold seawater 8 that are heat sources are
Since it changes in the process of heat exchange, evaporation temperature D, condensation temperature E
Cannot be sufficiently close to the heat source temperatures A and F, respectively.

【0013】図2は本発明の場合の収熱線図である。本
発明では、温海水1はAaの温度で第1の蒸発器3aに
入り、作動媒体4aに熱を与えた後、Abの温度で第2
の蒸発器3b,Acの温度で第3の蒸発器3cに入って
それぞれ作動媒体4b,4cに熱を与え、Bの温度で蒸
発器3cを出る。作動媒体4a,4b,4cはそれぞれ
Ca,Cb,Ccの温度で蒸発器3a,3b,3cに入
り、Da,Db,Dcの温度で蒸発し、タービン5a,
5b,5cに導かれる。タービン5a,5b,5cの排
気はそれぞれEa,Eb,Ecの温度で凝縮器7a,7
b,7cに入り、ほぼその温度で凝縮する。冷海水8は
温海水1の流れとは逆にFcの温度で第3の凝縮器7c
に入り、作動媒体4cを冷却した後、Fbの温度で第2
の凝縮器7b,Faの温度で第1の凝縮器7aに入り、
それぞれで熱交換を行って、Gの温度で凝縮器7aを出
る。A〜Gの温度の一例を、従来技術と対比させると表
1のようになる。
FIG. 2 is a heat absorption diagram in the case of the present invention. In the present invention, the warm seawater 1 enters the first evaporator 3a at a temperature of Aa, heats the working medium 4a, and then the second at a temperature of Ab.
At the temperature of the evaporators 3b and Ac, they enter the third evaporator 3c to apply heat to the working media 4b and 4c, respectively, and at the temperature of B, they exit the evaporator 3c. The working media 4a, 4b, 4c enter the evaporators 3a, 3b, 3c at the temperatures of Ca, Cb, Cc, evaporate at the temperatures of Da, Db, Dc, and the turbine 5a,
5b, 5c. The exhaust gases of the turbines 5a, 5b, 5c are respectively at the temperatures of Ea, Eb, Ec and the condensers 7a, 7b.
It enters b and 7c and condenses at about that temperature. In contrast to the flow of the warm seawater 1, the cold seawater 8 has a temperature of Fc, and the third condenser 7c
After cooling down the working medium 4c, the second medium is cooled at the temperature of Fb.
Into the first condenser 7a at the temperature of the condensers 7b, Fa of
Heat exchange is performed in each of them, and the condenser 7a is exited at a temperature of G. Table 1 shows an example of the temperatures A to G in comparison with the conventional technique.

【0014】[0014]

【表1】 [Table 1]

【0015】これから明らかなように、本発明において
は、蒸発温度D、凝縮温度Eを3段階に分けているの
で、両者の温度差を従来技術に比べて拡大することが可
能となり、表1の例では、D−Eの温度差が従来技術で
は13℃であるのに対し、本発明では14.3℃と10%大きく
なる。
As is apparent from the above, in the present invention, since the evaporation temperature D and the condensation temperature E are divided into three stages, the temperature difference between the two can be expanded as compared with the prior art, and Table 1 in Table 1 In the example, the temperature difference between D and E is 13 ° C. in the conventional technique, while it is 14.3 ° C. in the present invention, which is 10% larger.

【0016】タービン5の出力は、入口、出口間のエン
タルピー差に比例するので、D−Eの温度差が開けばエ
ンタルピー差もそれに応じて大きくなり、その結果、タ
ービン5の出力が増大する。表1の事例では、従来技術
に比較して、約10%の増加となる。
Since the output of the turbine 5 is proportional to the enthalpy difference between the inlet and the outlet, if the temperature difference D-E is widened, the enthalpy difference increases accordingly, and as a result, the output of the turbine 5 increases. In the case of Table 1, the increase is about 10% as compared with the conventional technique.

