JP2007017186A - Calculation method of thinning rate of flow-accelerated corrosion, and diagnosis method of residual service life - Google Patents

Calculation method of thinning rate of flow-accelerated corrosion, and diagnosis method of residual service life Download PDF

Info

Publication number
JP2007017186A
JP2007017186A JP2005196356A JP2005196356A JP2007017186A JP 2007017186 A JP2007017186 A JP 2007017186A JP 2005196356 A JP2005196356 A JP 2005196356A JP 2005196356 A JP2005196356 A JP 2005196356A JP 2007017186 A JP2007017186 A JP 2007017186A
Authority
JP
Japan
Prior art keywords
fac
hot water
flowing hot
thinning rate
thinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005196356A
Other languages
Japanese (ja)
Other versions
JP4630745B2 (en
Inventor
Motoroku Nakao
元六 仲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005196356A priority Critical patent/JP4630745B2/en
Publication of JP2007017186A publication Critical patent/JP2007017186A/en
Application granted granted Critical
Publication of JP4630745B2 publication Critical patent/JP4630745B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate pH dependency of thinning rate by flow-accelerated corrosion by hot water or erosion/corrosion and to precisely predict service life when the pH is varied. <P>SOLUTION: In the method of calculating the thinning rate by flow acceleration corrosion (FAC) by flow water at 50-250°C, the FAC thinning rate is calculated using the expression of FAC thinning rate =A×Exp(B×pH)×Fe<SP>C</SP>, where pH is a pH value of flow water, Fe is an Fe ion concentration in flow water, A, B and C are coefficients, and coefficient A is a plant coefficient peculiar to a plant. The FAC thinning rate is calculated based on past operation data including an actual measured thinning amount, an operation time, water quality pH measured value, and water quality Fe concentration measured value. The residual service life is calculated based on the calculated FAC thinning rate and residual thickness to a limit thickness. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原子力発電設備、火力発電設備、ガスタービン発電を組合せたコンバインドサイクル排熱回収ボイラ、化学装置の熱交換器などにおいて、流動温水又は流動高温水による炭素鋼及びCr量1%以下のCrMo鋼配管や伝熱管での流れ加速腐食損傷の余寿命診断法並びに抑制法に関する。   The present invention relates to a combined cycle exhaust heat recovery boiler combined with nuclear power generation equipment, thermal power generation equipment, gas turbine power generation, a heat exchanger of a chemical apparatus, etc., with carbon steel and Cr amount of 1% or less by flowing hot water or flowing hot water. The present invention relates to a remaining life diagnosis method and a suppression method for flow accelerated corrosion damage in CrMo steel pipes and heat transfer tubes.

原子力発電設備(加圧水型、沸騰水型、高速増殖炉、HTTR)、火力発電設備、排熱回収ボイラ(HRSG)、化学装置での熱交換器など流動温水又は流動高温水を取扱う機器、配管及び伝熱管では、流れ加速腐食(Flow Accelerated Corrosion:FAC、エロージョン・コロージョンと呼ばれることもある)と称される減肉損傷が生じる得る。この材料損傷は、温度が50〜250℃、材質が炭素鋼、水質が低溶存酸素、PHが9.3以下の流動水の組合せで生じるといわれているが詳細は明らかになっていない。   Nuclear power generation equipment (pressurized water type, boiling water type, fast breeder reactor, HTTR), thermal power generation equipment, waste heat recovery boiler (HRSG), heat exchangers for chemical equipment, such as equipment that handles flowing hot water or flowing hot water, piping, and In heat transfer tubes, thinning damage called Flow Accelerated Corrosion (FAC), sometimes called erosion / corrosion, can occur. This material damage is said to be caused by a combination of flowing water having a temperature of 50 to 250 ° C., a material of carbon steel, a water quality of low dissolved oxygen, and a pH of 9.3 or less, but the details are not clear.

同じ構造や水質条件においても、減肉速度は0から1mm/10kh程度にばらつき、局所的かつ突発的に生じるため、予測や管理が困難な状況にある。   Even under the same structure and water quality conditions, the rate of thinning varies from 0 to 1 mm / 10 kh and occurs locally and suddenly, making it difficult to predict and manage.

