JP2007064048A - Waste heat recovery facility of power plant - Google Patents

Waste heat recovery facility of power plant Download PDF

Info

Publication number
JP2007064048A
JP2007064048A JP2005249079A JP2005249079A JP2007064048A JP 2007064048 A JP2007064048 A JP 2007064048A JP 2005249079 A JP2005249079 A JP 2005249079A JP 2005249079 A JP2005249079 A JP 2005249079A JP 2007064048 A JP2007064048 A JP 2007064048A
Authority
JP
Japan
Prior art keywords
heat
steam
exhaust
power plant
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005249079A
Other languages
Japanese (ja)
Inventor
Kenji Kariya
謙二 假屋
Hiroshi Arase
央 荒瀬
Taro Shinkawa
太郎 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2005249079A priority Critical patent/JP2007064048A/en
Publication of JP2007064048A publication Critical patent/JP2007064048A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat recovery facility of a power plant, which can apply and recover the exhaust heat from a steam turbine using a heat pump for heating the water supply of a steam generating device. <P>SOLUTION: The waste heat recovery facility of the power plant supplies the steam from the steam generating device into the steam turbine 1 to convert the steam into power. The heat recovery facility comprises an air-cooled condenser 3 at the exhaust side, and a heat exchanger 9 at the exhaust side of the steam turbine 1 to recover the heat of the exhaust steam into heating medium in heating the water supply for the steam generating device with the heat pump. A circulating pipe 11 through which heating medium circulates is disposed between the heat exchanger 9 and the heat pump 12, and the circulated heating medium is formed as heat source water of the heat pump 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発電プラントの廃熱回収設備に係り、特に蒸気から熱回収して蒸気発生装置への給水を加熱するヒートポンプを備えた発電プラントの廃熱回収設備に関する。   The present invention relates to a waste heat recovery facility of a power plant, and more particularly, to a waste heat recovery facility of a power plant that includes a heat pump that recovers heat from steam and heats feed water to a steam generator.

発電プラントを設置する際、海水及び冷却塔による冷却水等を多量に得られない地域では、蒸気タービンの排気蒸気を凝縮させる手段として空冷式復水器を採用する場合が多くなる。この空冷式復水器を採用している発電プラントにおいては、空冷式復水器からの大気へ放熱が全体に占める割合は60%程度と非常に大きく、この放熱熱損失を回収することができれば、発電プラント効率を向上することが可能になる。   When installing a power plant, in an area where a large amount of seawater and cooling water from a cooling tower cannot be obtained, an air-cooled condenser is often used as a means for condensing the exhaust steam of the steam turbine. In a power plant that employs this air-cooled condenser, the proportion of heat radiation from the air-cooled condenser to the atmosphere is as large as about 60%, and if this heat loss can be recovered. The power plant efficiency can be improved.

しかしながら、空冷式復水器の冷却後の空気温度は、一般には50〜60℃程度であり、また空気の比熱も小さいため、熱交換器で回収するには使用する熱交換器の伝熱面積を非常に大きくする必要がある。このことから、従来では蒸気タービンの排気熱は、有効に利用されずにそのまま大気へ放熱されている。   However, the air temperature after cooling of the air-cooled condenser is generally about 50 to 60 ° C., and the specific heat of the air is small, so that the heat transfer area of the heat exchanger used for recovery by the heat exchanger is small. Need to be very large. Therefore, conventionally, the exhaust heat of the steam turbine is radiated as it is to the atmosphere without being effectively used.

蒸気タービンの排気熱を発電プラント内で有効に回収する一例として、特許文献1に記載の発電設備では、蒸気タービン排気蒸気を直接吸収式ヒートポンプの蒸発器に導入することで、蒸気の潜熱を熱源として有効に利用しており、凝縮後のドレンは吸収式ヒートポンプの吸収器や凝縮器で昇温され、再び蒸気発生器の給水として利用することが提案している。   As an example of effectively recovering the exhaust heat of the steam turbine in the power plant, the power generation facility described in Patent Document 1 introduces the steam turbine exhaust steam directly into the evaporator of the absorption heat pump, thereby generating the latent heat of the steam as a heat source. It has been proposed that the drain after condensation is heated by an absorber or condenser of an absorption heat pump and used again as water supply for a steam generator.