【0017】このように本実施例によれば、作動媒体4
の蒸発温度D、凝縮温度Eを熱源温度A,Fに近づける
ことが可能となるので、発電装置の熱サイクル効率を向
上させることが可能となる。
As described above, according to this embodiment, the working medium 4
Since the evaporation temperature D and the condensation temperature E can be brought close to the heat source temperatures A and F, the heat cycle efficiency of the power generator can be improved.

【0018】図1では、一見したところ蒸発器3、凝縮
器7がそれぞれ複数となり、装置が複雑化するかのよう
であるが、大容量の装置の場合には、製作上、輸送上等
の制約から、単数では困難となるので、複数構成となる
ことは、特に不自然ではない。
In FIG. 1, it seems that a plurality of evaporators 3 and a plurality of condensers 7 are provided at first glance, and the apparatus becomes complicated. However, in the case of a large-capacity apparatus, there are problems in manufacturing and transportation. Due to restrictions, it is difficult to use a single number, so it is not unnatural to have a plurality of configurations.

【0019】上述の実施例では温水ポンプ用、発電用、
冷水ポンプ用計3つの媒体系統を構成しているが、この
構成は必ずしも3系統とする必要はなく、温水ポンプ、
冷水ポンプの一方はモータ駆動にして全体を2系統にす
るなど、他の構成をとることも可能である。
In the above-mentioned embodiment, for hot water pump, for power generation,
Although a total of three medium systems for cold water pumps are configured, this configuration does not necessarily have to be three systems, and hot water pumps,
One of the cold water pumps may be driven by a motor so that the whole system has two systems.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
温海水系統配管装置、作動媒体系統配管装置、冷海水系
統配管装置、蒸発器、凝縮器、タービンから成る海洋温
度差発電装置において、温海水取水ポンプ駆動用、冷海
水取水ポンプ駆動用、発電用それぞれ独立した作動媒体
系統配管装置、蒸発器、凝縮器、タービンを具備してい
るので、作動媒体の蒸発温度、凝縮温度をそれぞれ高温
側、低温側の熱源温度に近づけることが可能となるの
で、発電装置の熱サイクル効率が向上する。
As described above, according to the present invention,
In the ocean temperature difference power generator consisting of hot seawater system piping device, working medium system piping device, cold seawater system piping device, evaporator, condenser and turbine, for warm seawater intake pump drive, cold seawater intake pump drive, power generation Since each is equipped with an independent working medium system piping device, evaporator, condenser, and turbine, it is possible to bring the evaporation temperature and condensation temperature of the working medium close to the high temperature side and low temperature side heat source temperatures, respectively. The thermal cycle efficiency of the power generator is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を用いた海洋温度差発電装置の一例を示
す基本的な系統図。
FIG. 1 is a basic system diagram showing an example of an ocean temperature difference power generator using the present invention.

【図2】図1に示す装置の収熱線図。FIG. 2 is a heat absorption diagram of the apparatus shown in FIG.

【図3】従来技術の基本的な系統図。FIG. 3 is a basic system diagram of a conventional technique.

