WO2012096439A1 - Cascade and multi-stage rankine cycle device for cold power generation - Google Patents

Cascade and multi-stage rankine cycle device for cold power generation Download PDF

Info

Publication number
WO2012096439A1
WO2012096439A1 PCT/KR2011/009002 KR2011009002W WO2012096439A1 WO 2012096439 A1 WO2012096439 A1 WO 2012096439A1 KR 2011009002 W KR2011009002 W KR 2011009002W WO 2012096439 A1 WO2012096439 A1 WO 2012096439A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
rankine cycle
cycle apparatus
condenser
cascade
Prior art date
Application number
PCT/KR2011/009002
Other languages
French (fr)
Korean (ko)
Inventor
장대준
김기홍
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2012096439A1 publication Critical patent/WO2012096439A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/04Regenerating by compression in combination with cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for

Definitions

  • the present invention relates to a cascade and a multi-stage Rankine cycle apparatus for cold heat generation, and more particularly to a cascade for cold heat generation, in which the configuration is further improved to increase the efficiency of a Rankine cycle apparatus used for cold heat generation or temperature difference generation.
  • a multistage Rankine cycle apparatus is provided.
  • the Rankine cycle can be utilized when there is a heat source that is hotter or lower than a medium such as water, air, etc., which can be easily obtained from the surroundings.
  • Figure 1 (A) shows the most basic Rankine cycle apparatus, such a simple Rankine cycle apparatus is generally used for the temperature difference generation of seawater, the vaporization process of low temperature liquid such as LNG, geothermal power generation.
  • the simple Rankine cycle apparatus consists of a condenser, a pump, an evaporator, a turbine, and a working fluid to circulate each part.
  • the working fluid is condensed by exchanging heat with the low temperature heat source (Q L ) in the condenser.
  • the working fluid introduced into the evaporator is evaporated by heat exchange with a high temperature heat source (Q H , sea water or air) in the evaporator to become a gas state.
  • Q H high temperature heat source
  • the working fluid in the gaseous state circulates through the turbine to generate energy and then flow back into the condenser.
  • Shown on the right side of FIG. 1A is a temperature-entropy plot of this simple Rankine cycle.
  • the Rankine cycle apparatus is a basic heat exchange cycle apparatus, which may be used for cooling by absorbing evaporation heat from the outside in the evaporator section and cooling the surroundings, or heating the surroundings by dissipating condensation heat from the condenser section to the outside. In some cases, in the case of cold heat power generation, power is generated by generating energy from the turbine portion.
  • FIG. 1 (B) shows a form of LNG cold heat generation, which is a form of cold heat generation using such a simple Rankine cycle apparatus.
  • the LNG cold power plant shown in FIG. 1 (B) is similar in structure to a simple Rankine cycle unit (the working fluid circulates condenser-pump-evaporator-turbine in sequence), using seawater as a high temperature heat source.
  • LNG cold heat is used as a low temperature heat source.
  • propane liquid is widely used as a working fluid for LNG cold heat generation.
  • the evaporator is provided with a flow path through which seawater flows separately from the flow path through which the working fluid flows, and the condenser also has a flow path through which LNG passes separately from the flow path through which the working fluid flows.
  • the working fluid exchanges heat with seawater to absorb evaporation heat from the seawater, and in the condenser, the working fluid exchanges heat with LNG to condense by dissipating heat of condensation with LNG.
  • the seawater introduced into the evaporator is cooled by being deprived of the evaporation heat to the working fluid is cooled and discharged at low temperature, LNG is supplied to the condenser as a liquid state is supplied to the condensation heat emitted from the working fluid to be discharged into a gaseous state.
  • FIG. 1 (C) shows a form of seawater temperature differential power generation, which is similar to the LNG cold heat generating apparatus shown in FIG. 1 (B), but uses shallow water (shallow depth seawater) as a high temperature heat source and a low temperature heat source. The only difference is that they use deep sea water. In this case, the same problem as that of the LNG cold heat generating device was inferior in efficiency.
  • an object of the present invention is to provide a cascade and a multi-stage Rankine cycle apparatus for cold heat generation, which has increased efficiency by using an improved Rankine cycle apparatus. In providing.
  • Rankine cycle apparatus 100 comprising: an evaporator (110) for evaporating a working fluid by heat exchange with a high temperature heat source (210); An n-th turbine 12n that expands the working fluid discharged from the evaporator 110 to generate energy, and an n-th heat exchanger condenses the working fluid discharged from the n-th turbine 12n with the low temperature heat source 220.
  • An n-circulating part including an n-condenser 13n and an n-pump 14n configured to compress the working fluid discharged from the n-th condenser 13n and then flow into the evaporator 110 to circulate the working fluid. 15n); It is made, including, the n-th circulation unit (15n) is provided with N, the low-temperature heat source 220 is N number of n-th circulation unit (15n) from the first circulation unit 151 to the N-th circulation unit ( It is characterized in that it is formed to pass sequentially up to 15N).
  • n 1,..., N and an integer greater than or equal to 2
  • the Rankine cycle apparatus 100 is a cascade Rankine cycle apparatus 100A, in which the working fluid discharged from the nth pump 14n passes through the nth pump 14n and the n + 1 condenser 13n + 1.
  • the working fluid circulation path is formed so that the working fluid discharged from the N-th condenser (13N) flows into the evaporator (110).
  • the Rankine cycle apparatus 100 is a multi-stage Rankine cycle apparatus 100B, in which working fluid discharged from the nth pump 14n flows into the evaporator 110 through the nth pump 14n, respectively.
  • a working fluid circulation path independent of each other is formed in the n-th circulation part 15n.
  • the Rankine cycle device 100 is characterized in that the physical properties or operating conditions of the working fluid circulated in each of the n-th circulation unit (15n) is formed differently.
  • the present invention by introducing a Rankine cycle apparatus employing a cascade system or a multi-stage system, there is a great effect that the efficiency in cold heat generation can be greatly increased than before. More specifically, in the case of applying the cascade method, according to the present invention, in addition to the existing low-temperature heat source, there is an advantage of using the low-temperature heat source of the working fluid used in the Rankine cycle apparatus to obtain more energy.
  • both the cascade method and the multi-stage method according to the present invention has the effect of obtaining a high efficiency by utilizing a low temperature heat source for each temperature band.
  • 1 is a Rankine cycle apparatus for conventional cold heat generation.
  • 2 and 3 is a Rankine cycle device for cold heat generation of the present invention.
  • high temperature heat source 220 low temperature heat source
  • the cold power generation is performed using a plurality of Rankine cycles, each Rankine cycle is to share the evaporator, each condenser Allow the low temperature heat source to pass sequentially.
  • a working fluid circulates and performs cold heat generation using a high temperature heat source 210 and a low temperature heat source 220.
  • An evaporator 110 for evaporating the working fluid by exchanging heat with the high temperature heat source 210;
  • An n-th turbine 12n that expands the working fluid discharged from the evaporator 110 to generate energy, and an n-th heat exchanger condenses the working fluid discharged from the n-th turbine 12n with the low temperature heat source 220.
  • FIG. 3A shows the first embodiment to which the cascade method is applied
  • Fig. 3B shows the second embodiment to which the multi-stage method is applied.
  • each method will be described in more detail with reference to FIGS. 2 and 3.
  • the working fluid which is cooled by heat exchange with a low temperature heat source in the condenser and compressed by passing through a pump, is used as a low temperature heat source in another Rankine cycle condenser without directly flowing into the evaporator without directly flowing into the evaporator.
  • the Rankine cycle apparatus 100 is a cascade Rankine cycle apparatus 100A, and the working fluid discharged from the n-th pump 14n passes through the n-th pump 14n and n + 1 condenser (13n + 1) is sequentially introduced, and finally the working fluid circulation path is formed so that the working fluid discharged from the N-th condenser (13N) flows into the evaporator (110).
  • the low temperature heat source 220 is introduced into the first condenser 131, discharged from the evaporator 110, and the first heat exchanger with the working fluid introduced into the first condenser 131 via the first turbine 121.
  • the working fluid is condensed by heat exchange to change into a liquid phase, and the low temperature heat source 220 absorbs the condensation heat emitted from the working fluid and discharges after the temperature rises slightly before entering the first condenser 131.
  • the low temperature heat source 220 is then introduced into the second condenser 132 and discharged from the evaporator 110 to exchange heat with the working fluid introduced into the second condenser 132 via the second turbine 122.
  • the working fluid is discharged from the first condenser 131 and heat exchanged with the working fluid introduced into the second condenser 132 via the first pump 141. That is, in the second condenser 132, the working fluid exchanges heat between the two fluids, the working fluid which has passed through the low temperature heat source 220 and the first condenser 131 (and the first pump 141). Will be done.
  • the working fluid is also condensed by heat exchange to change into a liquid phase and then flows into the third condenser 133 via the second pump 142.
  • the low temperature heat source 220 is discharged from the first condenser 131 is discharged after the temperature rises a little more than before entering the second condenser 132.
  • the low temperature heat source 220 is introduced into the third condenser 133 to perform the third heat exchange with the working fluid.
  • the working fluid passes through the low temperature heat source 220, the first condenser 131 (and the first pump 141). The working fluid coming out, the working fluid coming out through the second condenser 132 (and the second pump 142), and the three fluids will exchange heat.
  • the low temperature heat source 220 is the first condenser 131, the second condenser 132, ...
  • the temperature rises step by step while passing sequentially.
  • all the working fluids passing through the respective condensers 131, 132, 133 can be condensed properly. Will be.
  • the working fluid passing through the n-th condenser 13n flows into the n + 1 condenser 13n + 1 through the n-th pump 14n, and together with the low temperature heat source 220, the n-th condenser 13n.
  • the working fluid exchanges heat with the working fluid, ie, two fluids that have passed through the low temperature heat source 220 and the first condenser 131, and in the third condenser 133, the working fluid is the low temperature heat source. (220), the working fluid that has passed through the first condenser (131), the working fluid that has passed through the second condenser (132), that is, heat exchanges with the three fluids,.
  • the working fluid passes through the low temperature heat source 220, the first condenser 131, the working fluid that has passed through the second condenser 132,...
  • the heat exchanged with the working fluid that is, the N fluids that have passed through the N-1 condenser 13N-1.
  • the working fluid circulating through each of the circulation portions 151 through 15N is discharged from the low temperature heat source 220 and the circulation portion at the front end thereof.
  • the working fluid circulating through each of the circulation portions 151 through 15N is discharged from the low temperature heat source 220 and the circulation portion at the front end thereof.
  • Figure 3 shows a second embodiment of the Rankine cycle apparatus for cold heat generation of the present invention, applying a multi-stage scheme.
  • the Rankine cycle suitable for each temperature is configured to increase the efficiency.
  • the Rankine cycle apparatus 100 is a multi-stage Rankine cycle apparatus 100B, in which the working fluid discharged from the n-th pump 14n passes through the n-th pump 14n. 110, the working fluid circulation paths which are independent of each other are formed in each of the nth circulation part 15n.
  • the low temperature heat source 220 is introduced into the first condenser 131, discharged from the evaporator 110, and the first heat exchanger with the working fluid introduced into the first condenser 131 via the first turbine 121. Will be At this time, the working fluid is condensed by heat exchange to change into a liquid phase, and the low temperature heat source 220 absorbs the condensation heat emitted from the working fluid and discharges after the temperature rises slightly before entering the first condenser 131. Will be.
  • the working fluid passes through the first pump 141 to the evaporator 110. Flows directly into the loop, forming a circulation path independent of the other circulation sections.
  • the low temperature heat source 220 is then introduced into the second condenser 132 and discharged from the evaporator 110 to exchange heat with the working fluid introduced into the second condenser 132 via the second turbine 122.
  • the working fluid flows directly into the evaporator 110 through the second pump 142 after heat exchange.
  • the same process occurs in the third circulation unit 153.
  • the generalization is as follows. Unlike the cascade Rankine cycle apparatus 100A, in which each of the circulation parts 15n exchanges heat with the working fluids passing through the low temperature heat source 220 and the front end of the circulation parts 15n, the multi-stage Rankine cycle device ( In 100B), the working fluid in each circulation section 15n forms an independent working fluid circulation path, and in each condenser 13n in each circulation section 15n, the working fluid is the low temperature heat source 220. Only heat exchange with).
  • the low temperature heat source 220 is gradually increased in temperature while passing through each circulation portion 15n sequentially, in this way, the temperature of the low temperature heat source 220 is slightly Even if it rises, it is possible to condense the working fluid by heat exchange with the working fluid, so that the multi-stage Rankine cycle apparatus 100B can also increase the power generation efficiency much more than the conventional Rankine cycle apparatus.
  • the Rankine cycle apparatus 100 can further increase the power generation efficiency by allowing the physical properties or operating conditions of the working fluid circulated in the n-th circulation unit 15n to be formed differently.
  • a working fluid in each circulation section is brought through the low temperature heat source 220 and the previous circulation sections.
  • the working fluid is only at the low Heat exchange only with the heat source 220.
  • each circulation section forms a working fluid circulation path independent of each other, the efficiency can be increased by changing the physical properties or operating conditions of the working fluid in each circulation section.

