JP4579644B2 - Steam exhaust system - Google Patents

Steam exhaust system Download PDF

Info

Publication number
JP4579644B2
JP4579644B2 JP2004311164A JP2004311164A JP4579644B2 JP 4579644 B2 JP4579644 B2 JP 4579644B2 JP 2004311164 A JP2004311164 A JP 2004311164A JP 2004311164 A JP2004311164 A JP 2004311164A JP 4579644 B2 JP4579644 B2 JP 4579644B2
Authority
JP
Japan
Prior art keywords
heat
exhaust
steam
heat medium
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004311164A
Other languages
Japanese (ja)
Other versions
JP2006125673A (en
Inventor
晴亮 辻
二郎 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2004311164A priority Critical patent/JP4579644B2/en
Publication of JP2006125673A publication Critical patent/JP2006125673A/en
Application granted granted Critical
Publication of JP4579644B2 publication Critical patent/JP4579644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Treating Waste Gases (AREA)

Description

本発明は蒸気排出システムに関する。さらに詳しくは、工場などから大気中に排出される高圧の蒸気を事前に処理し、熱の有効利用を図る蒸気排出システムに関する。   The present invention relates to a steam exhaust system. More specifically, the present invention relates to a steam discharge system that pre-processes high-pressure steam discharged from the factory or the like into the atmosphere to effectively use heat.

特開2002−89994号公報JP 2002-89994 A

従来の蒸気排出システムは、たとえば図4に示すように、排熱源101から排出される高圧蒸気を受け入れる気液分離タンク102と、その気液分離タンク102内の蒸気を放出する第1の煙突(蒸気排出管)103と、気液分離タンク102で分離された高温ドレン水を溜めておくための高温ドレン水タンク104と、その高温ドレン水タンク104内で分離された蒸気を排出するための第2の煙突(蒸気排出管)105と、高温ドレン水タンク104から高温ドレン水を排水するための排水ポンプ106とを備えている。   For example, as shown in FIG. 4, a conventional steam exhaust system includes a gas-liquid separation tank 102 that receives high-pressure steam exhausted from an exhaust heat source 101, and a first chimney that releases steam in the gas-liquid separation tank 102 ( Steam discharge pipe) 103, a high-temperature drain water tank 104 for storing the high-temperature drain water separated in the gas-liquid separation tank 102, and a first drain for discharging the steam separated in the high-temperature drain water tank 104. 2 chimneys (steam discharge pipes) 105 and a drainage pump 106 for draining the high-temperature drain water from the high-temperature drain water tank 104.

このような蒸気排出システム100では、排熱源101から、たとえば約170℃、10kg/cm2の高圧蒸気が排出されると、気液分離タンク102で100℃で大気圧の蒸気と、98℃の高温ドレン水とに分離される。そして蒸気は第1の煙突103から外気に排出され、分離された98℃の高温ドレン水は、一時的に高温ドレン水タンク104に溜められ、たとえば95℃程度になる。そして高圧ドレン水タンク104が満水になったときに排水ポンプ106でボイラー棟などに送られ、最終的に下水や河川に排水される。高温ドレン水タンク104で発生する蒸気は、第2の煙突105から大気中に排出される。 In such a steam exhaust system 100, when high-pressure steam of about 170 ° C. and 10 kg / cm 2 , for example, is exhausted from the exhaust heat source 101, steam at 100 ° C. and atmospheric pressure in the gas-liquid separation tank 102 and 98 ° C. Separated into hot drain water. Then, the steam is discharged from the first chimney 103 to the outside air, and the separated high-temperature drain water at 98 ° C. is temporarily stored in the high-temperature drain water tank 104 and becomes, for example, about 95 ° C. When the high-pressure drain water tank 104 is full, it is sent to a boiler building or the like by a drain pump 106 and finally drained into sewage or a river. The steam generated in the high-temperature drain water tank 104 is discharged from the second chimney 105 to the atmosphere.

他方、特許文献1には、ガスタービンを駆動源とする発電機と、ガスボイラおよび気液分離器を備えた排熱回収装置と、吸収冷温水機を備えた排熱利用機器と、冷却水ポンプや冷却塔などの他の機器を備えた排熱利用吸収冷温水装置が開示されている。このものはガスタービンの排熱を利用してガスボイラで蒸気を発生させ、その蒸気を熱源として吸収冷温水機に利用するものである。   On the other hand, Patent Document 1 discloses a generator using a gas turbine as a drive source, an exhaust heat recovery device including a gas boiler and a gas-liquid separator, an exhaust heat utilization device including an absorption chiller / heater, and a cooling water pump. An exhaust-heat-use absorption chilled / hot water device including other equipment such as a cooling tower is disclosed. In this system, steam is generated by a gas boiler using exhaust heat from a gas turbine, and the steam is used as a heat source for an absorption chiller / heater.

前記従来の蒸気排出システム100では、第1の煙突103が工場の屋根よりかなり高く、排出される蒸気も100℃程度と高温であるので、排出時に直ちに凝結して白煙状の霧107になる。とくに外気温が低い冬季には、本来無害な霧であるにも関わらず、有害な煙を出しているとの誤解を招き、周辺の住宅などより苦情が寄せられる問題がある。また、蒸気排熱を無駄に捨てているので、熱エネルギの損失がある。また、排出する高温ドレン水の温度が高いので、排出前に放熱したり、冷水と混ぜるなど、温度を下げる手間やコストが必要になる。   In the conventional steam discharge system 100, the first chimney 103 is considerably higher than the roof of the factory, and the discharged steam is also as high as about 100 ° C., so that it immediately condenses into a white smoke-like mist 107 at the time of discharge. . Especially in the winter when the outside temperature is low, there is a problem that it is mischievous that it emits harmful smoke in spite of its inherently harmless mist, resulting in complaints from surrounding houses. Further, since waste steam heat is wasted, there is a loss of heat energy. Moreover, since the temperature of the high-temperature drain water to be discharged is high, it is necessary to reduce the temperature and cost, such as radiating heat before discharging or mixing with cold water.