図8は、代表的な排熱回収ボイラのシステム構成と水−蒸気系統を示す。HRSGは、ガスタービンからの排ガス中の排熱を回収するため、節炭器、蒸発器、過熱器、ドラム、及び関連機器と配管を組合せ等から構成されている。図8によると、不図示のガスタービンからの排ガスの上流側から順に、高圧過熱器11、低圧過熱器10、高圧蒸発器9、脱硝装置14、高圧節炭器7、低圧蒸発器5、低圧節炭器3が配列設置され、蒸気タービン12から排出された蒸気を復水器13で復水して、低圧給水ポンプ2で低圧節炭器3に供給し、さらに、高圧給水ポンプ6で高圧節炭器7に供給してドラムDに送り込むように構成されている。   FIG. 8 shows a system configuration and a water-steam system of a typical exhaust heat recovery boiler. The HRSG is constituted by a combination of a economizer, an evaporator, a superheater, a drum, and related equipment and piping in order to recover exhaust heat in the exhaust gas from the gas turbine. According to FIG. 8, the high pressure superheater 11, the low pressure superheater 10, the high pressure evaporator 9, the denitration device 14, the high pressure economizer 7, the low pressure evaporator 5, and the low pressure are sequentially arranged from the upstream side of the exhaust gas from the gas turbine (not shown). The economizers 3 are arranged, the steam discharged from the steam turbine 12 is condensed by the condenser 13, supplied to the low-pressure economizer 3 by the low-pressure feed pump 2, and further pressurized by the high-pressure feed pump 6. It is configured to be supplied to the economizer 7 and fed into the drum D.

HRSGの節炭器系では、流動高温水による流れ加速腐食(FAC)と称される減肉損傷が生じ得る。この材料損傷の詳細は必ずしも明らかになっておらず、特に、流動や流速の影響に関しては明確になっておらず、低流速域でも形状不連続部などで予想を越えてFACが発生することがある。   In the HRSG economizer system, thinning damage called flow accelerated corrosion (FAC) due to flowing hot water can occur. The details of this material damage are not necessarily clear, and in particular, the effects of flow and flow velocity are not clarified, and FAC may occur unexpectedly at the shape discontinuity part even in the low flow velocity region. is there.

図4は、ベンド管を代表とした場合の流れ加速腐食のモデルとその要因を示す。図4において、温度、溶存酸素濃度、pH及びN濃度などの水質条件で脆弱な酸化皮膜が生成することを表し、流動水によって酸化皮膜の離散及び腐食発生が生じ、減肉する現象を図示している。また、減肉は懸濁摩耗物質、渦流、偏流によって加速し、偏流部では、渦流や循環流ができやすく、損傷面はディンプルの並んだリップルマーク(風紋や砂紋状)を呈することが多い。 FIG. 4 shows a model of flow accelerated corrosion and its factor when a bend pipe is used as a representative. In FIG. 4, it represents that a fragile oxide film is generated under water quality conditions such as temperature, dissolved oxygen concentration, pH, and N 2 H 4 concentration. Is illustrated. In addition, thinning is accelerated by suspended wear substances, eddy currents, and drift currents. In drift parts, eddy currents and circulation flows are likely to occur, and the damaged surface often exhibits ripple marks (wind ripples or sand ripples) in which dimples are arranged. .

エロージョン・コロージョンの防止又は寿命予測法の従来技術として、例えば、特許文献1に示すように、pH及びアンモニア濃度をコントロールしてアルカリ腐食及びエロージョン・コロージョンを防止することが提起されている。また、従来技術として、例えば、特許文献2に示すように、エロージョン・コロージョンによる配管板厚測定データをデータベース化管理し、寿命予測することが提案されている。
特開2002−180804号公報 特開2001−280599号公報
As a conventional technique for preventing erosion / corrosion or predicting the life, for example, as shown in Patent Document 1, it has been proposed to prevent alkaline corrosion and erosion / corrosion by controlling pH and ammonia concentration. As a conventional technique, for example, as shown in Patent Document 2, it has been proposed to manage the pipe plate thickness measurement data by erosion / corrosion in a database and predict the life.
JP 2002-180804 A JP 2001-280599 A

図5は、本願の発明者が調査収集した流動温水又は高温水による流れ加速腐食速度を温度で整理した結果である。流れ加速腐食は、Chexalらの報告(B.Chexal他:EPRI Report TR−106611−Rl 1998−7)と同様に、50〜250℃の温度範囲で顕著になっており、150℃でピークになっている。図5は、水質pH9.1〜9.2、平均流速2〜4m/sの部位のデータであるが、図5から明らかなように同じ温度でも減肉速度には大きなばらつきがあり、温度や水質条件から一概に減肉速度を算定できないという課題がある。   FIG. 5 shows the result of arranging the flow accelerated corrosion rate by the flowing hot water or hot water investigated and collected by the inventors of the present application by temperature. Similar to the report by Chexal et al. (B. Chexal et al .: EPRI Report TR-106611-Rl 1998-7), flow accelerated corrosion becomes prominent in the temperature range of 50 to 250 ° C and peaks at 150 ° C. ing. FIG. 5 shows the data of the water quality pH of 9.1 to 9.2 and the average flow velocity of 2 to 4 m / s. As is clear from FIG. 5, there is a large variation in the thinning rate even at the same temperature. There is a problem that the rate of thinning cannot be calculated from the water quality conditions.