特開平5−263610号公報JP-A-5-263610

一般に、蒸気タービン排気管の口径は、排気管の圧力損失、振動発生限界等を考慮して、経験的に排気管内の蒸気流速が60〜70m/sとなるように計画されている。また、蒸気タービン排気圧力が低いほど蒸気タービンの性能は良くなるので、蒸気タービンの排気圧力は、殆んど真空で計画されているため、蒸気タービンの排気管の口径はかなり大きなものとなる。   In general, the diameter of the steam turbine exhaust pipe is empirically designed so that the steam flow rate in the exhaust pipe is 60 to 70 m / s in consideration of the pressure loss of the exhaust pipe, the vibration generation limit, and the like. Further, the lower the steam turbine exhaust pressure is, the better the performance of the steam turbine is. Therefore, the exhaust pressure of the steam turbine is designed to be almost vacuum, so that the diameter of the exhaust pipe of the steam turbine becomes considerably large.

このため、蒸気タービンの排気蒸気を、吸収式ヒートポンプの蒸発器に直接導入している上記の特許文献1に記載の例では、この接続配管の口径はかなり大きくなるから、接続配管の引き回しを考慮せねばならない等の配置上の問題が生ずる。また、吸収式ヒートポンプの蒸発器の伝熱面積も大きくする必要があるため、配置上の問題が生ずるし、更には特殊仕様となって設備投資が増加する恐れがある。   For this reason, in the example described in Patent Document 1 in which the exhaust steam of the steam turbine is directly introduced into the evaporator of the absorption heat pump, the diameter of the connection pipe becomes considerably large. Arrangement problems such as having to do occur. Further, since it is necessary to increase the heat transfer area of the evaporator of the absorption heat pump, there is a problem in arrangement, and there is a possibility that the equipment investment increases due to a special specification.

本発明の目的は、接続配管での引き回し等の配置上の問題や、ヒートポンプが特殊仕様とせねばならないため設備投資が増加させることなく、蒸気タービンからの排気廃熱を、蒸気発生装置の給水の加熱に利用して回収できる発電プラントの廃熱回収設備を提供することにある。   The object of the present invention is to reduce the exhaust heat from the steam turbine to the feed water of the steam generator without increasing the capital investment because the layout problem such as the routing in the connecting pipe and the heat pump must be a special specification. It is to provide a waste heat recovery facility for a power plant that can be recovered by heating.

本発明では、蒸気発生装置から蒸気を動力に変換する蒸気タービンに供給し、前記蒸気タービンの排気側に空冷式復水器を備えると共に、前記蒸気発生装置への給水を加熱するヒートポンプを備えて発電プラントの廃熱回収設備を構成する際に、蒸気タービンの排気側には、排気蒸気の熱を熱媒体に回収させる熱交換器を設け、また熱交換器とヒートポンプとの間に熱媒体が循環する循環配管を介在させ、この循環させた熱媒体を前記ヒートポンプの熱源水としたものである。   In the present invention, the steam generator is supplied to a steam turbine that converts steam into power, and an air-cooled condenser is provided on the exhaust side of the steam turbine, and a heat pump that heats water supplied to the steam generator is provided. When configuring the waste heat recovery equipment of a power plant, a heat exchanger is provided on the exhaust side of the steam turbine to recover the heat of the exhaust steam to the heat medium, and there is a heat medium between the heat exchanger and the heat pump. Circulating circulation piping is interposed, and the circulated heat medium is used as heat source water for the heat pump.

本発明のように発電プラントの廃熱回収設備を構成すれば、空冷式復水器を用いた場合でも接続配管引き回し等の配置上の問題や、ヒートポンプを特殊仕様とすることによる設備投資の増加もなく、蒸気タービンからの排気廃熱を蒸気発生装置の給水の加熱に活用でき、廃熱を効果的に回収することができる。   If the waste heat recovery equipment of the power plant is configured as in the present invention, even when an air-cooled condenser is used, there is a problem in arrangement such as connection piping routing, and an increase in capital investment by making the heat pump a special specification The exhaust heat from the steam turbine can be used for heating the feed water of the steam generator, and the waste heat can be effectively recovered.

本発明における発電プラントの廃熱回収設備の実施例について、以下に図に示す各実施例を用いて詳細に説明する。   Embodiments of the waste heat recovery facility for a power plant according to the present invention will be described in detail below using embodiments shown in the drawings.