本発明は前記従来の蒸気排出システム100の問題を解消し、白煙状の霧107の排出をできるだけ減らし、しかも蒸気排熱を有効に再利用しうる蒸気排出システムを提供することを技術課題としている。   It is a technical problem of the present invention to solve the problems of the conventional steam discharge system 100, to provide a steam discharge system that can reduce the discharge of white smoke mist 107 as much as possible, and can effectively reuse the steam exhaust heat. Yes.

本発明の蒸気排出システムは、工場から大気中に排出される高圧蒸気を蒸気とドレン水とに分離する気液分離タンクと、分離された蒸気を放出する蒸気排出経路と、分離されたドレン水を排水する排水経路とを備えた蒸気排出システムであって前記蒸気排出経路中に介在される排蒸気熱交換器と、その排蒸気熱交換器で加熱された熱媒体を循環させる熱媒体経路と、その熱媒体経路を流れる熱媒体の熱を利用する排熱利用機器とからなる排熱利用サブシステムとを備え、前記気液分離タンク中の高温ドレン水を受け入れる高温ドレン水タンクと、その高温ドレン水タンク内の高温ドレン水と前記排熱利用サブシステムにおける熱媒体経路の熱媒体とを熱交換する排熱回収サブシステムを備えていることを特徴としている。 Steam exhaust system of the present invention, a gas-liquid separation tank for separating the high-pressure steam discharged from the factory into the atmosphere and Atsushi Ko drain water vapor, and steam discharge path for releasing the separated vapor and separated a steam discharge system comprising a drainage path for draining Atsushi Ko drain water, the waste steam heat exchanger which is interposed between the steam discharge pathway, the heat medium heated by the waste steam heat exchanger circulation And a waste heat utilization subsystem comprising waste heat utilization equipment that utilizes the heat of the heat medium flowing through the heat medium path, and receives the high temperature drain water in the gas-liquid separation tank. A waste heat recovery subsystem is provided that exchanges heat between the tank and the high-temperature drain water in the high-temperature drain water tank and the heat medium in the heat medium path in the exhaust heat utilization subsystem .

さらに前記排蒸気熱交換器内の余剰熱を外部に放熱する放熱サブシステムを備えているものが好ましい。その場合は、前記熱媒体経路が途中に介在される熱交換器を介して排蒸気熱交換器側の一次側熱媒体経路と排熱利用機器側の二次側熱媒体経路とに分離されており、一次側熱媒体経路の戻り側経路に前記放熱サブシステムが介在されているものが好ましい。
さらに前記二次側熱媒体経路が、前記排熱利用機器内の排熱温水熱交換器から、高温ドレン水と前記排熱利用サブシステムにおける熱媒体経路の熱媒体とを間接熱交換する熱交換器および前記一次側熱媒体経路と二次側熱媒体経路とを分離して熱交換する熱交換器を経由して元の排熱温水熱交換器に戻るように循環するものが好ましい。
前記いずれの蒸気排出システムにおいても、前記排熱利用機器は、熱媒体経路を流れる熱媒体の熱を吸収液の希釈液と間接的に熱交換することにより利用する排熱投入型吸収冷温水器とすることができる
Furthermore, it is preferable to include a heat dissipation subsystem that radiates excess heat in the exhaust steam heat exchanger to the outside. In that case, the heat medium path is separated into a primary side heat medium path on the exhaust steam heat exchanger side and a secondary side heat medium path on the exhaust heat utilization equipment side via a heat exchanger interposed in the middle. It is preferable that the heat dissipation subsystem is interposed in the return side path of the primary side heat medium path.
Further, the secondary side heat medium path indirectly exchanges heat between the high-temperature drain water and the heat medium of the heat medium path in the exhaust heat utilization subsystem from the exhaust heat hot water heat exchanger in the exhaust heat utilization apparatus. It is preferable to circulate so as to return to the original waste heat hot water heat exchanger via a heat exchanger that separates the primary side heat medium path and the secondary side heat medium path and exchanges heat.
In any of the steam exhaust systems, the exhaust heat utilization device uses an exhaust heat input type absorption chiller / heater that utilizes heat of the heat medium flowing through the heat medium path by indirectly exchanging heat with a diluted solution of the absorption liquid. It can be .

本発明の蒸気排出システムにおいては、蒸気排出経路中に排蒸気熱交換器を備えており、その排蒸気熱交換器で蒸気の熱が熱媒体経路を流れる熱媒体に供給され、蒸気自体は冷却される。そのため、蒸気が蒸気排出経路から外気中に放出されるときに白煙状の霧が出ず、あるいは薄くなる。それにより有害な煙を排出していると誤解されることがない。さらに熱媒体の熱は、排熱利用機器の熱源として有効に利用されるので、従来無駄に捨てられていた熱エネルギの有効利用が図られる。   In the steam exhaust system of the present invention, an exhaust steam heat exchanger is provided in the steam exhaust path, and the heat of the steam is supplied to the heat medium flowing through the heat medium path in the exhaust steam heat exchanger, and the steam itself is cooled. Is done. Therefore, when the steam is discharged into the outside air from the steam discharge path, white smoke-like fog does not appear or becomes thin. Therefore, it is not misunderstood that harmful smoke is emitted. Furthermore, since the heat of the heat medium is effectively used as a heat source of the exhaust heat utilization device, it is possible to effectively use the heat energy that has been wasted in the past.