Abstract

The present invention relates to a cascade and multi-stage Rankine cycle device for cold power generation, and the object of the present invention is to provide a cascade and multi-stage Rankine cycle device for cold power generation, wherein efficiency is increased through the use of an improved Rankine cycle device.

Description

냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치Cascade and multi-stage Rankine cycle units for cold heat generation
본 발명은 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치에 관한 것으로, 보다 상세하게는 냉열 발전 혹은 온도차 발전에 사용되는 랭킨 사이클 장치의 효율을 높이기 위하여 그 구성을 보다 개선한, 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치에 관한 것이다.The present invention relates to a cascade and a multi-stage Rankine cycle apparatus for cold heat generation, and more particularly to a cascade for cold heat generation, in which the configuration is further improved to increase the efficiency of a Rankine cycle apparatus used for cold heat generation or temperature difference generation. A multistage Rankine cycle apparatus.
액화 천연가스 혹은 액상의 이산화탄소를 기화시킬 때 발생하는 저온 열원, 수심이 깊어질수록 낮아지는 해수 온도에서 얻는 저온 열원, 땅 속의 높은 온도에서 얻는 고온 열원, 엔진 및 터빈의 배가스에서 얻을 수 있는 고온 열원 등과 같이, 주위에서 쉽게 얻을 수 있는 물, 공기 등과 같은 매체보다 온도가 높거나 낮은 열원이 있을 때 랭킨 사이클의 활용이 가능하다.Low-temperature heat source generated when vaporizing liquefied natural gas or liquid carbon dioxide, low-temperature heat source obtained from seawater temperature that gets deeper with deeper water, high-temperature heat source obtained from high temperature in the ground, high-temperature heat source obtained from exhaust gas of engine and turbine The Rankine cycle can be utilized when there is a heat source that is hotter or lower than a medium such as water, air, etc., which can be easily obtained from the surroundings.
도 1은 종래의 다양한 냉열 발전 형태를 도시하고 있다. 도 1(A)는 가장 기본적인 랭킨 사이클 장치를 도시하고 있는데, 이러한 단순 랭킨 사이클 장치는 일반적으로 해수의 온도차 발전, LNG와 같은 저온 액체의 기화 공정, 지열 발전 등에 많이 이용된다. 도 1(A)에 도시되어 있는 바와 같이, 단순 랭킨 사이클 장치는 응축기(condenser), 펌프(pump), 증발기(vaporizer), 터빈(expander)으로 이루어지며, 작동유체가 각부를 순환하도록 되어 있다. 작동유체는 응축기에서 저온 열원(QL)과 열교환하면서 응축이 되며, 펌프에서 압축되어 고압이 되어 증발기로 유입된다. 증발기로 유입된 작동유체는 증발기에서 고온 열원(QH, 해수 또는 공기)와 열교환하여 증발됨으로써 기체 상태가 된다. 기체 상태의 작동유체는 터빈을 통과하면서 에너지를 발생시킨 후 다시 응축기로 유입됨으로써 순환이 이루어지게 된다. 도 1(A)의 우측에 도시된 것은 이러한 단순 랭킨 사이클의 온도-엔트로피 선도를 도시한 것이다.1 illustrates various conventional forms of cold power generation. Figure 1 (A) shows the most basic Rankine cycle apparatus, such a simple Rankine cycle apparatus is generally used for the temperature difference generation of seawater, the vaporization process of low temperature liquid such as LNG, geothermal power generation. As shown in Fig. 1A, the simple Rankine cycle apparatus consists of a condenser, a pump, an evaporator, a turbine, and a working fluid to circulate each part. The working fluid is condensed by exchanging heat with the low temperature heat source (Q L ) in the condenser. The working fluid introduced into the evaporator is evaporated by heat exchange with a high temperature heat source (Q H , sea water or air) in the evaporator to become a gas state. The working fluid in the gaseous state circulates through the turbine to generate energy and then flow back into the condenser. Shown on the right side of FIG. 1A is a temperature-entropy plot of this simple Rankine cycle.
랭킨 사이클 장치는 기본적인 열교환 사이클 장치로서, 상기 증발기 부분에서 외부로부터 증발열을 흡수함으로써 주변을 냉각시키는 것을 이용하여 냉각에 이용하는 경우도 있고, 또는 상기 응축기 부분에서 외부로 응축열을 발산함으로써 주변을 가열시키는 것을 이용하여 난방에 이용하는 경우도 있는데, 냉열 발전에서는 이 중 상기 터빈 부분에서 에너지를 발생시키는 것을 이용하여 발전을 하게 된다.The Rankine cycle apparatus is a basic heat exchange cycle apparatus, which may be used for cooling by absorbing evaporation heat from the outside in the evaporator section and cooling the surroundings, or heating the surroundings by dissipating condensation heat from the condenser section to the outside. In some cases, in the case of cold heat power generation, power is generated by generating energy from the turbine portion.
도 1(B)는 이러한 단순 랭킨 사이클 장치를 이용한 냉열 발전의 한 형태인 LNG 냉열 발전의 형태를 도시하고 있다. 도 1(B)에 도시된 LNG 냉열 발전 장치는 기본적인 장치 구성 자체는 단순 랭킨 사이클 장치와 유사한데(작동유체가 응축기 - 펌프 - 증발기 - 터빈을 순차적으로 순환함), 고온 열원으로 해수를 사용하고 저온 열원으로 LNG 냉열을 이용하도록 하고 있다. 이러한 LNG 냉열 발전의 작동유체로는 일반적으로 프로판 액체가 널리 사용되고 있다. LNG 냉열 발전에서는, 증발기에는 작동유체가 유통되는 유로와 별도로 해수가 유통되는 유로가 형성되도록 하고, 응축기에는 역시 유사하게 작동유체가 유통되는 유로와 별도로 LNG가 통과하는 유로가 형성되도록 한다. 이러한 구성에 따라 증발기에서는 작동유체가 해수와 열교환을 하여 해수로부터 증발열을 흡수함으로써 증발하게 되고, 응축기에서는 작동유체가 LNG와 열교환을 하여 LNG로 응축열을 발산함으로써 응축되게 된다. 물론 증발기로 유입된 해수는 작동유체로 증발열을 빼앗김으로써 냉각되어 저온이 되어 배출되며, LNG는 액체 상태로서 응축기로 유입되어 작동유체로부터 발산된 응축열을 공급받아 기체 상태가 되어 배출되게 된다.FIG. 1 (B) shows a form of LNG cold heat generation, which is a form of cold heat generation using such a simple Rankine cycle apparatus. The LNG cold power plant shown in FIG. 1 (B) is similar in structure to a simple Rankine cycle unit (the working fluid circulates condenser-pump-evaporator-turbine in sequence), using seawater as a high temperature heat source. LNG cold heat is used as a low temperature heat source. In general, propane liquid is widely used as a working fluid for LNG cold heat generation. In the LNG cold heat generation, the evaporator is provided with a flow path through which seawater flows separately from the flow path through which the working fluid flows, and the condenser also has a flow path through which LNG passes separately from the flow path through which the working fluid flows. According to this configuration, in the evaporator, the working fluid exchanges heat with seawater to absorb evaporation heat from the seawater, and in the condenser, the working fluid exchanges heat with LNG to condense by dissipating heat of condensation with LNG. Of course, the seawater introduced into the evaporator is cooled by being deprived of the evaporation heat to the working fluid is cooled and discharged at low temperature, LNG is supplied to the condenser as a liquid state is supplied to the condensation heat emitted from the working fluid to be discharged into a gaseous state.