定期検査などで減肉が検出された場合、設計上必要とする肉厚(設計必要肉厚又は限界肉厚)までの裕度で余寿命を診断する。例えば、初期肉厚12mm、設計必要肉厚(限界肉厚)6mm、10年間運転した後の肉厚8mmの場合、減肉速度=(12−8)/10=0.4mm/年、余寿命=(8−6)/0.4=5年というように算出される。   When thinning is detected by periodic inspections, etc., the remaining life is diagnosed with a margin up to the wall thickness required for design (design wall thickness or limit wall thickness). For example, in the case of an initial thickness of 12 mm, a required design thickness (limit thickness) of 6 mm, and a thickness of 8 mm after operating for 10 years, the thickness reduction rate = (12−8) /10=0.4 mm / year, remaining life = (8-6) /0.4=5 years.

次回定期検査までに設計必要肉厚以下になると想定される場合、現定検期間中に設備更新しなければならないが、定検期間や材料準備上、設備更新できないことがあり、その場合は、減肉速度の低下や運転時間の短縮などの延命策を施す必要がある。   If it is assumed that the wall thickness will be less than the required design thickness by the next periodic inspection, the equipment must be renewed during the current regular inspection period, but the equipment may not be renewed due to the regular inspection period or material preparation. It is necessary to take life-prolonging measures such as reducing the thickness reduction and shortening the operation time.

流れ加速腐食速度を低下させる最も一般的な手法は、水質pHの上昇であり、PHを9.4以上にすることにより実用上防止が可能であることが知られており、例えば、Bignold et al:Proc 8th International Conference on Metallic Corrosion、Mainz 1981を参照すればよい。そこで、原子力、火力及びHRSG等での水処理は、アンモニア(NH)及びヒドラジン(N)を添加し、pH調整と溶存酸素濃度の低減を図っている。しかしながら、高pHにし過ぎると、NH及びNが分解して生じたNHが系統上、蒸発器、過熱器及びタービンを経由して復水器に入り、復水器材料である鋼合金に対してアンモニアアタックを生じさせるので、pH上昇策を即採用することはできないという事情がある。また、復水純水器(コンデンサーデミネライザー:コンデミとも称される)を備えたプラントでは、pHの上昇はイオン化物の上昇に繋がり、イオン交換樹脂の再生頻度が増す課題が生じる。 The most common technique for reducing the flow accelerated corrosion rate is to increase the water quality pH, and it is known that it can be practically prevented by increasing the pH to 9.4 or higher. For example, Bignold et al. : Proc 8th International Conference on Metallic Corrosion, Mainz 1981. Therefore, in water treatment with nuclear power, thermal power, HRSG, etc., ammonia (NH 3 ) and hydrazine (N 2 H 4 ) are added to adjust the pH and reduce the dissolved oxygen concentration. However, an excessively a high pH, NH 3 is on lines NH 3 and N 2 H 4 occurs by decomposition, the evaporator enters the condenser via a superheater and a turbine, is condenser material Since an ammonia attack is caused to the steel alloy, there is a situation that a pH raising measure cannot be immediately adopted. Moreover, in a plant equipped with a condensate deionizer (condenser demineralizer: also referred to as “condemi”), an increase in pH leads to an increase in ionized products, resulting in an increase in the frequency of regeneration of ion exchange resins.

一方、従来から流れ加速腐食やエロージョン・コロージョンなどの流動水による減肉速度は経時的に変化しないとして、前述のように余寿命を計算してきたが、発明者らの経験では減肉速度が経時的に増加し、従来の定速度評価では非安全側の診断になるという事態が考えられる。   On the other hand, the life expectancy has been calculated as described above, assuming that the thinning rate due to flowing water such as flow accelerated corrosion and erosion / corrosion does not change over time. It can be considered that the conventional constant speed evaluation results in an unsafe diagnosis.

また、上述した特許文献1及び2に開示の技術は、水処理による減肉防止法又は実側データの解析による寿命予測法であって、減肉速度の経時変化について考慮が払われていない。   In addition, the techniques disclosed in Patent Documents 1 and 2 described above are a method for preventing thinning due to water treatment or a life prediction method based on analysis of actual data, and consideration is not given to changes with time in the thinning rate.

本発明の目的は、高温水による流れ加速腐食やエロージョン・コロージョンによる減肉速度のpH依存性を評価、診断し、pHを変化させた場合の寿命を高精度に予測する手法又は減肉速度の経時変化を考慮した高精度余寿命診断法を提供することにある。   The purpose of the present invention is to evaluate and diagnose the pH dependence of the rate of thinning due to flow accelerated corrosion and erosion / corrosion caused by high-temperature water, and to predict the life with high accuracy when the pH is changed. The object is to provide a high-accuracy remaining life diagnosis method in consideration of changes over time.