さらに、前記気液分離タンク中のドレン水を受け入れる高温ドレン水タンクと、その高温ドレン水タンク内の高温ドレン水の熱と前記排熱利用サブシステムにおける熱媒体経路の熱媒体とを熱交換する排熱回収サブシステムを備えているので、排出される高温ドレン水の熱エネルギも、排熱利用機器の熱源として有効利用することができる。さらに排ドレン水の温度も低下するので、冷水を混ぜて温度を下げるなどの余分な手間が減る。
Furthermore, the high temperature drain water tank for receiving the high temperature drain water of the gas-liquid separation in a tank, and a heat medium of the heat medium passage in the heat and the waste heat utilization subsystem hot drain water of the hot drain water tank heat it is provided with the exhaust heat recovery subsystem exchange, thermal energy of hot drain water discharged may also be effectively utilized as a heat source of waste heat utilization device. Furthermore, since the temperature of the drain water is also lowered, the extra work such as lowering the temperature by mixing cold water is reduced.

さらに前記排蒸気熱交換器内の余剰熱を外部に放熱する放熱サブシステムを備えている場合は、排蒸気熱交換器内で蒸気を充分に冷却することができ、白煙状の霧の発生を一層抑制することができる。また、前記熱媒体経路が、途中に介在される熱交換器を介して排蒸気熱交換器側の一次側熱媒体経路と排熱利用機器側の二次側熱媒体経路とに分離されており、一次側熱媒体経路の戻り側経路に前記放熱サブシステムが介在されている場合は、管路が簡略になる。また、熱媒体経路が熱交換器を介して一次側熱媒体経路と二次側熱媒体経路とに分離されているので、排熱利用機器の運転を停止しても冷却作用が奏され、白煙の発生を防止することができる。   Furthermore, when a heat dissipation subsystem that dissipates excess heat in the exhaust steam heat exchanger to the outside is provided, the steam can be sufficiently cooled in the exhaust steam heat exchanger, and generation of white smoke-like mist Can be further suppressed. Further, the heat medium path is separated into a primary side heat medium path on the exhaust steam heat exchanger side and a secondary side heat medium path on the exhaust heat utilization equipment side through a heat exchanger interposed in the middle. When the heat dissipation subsystem is interposed in the return side path of the primary side heat medium path, the pipe line is simplified. In addition, since the heat medium path is separated into the primary side heat medium path and the secondary side heat medium path through the heat exchanger, the cooling action is achieved even if the operation of the exhaust heat utilization device is stopped, Smoke generation can be prevented.

つぎに図面を参照しながら本発明の蒸気排出システムの好ましい実施の形態を説明する。図1は本発明の蒸気排出システムの一実施形態を示す配管系統図、図2はその蒸気排出システムの作用を示す配管系統図、図3は本発明の蒸気排出システムの他の実施形態を示す要部配管系統図である。   Next, a preferred embodiment of the steam exhaust system of the present invention will be described with reference to the drawings. FIG. 1 is a piping system diagram showing an embodiment of the steam exhaust system of the present invention, FIG. 2 is a piping system diagram showing the operation of the steam exhaust system, and FIG. 3 shows another embodiment of the steam exhaust system of the present invention. It is a principal part piping system diagram.

図1に示す蒸気排出システムSは、大きく見ると、排熱源10から排出される排蒸気の熱を利用する排熱利用サブシステムS1と、高温ドレン水の熱を回収する排熱回収サブシステムS2と、排蒸気の余剰熱を放熱する放熱サブシステムS3とを備えている。   The steam exhaust system S shown in FIG. 1 is broadly viewed as an exhaust heat utilization subsystem S1 that uses the heat of exhaust steam exhausted from the exhaust heat source 10 and an exhaust heat recovery subsystem S2 that recovers the heat of high-temperature drain water. And a heat dissipation subsystem S3 that dissipates excess heat of the exhaust steam.

前記排熱源10は蒸気管路10aを介して気液分離タンク11に接続されており、その気液分離タンク11の上部には、タンク内で減圧された蒸気を排出するための第2の蒸気管路11aが接続されている。気液分離タンク11の下部にはタンク内で分離された高温のドレン水を排出するためのドレン水管路11bが接続されている。そのドレン水管路11bの他端は、高温ドレン水タンク12に接続されており、その下部には排水管路12aが接続され、その途中に排水ポンプ13が介在されている。   The exhaust heat source 10 is connected to a gas-liquid separation tank 11 through a steam line 10a, and a second steam for discharging the vapor depressurized in the tank is provided above the gas-liquid separation tank 11. A pipeline 11a is connected. A drain water pipe 11 b for discharging high-temperature drain water separated in the tank is connected to the lower part of the gas-liquid separation tank 11. The other end of the drain water pipe 11b is connected to a high-temperature drain water tank 12, a drain pipe 12a is connected to the lower part thereof, and a drain pump 13 is interposed in the middle.

前記高温ドレン水タンク12の上部には、高温ドレン水から分離された蒸気を排出するための第2の蒸気排出管路12bが連結されており、その第2の蒸気排出管路12bの他端は第2の煙突12cに連結されている。気液分離タンク11および高温ドレン水タンク12は、図4の従来の蒸気排出システム100に用いられているものと実質的に同じものを用いることができる。   A second steam discharge pipe 12b for discharging steam separated from the high-temperature drain water is connected to the upper part of the high-temperature drain water tank 12, and the other end of the second steam discharge pipe 12b. Is connected to the second chimney 12c. The gas-liquid separation tank 11 and the high-temperature drain water tank 12 can be substantially the same as those used in the conventional steam exhaust system 100 of FIG.

つぎに排熱利用サブシステムS1について説明する。前記第2の蒸気管路11aの他端は排蒸気熱交換器14に連結されている。排蒸気熱交換器14の上部には蒸気を排出するための蒸気排出管路14aが接続されており、それにより第1の煙突14bまで導かれている。排蒸気熱交換器14の下部には凝縮水を排出するための第2の排水管路14cが接続されている。その第2の排水管路14cの他端は排水槽15まで導かれている。排水槽15には、排水槽が満水になったときに排水するための排水ポンプ15aを介して第3の排水管路15bが接続されている。   Next, the exhaust heat utilization subsystem S1 will be described. The other end of the second steam line 11 a is connected to the exhaust steam heat exchanger 14. A steam discharge pipe 14a for discharging steam is connected to the upper part of the exhaust steam heat exchanger 14, and thereby led to the first chimney 14b. A second drain pipe 14c for discharging condensed water is connected to the lower part of the exhaust steam heat exchanger 14. The other end of the second drain pipe 14c is led to the drain tank 15. A third drain line 15b is connected to the drainage tank 15 via a drainage pump 15a for draining when the drainage tank is full.