그런데 이와 같은 LNG 냉열 발전에서, 작동유체인 프로판 액체의 냉열을 이용하지 않고 직접 해수와 열교환이 이루어짐으로써 효율이 떨어지는 단점이 있었다. 또한, 하나의 응축기를 사용하여 LNG의 냉열과 프로판 액체가 열교환하게 함으로써 열교환기 대수온도차가 크기 때문에 효율이 더욱 떨어지게 되는 단점 또한 있었다.However, in such LNG cold power generation, there is a disadvantage in that efficiency is reduced by directly exchanging heat with seawater without using the cold heat of propane liquid, which is a working fluid. In addition, there is also a disadvantage in that the efficiency of the heat exchanger logarithmic temperature difference is further reduced because the cold heat of the LNG and the propane liquid heat exchange using a single condenser.
도 1(C)는 해수 온도차 발전의 형태를 도시하고 있는데, 이 형태는 도 1(B)에 도시된 LNG 냉열 발전 장치와 유사하나 다만 고온 열원으로 천수(얕은 깊이의 해수)를 사용하고 저온 열원으로 심해수를 사용한다는 점이 다를 뿐이다. 이 경우에도 LNG 냉열 발전 장치에서와 마찬가지로 효율이 떨어지는 문제가 동일하게 발생하였다.FIG. 1 (C) shows a form of seawater temperature differential power generation, which is similar to the LNG cold heat generating apparatus shown in FIG. 1 (B), but uses shallow water (shallow depth seawater) as a high temperature heat source and a low temperature heat source. The only difference is that they use deep sea water. In this case, the same problem as that of the LNG cold heat generating device was inferior in efficiency.
이와 같이 종래의 냉열 발전 장치들은 효율 면에 있어 많은 개선이 필요하다는 점이 당업자들 사이에서 꾸준히 지적되어 왔다.As described above, it has been pointed out among those skilled in the art that conventional cold heat generating apparatuses require many improvements in efficiency.
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 개선된 랭킨 사이클 장치를 이용하여 효율을 증대시킨, 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치를 제공함에 있다.Accordingly, the present invention has been made to solve the problems of the prior art as described above, an object of the present invention is to provide a cascade and a multi-stage Rankine cycle apparatus for cold heat generation, which has increased efficiency by using an improved Rankine cycle apparatus. In providing.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치는, 그 내부에 작동유체가 순환하며 고온 열원(210) 및 저온 열원(220)을 이용하여 냉열 발전을 수행하는 랭킨 사이클 장치(100)에 있어서, 작동유체를 고온 열원(210)과 열교환시켜 증발시키는 증발기(110); 상기 증발기(110)로부터 배출된 작동유체를 팽창시키며 에너지를 발생시키는 제n터빈(12n)과, 상기 제n터빈(12n)으로부터 배출된 작동유체를 저온 열원(220)과 열교환시켜 응축시키는 제n응축기(13n)와, 상기 제n응축기(13n)로부터 배출된 작동유체를 압축시킨 후 상기 증발기(110)로 유입시켜 작동유체를 순환시키는 제n펌프(14n)를 포함하여 이루어지는 제n순환부(15n); 를 포함하여 이루어지되, 상기 제n순환부(15n)가 N개 구비되며, 저온 열원(220)은 N개의 상기 제n순환부(15n)들을 제1순환부(151)부터 제N순환부(15N)까지 순차적으로 통과하도록 형성되는 것을 특징으로 한다.Cascade and multi-stage Rankine cycle apparatus for cold heat power generation of the present invention for achieving the object as described above, the working fluid is circulated therein to perform cold heat power generation using a high temperature heat source 210 and a low temperature heat source 220. Rankine cycle apparatus 100, comprising: an evaporator (110) for evaporating a working fluid by heat exchange with a high temperature heat source (210); An n-th turbine 12n that expands the working fluid discharged from the evaporator 110 to generate energy, and an n-th heat exchanger condenses the working fluid discharged from the n-th turbine 12n with the low temperature heat source 220. An n-circulating part including an n-condenser 13n and an n-pump 14n configured to compress the working fluid discharged from the n-th condenser 13n and then flow into the evaporator 110 to circulate the working fluid. 15n); It is made, including, the n-th circulation unit (15n) is provided with N, the low-temperature heat source 220 is N number of n-th circulation unit (15n) from the first circulation unit 151 to the N-th circulation unit ( It is characterized in that it is formed to pass sequentially up to 15N).
(이 때, n = 1, …, N이고, N = 2 이상의 정수)(Wherein n = 1,…, N and an integer greater than or equal to 2)
이 때, 상기 랭킨 사이클 장치(100)는 캐스케이드 랭킨 사이클 장치(100A)로서, 제n펌프(14n)에서 배출된 작동유체가 제n펌프(14n)를 거쳐 제n+1응축기(13n+1)로 순차적으로 유입되며, 최후에는 제N응축기(13N)에서 배출된 작동유체가 상기 증발기(110)로 유입되도록 작동유체 순환경로가 형성되는 것을 특징으로 한다.At this time, the Rankine cycle apparatus 100 is a cascade Rankine cycle apparatus 100A, in which the working fluid discharged from the nth pump 14n passes through the nth pump 14n and the n + 1 condenser 13n + 1. In order to be sequentially introduced into the end, it is characterized in that the working fluid circulation path is formed so that the working fluid discharged from the N-th condenser (13N) flows into the evaporator (110).
또는, 상기 랭킨 사이클 장치(100)는 다단 랭킨 사이클 장치(100B)로서, 제n펌프(14n)에서 배출된 작동유체가 제n펌프(14n)를 거쳐 상기 증발기(110)로 유입되어, 각각의 상기 제n순환부(15n)에서 각각 서로 독립적인 작동유체 순환경로가 형성되는 것을 특징으로 한다. 이 때, 상기 랭킨 사이클 장치(100)는 각각의 상기 제n순환부(15n)에서 순환되는 작동유체의 물성 또는 작동조건이 서로 다르게 형성되는 것을 특징으로 한다.Alternatively, the Rankine cycle apparatus 100 is a multi-stage Rankine cycle apparatus 100B, in which working fluid discharged from the nth pump 14n flows into the evaporator 110 through the nth pump 14n, respectively. In the n-th circulation part 15n, a working fluid circulation path independent of each other is formed. At this time, the Rankine cycle device 100 is characterized in that the physical properties or operating conditions of the working fluid circulated in each of the n-th circulation unit (15n) is formed differently.
이 때, 상기 다단 랭킨 사이클 장치(100B)는 각각의 상기 제n순환부(15n)에서 순환되는 작동유체는 모두 동일한 물질이되, n = 1, …, N으로 증가해 감에 따라 작동압력이 높아지도록 형성되는 것을 특징으로 한다.At this time, the multi-stage Rankine cycle apparatus 100B is a working fluid circulated in each of the n-th circulation portion 15n is the same material, n = 1, ... As it increases to N, it is characterized in that the operating pressure is formed to increase.
또는, 상기 다단 랭킨 사이클 장치(100B)는 각각의 상기 제n순환부(15n)에서 순환되는 작동유체는 서로 다른 물질이되, n = 1, …, N으로 증가해 감에 따라 높은 끓는점을 가지도록 형성되는 것을 특징으로 한다.Alternatively, in the multi-stage Rankine cycle apparatus 100B, the working fluid circulated in each of the nth circulation units 15n may be different materials, and n = 1,... As it increases to N, it is characterized in that it is formed to have a high boiling point.
본 발명에 의하면, 캐스케이드 방식 또는 다단 방식을 적용한 랭킨 사이클 장치를 도입함으로서, 냉열 발전에 있어서의 효율을 종래보다 크게 증대시킬 수 있는 큰 효과가 있다. 보다 상세히 설명하자면, 특히 캐스케이드 방식을 적용할 경우 본 발명에 의하면 기존의 저온 열원 이외에도 랭킨 사이클 장치에 사용된 작동유체의 저온 열원까지 사용해서 더 많은 에너지를 얻을 수 있는 장점이 있다.According to the present invention, by introducing a Rankine cycle apparatus employing a cascade system or a multi-stage system, there is a great effect that the efficiency in cold heat generation can be greatly increased than before. More specifically, in the case of applying the cascade method, according to the present invention, in addition to the existing low-temperature heat source, there is an advantage of using the low-temperature heat source of the working fluid used in the Rankine cycle apparatus to obtain more energy.