【図4】図3に示す装置の収熱線図。4 is a heat absorption diagram of the apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1…温海水 2…温水ポンプ 3,3a,3b,3c…蒸発器 4,4a,4b,4c…作動媒体 5,5a,5b,5c…タービン 6…発電機 7,7a,7b,7c…凝縮器 8…冷海水 9…冷水ポンプ 10,10a,10b,10c…媒体ポンプ 11…温水ポンプモータ 12…冷水ポンプモータ 13,13a,13b,13c…媒体ポンプモータ 1 ... Warm seawater 2 ... Warm water pump 3,3a, 3b, 3c ... Evaporator 4, 4a, 4b, 4c ... Working medium 5, 5a, 5b, 5c ... Turbine 6 ... Generator 7, 7a, 7b, 7c ... Condensation Container 8 ... Cold seawater 9 ... Cold water pump 10, 10a, 10b, 10c ... Medium pump 11 ... Hot water pump motor 12 ... Cold water pump motor 13, 13a, 13b, 13c ... Medium pump motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 温海水系統配管装置、作動媒体系統配管
装置、冷海水系統配管装置、蒸発器、凝縮器、タービン
から成る海洋温度差発電装置において、温海水取水ポン
プ駆動用、冷海水取水ポンプ駆動用、発電用それぞれ独
立した作動媒体系統配管装置、蒸発器、凝縮器、タービ
ンを具備したことを特徴とする、海洋温度差発電装置。
1. An ocean temperature difference power generator comprising a warm seawater system piping device, a working medium system piping device, a cold seawater system piping device, an evaporator, a condenser, and a turbine, for driving a warm seawater intake pump and a cold seawater intake pump. An ocean temperature difference power generation device comprising an independent working medium piping device for driving and power generation, an evaporator, a condenser, and a turbine.
JP4147063A 1992-06-08 1992-06-08 Ocean thermal energy conversion device Pending JPH05340342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4147063A JPH05340342A (en) 1992-06-08 1992-06-08 Ocean thermal energy conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4147063A JPH05340342A (en) 1992-06-08 1992-06-08 Ocean thermal energy conversion device

Publications (1)

Publication Number Publication Date
JPH05340342A true JPH05340342A (en) 1993-12-21

Family

ID=15421651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4147063A Pending JPH05340342A (en) 1992-06-08 1992-06-08 Ocean thermal energy conversion device

Country Status (1)

Country Link
JP (1) JPH05340342A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027748A (en) * 1998-07-09 2000-01-25 Nakashima Propeller Co Ltd Ocean deep layer water pumping-up and diffusing device
WO2009041020A1 (en) * 2007-09-27 2009-04-02 Ihi Marine United Inc. Thermoelectric power generator and power generating system using thermoelectric power generator
JP2012127273A (en) * 2010-12-15 2012-07-05 Ihi Corp Ocean thermal energy conversion apparatus and cryogenic liquid transport craft
WO2012096439A1 (en) * 2011-01-14 2012-07-19 한국과학기술원 Cascade and multi-stage rankine cycle device for cold power generation
US20120234006A1 (en) * 2011-03-16 2012-09-20 Baird James R Ocean thermal energy conversion counter-current heat transfer system
JP2012533722A (en) * 2009-07-16 2012-12-27 ロッキード マーティン コーポレーション Spiral tube bundle assembly device for heat exchanger
WO2013035822A1 (en) 2011-09-09 2013-03-14 国立大学法人佐賀大学 Steam power cycle system
JP2013518205A (en) * 2010-01-21 2013-05-20 ジ アベル ファウンデーション, インコーポレイテッド Ocean thermal energy conversion power plant
JP2013531178A (en) * 2010-07-14 2013-08-01 ジ アベル ファウンデーション, インコーポレイテッド Industrial ocean thermal energy conversion process
KR101375536B1 (en) * 2011-03-30 2014-03-17 한국에너지기술연구원 Power generation system of organic rankine cycle using seawater heat
KR20140054265A (en) * 2011-08-15 2014-05-08 더 아벨 파운데이션, 인크. Ocean thermal energy conversion power plant
US9086057B2 (en) 2010-01-21 2015-07-21 The Abell Foundation, Inc. Ocean thermal energy conversion cold water pipe
GB2523273A (en) * 2012-06-25 2015-08-19 Douglas Edwards Water power
US9151279B2 (en) 2011-08-15 2015-10-06 The Abell Foundation, Inc. Ocean thermal energy conversion power plant cold water pipe connection
US9366238B2 (en) 2013-03-13 2016-06-14 Lockheed Martin Corporation System and process of cooling an OTEC working fluid pump motor
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
JP2018524537A (en) * 2015-06-10 2018-08-30 ロッキード・マーチン・コーポレイションLockheed Martin Corporation Evaporator with fluid distribution subassembly
US10184457B2 (en) 2010-01-21 2019-01-22 The Abell Foundation, Inc. Ocean thermal energy conversion plant
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold
US11022103B2 (en) 2012-04-30 2021-06-01 Douglas Edwards Apparatus, system, and method for raising deep ocean water