前記排蒸気熱交換器14内には、排蒸気から熱を受け取る熱媒体を循環させる閉ループ状の循環管路16のコイル16aが収容されている。その循環回路16は、第1熱交換器17の熱交換用の一次側のコイル17aに連結され、そのコイル17aの出口からは第2熱交換器18の一次側のコイル18aに連結されている。第2熱交換器18の一次側のコイル18aの出口からは、熱媒体の循環用のポンプ19を経由して前述の排蒸気熱交換器14内のコイル16aに戻っている。循環管路16を流れる熱媒体としては、通常は水が用いられる。第2熱交換器18は放熱サブシステムS3の構成要素である。   The exhaust steam heat exchanger 14 accommodates a coil 16a of a closed loop circulation line 16 that circulates a heat medium that receives heat from the exhaust steam. The circulation circuit 16 is connected to the primary coil 17a for heat exchange of the first heat exchanger 17, and is connected to the primary coil 18a of the second heat exchanger 18 from the outlet of the coil 17a. . From the outlet of the primary side coil 18a of the second heat exchanger 18, it returns to the coil 16a in the exhaust steam heat exchanger 14 via the heat medium circulating pump 19. As the heat medium flowing through the circulation pipe 16, water is usually used. The second heat exchanger 18 is a component of the heat dissipation subsystem S3.

前記第1熱交換器17の二次側のコイル17bは、排熱利用管路20を介して排熱利用機器、たとえば排熱投入型吸収冷温水機(ジェネリンク。以下、冷温水機という)21の排熱温水熱交換器21aに連結されている。冷温水機21の排熱温水熱交換器21aから出てくる排熱利用管路20は、排熱利用ポンプ22を経由して後述する第3熱交換器23の二次側コイル23bに至り、さらに第1熱交換器17の二次側のコイル17bに戻っている。排熱利用管路20には、高温水などの熱媒体が流れている。第3熱交換器23は排熱回収サブシステムS2の要素である。   The secondary coil 17b of the first heat exchanger 17 is connected to an exhaust heat utilization device, for example, an exhaust heat input type absorption chiller / heater (generlink; hereinafter referred to as chiller / heater) through an exhaust heat utilization conduit 20. 21 is connected to a waste heat hot water heat exchanger 21a. The exhaust heat utilization pipe line 20 coming out from the exhaust heat hot water heat exchanger 21a of the chiller / heater 21 reaches a secondary side coil 23b of a third heat exchanger 23 to be described later via an exhaust heat utilization pump 22, Furthermore, it has returned to the secondary coil 17 b of the first heat exchanger 17. A heat medium such as high-temperature water flows through the exhaust heat utilization pipe line 20. The third heat exchanger 23 is an element of the exhaust heat recovery subsystem S2.

前記放熱サブシステムS3においては、前記第2熱交換器18の二次側コイル18bが放熱管路25を経由して余剰放熱冷却塔26に導かれ、その内部を通る水は、外気によって冷却されるようにシャワーリングされ、下部に溜まるように構成している。放熱管路25の戻り側は、冷却水ポンプ27を経由して、前述の第2熱交換器18の二次側コイル18bに戻るように連結されている。   In the heat dissipation subsystem S3, the secondary coil 18b of the second heat exchanger 18 is led to the surplus heat dissipation cooling tower 26 via the heat dissipation conduit 25, and the water passing through the inside is cooled by the outside air. It is configured so that it is showered and collected at the bottom. The return side of the heat radiating duct 25 is connected so as to return to the secondary coil 18 b of the second heat exchanger 18 described above via the cooling water pump 27.

さらにこの実施形態では、排熱回収サブシステムS2として、前記高温ドレン水タンク12の高温ドレン水の排熱を冷温水機21の熱源として利用する排熱回収管路28が設けられている。この排熱回収管路28は、ドレン水タンク12から排熱回収ポンプ28aを経て第3熱交換器23の一次側コイル23aに至り、高温ドレン水タンク12に戻るようにループ状に配管されている。   Furthermore, in this embodiment, the exhaust heat recovery sub-system S2 is provided with an exhaust heat recovery pipeline 28 that uses the exhaust heat of the high-temperature drain water in the high-temperature drain water tank 12 as a heat source for the cold / hot water machine 21. The exhaust heat recovery pipe line 28 is piped in a loop shape from the drain water tank 12 via the exhaust heat recovery pump 28 a to the primary coil 23 a of the third heat exchanger 23 and returning to the high temperature drain water tank 12. Yes.

上記のように構成される蒸気排出システムSでは、排蒸気熱交換器14と、第1熱交換器17と、冷温水機21と、それらを連結する循環管路16および排熱利用管路20と、熱媒体循環用のポンプ19、排熱利用ポンプ22により、排蒸気の熱を冷温水機21の熱源に利用する排熱利用サブシステムS1を構成している。そして第2熱交換器18と、放熱冷却塔26と、放熱管路25は、循環回路16の熱媒体を冷却する放熱サブシステムS3を構成している。また、第3熱交換器23、排熱回収管路28および排熱回収ポンプ28aは、排熱回収サブシステムS2を構成している。放熱サブシステムS3および排熱回収サブシステムS2は必ずしも設ける必要はないが、設ける方が第1煙突14bからの白煙を少なくすることができ、排熱の利用効率が高くなる。   In the steam exhaust system S configured as described above, the exhaust steam heat exchanger 14, the first heat exchanger 17, the chiller / heater 21, the circulation pipe 16 connecting them and the exhaust heat utilization pipe 20. The exhaust heat utilization subsystem S 1 that uses the heat of the exhaust steam as a heat source of the chiller / heater 21 is configured by the heat medium circulation pump 19 and the exhaust heat utilization pump 22. The second heat exchanger 18, the heat radiation cooling tower 26, and the heat radiation pipe line 25 constitute a heat radiation subsystem S3 that cools the heat medium of the circulation circuit 16. Further, the third heat exchanger 23, the exhaust heat recovery pipeline 28, and the exhaust heat recovery pump 28a constitute an exhaust heat recovery subsystem S2. Although it is not always necessary to provide the heat dissipation subsystem S3 and the exhaust heat recovery subsystem S2, white smoke from the first chimney 14b can be reduced and the utilization efficiency of exhaust heat is increased.