또한, 본 발명에 의한 캐스케이드 방식 및 다단 방식 모두, 저온 열원을 온도대 별로 활용함으로써 높은 효율을 얻을 수 있는 효과가 있다.In addition, both the cascade method and the multi-stage method according to the present invention has the effect of obtaining a high efficiency by utilizing a low temperature heat source for each temperature band.
더불어 본 발명에 의하면, 작동유체로서 기존에 주로 사용되어 오던 프로판, 암모니아 외에도 온도대 별로 더 높은 효율을 얻을 수 있는 다양한 작동유체의 도입이 가능한 큰 장점이 있다.In addition, according to the present invention, in addition to propane, ammonia, which has been mainly used as a working fluid, there is a big advantage that various working fluids can be introduced to obtain higher efficiency for each temperature range.
도 1은 종래의 냉열 발전을 위한 랭킨 사이클 장치들.1 is a Rankine cycle apparatus for conventional cold heat generation.
도 2 및 도 3은 본 발명의 냉열 발전을 위한 랭킨 사이클 장치.2 and 3 is a Rankine cycle device for cold heat generation of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>
100: (본 발명의) 랭킨 사이클 장치 110: 증발기100: Rankine cycle apparatus 110 of the present invention evaporator
12n: 제n터빈 13n: 제n응축기12n: n-th turbine 13n: n-th condenser
14n: 제n펌프 15n: 제n순환부14n: nth pump 15n: nth circulation part
210: 고온 열원 220: 저온 열원210: high temperature heat source 220: low temperature heat source
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치를 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, a cascade and a multi-stage Rankine cycle apparatus for cold heat generation according to the present invention having the configuration as described above will be described in detail with reference to the accompanying drawings.
본 발명에서는, 종래에 단일 개의 랭킨 사이클만을 이용하여 냉열 발전을 수행하던 것과는 달리, 다수 개의 랭킨 사이클을 이용하여 냉열 발전을 수행하되, 각각의 랭킨 사이클들은 증발기를 공유하도록 되어 있고, 각각의 응축기로 저온 열원이 순차적으로 통과하도록 한다.In the present invention, unlike the conventional heat generation using only a single Rankine cycle, the cold power generation is performed using a plurality of Rankine cycles, each Rankine cycle is to share the evaporator, each condenser Allow the low temperature heat source to pass sequentially.
도 3을 참조하여 보다 상세히 설명하자면 다음과 같다. 본 발명의 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치는, 그 내부에 작동유체가 순환하며 고온 열원(210) 및 저온 열원(220)을 이용하여 냉열 발전을 수행하는 랭킨 사이클 장치(100)에 있어서, 작동유체를 고온 열원(210)과 열교환시켜 증발시키는 증발기(110); 상기 증발기(110)로부터 배출된 작동유체를 팽창시키며 에너지를 발생시키는 제n터빈(12n)과, 상기 제n터빈(12n)으로부터 배출된 작동유체를 저온 열원(220)과 열교환시켜 응축시키는 제n응축기(13n)와, 상기 제n응축기(13n)로부터 배출된 작동유체를 압축시킨 후 상기 증발기(110)로 유입시켜 작동유체를 순환시키는 제n펌프(14n)를 포함하여 이루어지는 제n순환부(15n); 를 포함하여 이루어지되, 상기 제n순환부(15n)가 N개 구비되며, 저온 열원(220)은 N개의 상기 제n순환부(15n)들을 제1순환부(151)부터 제N순환부(15N)까지 순차적으로 통과하도록 형성된다. 이 때, n = 1, …, N이고, N = 2 이상의 정수로서, 도 2의 실시예에서는 N이 3인 경우를 도시하였다.Referring to Figure 3 in more detail as follows. In the cascade and multi-stage Rankine cycle apparatus for cold heat generation of the present invention, in the Rankine cycle apparatus 100 in which a working fluid circulates and performs cold heat generation using a high temperature heat source 210 and a low temperature heat source 220. An evaporator 110 for evaporating the working fluid by exchanging heat with the high temperature heat source 210; An n-th turbine 12n that expands the working fluid discharged from the evaporator 110 to generate energy, and an n-th heat exchanger condenses the working fluid discharged from the n-th turbine 12n with the low temperature heat source 220. An n-circulating part including an n-condenser 13n and an n-pump 14n configured to compress the working fluid discharged from the n-th condenser 13n and then flow into the evaporator 110 to circulate the working fluid. 15n); It is made, including, the n-th circulation unit (15n) is provided with N, the low-temperature heat source 220 is N number of n-th circulation unit (15n) from the first circulation unit 151 to the N-th circulation unit ( Up to 15N). At this time, n = 1,... , N, and an integer equal to or greater than N = 2, in the example of FIG. 2, the case where N is 3 is illustrated.
이 때, 도 3(A)는 캐스케이드 방식을 적용한 제1실시예를, 도 3(B)는 다단 방식을 적용한 제2실시예를 각각 도시하고 있다. 이하에서 도 2 및 도 3을 참조하여 각각의 방식에 대하여 보다 상세히 설명한다.At this time, Fig. 3A shows the first embodiment to which the cascade method is applied, and Fig. 3B shows the second embodiment to which the multi-stage method is applied. Hereinafter, each method will be described in more detail with reference to FIGS. 2 and 3.
도 2(A) 및 도 3(A)는 캐스케이드 방식을 적용한, 본 발명의 냉열 발전을 위한 랭킨 사이클 장치의 제1실시예를 도시하고 있다. 제1실시예에서는, 응축기에서 저온 열원과 열교환함으로써 냉각되고 펌프를 통과함으로써 압축됨으로써 저온 고압이 된 작동유체를, 증발기로 바로 유입시키지 않고 다른 랭킨 사이클의 응축기에 저온 열원으로 사용함으로써 효율을 증대시킨다.2 (A) and 3 (A) show a first embodiment of the Rankine cycle apparatus for cold heat generation of the present invention, to which the cascade method is applied. In the first embodiment, the working fluid, which is cooled by heat exchange with a low temperature heat source in the condenser and compressed by passing through a pump, is used as a low temperature heat source in another Rankine cycle condenser without directly flowing into the evaporator without directly flowing into the evaporator. .
보다 상세히 설명하자면, 제1실시예에서 상기 랭킨 사이클 장치(100)는 캐스케이드 랭킨 사이클 장치(100A)로서, 제n펌프(14n)에서 배출된 작동유체가 제n펌프(14n)를 거쳐 제n+1응축기(13n+1)로 순차적으로 유입되며, 최후에는 제N응축기(13N)에서 배출된 작동유체가 상기 증발기(110)로 유입되도록 작동유체 순환경로가 형성되게 된다.In more detail, in the first embodiment, the Rankine cycle apparatus 100 is a cascade Rankine cycle apparatus 100A, and the working fluid discharged from the n-th pump 14n passes through the n-th pump 14n and n + 1 condenser (13n + 1) is sequentially introduced, and finally the working fluid circulation path is formed so that the working fluid discharged from the N-th condenser (13N) flows into the evaporator (110).