本発明の第1の実施例である図1の発電プラントでは、蒸気タービン1からの排気蒸気を凝縮するため、排気側の排気管2に空冷式復水器3と排気復水タンク4を設け、また湿り蒸気中の水分は、凝縮水となって排気管2中に設けるドレンポッド5からドレンタンク6に至るようにし、ドレンポンプ7によって排気復水タンク4に排水するようにしている。   In the power plant of FIG. 1 which is the first embodiment of the present invention, an air-cooled condenser 3 and an exhaust condensate tank 4 are provided in the exhaust pipe 2 on the exhaust side in order to condense the exhaust steam from the steam turbine 1. In addition, the moisture in the wet steam becomes condensed water from the drain pod 5 provided in the exhaust pipe 2 to the drain tank 6 and is drained to the exhaust condensate tank 4 by the drain pump 7.

したがって、蒸気発生器(図示ぜず)から発生した蒸気は、蒸気タービン1にて仕事をしてから、排気管2を介して空冷式復水器3に流入し、この空冷式復水器3に流入した蒸気は、空気で冷却されて凝縮水となって、排気復水タンク4に排出される。排気復水タンク4に貯水された凝縮水は、排気復水ポンプ8によって蒸気発生装置に給水される。この 蒸気タービン1からの排気蒸気の持つ熱量を有効に活用するため、蒸気の排気側の排気管2中に熱交換器9を設置している。そして、この熱交換器9で、排気蒸気との熱交換により昇温した熱媒体の熱量を、利用するためにヒートポンプ12を設けており、熱交換で昇温した熱媒体は、循環配管11の循環ポンプ10でヒートポンプ蒸発器13に供給している。これによって、排気蒸気の熱を熱交換器9で回収し、ヒートポンプ12の活用で蒸気発生装置に戻る給水を加熱するようにしている。   Therefore, the steam generated from the steam generator (not shown) works in the steam turbine 1 and then flows into the air-cooled condenser 3 through the exhaust pipe 2, and this air-cooled condenser 3 The steam that has flowed into is cooled with air to become condensed water, and is discharged to the exhaust condensate tank 4. The condensed water stored in the exhaust condensate tank 4 is supplied to the steam generator by the exhaust condensate pump 8. In order to effectively utilize the heat quantity of the exhaust steam from the steam turbine 1, a heat exchanger 9 is installed in the exhaust pipe 2 on the steam exhaust side. In this heat exchanger 9, a heat pump 12 is provided in order to use the heat amount of the heat medium raised by heat exchange with the exhaust steam, and the heat medium heated by heat exchange is supplied to the circulation pipe 11. The circulation pump 10 supplies the heat pump evaporator 13. As a result, the heat of the exhaust steam is recovered by the heat exchanger 9 and the feed water that returns to the steam generator by using the heat pump 12 is heated.

ヒートポンプ12では、熱媒体から吸熱し、その吸熱分を蒸気発生装置の給水を加熱するため、ヒートポンプ蒸発器13出口の熱媒体の熱量は低下し、この出口の熱媒体を再度熱交換器9へ循環して加熱を繰返すものである。また、熱交換器9で熱回収された排気蒸気の一部は、凝縮してドレンとなってドレンタンク6を経由し、排気復水タンク4へ排出される。   In the heat pump 12, heat is absorbed from the heat medium, and the heat absorption is used to heat the feed water of the steam generator. Therefore, the amount of heat of the heat medium at the outlet of the heat pump evaporator 13 is reduced, and the heat medium at the outlet is returned to the heat exchanger 9. It circulates and repeats heating. In addition, a part of the exhaust steam recovered by the heat exchanger 9 is condensed and drained through the drain tank 6 and discharged to the exhaust condensate tank 4.

本発明のように構成する場合、熱交換器9から循環配管11でヒートポンプ12に循環する熱媒体は、熱交換器9から受熱する熱量とヒートポンプ蒸発器13で吸熱される熱量を、バランスさせる必要があるため、例えばヒートポンプ蒸発器13の入口に温度計を設置しておき、この温度が一定となるように循環ポンプ10の回転数制御による循環量の制御、流量調節弁による循環量の制御、バッファタンクの設置による温度の制御等を実施する。また、熱媒体の循環量は固定しておき、例えば調節弁等で蒸気発生装置の給水加熱量を調節することでも同様の効果が期待できる。   When configured as in the present invention, the heat medium circulating from the heat exchanger 9 to the heat pump 12 through the circulation pipe 11 needs to balance the amount of heat received from the heat exchanger 9 and the amount of heat absorbed by the heat pump evaporator 13. Therefore, for example, a thermometer is installed at the inlet of the heat pump evaporator 13, and the circulation amount is controlled by controlling the number of revolutions of the circulation pump 10 so that the temperature is constant, the circulation amount is controlled by the flow rate control valve, Control the temperature by installing a buffer tank. Further, the same effect can be expected by fixing the circulation amount of the heat medium and adjusting the feed water heating amount of the steam generator with a control valve or the like, for example.