つぎに図2を参照しながら前記蒸気排出システムSの作用を説明する。排熱源10から排出される高温高圧の蒸気は、たとえば約170℃で、10kg/cm2で気液分離タンク11に供給され、100℃で大気圧の蒸気と98℃のドレンとに分離される。蒸気は蒸気管路11aを経由して排蒸気熱交換器14に至り、循環管路16の熱媒体を昇温する。そしてその蒸気自体は冷却され、蒸気排出管路14aを経由して第1の煙突14bから外気に放出される。 Next, the operation of the steam exhaust system S will be described with reference to FIG. The high-temperature and high-pressure steam discharged from the exhaust heat source 10 is supplied to the gas-liquid separation tank 11 at about 170 ° C. and 10 kg / cm 2 , for example, and is separated into steam at atmospheric pressure and drain at 98 ° C. at 100 ° C. . The steam reaches the exhaust steam heat exchanger 14 via the steam line 11 a and raises the temperature of the heat medium in the circulation line 16. Then, the steam itself is cooled and discharged to the outside air from the first chimney 14b via the steam discharge pipe 14a.

循環管路16を流れる水などの熱媒体は、排蒸気熱交換器14内でたとえば95℃まで加熱され、熱媒体循環ポンプ19の作用で第1熱交換器17に向かう。そして第1熱交換器17で排熱利用管路20内の戻りの熱媒体に熱を供給し、熱媒体自体はたとえば82℃程度まで冷却される。そして冷却された熱媒体は循環管路16を経由して第2熱交換器18に向かう。そこで放熱管路25を流れる水などの熱媒体に熱を伝達し、熱媒体自体はたとえば65℃まで冷却された上で、排蒸気熱交換器14に戻る。   A heat medium such as water flowing through the circulation pipe 16 is heated to, for example, 95 ° C. in the exhaust steam heat exchanger 14, and is directed to the first heat exchanger 17 by the action of the heat medium circulation pump 19. Then, heat is supplied to the return heat medium in the exhaust heat utilization pipe line 20 by the first heat exchanger 17, and the heat medium itself is cooled to about 82 ° C., for example. Then, the cooled heat medium is directed to the second heat exchanger 18 via the circulation line 16. Therefore, heat is transferred to a heat medium such as water flowing through the heat radiating pipe 25, and the heat medium itself is cooled to, for example, 65 ° C. and then returned to the exhaust steam heat exchanger 14.

そしてこの冷却された熱媒体が排蒸気熱交換器14内を上昇する蒸気と対向流となって蒸気をたとえば50℃程度まで冷却する。そしてこのように充分に冷却された蒸気が前述のように第1の煙突14bから外気中に放出されるので、微細な水滴に凝結することがなく、白煙の発生が抑制される。   Then, the cooled heat medium becomes a counter flow with the steam rising in the exhaust steam heat exchanger 14 and cools the steam to, for example, about 50 ° C. As described above, the sufficiently cooled steam is discharged from the first chimney 14b into the outside air, so that it does not condense into fine water droplets and the generation of white smoke is suppressed.

前記放熱管路25を流れる熱媒体は、冷却塔26を通り、シャワーリングされて余剰熱が放熱され、再び第2熱交換器18に戻る。一方、冷温水機21から出てくる熱媒体は、たとえば80℃程度で排熱利用管路20を流れていき、第3熱交換器23でたとえば82.7℃程度まで加熱される。さらにその熱媒体は、第1熱交換器17でたとえば90℃まで加熱されて、冷温水21に戻る。   The heat medium flowing through the heat radiation pipe 25 passes through the cooling tower 26 and is showered to radiate surplus heat, and returns to the second heat exchanger 18 again. On the other hand, the heat medium coming out of the chiller / heater 21 flows through the exhaust heat utilization pipe line 20 at about 80 ° C., for example, and is heated to, for example, about 82.7 ° C. in the third heat exchanger 23. Furthermore, the heat medium is heated to, for example, 90 ° C. in the first heat exchanger 17 and returns to the cold / hot water 21.

そして排熱温水熱交換器21aを流れる冷媒(冷媒水、冷媒蒸気)を吸収した吸収剤、たとえば臭化リチウム水溶液を加熱して、吸収剤が吸収している冷媒を放出させて再生する。再生された吸収剤は、図示しない吸収器で冷媒などを再び吸収し、そのときに生ずる冷熱を利用して冷水を得ることができる。なお、温水を得る場合はガスを燃焼させる。   Then, the absorbent that has absorbed the refrigerant (refrigerant water, refrigerant vapor) flowing through the exhaust heat hot water heat exchanger 21a, for example, an aqueous lithium bromide solution, is heated to release the refrigerant absorbed by the absorbent and regenerate it. The regenerated absorbent can absorb the refrigerant and the like again with an absorber (not shown), and can obtain cold water by using the cold heat generated at that time. In addition, gas is burned when obtaining warm water.