도 2(A)를 참조하여 순차적으로 설명하자면 다음과 같다. 먼저 상기 저온 열원(220)은 제1응축기(131)로 유입되어, 상기 증발기(110)로부터 배출되어 제1터빈(121)을 거쳐 상기 제1응축기(131)로 유입된 작동유체와 1차 열교환을 하게 된다. 이 때 작동유체는 열교환에 의해 응축되어 액상으로 상변화하게 되며, 상기 저온 열원(220)은 작동유체로부터 발산된 응축열을 흡수하여 상기 제1응축기(131)로 유입되기 전보다 약간 온도가 상승한 후 배출되게 된다. 상기 저온 열원(220)은 다음으로 제2응축기(132)로 유입되어 상기 증발기(110)로부터 배출되어 제2터빈(122)을 거쳐 상기 제2응축기(132)로 유입된 작동유체와 열교환을 하게 되는데, 이 때 이 작동유체는 상기 제1응축기(131)에서 배출되어 제1펌프(141)를 거쳐 상기 제2응축기(132)로 유입되는 작동유체와도 열교환을 하게 된다. 즉 상기 제2응축기(132)에서는, 작동유체가 상기 저온 열원(220) 및 상기 제1응축기(131)( 및 상기 제1펌프(141))를 통과해 나온 작동유체, 이 두 유체와 열교환을 하게 되는 것이다.Referring to Figure 2 (A) sequentially as follows. First, the low temperature heat source 220 is introduced into the first condenser 131, discharged from the evaporator 110, and the first heat exchanger with the working fluid introduced into the first condenser 131 via the first turbine 121. Will be At this time, the working fluid is condensed by heat exchange to change into a liquid phase, and the low temperature heat source 220 absorbs the condensation heat emitted from the working fluid and discharges after the temperature rises slightly before entering the first condenser 131. Will be. The low temperature heat source 220 is then introduced into the second condenser 132 and discharged from the evaporator 110 to exchange heat with the working fluid introduced into the second condenser 132 via the second turbine 122. In this case, the working fluid is discharged from the first condenser 131 and heat exchanged with the working fluid introduced into the second condenser 132 via the first pump 141. That is, in the second condenser 132, the working fluid exchanges heat between the two fluids, the working fluid which has passed through the low temperature heat source 220 and the first condenser 131 (and the first pump 141). Will be done.
이 때 역시 작동유체는 열교환에 의해 응축되어 액상으로 상변화한 후 상기 제2펌프(142)를 거쳐 상기 제3응축기(133)로 유입된다. 또한 상기 저온 열원(220)은 상기 제1응축기(131)에서 배출되어 상기 제2응축기(132)로 유입되기 전보다 온도가 조금 더 상승한 후 배출된다. 마지막으로 상기 저온 열원(220)은 제3응축기(133)로 유입되어 작동유체와 3차 열교환을 하게 된다. 상기 제3응축기(133)에서는 상기 제2응축기(132)에서와 유사하게, 작동유체가 상기 저온 열원(220), 상기 제1응축기(131)( 및 상기 제1펌프(141))를 통과해 나온 작동유체, 상기 제2응축기(132)( 및 상기 제2펌프(142))를 통과해 나온 작동유체, 이 세 유체와 열교환을 하게 된다.At this time, the working fluid is also condensed by heat exchange to change into a liquid phase and then flows into the third condenser 133 via the second pump 142. In addition, the low temperature heat source 220 is discharged from the first condenser 131 is discharged after the temperature rises a little more than before entering the second condenser 132. Finally, the low temperature heat source 220 is introduced into the third condenser 133 to perform the third heat exchange with the working fluid. In the third condenser 133, similar to the second condenser 132, the working fluid passes through the low temperature heat source 220, the first condenser 131 (and the first pump 141). The working fluid coming out, the working fluid coming out through the second condenser 132 (and the second pump 142), and the three fluids will exchange heat.
도 3(A)를 참조하여 보다 일반화하여 정리하자면 다음과 같다. 상기 저온 열원(220)은 상기 제1응축기(131), 상기 제2응축기(132), … 를 순차적으로 통과하면서 단계적으로 온도가 상승하게 된다. 물론 이와 같이 온도가 조금씩 상승한다 해도 상기 저온 열원(220)은 작동유체보다는 저온이기 때문에, 각각의 응축기들(131)(132)(133)(…)을 통과하는 작동유체는 모두 적절히 응축될 수 있게 된다. 또한, 제n응축기(13n)를 통과한 작동유체는 제n펌프(14n)를 거쳐 제n+1응축기(13n+1)로 유입되어, 상기 저온 열원(220)과 함께 원래 제n응축기(13n)를 통과하며 순환되는 작동유체와 열교환을 하게 된다. 즉 제2응축기(132)에서는 작동유체가 저온 열원(220) 및 제1응축기(131)를 통과해 온 작동유체, 즉 2개의 유체와 열교환하고, 제3응축기(133)에서는 작동유체가 저온 열원(220), 제1응축기(131)를 통과해 온 작동유체, 제2응축기(132)를 통과해 온 작동유체, 즉 3개의 유체와 열교환하고, … 제N응축기(13N)에서는 작동유체가 저온 열원(220), 제1응축기(131)를 통과해 온 작동유체, 제2응축기(132)를 통과해 온 작동유체, …, 제N-1응축기(13N-1)를 통과해 온 작동유체, 즉 N개의 유체와 열교환하게 되는 것이다.Referring to FIG. 3 (A), the generalization is as follows. The low temperature heat source 220 is the first condenser 131, the second condenser 132, ... The temperature rises step by step while passing sequentially. Of course, even if the temperature rises little by little, since the low temperature heat source 220 is a lower temperature than the working fluid, all the working fluids passing through the respective condensers 131, 132, 133 (…) can be condensed properly. Will be. In addition, the working fluid passing through the n-th condenser 13n flows into the n + 1 condenser 13n + 1 through the n-th pump 14n, and together with the low temperature heat source 220, the n-th condenser 13n. Heat exchange with the working fluid circulating through). That is, in the second condenser 132, the working fluid exchanges heat with the working fluid, ie, two fluids that have passed through the low temperature heat source 220 and the first condenser 131, and in the third condenser 133, the working fluid is the low temperature heat source. (220), the working fluid that has passed through the first condenser (131), the working fluid that has passed through the second condenser (132), that is, heat exchanges with the three fluids,. In the Nth condenser 13N, the working fluid passes through the low temperature heat source 220, the first condenser 131, the working fluid that has passed through the second condenser 132,... In other words, the heat exchanged with the working fluid, that is, the N fluids that have passed through the N-1 condenser 13N-1.
이와 같이 본 발명에서 캐스케이드 방식을 적용한 랭킨 사이클 장치(100A)에서는, 각 순환부(151)(…)(15N)를 순환하는 작동유체가 상기 저온 열원(220) 및 그 전단의 순환부에서 배출된 작동유체들과 열교환을 함으로써, 발전 효율을 종래보다 훨씬 끌어올릴 수 있게 된다.As described above, in the Rankine cycle apparatus 100A to which the cascade method is applied, the working fluid circulating through each of the circulation portions 151 (...) 15N is discharged from the low temperature heat source 220 and the circulation portion at the front end thereof. By exchanging heat with the working fluids, it is possible to raise the power generation efficiency much more conventionally.
도 3은 다단 방식을 적용한, 본 발명의 냉열 발전을 위한 랭킨 사이클 장치의 제2실시예를 도시하고 있다. 제2실시예에서는, 저온 열원을 활용함에 있어서 저온 열원의 온도가 상승함에 따라 각 온도에 맞는 랭킨 사이클을 다단으로 구성하도록 함으로써 효율을 증대시킨다.Figure 3 shows a second embodiment of the Rankine cycle apparatus for cold heat generation of the present invention, applying a multi-stage scheme. In the second embodiment, in utilizing the low temperature heat source, as the temperature of the low temperature heat source rises, the Rankine cycle suitable for each temperature is configured to increase the efficiency.
보다 상세히 설명하자면, 제2실시예에서 상기 랭킨 사이클 장치(100)는 다단 랭킨 사이클 장치(100B)로서, 제n펌프(14n)에서 배출된 작동유체가 제n펌프(14n)를 거쳐 상기 증발기(110)로 유입되어, 각각의 상기 제n순환부(15n)에서 각각 서로 독립적인 작동유체 순환경로가 형성되게 된다.In more detail, in the second embodiment, the Rankine cycle apparatus 100 is a multi-stage Rankine cycle apparatus 100B, in which the working fluid discharged from the n-th pump 14n passes through the n-th pump 14n. 110, the working fluid circulation paths which are independent of each other are formed in each of the nth circulation part 15n.