本発明の発電プラントでは、熱交換器9に組合せるヒートポンプ12は、吸収式ヒートポンプや圧縮式ヒートポンプを適用でき、このような第1種ヒートポンプ12のいずれを用いても同様な効果を達成することができる。   In the power plant of the present invention, an absorption heat pump or a compression heat pump can be applied as the heat pump 12 combined with the heat exchanger 9, and the same effect can be achieved by using any of the first type heat pumps 12 as described above. Can do.

本発明は、新規建設の発電プラントのみならず、既に建設済みの発電プラントに容易に適用でき、しかも設備投資を抑制して実施できるため、極めて大きな効果を奏するものである。   The present invention can be applied not only to a newly constructed power plant but also to a power plant that has already been constructed, and can be implemented with reduced capital investment.

本発明の他の実施例を示す図2の例では、蒸気タービン1の排気管2に分岐配管15、16を追加し、この分岐配管15、16部分に熱交換器9を設置したもので、他の部分は図1と同様に構成しており、この例においても図1の例と同様な効果を達成できる。しかも、このように構成すると、図1の例のように排気管2に設置する熱交換器9の伝熱面積が大きい場合には圧力損失が大きくなることから、蒸気タービン1の排気圧力が高くなって、蒸気タービン1の性能が悪化するのに対して、これを避けることができる。   In the example of FIG. 2 showing another embodiment of the present invention, branch pipes 15 and 16 are added to the exhaust pipe 2 of the steam turbine 1, and a heat exchanger 9 is installed in the branch pipes 15 and 16. The other parts are configured in the same manner as in FIG. 1, and in this example, the same effects as in the example of FIG. 1 can be achieved. In addition, with this configuration, when the heat transfer area of the heat exchanger 9 installed in the exhaust pipe 2 is large as in the example of FIG. 1, the pressure loss increases, so the exhaust pressure of the steam turbine 1 is high. Thus, the performance of the steam turbine 1 deteriorates, but this can be avoided.

本発明の別の実施例を示す図3では、蒸気タービン1に蒸気を供給する主蒸気管17に、バイパス弁18を介在させるバイパス管19を設けて排気管2に至るようにし、このバイパス管19に熱交換器9を設けたもので、他の部分は図1と同様に構成しており、これによっても図1の例と同様な効果を達成できる。また、この実施例では、図2の例と異なり熱交換器9をタービンバイパス管19に設置することで、蒸気タービン1の排気圧力が高くなることを防止でき、更に通常運転中は蒸気タービン1の排気管2から熱交換器9に蒸気が流れるため、通常運転中におけるバイパス管19のウォーミングを兼ねることができる。   In FIG. 3 showing another embodiment of the present invention, a bypass pipe 19 having a bypass valve 18 interposed in a main steam pipe 17 for supplying steam to the steam turbine 1 is provided so as to reach the exhaust pipe 2. 19 is provided with a heat exchanger 9, and the other parts are configured in the same manner as in FIG. 1, and this can also achieve the same effects as in the example of FIG. Further, in this embodiment, unlike the example of FIG. 2, the heat exchanger 9 is installed in the turbine bypass pipe 19 so that the exhaust pressure of the steam turbine 1 can be prevented from becoming high, and further, the steam turbine 1 during normal operation. Since the steam flows from the exhaust pipe 2 to the heat exchanger 9, the bypass pipe 19 can be warmed during normal operation.