前記課題を解決するために、本発明は主として次のような構成を採用する。
50〜250℃の流動温水又は流動高温水による流れ加速腐食(FAC)による減肉速度を算出する方法において、
FAC減肉速度を、FAC減肉速度=A×Exp(B×pH)×Fe の式を用いて算出し、
ここで、pHは前記流動温水又は流動高温水中のpH値であり、Feは前記流動温水又は流動高温水中のFeイオン濃度であり、A,B,Cは係数であって、係数Aはプラントに特有のプラント係数である流れ加速腐食減肉速度の算出方法。
In order to solve the above problems, the present invention mainly adopts the following configuration.
In the method of calculating the rate of thinning by flow accelerated corrosion (FAC) with flowing hot water or flowing hot water at 50 to 250 ° C.,
The FAC thinning rate is calculated using the formula: FAC thinning rate = A × Exp (B × pH) × Fe C ,
Here, pH is the pH value in the flowing hot water or flowing hot water, Fe is the Fe ion concentration in the flowing hot water or flowing hot water, A, B, C are coefficients, and the coefficient A is a factor for the plant. Calculation method of flow accelerated corrosion thinning rate that is a unique plant coefficient.

また、前記流れ加速腐食減肉速度の算出方法において、プラント係数Aは、減肉量の実測値、運転時間、水質pH測定値及び水質Fe濃度測定値からなる過去の運転データから算定する加速腐食減肉速度の算出方法。   Further, in the method for calculating the flow accelerated corrosion thinning rate, the plant coefficient A is an accelerated corrosion calculated from past operation data including an actual measurement value of the thinning amount, an operation time, a water quality pH measurement value, and a water quality Fe concentration measurement value. Calculation method of thinning rate.

また、50〜250℃の流動温水又は流動高温水による流れ加速腐食(FAC)の損傷による余寿命の診断法において、
FAC減肉速度を、FAC減肉速度=A×Exp(B×pH)×Fe の式を用いて算出し、
ここで、pHは前記流動温水又は流動高温水中のpH値であり、Feは前記流動温水又は流動高温水中のFeイオン濃度であり、A,B,Cは係数であって、係数Aはプラントに特有のプラント係数であり、前記プラント係数Aは、減肉量の実測値、運転時間、水質pH測定値及び水質Fe濃度測定値からなる過去の運転データから算定し、
前記FAC減肉速度、限界肉厚値及び測定肉厚値に基づいて余寿命を診断する流れ加速腐食損傷による余寿命診断法。
Moreover, in the diagnostic method of the remaining life by the damage of the flow accelerated corrosion (FAC) by 50-250 degreeC flowing hot water or flowing hot water,
The FAC thinning rate is calculated using the formula: FAC thinning rate = A × Exp (B × pH) × Fe C ,
Here, pH is the pH value in the flowing hot water or flowing hot water, Fe is the Fe ion concentration in the flowing hot water or flowing hot water, A, B, C are coefficients, and the coefficient A is a factor for the plant. The plant coefficient is a specific plant coefficient, and the plant coefficient A is calculated from past operation data consisting of an actual measurement value of the thinning amount, an operation time, a water quality pH measurement value, and a water quality Fe concentration measurement value,
A remaining life diagnostic method by flow accelerated corrosion damage for diagnosing the remaining life based on the FAC thinning rate, the limit wall thickness value, and the measured wall thickness value.

本発明によると、HRSG(排熱回収ボイラ)の節炭器などの流れ加速腐食のpH依存性を高精度に予測し、余寿命が確度高く判定できるため、材質変更や水処理薬品の過剰投与防止などが回避でき、発電設備を経済的且つ高信頼性で運転することができる。   According to the present invention, the pH dependence of flow accelerated corrosion of HRSG (exhaust heat recovery boiler) economizers can be predicted with high accuracy and the remaining life can be determined with high accuracy. Therefore, the power generation equipment can be operated economically and with high reliability.

まず、本発明の実施形態に係る流れ加速腐食減肉速度の算出法について、その基本的概念を説明する。高温水による炭素鋼の流れ加速腐食は、温度50〜250℃(150℃付近でピークになるといわれている)+低溶存酸素濃度(30ppb以下)+低pH(pH9.3以下)、という条件の水質と流動が組み合わさって生じる現象である。発電設備や工業プラントでは温度や流動条件は、変更できないため流れ加速腐食の防止又は抑制には溶存酸素濃度の増加、pHの上昇又はCrMo鋼への変更の手法が取られる。   First, the basic concept of the method for calculating the flow accelerated corrosion thinning rate according to the embodiment of the present invention will be described. Flow accelerated corrosion of carbon steel with high-temperature water is based on the condition of temperature 50 to 250 ° C. (which is said to peak at around 150 ° C.) + Low dissolved oxygen concentration (30 ppb or less) + low pH (pH 9.3 or less). It is a phenomenon that occurs by combining water quality and flow. In power generation facilities and industrial plants, the temperature and flow conditions cannot be changed, so that the method of increasing dissolved oxygen concentration, increasing pH, or changing to CrMo steel is used to prevent or suppress flow accelerated corrosion.