도 2(B)를 참조하여 설명하자면 다음과 같다. 먼저 상기 저온 열원(220)은 제1응축기(131)로 유입되어, 상기 증발기(110)로부터 배출되어 제1터빈(121)을 거쳐 상기 제1응축기(131)로 유입된 작동유체와 1차 열교환을 하게 된다. 이 때 작동유체는 열교환에 의해 응축되어 액상으로 상변화하게 되며, 상기 저온 열원(220)은 작동유체로부터 발산된 응축열을 흡수하여 상기 제1응축기(131)로 유입되기 전보다 약간 온도가 상승한 후 배출되게 된다. 도 2(A)( 및 도 3(A))에 도시된 캐스케이드 랭킨 사이클 장치(100A)와는 달리, 다단 랭킨 사이클 장치(100B)에서는 작동유체는 제1펌프(141)를 거쳐 상기 증발기(110)로 바로 유입되어, 다른 순환부들과는 독립적인 순환경로를 형성한다.A description with reference to FIG. 2 (B) is as follows. First, the low temperature heat source 220 is introduced into the first condenser 131, discharged from the evaporator 110, and the first heat exchanger with the working fluid introduced into the first condenser 131 via the first turbine 121. Will be At this time, the working fluid is condensed by heat exchange to change into a liquid phase, and the low temperature heat source 220 absorbs the condensation heat emitted from the working fluid and discharges after the temperature rises slightly before entering the first condenser 131. Will be. Unlike the cascade Rankine cycle apparatus 100A shown in FIG. 2 (A) (and FIG. 3 (A)), in the multi-stage Rankine cycle apparatus 100B, the working fluid passes through the first pump 141 to the evaporator 110. Flows directly into the loop, forming a circulation path independent of the other circulation sections.
상기 저온 열원(220)은 다음으로 제2응축기(132)로 유입되어 상기 증발기(110)로부터 배출되어 제2터빈(122)을 거쳐 상기 제2응축기(132)로 유입된 작동유체와 열교환을 하게 되며, 상기 제1순환부(151)에서와 마찬가지로 작동유체는 열교환 후 제2펌프(142)를 거쳐 상기 증발기(110)로 바로 유입된다. 제3순환부(153)에서도 마찬가지 과정이 일어나게 된다.The low temperature heat source 220 is then introduced into the second condenser 132 and discharged from the evaporator 110 to exchange heat with the working fluid introduced into the second condenser 132 via the second turbine 122. As in the first circulation part 151, the working fluid flows directly into the evaporator 110 through the second pump 142 after heat exchange. The same process occurs in the third circulation unit 153.
도 3(B)를 참조하여 보다 일반화하여 정리하자면 다음과 같다. 각각의 순환부(15n)에서 작동유체가 상기 저온 열원(220) 및 전단의 순환부(15n)들을 거쳐 온 작동유체들과 열교환하게 되는 캐스케이드 랭킨 사이클 장치(100A)와는 달리, 다단 랭킨 사이클 장치(100B)에서는 각각의 순환부(15n)에서 작동유체는 서로 독립적인 작동유체 순환경로를 형성하게 되며, 각각의 순환부(15n)에서의 각각의 응축기(13n)에서는 작동유체는 상기 저온 열원(220)과만 열교환을 하게 된다. 다만 종래의 랭킨 사이클 장치와는 달리, 상기 저온 열원(220)은 각각의 순환부(15n)를 순차적으로 거치면서 순차적으로 조금씩 온도가 상승하게 되는데, 이와 같이 상기 저온 열원(220)의 온도가 조금 상승한다 하더라도 작동유체와 열교환하여 작동유체를 응축시킬 수 있으므로, 상기 다단 랭킨 사이클 장치(100B) 역시 종래의 랭킨 사이클 장치에 비해 훨씬 발전 효율을 증대시킬 수 있게 된다.Referring to FIG. 3 (B), the generalization is as follows. Unlike the cascade Rankine cycle apparatus 100A, in which each of the circulation parts 15n exchanges heat with the working fluids passing through the low temperature heat source 220 and the front end of the circulation parts 15n, the multi-stage Rankine cycle device ( In 100B), the working fluid in each circulation section 15n forms an independent working fluid circulation path, and in each condenser 13n in each circulation section 15n, the working fluid is the low temperature heat source 220. Only heat exchange with). However, unlike the conventional Rankine cycle apparatus, the low temperature heat source 220 is gradually increased in temperature while passing through each circulation portion 15n sequentially, in this way, the temperature of the low temperature heat source 220 is slightly Even if it rises, it is possible to condense the working fluid by heat exchange with the working fluid, so that the multi-stage Rankine cycle apparatus 100B can also increase the power generation efficiency much more than the conventional Rankine cycle apparatus.
이 때, 상기 랭킨 사이클 장치(100)는 각각의 상기 제n순환부(15n)에서 순환되는 작동유체의 물성 또는 작동조건이 서로 다르게 형성되도록 함으로써 더욱 발전 효율을 증대시킬 수 있다. 도 2(A) 및 도 3(A)에 도시된 제1실시예, 즉 캐스케이드 랭킨 사이클 장치(100A)에서는 각각의 순환부에서 작동유체가 상기 저온 열원(220) 및 이전의 순환부들을 거쳐 온 작동유체들과 열교환을 하도록 되어 있는 반면, 도 2(B) 및 도 3(B)에 도시된 제2실시예, 즉 다단 랭킨 사이클 장치(100B)에서는 각각의 순환부에서 작동유체가 단지 상기 저온 열원(220)과만 열교환을 하게 된다. 그러나 제2실시예에서는 각각의 순환부가 서로 독립적인 작동유체 순환경로를 형성하기 때문에, 각각의 순환부에서의 작동유체의 물성 또는 작동조건을 다르게 함으로써 효율을 상승시킬 수 있는 것이다.At this time, the Rankine cycle apparatus 100 can further increase the power generation efficiency by allowing the physical properties or operating conditions of the working fluid circulated in the n-th circulation unit 15n to be formed differently. In the first embodiment shown in FIGS. 2 (A) and 3 (A), that is, the cascade Rankine cycle apparatus 100A, a working fluid in each circulation section is brought through the low temperature heat source 220 and the previous circulation sections. In the second embodiment shown in FIGS. 2 (B) and 3 (B), that is, in the multistage Rankine cycle apparatus 100B, the working fluid is only at the low Heat exchange only with the heat source 220. However, in the second embodiment, since each circulation section forms a working fluid circulation path independent of each other, the efficiency can be increased by changing the physical properties or operating conditions of the working fluid in each circulation section.
한 예로, 상기 다단 랭킨 사이클 장치(100B)에서 각각의 상기 제n순환부(15n)에서 순환되는 작동유체는 모두 동일한 물질이되, n = 1, …, N으로 증가해 감에 따라 작동압력이 높아지도록 형성되도록 할 수 있다. 또는, 상기 다단 랭킨 사이클 장치(100B)에서 각각의 상기 제n순환부(15n)에서 순환되는 작동유체는 서로 다른 물질이되, n = 1, …, N으로 증가해 감에 따라 높은 끓는점을 가지도록 형성되도록 할 수 있다.For example, in the multi-stage Rankine cycle apparatus 100B, the working fluids circulated in each of the nth circulation units 15n are all the same material, and n = 1,... As the pressure increases to N, the operating pressure can be increased. Alternatively, in the multi-stage Rankine cycle apparatus 100B, the working fluid circulated in each of the nth circulation units 15n may be different materials, and n = 1,... As it increases to N, it can be formed to have a high boiling point.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and the scope of application of the present invention is not limited to those of ordinary skill in the art to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made.
본 발명에 의하면 개선된 랭킨 사이클 장치를 이용하여 효율을 증대시킨, 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치의 제공이 가능하다.According to the present invention, it is possible to provide a cascade and a multi-stage Rankine cycle apparatus for cold heat generation, which have improved efficiency by using an improved Rankine cycle apparatus.