本発明の更に別の実施例を示す図4では、図1から3の実施例が第1種ヒートポンプを用いて排気蒸気の廃熱を回収しているのに対して、廃熱の回収に第2種ヒートポンプを用いたものである。排気蒸気のもつ熱量を第2種ヒートポンプの駆動熱源として利用するため、蒸気の例と同様に排気管2に熱交換器9を設置し、蒸気タービン排気蒸気との熱交換により昇温した熱媒体を、循環ポンプ10でヒートポンプ蒸発器20とヒートポンプ発生器22に供給し、ヒートポンプ凝縮器23には冷却水を循環させたもので、このような構成であっても、図1の例と同様な効果を達成できる。   In FIG. 4 showing still another embodiment of the present invention, the embodiment of FIGS. 1 to 3 uses the first type heat pump to recover the waste heat of the exhaust steam, whereas the embodiment of FIG. A two-type heat pump is used. In order to use the heat quantity of the exhaust steam as a drive heat source for the second type heat pump, a heat exchanger 9 is installed in the exhaust pipe 2 as in the case of the steam, and the heat medium is heated by heat exchange with the steam turbine exhaust steam. Is supplied to the heat pump evaporator 20 and the heat pump generator 22 by the circulation pump 10, and the cooling water is circulated through the heat pump condenser 23. Even in such a configuration, it is the same as the example of FIG. The effect can be achieved.

本発明の一実施例である発電プラントの廃熱回収設備を示す構成図である。It is a block diagram which shows the waste heat recovery equipment of the power plant which is one Example of this invention. 本発明の他の実施例である発電プラントの廃熱回収設備を示す構成図である。It is a block diagram which shows the waste heat recovery equipment of the power plant which is another Example of this invention. 本発明の別実施例である発電プラントの廃熱回収設備を示す構成図である。It is a block diagram which shows the waste heat recovery equipment of the power plant which is another Example of this invention. 本発明の更に別実施例である発電プラントの廃熱回収設備を示す構成図である。It is a block diagram which shows the waste heat recovery equipment of the power plant which is another Example of this invention.

符号の説明Explanation of symbols

1…蒸気タービン、2…排気管、3…空冷式復水器、4…排気復水タンク、5…ドレンポッド、6…ドレンタンク、7…ドレンポンプ、8…排気復水ポンプ、9…熱交換器、10…循環ポンプ、11…循環配管、12…ヒートポンプ、13、20…ヒートポンプ蒸発器、14…ポンプ、15…分岐配管、16…ドレン配管、17…主蒸気管、18…バイパス弁、19…バイパス管、21…ヒートポンプ吸収器、22…ヒートポンプ発生器、23…ヒートポンプ凝縮器。

DESCRIPTION OF SYMBOLS 1 ... Steam turbine, 2 ... Exhaust pipe, 3 ... Air-cooled condenser, 4 ... Exhaust condensate tank, 5 ... Drain pod, 6 ... Drain tank, 7 ... Drain pump, 8 ... Exhaust condensate pump, 9 ... Heat Exchanger, 10 ... circulation pump, 11 ... circulation pipe, 12 ... heat pump, 13, 20 ... heat pump evaporator, 14 ... pump, 15 ... branch pipe, 16 ... drain pipe, 17 ... main steam pipe, 18 ... bypass valve, DESCRIPTION OF SYMBOLS 19 ... Bypass pipe, 21 ... Heat pump absorber, 22 ... Heat pump generator, 23 ... Heat pump condenser

Claims (4)

蒸気発生装置から蒸気を動力に変換する蒸気タービンに供給し、前記蒸気タービンの排気側に空冷式復水器を備えると共に、前記蒸気発生装置への給水を加熱するヒートポンプを備えた発電プラントの廃熱回収設備において、前記蒸気タービンの排気側には、排気蒸気の熱を熱媒体に回収させる熱交換器を設け、前記熱交換器とヒートポンプとの間に熱媒体が循環する循環配管を介在させ、前記循環させた熱媒体を前記ヒートポンプの熱源水として構成したことを特徴とする発電プラントの廃熱回収設備。   The power generation plant is provided with an air-cooled condenser on the exhaust side of the steam turbine, and a heat pump for heating the feed water to the steam generator. In the heat recovery facility, a heat exchanger for recovering the heat of the exhaust steam to a heat medium is provided on the exhaust side of the steam turbine, and a circulation pipe for circulating the heat medium is interposed between the heat exchanger and the heat pump. A waste heat recovery facility for a power plant, wherein the circulated heat medium is configured as heat source water for the heat pump. 請求項1において、前記熱交換器は、蒸気タービンの排気側から分岐して排気復水タンクに至る分岐配管を設けて構成したことを特徴とする発電プラントの廃熱回収設備。   2. The waste heat recovery facility for a power plant according to claim 1, wherein the heat exchanger is provided with a branch pipe branched from the exhaust side of the steam turbine to the exhaust condensate tank. 請求項1において、前記熱交換器は、蒸気発生装置からの蒸気を蒸気タービンの排気側の排気管に接続する分岐配管に設けて構成したことを特徴とする発電プラントの廃熱回収設備。   2. The waste heat recovery facility for a power plant according to claim 1, wherein the heat exchanger is provided in a branch pipe connecting steam from a steam generator to an exhaust pipe on an exhaust side of a steam turbine. 請求項1において、前記熱交換器から循環させた熱媒体を第2種ヒートポンプの熱源水として構成したことを特徴とする発電プラントの廃熱回収設備。
2. The waste heat recovery facility for a power plant according to claim 1, wherein the heat medium circulated from the heat exchanger is configured as a heat source water of a second type heat pump.
JP2005249079A 2005-08-30 2005-08-30 Waste heat recovery facility of power plant Pending JP2007064048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249079A JP2007064048A (en) 2005-08-30 2005-08-30 Waste heat recovery facility of power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249079A JP2007064048A (en) 2005-08-30 2005-08-30 Waste heat recovery facility of power plant