他方、気液分離タンク11で分離された高温の水、たとえば98℃の高温水は、高温ドレン水タンク12に流れていき、その中でたとえば95℃程度で溜まっている。その高温水は、排熱回収ポンプ28aにより、排熱回収管路28を流れ、前述の第3熱交換器23で排熱利用管路の熱媒体に熱を与え、高温水自体はたとえば82℃程度まで温度が低下し、高温ドレン水タンク12に戻る。それにより気液分離タンク11から流れてくる98℃の高温水を95℃程度まで冷却する。   On the other hand, high-temperature water separated in the gas-liquid separation tank 11, for example, high-temperature water at 98 ° C. flows into the high-temperature drain water tank 12, and accumulates at about 95 ° C. therein. The high-temperature water flows through the exhaust heat recovery pipe line 28 by the exhaust heat recovery pump 28a, gives heat to the heat medium in the exhaust heat utilization pipe line by the third heat exchanger 23, and the high-temperature water itself is, for example, 82 ° C. The temperature drops to a certain extent and returns to the high-temperature drain water tank 12. Thereby, high-temperature water at 98 ° C. flowing from the gas-liquid separation tank 11 is cooled to about 95 ° C.

前記排蒸気熱交換器14の凝縮水は、たとえば約85℃で排水槽15に送られ、排水ポンプ15aにより排水する。また、高温ドレン水タンク12が満杯になると、排水ポンプ13を作動させて排水し、水位を低下させる。   The condensed water in the exhaust steam heat exchanger 14 is sent to the drain tank 15 at about 85 ° C., for example, and drained by the drain pump 15a. Further, when the high-temperature drain water tank 12 becomes full, the drainage pump 13 is operated to drain water, and the water level is lowered.

上記のようにこの蒸気排出システムSでは、気液分離タンク11で分離した高温水と蒸気のうち、まず高温水の熱を利用して排熱利用管路20の熱媒体を昇温させ(排熱回収サブシステムS2)、さらに蒸気の熱を利用して、循環管路16の熱媒体を昇温させる(排熱利用サブシステムS1)という、2段の熱交換を行っている。そのため、排熱の利用効率が高い。なお、高温水の温度は蒸気よりも低いため、排熱回収サブシステムS2で昇温させた後に、排熱利用サブシステムS1で昇温させる順序としている。   As described above, in the steam exhaust system S, the heat medium in the exhaust heat utilization pipe line 20 is first heated using the heat of the high-temperature water out of the high-temperature water and steam separated in the gas-liquid separation tank 11 (exhaust gas). The heat recovery subsystem S2) and the heat of the steam are further used to perform two-stage heat exchange, in which the temperature of the heat medium in the circulation line 16 is increased (exhaust heat utilization subsystem S1). Therefore, the utilization efficiency of exhaust heat is high. Since the temperature of the high-temperature water is lower than that of steam, the temperature is raised in the exhaust heat recovery subsystem S2 and then raised in the exhaust heat utilization subsystem S1.

さらに前記蒸気排出システムSでは、余剰の熱を冷却塔26で放熱させている(放熱サブシステムS3)。そのため、排蒸気熱交換器14内の温度を低下させることができ、第1の煙突14bから放出する蒸気の温度を大きく低下させることができ、排蒸気による白煙の発生を抑制することができる。また、循環管路16と排熱利用管路20を第1熱交換器で熱交換させることにより、両者の間の熱伝達を間接的に行っている。それにより冷温水機21の運転を停止させた状態でも、冷却塔26で排蒸気熱交換器14内の蒸気の温度を低下させることができ、第1の煙突14bからの白煙の発生を防止することができる。   Further, in the steam discharge system S, excess heat is dissipated by the cooling tower 26 (heat dissipating subsystem S3). Therefore, the temperature in the exhaust steam heat exchanger 14 can be decreased, the temperature of the steam discharged from the first chimney 14b can be greatly decreased, and the generation of white smoke due to the exhaust steam can be suppressed. . Moreover, the heat transfer between both is indirectly performed by heat-exchanging the circulation line 16 and the waste heat utilization pipe line 20 with a 1st heat exchanger. Thereby, even in a state where the operation of the chiller / heater 21 is stopped, the temperature of the steam in the exhaust steam heat exchanger 14 can be lowered by the cooling tower 26, and the generation of white smoke from the first chimney 14b is prevented. can do.

前記実施形態では放熱サブシステムS3を採用しているが、気温が高い地方など、排蒸気による白煙の発生が少ない場合は、放熱サブシステムS3を省略することができる。その場合は第1熱交換器17も省略することができる。また、図1の排蒸気システムSでは放熱サブシステムS3と排熱利用サブシステムS1との間に第2熱交換器18を介在させているので、夏期など、白煙状の蒸気の発生が少ない時期に冷却塔26の運転を停止することもできる。また、いずれの場合も、排蒸気の排熱の利用効率がいくらか低下するが、排熱回収サブシステムS2を省略することもできる。   In the above-described embodiment, the heat dissipation subsystem S3 is adopted. However, the heat dissipation subsystem S3 can be omitted when the generation of white smoke due to exhaust steam is small, such as in regions where the temperature is high. In that case, the first heat exchanger 17 can also be omitted. Further, in the exhaust steam system S of FIG. 1, since the second heat exchanger 18 is interposed between the heat dissipation subsystem S3 and the exhaust heat utilization subsystem S1, the generation of white smoke-like steam is small, such as in summer. It is also possible to stop the operation of the cooling tower 26 at the time. In either case, the exhaust heat utilization efficiency of the exhaust steam is somewhat reduced, but the exhaust heat recovery subsystem S2 can be omitted.