Claims (6)

  1. 그 내부에 작동유체가 순환하며 고온 열원(210) 및 저온 열원(220)을 이용하여 냉열 발전을 수행하는 랭킨 사이클 장치(100)에 있어서,In the Rankine cycle device 100, the working fluid circulates therein and performs cold heat power generation using the high temperature heat source 210 and the low temperature heat source 220.
    작동유체를 고온 열원(210)과 열교환시켜 증발시키는 증발기(110);An evaporator 110 for evaporating the working fluid by exchanging heat with the high temperature heat source 210;
    상기 증발기(110)로부터 배출된 작동유체를 팽창시키며 에너지를 발생시키는 제n터빈(12n)과, 상기 제n터빈(12n)으로부터 배출된 작동유체를 저온 열원(220)과 열교환시켜 응축시키는 제n응축기(13n)와, 상기 제n응축기(13n)로부터 배출된 작동유체를 압축시킨 후 상기 증발기(110)로 유입시켜 작동유체를 순환시키는 제n펌프(14n)를 포함하여 이루어지는 제n순환부(15n);An n-th turbine 12n that expands the working fluid discharged from the evaporator 110 to generate energy, and an n-th heat exchanger condenses the working fluid discharged from the n-th turbine 12n with the low temperature heat source 220. An n-circulating part including an n-condenser 13n and an n-pump 14n configured to compress the working fluid discharged from the n-th condenser 13n and then flow into the evaporator 110 to circulate the working fluid. 15n);
    를 포함하여 이루어지되,Including but not limited to,
    상기 제n순환부(15n)가 N개 구비되며, 저온 열원(220)은 N개의 상기 제n순환부(15n)들을 제1순환부(151)부터 제N순환부(15N)까지 순차적으로 통과하도록 형성되는 것을 특징으로 하는 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치.The nth circulation part 15n is provided, and the low temperature heat source 220 sequentially passes the Nth nth circulation parts 15n from the first circulation part 151 to the Nth circulation part 15N. Cascade and multi-stage Rankine cycle apparatus for cold heat generation, characterized in that it is formed to.
    (이 때, n = 1, …, N이고, N = 2 이상의 정수)(Wherein n = 1,…, N and an integer greater than or equal to 2)
  2. 제 1항에 있어서, 상기 랭킨 사이클 장치(100)는According to claim 1, wherein the Rankine cycle apparatus 100
    캐스케이드 랭킨 사이클 장치(100A)로서,As the cascade Rankine cycle apparatus 100A,
    제n펌프(14n)에서 배출된 작동유체가 제n펌프(14n)를 거쳐 제n+1응축기(13n+1)로 순차적으로 유입되며, 최후에는 제N응축기(13N)에서 배출된 작동유체가 상기 증발기(110)로 유입되도록 작동유체 순환경로가 형성되는 것을 특징으로 하는 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치.The working fluid discharged from the nth pump 14n is sequentially introduced into the n + 1 condenser 13n + 1 via the nth pump 14n, and finally, the working fluid discharged from the Nth condenser 13N Cascade and multi-stage Rankine cycle apparatus for cold heat power generation, characterized in that the working fluid circulation path is formed to enter the evaporator (110).
  3. 제 1항에 있어서, 상기 랭킨 사이클 장치(100)는According to claim 1, wherein the Rankine cycle apparatus 100
    다단 랭킨 사이클 장치(100B)로서,As a multistage Rankine cycle apparatus 100B,
    제n펌프(14n)에서 배출된 작동유체가 제n펌프(14n)를 거쳐 상기 증발기(110)로 유입되어, 각각의 상기 제n순환부(15n)에서 각각 서로 독립적인 작동유체 순환경로가 형성되는 것을 특징으로 하는 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치.The working fluid discharged from the n-th pump 14n flows into the evaporator 110 through the n-th pump 14n to form a working fluid circulation path independent of each other in each of the n-th circulation parts 15n. Cascade and multi-stage Rankine cycle device for cold heat generation, characterized in that.
  4. 제 3항에 있어서, 상기 다단 랭킨 사이클 장치(100B)는4. The multistage Rankine cycle apparatus 100B according to claim 3, wherein
    각각의 상기 제n순환부(15n)에서 순환되는 작동유체의 물성 또는 작동조건이 서로 다르게 형성되는 것을 특징으로 하는 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치.Cascade and multi-stage Rankine cycle apparatus for cold heat generation, characterized in that the physical properties or operating conditions of the working fluid circulated in each of the n-th circulation unit (15n) is formed differently.
  5. 제 4항에 있어서, 상기 다단 랭킨 사이클 장치(100B)는The multistage Rankine cycle apparatus 100B according to claim 4, wherein
    각각의 상기 제n순환부(15n)에서 순환되는 작동유체는 모두 동일한 물질이되, n = 1, …, N으로 증가해 감에 따라 작동압력이 높아지도록 형성되는 것을 특징으로 하는 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치.The working fluids circulated in each of the nth circulation parts 15n are all the same material, and n = 1,. Cascade and multi-stage Rankine cycle apparatus for cold heat generation, characterized in that formed to increase the operating pressure as it increases to, N.
  6. 제 4항에 있어서, 상기 다단 랭킨 사이클 장치(100B)는The multistage Rankine cycle apparatus 100B according to claim 4, wherein
    각각의 상기 제n순환부(15n)에서 순환되는 작동유체는 서로 다른 물질이되, n = 1, …, N으로 증가해 감에 따라 높은 끓는점을 가지도록 형성되는 것을 특징으로 하는 냉열 발전을 위한 캐스케이드 및 다단 랭킨 사이클 장치.The working fluid circulated in each of the nth circulation parts 15n is made of a different material, and n = 1,. Cascade and multi-stage Rankine cycle apparatus for cold heat generation, characterized in that it is formed to have a high boiling point as it increases to N.
PCT/KR2011/009002 2011-01-14 2011-11-24 Cascade and multi-stage rankine cycle device for cold power generation WO2012096439A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0004083 2011-01-14
KR1020110004083A KR101339777B1 (en) 2011-01-14 2011-01-14 Power Generation with Cold Energy Sources Utilizing Cascade Rankine Cycle