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027748A (en) * 1998-07-09 2000-01-25 Nakashima Propeller Co Ltd Ocean deep layer water pumping-up and diffusing device
WO2009041020A1 (en) * 2007-09-27 2009-04-02 Ihi Marine United Inc. Thermoelectric power generator and power generating system using thermoelectric power generator
JP2015099011A (en) * 2009-07-16 2015-05-28 ロッキード マーティン コーポレーション Helical tube bundle arrangement for heat exchanger
JP2012533722A (en) * 2009-07-16 2012-12-27 ロッキード マーティン コーポレーション Spiral tube bundle assembly device for heat exchanger
US9541331B2 (en) 2009-07-16 2017-01-10 Lockheed Martin Corporation Helical tube bundle arrangements for heat exchangers
JP2017096621A (en) * 2009-07-16 2017-06-01 ロッキード マーティン コーポレーション Helical tube bundle arrangements for heat exchangers
US10209015B2 (en) 2009-07-17 2019-02-19 Lockheed Martin Corporation Heat exchanger and method for making
US9777971B2 (en) 2009-10-06 2017-10-03 Lockheed Martin Corporation Modular heat exchanger
US10184457B2 (en) 2010-01-21 2019-01-22 The Abell Foundation, Inc. Ocean thermal energy conversion plant
US9797386B2 (en) 2010-01-21 2017-10-24 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
US10844848B2 (en) 2010-01-21 2020-11-24 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
JP2013518205A (en) * 2010-01-21 2013-05-20 ジ アベル ファウンデーション, インコーポレイテッド Ocean thermal energy conversion power plant
US11371490B2 (en) 2010-01-21 2022-06-28 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
US11859597B2 (en) 2010-01-21 2024-01-02 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
EP2526296A4 (en) * 2010-01-21 2018-01-10 The Abell Foundation Inc. Ocean thermal energy conversion power plant
US9086057B2 (en) 2010-01-21 2015-07-21 The Abell Foundation, Inc. Ocean thermal energy conversion cold water pipe
JP2018084238A (en) * 2010-01-21 2018-05-31 ジ アベル ファウンデーション, インコーポレイテッド Ocean thermal energy conversion power plant
JP2013531178A (en) * 2010-07-14 2013-08-01 ジ アベル ファウンデーション, インコーポレイテッド Industrial ocean thermal energy conversion process
JP2016014524A (en) * 2010-07-14 2016-01-28 ジ アベル ファウンデーション, インコーポレイテッド Industrial ocean thermal energy conversion process
US9670911B2 (en) 2010-10-01 2017-06-06 Lockheed Martin Corporation Manifolding arrangement for a modular heat-exchange apparatus
US9388798B2 (en) 2010-10-01 2016-07-12 Lockheed Martin Corporation Modular heat-exchange apparatus
JP2012127273A (en) * 2010-12-15 2012-07-05 Ihi Corp Ocean thermal energy conversion apparatus and cryogenic liquid transport craft
KR101339777B1 (en) * 2011-01-14 2013-12-11 한국과학기술원 Power Generation with Cold Energy Sources Utilizing Cascade Rankine Cycle
WO2012096439A1 (en) * 2011-01-14 2012-07-19 한국과학기술원 Cascade and multi-stage rankine cycle device for cold power generation
US20120234006A1 (en) * 2011-03-16 2012-09-20 Baird James R Ocean thermal energy conversion counter-current heat transfer system
KR101375536B1 (en) * 2011-03-30 2014-03-17 한국에너지기술연구원 Power generation system of organic rankine cycle using seawater heat
JP2017082798A (en) * 2011-08-15 2017-05-18 ジ アベル ファウンデーション, インコーポレイテッド Ocean thermal energy conversion generation plant
KR20140054265A (en) * 2011-08-15 2014-05-08 더 아벨 파운데이션, 인크. Ocean thermal energy conversion power plant
JP2014524540A (en) * 2011-08-15 2014-09-22 ジ アベル ファウンデーション, インコーポレイテッド Ocean thermal energy conversion power plant
US9151279B2 (en) 2011-08-15 2015-10-06 The Abell Foundation, Inc. Ocean thermal energy conversion power plant cold water pipe connection
US9909571B2 (en) 2011-08-15 2018-03-06 The Abell Foundation, Inc. Ocean thermal energy conversion power plant cold water pipe connection
JP2021046863A (en) * 2011-08-15 2021-03-25 ジ アベル ファウンデーション, インコーポレイテッド Ocean thermal energy conversion power generating plant
US9945263B2 (en) 2011-09-09 2018-04-17 Saga University Steam power cycle system
EP2754861B1 (en) * 2011-09-09 2018-11-14 Yasuyuki Ikegami Steam power cycle system
KR20140060353A (en) 2011-09-09 2014-05-19 야스유키 이케가미 Steam power cycle system
WO2013035822A1 (en) 2011-09-09 2013-03-14 国立大学法人佐賀大学 Steam power cycle system
US11022103B2 (en) 2012-04-30 2021-06-01 Douglas Edwards Apparatus, system, and method for raising deep ocean water
GB2523273B (en) * 2012-06-25 2015-11-25 Douglas Edwards Water power
GB2523273A (en) * 2012-06-25 2015-08-19 Douglas Edwards Water power
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold
US9366238B2 (en) 2013-03-13 2016-06-14 Lockheed Martin Corporation System and process of cooling an OTEC working fluid pump motor
JP2018524537A (en) * 2015-06-10 2018-08-30 ロッキード・マーチン・コーポレイションLockheed Martin Corporation Evaporator with fluid distribution subassembly
US10670312B2 (en) 2015-06-10 2020-06-02 Lockheed Martin Corporation Evaporator having a fluid distribution sub-assembly