前記実施形態では、循環管路16が排熱利用サブシステムS1の一部と放熱サブシステムS3の一部を兼ねているが、配管状況によっては図3に示すように別個にすることもできる。図3の場合は、排蒸気熱交換器14に排熱利用管路20が直接接続されており、それとは別個に放熱管路25が連結されている。なお、図3の実施形態では、排熱回収サブシステムS2が省略されている。図3の場合は排熱利用機器の運転や冷却塔26の運転を個別に停止させることができる。   In the above-described embodiment, the circulation pipe 16 serves as a part of the exhaust heat utilization subsystem S1 and a part of the heat dissipation subsystem S3. However, depending on the piping situation, the circulation pipe 16 may be separated as shown in FIG. In the case of FIG. 3, the exhaust heat utilization conduit 20 is directly connected to the exhaust steam heat exchanger 14, and a heat radiation conduit 25 is coupled separately. In the embodiment of FIG. 3, the exhaust heat recovery subsystem S2 is omitted. In the case of FIG. 3, the operation of the exhaust heat utilization device and the operation of the cooling tower 26 can be stopped individually.

本発明の蒸気排出システムの一実施形態を示す配管系統図である。It is a piping system diagram showing one embodiment of the steam discharge system of the present invention. その蒸気排出システムの作用を示す配管系統図である。It is a piping system diagram which shows the effect | action of the steam exhaust system. 本発明の蒸気排出システムの他の実施形態を示す要部配管系統図である。It is a principal part piping system diagram showing other embodiments of the steam exhaust system of the present invention. 従来の蒸気排出システムの一例を示す配管系統図である。It is a piping system diagram which shows an example of the conventional steam discharge system.

符号の説明Explanation of symbols

S 蒸気排出システム
S1 排熱利用サブシステム
S2 排熱回収サブシステム
S3 放熱サブシステム
10 排熱源
10a 蒸気管路
11 気液分離タンク
11a 第2の蒸気管路
11b ドレン水管路
12 高温ドレン水タンク
12a 排水管路
12b 第2の蒸気排出管路
13 排水ポンプ
14 排蒸気熱交換器
14a 蒸気排出管路
14b 第1の煙突
14c 第2の排水管路
15 排水槽
15a 排水ポンプ
15b 第3の排水管路
16 循環管路
16a コイル
17 第1熱交換器
17a 一次側のコイル
17b 二次側のコイル
18 第2熱交換器
18a 一次側のコイル
18b 二次側コイル
19 ポンプ
20 排熱利用管路
21 冷温水機
21a 排熱温水熱交換器
22 排熱利用ポンプ
23 第3熱交換器
23a 一次側コイル
23b 二次側コイル
25 放熱管路
26 冷却塔
27 冷却水ポンプ
28 排熱回収管路
28a 排熱回収ポンプ
S Steam exhaust system S1 Waste heat utilization subsystem S2 Waste heat recovery subsystem S3 Heat radiation subsystem 10 Waste heat source 10a Steam conduit 11 Gas-liquid separation tank 11a Second steam conduit 11b Drain water conduit 12 High-temperature drain water tank 12a Drain Pipe line 12b Second steam discharge pipe 13 Drain pump 14 Waste steam heat exchanger 14a Steam discharge pipe 14b First chimney 14c Second drain pipe 15 Drain tank 15a Drain pump 15b Third drain pipe 16 Circulation line 16a Coil 17 First heat exchanger 17a Primary side coil 17b Secondary side coil 18 Second heat exchanger 18a Primary side coil 18b Secondary side coil 19 Pump 20 Waste heat utilization pipe line 21 21a Waste heat hot water heat exchanger 22 Waste heat utilization pump 23 Third heat exchanger 23a Primary side coil 23b Secondary side coil 25 Heat radiation pipe 26 Cold Tower 27 cooling water pump 28 exhaust heat recovery pipe 28a exhaust heat recovery pump

Claims (4)

工場から大気中に排出される高圧蒸気を蒸気とドレン水とに分離する気液分離タンクと、分離された蒸気を放出する蒸気排出経路と、分離されたドレン水を排水する排水経路とを備えた蒸気排出システムであって
前記蒸気排出経路中に介在される排蒸気熱交換器と、
その排蒸気熱交換器で加熱された熱媒体を循環させる熱媒体経路と、
その熱媒体経路を流れる熱媒体の熱を利用する排熱利用機器とからなる排熱利用サブシステムとを備え
前記気液分離タンク中の高温ドレン水を受け入れる高温ドレン水タンクと、その高温ドレン水タンク内の高温ドレン水と前記排熱利用サブシステムにおける熱媒体経路の熱媒体とを熱交換する排熱回収サブシステムを備えている、蒸気排出システム。
A gas-liquid separation tank for separating the high-pressure steam discharged from the factory into the atmosphere and Atsushi Ko drain water vapor, drained and steam discharge path for releasing the separated steam, the separated Atsushi Ko drain water drainage A steam exhaust system with a path ,
An exhaust steam heat exchanger interposed in the steam exhaust path;
A heat medium path for circulating the heat medium heated by the exhaust steam heat exchanger,
A waste heat utilization subsystem comprising waste heat utilization equipment that utilizes the heat of the heat medium flowing through the heat medium path ,
A high-temperature drain water tank that receives the high-temperature drain water in the gas-liquid separation tank, and exhaust heat recovery that exchanges heat between the high-temperature drain water in the high-temperature drain water tank and the heat medium in the heat medium path in the exhaust heat utilization subsystem. A steam exhaust system with a subsystem .
前記熱媒体経路が、途中に介在される熱交換器を介して排蒸気熱交換器側の一次側熱媒体経路と排熱利用機器側の二次側熱媒体経路とに分離されており、一次側熱媒体経路の戻り側経路に前記排蒸気熱交換器内の余剰熱を外部に放熱する放熱サブシステムが介在されている請求項1記載の蒸気排出システム。 The heat medium path is separated into a primary side heat medium path on the exhaust steam heat exchanger side and a secondary side heat medium path on the exhaust heat utilization equipment side via a heat exchanger interposed in the middle, The steam discharge system according to claim 1 , wherein a heat dissipation subsystem for dissipating excess heat in the exhaust steam heat exchanger to the outside is interposed in a return side path of a side heat medium path . 前記二次側熱媒体経路が、前記排熱利用機器内の排熱温水熱交換器から、高温ドレン水と前記排熱利用サブシステムにおける熱媒体経路の熱媒体とを間接熱交換する熱交換器および前記一次側熱媒体経路と二次側熱媒体経路とを分離して熱交換する熱交換器を経由して元の排熱温水熱交換器に戻るように循環する請求項記載の蒸気排出システム。 A heat exchanger in which the secondary heat medium path indirectly exchanges heat between the high-temperature drain water and the heat medium in the heat medium path in the exhaust heat utilization subsystem from the exhaust heat hot water heat exchanger in the exhaust heat utilization apparatus . and said you circulated back to the primary side heat medium passage and the secondary side heat medium and the path was separated via a heat exchanger for exchanging heat source of the exhaust heat hot water heat exchanger according to claim 2, wherein the vapor Discharge system. 前記排熱利用機器が、熱媒体経路を流れる熱媒体の熱を吸収液の希釈液と間接的に熱交換することにより利用する排熱投入型吸収冷温水器である請求項1〜3のいずれかに記載の蒸気排出システム。 The waste heat utilization device, any of claims 1 to 3 is a heat-up type absorbent hot and cold water dispenser that utilizes by the heat of the heat medium flowing through the heat medium passage for diluent and indirect heat exchange of the absorbent A steam exhaust system according to crab .
JP2004311164A 2004-10-26 2004-10-26 Steam exhaust system Active JP4579644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311164A JP4579644B2 (en) 2004-10-26 2004-10-26 Steam exhaust system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311164A JP4579644B2 (en) 2004-10-26 2004-10-26 Steam exhaust system