Publications (1)

Publication Number Publication Date
WO2012096439A1 true WO2012096439A1 (en) 2012-07-19

Family

ID=46507304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009002 WO2012096439A1 (en) 2011-01-14 2011-11-24 Cascade and multi-stage rankine cycle device for cold power generation

Country Status (2)

Country Link
KR (1) KR101339777B1 (en)
WO (1) WO2012096439A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110281A (en) * 2013-04-19 2014-10-22 天津大学 Low-temperature-heat high-temperature-drop dual-cycle cascade generation system
CN107060930A (en) * 2017-06-09 2017-08-18 翁志远 Heat energy utilization system and power station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102074641B1 (en) 2019-11-05 2020-02-07 이상운 Electric power generation complex linking rankine cycle of lng regasification process and conventional thermal power generation process
KR102280340B1 (en) * 2019-12-19 2021-07-21 주식회사 디이앤씨 Distributed generation system using cold heat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
JPH05340342A (en) * 1992-06-08 1993-12-21 Toshiba Corp Ocean thermal energy conversion device
US7665304B2 (en) * 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
US20100071368A1 (en) * 2007-04-17 2010-03-25 Ormat Technologies, Inc. Multi-level organic rankine cycle power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276747A (en) * 1978-11-30 1981-07-07 Fiat Societa Per Azioni Heat recovery system
JPH05340342A (en) * 1992-06-08 1993-12-21 Toshiba Corp Ocean thermal energy conversion device
US7665304B2 (en) * 2004-11-30 2010-02-23 Carrier Corporation Rankine cycle device having multiple turbo-generators
US20100071368A1 (en) * 2007-04-17 2010-03-25 Ormat Technologies, Inc. Multi-level organic rankine cycle power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110281A (en) * 2013-04-19 2014-10-22 天津大学 Low-temperature-heat high-temperature-drop dual-cycle cascade generation system
CN107060930A (en) * 2017-06-09 2017-08-18 翁志远 Heat energy utilization system and power station

Also Published As

Publication number Publication date
KR101339777B1 (en) 2013-12-11
KR20120082667A (en) 2012-07-24

Similar Documents

Publication Publication Date Title
WO2012096439A1 (en) Cascade and multi-stage rankine cycle device for cold power generation
KR101282091B1 (en) Power Generation System of cold energy utilization
RU2010137881A (en) DIRECT ACTION VAPOR, INSTALLATION FOR REGENERATION OF ENERGY AND METHOD OF REGENERATION OF ENERGY
US20130174552A1 (en) Non-azeotropic working fluid mixtures for rankine cycle systems
US7228682B2 (en) System for augmented electric power generation with distilled water output
WO2012060510A1 (en) Ocean geothermal power system using multi-step reheating rankine cycle
JPS5818574B2 (en) heat pump
PT1649147E (en) Method and device for carrying out a thermodynamic cycle
AR034067A1 (en) APPARATUS FOR COOLING THE REFRIGERANT ENVIRONMENT OF A GAS TURBINE AND CENTRAL OF GAS AND VAPOR TURBINES WITH AN EQUIPMENT OF SUCH TYPE
EP2895708B1 (en) System for recovering through an organic rankine cycle (orc) energy from a plurality of heat sources
ES2714101T3 (en) Water heat treatment with STIG power plant concepts
WO2021117969A1 (en) Combined power and desalination system using unused heat
CN103410691A (en) Thermodynamic circulating system for power generation with small temperature difference
CN110330948A (en) Organic Rankine Cycle isopentane/hexamethylene working medium suitable for 270 DEG C of heat sources
AU2015413548B2 (en) A system for high efficiency energy conversion cycle by recycling latent heat of vaporization
US7373904B2 (en) Stratified vapor generator
WO2017007194A1 (en) Hot water supply apparatus using air-source heat pump
Tian et al. How to select regenerative configurations of CO2 transcritical Rankine cycle based on the temperature matching analysis
WO2015016432A1 (en) Fresh water generator for ship
EP1558881B1 (en) Reversible air-water absorption heat pump
CN110257012A (en) Organic Rankine Cycle 3-pentafluorobutane/hexamethylene working medium suitable for 270 DEG C of heat sources
WO2015041501A1 (en) Heat pump power generating system and driving method therefor
CN108917224B (en) Composite thermodynamic cycle system for low-grade heat source power generation
CN212274313U (en) Hot water driven absorption refrigeration equipment
WO2014098508A1 (en) System powered by combination of heat engine and heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855539

Country of ref document: EP

Kind code of ref document: A1