溶存酸素の増加は、JIS B−8223で規定されているボイラの給水及びボイラ水質での酸素処理に相当する手法であるが、不純物があると孔食が生じるので、給水及び復水の純度をあげる必要があり、PWR(加圧水型原子炉)の二次系、HRSG(排熱回収ボイラ)、化学装置、循環ボイラなどには使用し難い。また、CrMo鋼への変更も大型設備更新に繋がるため、工期や経済性の点で課題を伴う。   The increase in dissolved oxygen is a technique equivalent to boiler water supply and oxygen treatment in boiler water quality specified in JIS B-8223. However, if there are impurities, pitting corrosion occurs, so the purity of water supply and condensate is reduced. It is difficult to use for a secondary system of a PWR (Pressurized Water Reactor), an HRSG (Exhaust Heat Recovery Boiler), a chemical apparatus, a circulating boiler, and the like. Moreover, since the change to CrMo steel also leads to the renewal of large equipment, there are problems in terms of construction period and economy.

流れ加速腐食速度と給水pHの間には相関性があり、給水pHを9.4以上にすることにより実質的に流れ加速腐食は防止できる。図6に、流れ加速腐食速度(減肉速度)のpH依存性を示す。種々の文献値の速度を無次元化して評価したもので、pHを9.0から9.4に上昇することにより、流れ加速腐食速度が1/10以下に低下している。   There is a correlation between the flow accelerated corrosion rate and the feed water pH, and flow accelerated corrosion can be substantially prevented by setting the feed water pH to 9.4 or higher. FIG. 6 shows the pH dependence of the flow accelerated corrosion rate (thinning rate). The speed of various literature values was evaluated by making it dimensionless, and by increasing the pH from 9.0 to 9.4, the flow accelerated corrosion rate is reduced to 1/10 or less.

PWR、火力及びHRSGなどの給水中には、微量ながらFe2+などの金属イオンが含まれている。これらの金属イオンは、pHの上昇(8.0以上)、温度の上昇でFeなどの酸化物に変化する。Feなどの金属酸化物は、一種のセラミックであり、高硬度のため流動水による流れ加速腐食を加速することを本発明者らは見い出している。給水中のFe2+濃度は、給水pHの影響を受け、回帰分析の結果、べき乗則になることがわかった。構成式は次のようになる。 In the water supply such as PWR, thermal power, and HRSG, metal ions such as Fe 2+ are contained in a small amount. These metal ions change to oxides such as Fe 3 O 4 with an increase in pH (8.0 or more) and an increase in temperature. The present inventors have found that a metal oxide such as Fe 3 O 4 is a kind of ceramic and accelerates flow accelerated corrosion by flowing water due to its high hardness. It was found that the Fe 2+ concentration in the feed water was affected by the feed water pH, and as a result of regression analysis, it became a power law. The constitutive equation is as follows.

予測Fe濃度 Fe=a×pH …(1)
ここで、a,bは回帰係数である。pHの上昇により、Fe濃度は低下するため、指数bは負の値をとる。また、pHを変化した場合のFe濃度は、一義的に定まるものではなく、これまでのpH値とFe濃度値に依存するため、aはこれまでの実測値の関数である。
Predicted Fe concentration Fe = a × pH b (1)
Here, a and b are regression coefficients. Since the Fe concentration decreases as the pH increases, the index b takes a negative value. In addition, since the Fe concentration when the pH is changed is not uniquely determined and depends on the pH value and the Fe concentration value so far, a is a function of the actually measured values so far.

図6に示す流れ加速腐食(FAC)速度のpH依存性は、Fe濃度を考慮していないため、実質的な流れ加速腐食(FAC)速度のpH依存性は、指数則であり次式となる。   Since the pH dependence of the flow accelerated corrosion (FAC) rate shown in FIG. 6 does not consider the Fe concentration, the pH dependence of the substantial flow accelerated corrosion (FAC) rate is an exponential law and is given by the following equation: .

FAC速度=A×Exp(B×pH)×Fe …(2)
ここで、A,B,Cは、回帰指数又は係数であり、Feは、(1)式で予測したFe濃度(ppb)である。なお、前述したように流れ加速腐食速度は、pHやFe濃度以外に、流速又は物質移動係数、温度、溶存酸素濃度、材質中のCr濃度の影響を受けるが、これらは係数Aの中に含まれるものであり、後述するように、係数Aは、肉厚又は減肉量の実測値と運転条件(運転時間、pH測定値、Fe濃度測定値等)から逆算するそのプラントのその部位特有の係数(プラント係数)である。
FAC speed = A × Exp (B × pH) × Fe C (2)
Here, A, B, and C are regression indices or coefficients, and Fe is the Fe concentration (ppb) predicted by equation (1). As described above, the flow accelerated corrosion rate is affected by the flow rate, mass transfer coefficient, temperature, dissolved oxygen concentration, and Cr concentration in the material in addition to pH and Fe concentration, but these are included in the coefficient A. As will be described later, the coefficient A is specific to the part of the plant that is calculated backward from the measured value of the wall thickness or thickness reduction and the operating conditions (operating time, measured pH value, measured Fe concentration value, etc.). Coefficient (plant coefficient).