Publications (1)

Publication Number Publication Date
JP2007064048A true JP2007064048A (en) 2007-03-15

Family

ID=37926541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249079A Pending JP2007064048A (en) 2005-08-30 2005-08-30 Waste heat recovery facility of power plant

Country Status (1)

Country Link
JP (1) JP2007064048A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038159A (en) * 2008-07-31 2010-02-18 General Electric Co <Ge> System and method for use in combined cycle power plant or rankine cycle power plant using air-cooled steam condenser
CN102022770A (en) * 2010-10-26 2011-04-20 北京国电电科院节能技术有限公司 Heat and power cogeneration energy-saving device and method for supplying heat by using direct waste heat of air-cooling unit
CN102032612A (en) * 2010-10-26 2011-04-27 北京国电电科院节能技术有限公司 Cogeneration energy-saving device and method using residual heat of direct air-cooling unit to supply heat
WO2012005295A1 (en) * 2010-07-08 2012-01-12 三浦工業株式会社 Steam system
CN102444436A (en) * 2010-10-08 2012-05-09 益科博能源科技(上海)有限公司 Method for exhausting low-pressure water vapor of turbine
JP2012172874A (en) * 2011-02-18 2012-09-10 Kobe Steel Ltd Hot water manufacturing supply unit
CN103334802A (en) * 2013-06-26 2013-10-02 山东电力工程咨询院有限公司 Thermoelectric-coupling type comprehensive energy-utilizing system based on air-cooling device and working method
CN104089435A (en) * 2014-07-01 2014-10-08 国家电网公司 Energy saving amount determination method for recycling waste heat of circulating cooling water by means of heat pump
CN106196147A (en) * 2016-08-18 2016-12-07 北京慧峰仁和科技股份有限公司 A kind of exhaust steam residual heat that reclaims improves the thermal efficiency and the system of unit on-load ability
CN107939463A (en) * 2017-12-21 2018-04-20 天津国电津能热电有限公司 A kind of condensing turbine group based on sorption type heat pump
CN110131919A (en) * 2019-04-02 2019-08-16 深圳市奥宇节能技术股份有限公司 The recovery method of cooling circulating water waste heat
CN115574646A (en) * 2022-12-09 2023-01-06 华北电力大学(保定) Cascade phase change heat storage system and method based on power plant waste heat and high-temperature heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391409A (en) * 1986-10-02 1988-04-22 株式会社東芝 Heater drain controller of power plant with distilling plant
JPH03264712A (en) * 1990-03-15 1991-11-26 Nippon Seimitsu Keisoku Kk Composite power generating equipment
JPH0454206A (en) * 1990-06-25 1992-02-21 Toshiba Corp Power plant
JPH0821210A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility in incinerator
JPH0821209A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility by steam turbine utilising exhaust heat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391409A (en) * 1986-10-02 1988-04-22 株式会社東芝 Heater drain controller of power plant with distilling plant
JPH03264712A (en) * 1990-03-15 1991-11-26 Nippon Seimitsu Keisoku Kk Composite power generating equipment
JPH0454206A (en) * 1990-06-25 1992-02-21 Toshiba Corp Power plant
JPH0821210A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility in incinerator
JPH0821209A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility by steam turbine utilising exhaust heat