Similar Documents

Publication Publication Date Title
JPH05340342A (en) Ocean thermal energy conversion device
FI102405B (en) Method for improving the total useful energy production of a thermal power plant i and a power plant with a liquid-cooled thermal power plant
US4578953A (en) Cascaded power plant using low and medium temperature source fluid
RU2485331C2 (en) Method and device for conversion of thermal energy of low-temperature source of heat into mechanical energy
US8667799B2 (en) Cascaded power plant using low and medium temperature source fluid
US9341086B2 (en) Cascaded power plant using low and medium temperature source fluid
US9671138B2 (en) Cascaded power plant using low and medium temperature source fluid
JP2010540837A (en) Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
US20170275190A1 (en) System using heat energy to produce power and pure water
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
US5784886A (en) Hydro-air renewable power system
WO2009045117A2 (en) A method of utilising low- and medium-temperature heat sources and media and a system for utilising low- and medium-temperature heat sources and media
JPH02214502A (en) Method and device for cooling and degumidifying air of high temperature and humidity
JPS61149507A (en) Heat recovery device
JPS61171808A (en) Dual rankine cycle power plant
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
US7373904B2 (en) Stratified vapor generator
JP2022537062A (en) Binary cycle power generation system
JPH03111606A (en) Water generating type binary generator
RU2027028C1 (en) Electric power station
JPS63134867A (en) Ocean temperature difference power generation set
US10794369B1 (en) Solar powered closed loop system and method for powering a cooling device
JPS58138213A (en) Power generation device
JPH10311207A (en) Mercury power generating device