前記の(1)及び(2)式を構築することにより、pHを変化、特に上昇させた場合のFAC速度を高精度に予測できるようになる。なお、(2)式での係数Aは、これまでの運転によるFAC減肉速度の実測値により補正されるものである。なお、前記(1)及び(2)式は、それぞれ指数則又はべき乗則でも回帰でき、数式化できる。   By constructing the above equations (1) and (2), the FAC speed when the pH is changed, particularly raised, can be predicted with high accuracy. Note that the coefficient A in the equation (2) is corrected by an actual measurement value of the FAC thinning speed by the operation so far. In addition, said (1) and (2) Formula can be regressed also by an exponential law or a power law, respectively, and can be numerically expressed.

次に、本発明の実施形態に係る流れ加速腐食減肉速度の算出法と余寿命診断法においてpHを変化させた場合の具体例を説明する。図1は、本発明の実施形態に係る流れ加速腐食(FAC)による減肉速度と寿命予測においてpHを変化させた場合の評価診断フローを示す。   Next, a specific example when the pH is changed in the flow accelerated corrosion thinning rate calculation method and the remaining life diagnosis method according to the embodiment of the present invention will be described. FIG. 1 shows an evaluation diagnosis flow when pH is changed in the thickness reduction rate and life prediction by flow accelerated corrosion (FAC) according to the embodiment of the present invention.

まず、現時点までの減肉速度、給水のpH値及びFe濃度を入力する。減肉速度(mm/h、mm/年)は、運転時間(運転年数)、初期肉厚及び評価時点の肉厚の測定結果を入力して算定することもできる。その際、肉厚は複数点測定し、統計的な最大減肉速度を求めておくことが望ましい。また、給水のpH及びFe濃度は、平均値をインプットするが、データ点数が偏っている場合は、時間を考慮した加重平均値や特別に偏移したデータをカットした代表平均値の入力が望ましい。   First, the thinning rate up to the present time, the pH value of the feed water and the Fe concentration are input. The thickness reduction rate (mm / h, mm / year) can also be calculated by inputting the measurement results of the operation time (operation years), the initial wall thickness, and the wall thickness at the time of evaluation. At that time, it is desirable to measure a plurality of thicknesses to obtain a statistical maximum thinning rate. Moreover, the pH and Fe concentration of the feed water are input as average values, but if the data points are biased, it is desirable to input a weighted average value considering time or a representative average value obtained by cutting specially shifted data. .

次に、pHを変化させた場合のFe濃度を前記(1)式により算出する。FAC速度は、前記(2)式により算定する。図1に示すFAC速度式中のA1とA2の定義については後述する。余寿命は、火力原子力技術基準などで定められた設計必要肉厚(tsr)で代表される限界肉厚までの肉厚をFAC速度で除して算出する。年間の運転時間がほぼ一定であれば余寿命を年でも算出できる。余寿命が算定できれば、今後の運転年数から更新サイクルすなわち何回更新する必要があるかが求められる。   Next, the Fe concentration when the pH is changed is calculated by the equation (1). The FAC speed is calculated by the above equation (2). The definitions of A1 and A2 in the FAC speed equation shown in FIG. 1 will be described later. The remaining life is calculated by dividing the wall thickness up to the limit wall thickness typified by the design wall thickness (tsr) determined by the thermal nuclear technical standards by the FAC speed. If the annual operating time is almost constant, the remaining life can be calculated even in years. If the remaining life can be calculated, the renewal cycle, that is, how many times renewal is required is determined from the future operation years.

今後のpH値に応じて余寿命や更新時期が決まれば、給水pHによる復水器の銅合金の損傷度を評価し、両者の経済性及び信頼性の診断から更新時期や適正pHを高精度に判定できる。   If the remaining life or renewal time is determined according to the pH value in the future, the degree of damage to the copper alloy of the condenser due to the feed water pH will be evaluated, and the renewal time and appropriate pH will be highly accurate from the diagnosis of economics and reliability of both. Can be determined.

以上説明した本実施形態に係る流れ加速腐食減肉速度の算出法と余寿命診断法を取り纏めると次のようになる。すなわち、現状水質でのプラントとその部位特有の減肉速度を求め、その速度をベースに予め回帰していたpH及びFe濃度依存性から算定することにより達成できる。具体的には次のようなステップから構成される。   The calculation method of the flow accelerated corrosion thinning rate and the remaining life diagnosis method according to the present embodiment described above are summarized as follows. That is, it can be achieved by obtaining the plant and its part-specific thinning rate in the current water quality, and calculating from the pH and Fe concentration dependence that has been previously regressed based on the rate. Specifically, it consists of the following steps.