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038159A (en) * 2008-07-31 2010-02-18 General Electric Co <Ge> System and method for use in combined cycle power plant or rankine cycle power plant using air-cooled steam condenser
WO2012005295A1 (en) * 2010-07-08 2012-01-12 三浦工業株式会社 Steam system
JP2012032136A (en) * 2010-07-08 2012-02-16 Miura Co Ltd Steam system
CN102444436A (en) * 2010-10-08 2012-05-09 益科博能源科技(上海)有限公司 Method for exhausting low-pressure water vapor of turbine
CN102022770A (en) * 2010-10-26 2011-04-20 北京国电电科院节能技术有限公司 Heat and power cogeneration energy-saving device and method for supplying heat by using direct waste heat of air-cooling unit
CN102032612A (en) * 2010-10-26 2011-04-27 北京国电电科院节能技术有限公司 Cogeneration energy-saving device and method using residual heat of direct air-cooling unit to supply heat
JP2012172874A (en) * 2011-02-18 2012-09-10 Kobe Steel Ltd Hot water manufacturing supply unit
CN103334802B (en) * 2013-06-26 2015-05-27 山东电力工程咨询院有限公司 Thermoelectric-coupling type comprehensive energy-utilizing system based on air-cooling device and working method
CN103334802A (en) * 2013-06-26 2013-10-02 山东电力工程咨询院有限公司 Thermoelectric-coupling type comprehensive energy-utilizing system based on air-cooling device and working method
CN104089435A (en) * 2014-07-01 2014-10-08 国家电网公司 Energy saving amount determination method for recycling waste heat of circulating cooling water by means of heat pump
CN104089435B (en) * 2014-07-01 2016-06-08 国家电网公司 Heat pump is utilized to reclaim the amount of energy saving defining method of circulating cooling water afterheat
CN106196147A (en) * 2016-08-18 2016-12-07 北京慧峰仁和科技股份有限公司 A kind of exhaust steam residual heat that reclaims improves the thermal efficiency and the system of unit on-load ability
CN107939463A (en) * 2017-12-21 2018-04-20 天津国电津能热电有限公司 A kind of condensing turbine group based on sorption type heat pump
CN110131919A (en) * 2019-04-02 2019-08-16 深圳市奥宇节能技术股份有限公司 The recovery method of cooling circulating water waste heat
CN110131919B (en) * 2019-04-02 2021-02-05 深圳市奥宇节能技术股份有限公司 Method for recovering waste heat of cooling circulating water
CN115574646A (en) * 2022-12-09 2023-01-06 华北电力大学(保定) Cascade phase change heat storage system and method based on power plant waste heat and high-temperature heat pump

Similar Documents

Publication Publication Date Title
JP2007064048A (en) Waste heat recovery facility of power plant
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JP5339193B2 (en) Exhaust gas heat recovery device
JP2007032568A (en) Combined cycle power generation plant
EP2647938A1 (en) Cooling system with a condensate polishing unit
US20080134995A1 (en) Waste Heat Recovery Apparatus and Method for Boiler System
WO2012090517A1 (en) Heat recovery and utilization system
JP5325038B2 (en) System and method applied to combined cycle power plant or Rankine cycle power plant using air-cooled steam condenser
KR100907662B1 (en) MS seawater desalination system equipped with heat pipe heat emitter
JP5743490B2 (en) Water treatment system and water treatment method
KR101481010B1 (en) Ocean thermal energy conversion system and operation method thereof
KR100678705B1 (en) Waste heat recovery system for Steam power plant
JP4486391B2 (en) Equipment for effective use of surplus steam
KR101103768B1 (en) Electric Generating System Using Heat Pump Unit
JP5295203B2 (en) Transformer cooling method
JP2011157855A (en) Power generation facility and operating method for power generation facility
CA2740203C (en) Combined circulation condenser
JP4599139B2 (en) Steam turbine plant
JP2006112686A (en) Two stage temperature rising type absorption heat pump
JP2020519842A (en) Device and method for improving heat utilization efficiency of heat source
JP4579644B2 (en) Steam exhaust system
RU2403511C1 (en) Solar plant and method of its operation
JP5361079B2 (en) Method for cooling hydrogen cooling device
RU2269011C2 (en) Thermal power station
US20080134994A1 (en) Waste Heat Recovery Apparatus and Method for Boiler System

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100819