Publications (2)

Publication Number Publication Date
JP2006125673A JP2006125673A (en) 2006-05-18
JP4579644B2 true JP4579644B2 (en) 2010-11-10

Family

ID=36720586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311164A Active JP4579644B2 (en) 2004-10-26 2004-10-26 Steam exhaust system

Country Status (1)

Country Link
JP (1) JP4579644B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101731295B1 (en) * 2015-11-13 2017-04-28 성광호 Thermal energy recovery apparatus using waste blow water

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938569A (en) * 1982-08-25 1984-03-02 中部電力株式会社 System of utilizing waste heat from transformer
JPH09112874A (en) * 1995-10-18 1997-05-02 Kawasaki Heavy Ind Ltd Cooling system for exhaust gas
JPH09287482A (en) * 1996-04-17 1997-11-04 Osaka Gas Co Ltd Cogeneration system
JPH1114186A (en) * 1997-06-26 1999-01-22 Hitachi Ltd Absorption cogenerating system utilizing engine waste heat and its operation control method
JP2002089994A (en) * 2000-09-19 2002-03-27 Kawasaki Thermal Engineering Co Ltd Absorption type water cooling and heating device utilizing waste heat
JP2002130857A (en) * 2000-10-26 2002-05-09 Kawasaki Thermal Engineering Co Ltd Steam heating double effect type absorption refrigerating machine, water cooler and heater as well as power generating, room cooling-and-heating and hot- water supplying system employing the same, and control method thereof
JP2003074375A (en) * 2001-09-04 2003-03-12 Osaka Gas Co Ltd Gas-turbine-incorporated boiler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938569A (en) * 1982-08-25 1984-03-02 中部電力株式会社 System of utilizing waste heat from transformer
JPH09112874A (en) * 1995-10-18 1997-05-02 Kawasaki Heavy Ind Ltd Cooling system for exhaust gas
JPH09287482A (en) * 1996-04-17 1997-11-04 Osaka Gas Co Ltd Cogeneration system
JPH1114186A (en) * 1997-06-26 1999-01-22 Hitachi Ltd Absorption cogenerating system utilizing engine waste heat and its operation control method
JP2002089994A (en) * 2000-09-19 2002-03-27 Kawasaki Thermal Engineering Co Ltd Absorption type water cooling and heating device utilizing waste heat
JP2002130857A (en) * 2000-10-26 2002-05-09 Kawasaki Thermal Engineering Co Ltd Steam heating double effect type absorption refrigerating machine, water cooler and heater as well as power generating, room cooling-and-heating and hot- water supplying system employing the same, and control method thereof
JP2003074375A (en) * 2001-09-04 2003-03-12 Osaka Gas Co Ltd Gas-turbine-incorporated boiler

Also Published As

Publication number Publication date
JP2006125673A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR100975276B1 (en) Local heating water feeding system using absorbing type heat pump
US7178348B2 (en) Refrigeration power plant
JP5190286B2 (en) Absorption heat pump unit with boiler
JP4953433B2 (en) Absorption heat pump system
JP2003225537A (en) Method for utilizing waste heat for carbon dioxide recovery process
EA028070B1 (en) Cooling system with a condensate polishing unit
JP2007064048A (en) Waste heat recovery facility of power plant
JP2010065862A (en) Second class absorption heat pump system
KR101069886B1 (en) Air conditon apparatus for ship
JP2007134519A (en) Exhaust heat recovery utilization system
JP4579644B2 (en) Steam exhaust system
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
KR101699905B1 (en) Absorption chiller system having fuel cell
KR20100044738A (en) The cooling system using rankine cycle for the exhaust gas in the chimney
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
JP3851764B2 (en) Absorption refrigerator
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
JP3689761B2 (en) Cooling system
WO2019214690A1 (en) Central heating system
KR101391321B1 (en) Heat Recovery Apparatus for Ship
JP4241089B2 (en) Absorption heat pump device
CN207741608U (en) A kind of UTILIZATION OF VESIDUAL HEAT IN receipts energy device and the receipts energy device with the receipts energy device
JPS61122428A (en) Floor heater using 2-stage absorbing heat pump
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JPS62272042A (en) Heat pump type air conditioning equipments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250