(1)運転時間、管肉厚測定(初期値と現時点肉厚値)結果から評価対象部位の減肉速度を算定する。信頼性向上のため複数点測定し、統計的最大減肉速度を求めておくことが望ましい。 (1) The thickness reduction rate of the evaluation target part is calculated from the results of operation time and tube thickness measurement (initial value and current thickness value). It is desirable to measure multiple points to obtain the statistical maximum thinning rate in order to improve reliability.

(2)現時点までの給水のpH及びFe濃度の平均値又は代表値を求める。途中でステップ的にやや多めに変化している場合は加重平均値としてもよい。 (2) The average or representative value of the pH and Fe concentration of the water supply up to the present time is obtained. If there is a slight change in the middle of the step, a weighted average value may be used.

(3)Fe濃度のpH依存性から、pHを変化させた場合のFe濃度を上記(1)式で予測する。 (3) From the pH dependence of the Fe concentration, the Fe concentration when the pH is changed is predicted by the above equation (1).

(4)FAC減肉速度のpH依存性及びFe濃度依存性より、pHを変化させた場合の減肉速度を上記(2)式で算出する。 (4) From the pH dependency and Fe concentration dependency of the FAC thinning rate, the thinning rate when the pH is changed is calculated by the above equation (2).

(5)限界肉厚までの残肉厚と上記(4)で算出したFAC減肉速度から残余寿命を算定する。 (5) The remaining life is calculated from the remaining thickness up to the limit thickness and the FAC thickness reduction rate calculated in (4) above.

図2は、本発明の実施形態に係る余寿命の診断解析例及び水質pH上昇効果の解析結果を示す(FAC減肉速度が一定の場合)。初期肉厚12mm、15年運転後(現時点)の肉厚測定結果8mm、限界肉厚6mm、現状までの給水pH9.1、現状までのFe濃度10ppbでの解析例である。年間の運転時間がほぼ一定の例であり、運転時間が変化する場合は、運転時間で評価すればよい。   FIG. 2 shows a diagnostic analysis example of the remaining life and an analysis result of the water quality pH increase effect according to the embodiment of the present invention (when the FAC thinning rate is constant). This is an analysis example with an initial wall thickness of 12 mm, a wall thickness measurement result of 8 mm after 15 years of operation (current time), a limit wall thickness of 6 mm, a feed water pH of 9.1 up to the present, and an Fe concentration of up to 10 ppb. This is an example in which the annual operation time is almost constant, and if the operation time changes, the evaluation may be performed based on the operation time.

15年の運転で、12−8=4mmの減肉であるため、その速度は4/15=0.27mm/年となり、限界肉厚(6mm)までの裕度が8−6=2mmなので、現状と同じ条件で運転を継続した場合、2/0.27=7.4で、7.4年が残余寿命と計算できる。そこで、pHを9.2,9.3及び9.4に上昇させると、残余寿命は、それぞれ15年、29年、40年以上と算定できる。   Since it is 12-8 = 4mm thinning after 15 years of operation, the speed is 4/15 = 0.27mm / year, and the margin to the limit wall thickness (6mm) is 8-6 = 2mm, If the operation is continued under the same conditions as the current situation, 2 / 0.27 = 7.4, and 7.4 years can be calculated as the remaining life. Therefore, when the pH is increased to 9.2, 9.3 and 9.4, the remaining lifetimes can be calculated as 15 years, 29 years and 40 years or more, respectively.

図2のように流れ加速腐食速度が、運転時間や年数に対して変化しない場合は、直線的に減肉が進行することになり、余寿命20年を確保したい場合は、pHを9.3以上に上昇させればよいことになる。pHを9.4以上に上昇することにより、減肉速度をより低く抑制でき、余寿命も大幅に延長されることになるが、pHの上昇は、復水器のアンモニアアタックの助長及び復水純水器の再生頻度の点で望ましくなく、本発明では運転寿命に応じた最適のpH値を提供することができる。   When the flow accelerated corrosion rate does not change with respect to the operating time or the number of years as shown in FIG. 2, the thinning progresses linearly. It will suffice if it is raised above. By increasing the pH to 9.4 or higher, the rate of thinning can be suppressed to a lower level and the remaining life will be greatly extended. However, the increase in pH will promote the ammonia attack of the condenser and condensate. This is not desirable in terms of the frequency of regeneration of the water purifier, and the present invention can provide an optimum pH value according to the operating life.

流れ加速腐食は、図4にそのモデルを示したように、減肉が進み、孔食状減肉となると渦流や循環流が形成され、その中に酸化鉄などの摩耗性懸濁物質がとりこまれると減肉速度が増加する。このことは、実機における減肉の経時変化でも観察され、直線則で解析評価すると非安全側の診断になることを幾度か経験している。   As shown in the model of Fig. 4, in flow accelerated corrosion, thinning progresses, and when pitting corrosion occurs, eddy currents and circulation flows are formed, and abrasive suspended solids such as iron oxide are trapped in them. If rare, the rate of thinning increases. This is observed even with the time-lapse change of the thinning in the actual machine, and it has been experienced several times that it becomes a diagnosis on the non-safe side when it is analyzed and evaluated by the linear rule.

図3は、運転及び測定データは図2と同様であるが、減肉速度が運転年数又は運転時間で変化し、経時的に加速される場合の流れ加速腐食の減肉進展線図及びpH上昇時の変化を示す。   FIG. 3 shows the operation and measurement data similar to FIG. 2, but the thinning progress diagram of the flow accelerated corrosion and the pH increase when the thinning rate changes with the operation years or operating hours and is accelerated over time. Shows changes in time.

図3では、前記(2)式のFAC速度を次の(3)及び(4)式とし、係数AをA1×A2として、A1をプラント部位係数、A2を経時加速係数としたものである。   In FIG. 3, the FAC speed of the equation (2) is the following equations (3) and (4), the coefficient A is A1 × A2, A1 is a plant part coefficient, and A2 is an acceleration coefficient over time.

FAC速度=A1×A2×Exp(B×pH)×Fe …(3)
ここで、A1:プラント部位係数、A2:経時加速係数である。
FAC speed = A1 × A2 × Exp (B × pH) × Fe C (3)
Here, A1: plant part coefficient, A2: time-dependent acceleration coefficient.

A2=Y …(4)
ここで、Y:運転年数又は運転時間、D:経時加速指数で、Dは流れ加速腐食事例の回帰により算定される値であり、1.1から3.0の間の値をとる。また、前記(2)式でのAは、(3)式では、A1×A2であるため、A2を導入すると必然的にA1が逆算で求められる。図3での診断例では、限界肉厚までの余寿命は、水質が現状のままの場合3年、pH9.2で5年、pH9.3で9年と算定できる。
A2 = Y D (4)
Here, Y is the operation year or operation time, D is the time-dependent acceleration index, and D is a value calculated by regression of the flow accelerated corrosion case, and takes a value between 1.1 and 3.0. In addition, A in the equation (2) is A1 × A2 in the equation (3). Therefore, when A2 is introduced, A1 is inevitably obtained by back calculation. In the diagnosis example in FIG. 3, the remaining life to the limit wall thickness can be calculated as 3 years when the water quality remains as it is, 5 years at pH 9.2, and 9 years at pH 9.3.

以上のように、本発明の説明では、FAC速度のpH依存性を指数回帰(FAC=A×Exp(B×pH)×Fe)しているが、べき乗回帰(FAC=D×pH×Fe)でも同じ精度の予測が可能であり、更にFe濃度のpH依存性も指数回帰可能であるので、FAC速度のべき乗回帰およびFe濃度の指数回帰も本発明の技術的範囲に含まれる。 As described above, in the description of the present invention, the pH dependence of the FAC rate is exponentially regressed (FAC = A × Exp (B × pH) × Fe C ), but power regression (FAC = D × pH E × Fe C ) can be predicted with the same accuracy, and the pH dependence of Fe concentration can be exponentially regressed. Therefore, power regression of FAC rate and exponential regression of Fe concentration are also included in the technical scope of the present invention.

このように、本発明に係る診断解析法は、実測データに基づくため、より高精度という特徴がある。PWR、BWR、火力発電設備、HRSGをはじめとする流動温水及び流動高温水による流れ加速腐食は、水質環境(温度、pH、溶存酸素濃度)、流動及び材質の条件が同じでも、ほぼ同じ速度の減肉になることはまずなく、最大100倍の速度差が生じることがあるため、一概に減肉速度を算定することは非常に困難であったところ、本発明においてはその課題を解決したものである。   Thus, the diagnostic analysis method according to the present invention is characterized by higher accuracy because it is based on measured data. PWR, BWR, thermal power generation facility, flow accelerated corrosion with fluid hot water and fluid hot water such as HRSG, the water quality environment (temperature, pH, dissolved oxygen concentration), flow and material conditions are the same, almost the same speed It is unlikely that the thickness will be reduced, and a speed difference of up to 100 times may occur. Therefore, it was very difficult to calculate the overall thickness reduction speed, but the present invention solved the problem. It is.

図7は、Fe濃度のpH依存性を考慮に入れないでFe濃度を一定(10ppb)とした場合には、pHを9.1から9.4に上昇させた場合の流れ加速腐食速度をpH値のみで評価した結果であるが、PH9.4でも短期余寿命となり、実際とかけ離れた解析結果であり、診断できる解析結果にはならない。   FIG. 7 shows the flow accelerated corrosion rate when the pH is increased from 9.1 to 9.4 when the Fe concentration is constant (10 ppb) without considering the pH dependence of the Fe concentration. Although it is the result evaluated only with the value, even PH 9.4 has a short remaining life, is an analysis result far from the actual, and does not become an analysis result that can be diagnosed.

以上説明したように、本発明の実施形態では、温水及び高温水による流れ加速腐食(FAC)による減肉が、排熱回収ボイラの節炭器系のほかに加圧水型原子力(PWR)発電設備の二次系、沸騰水型原子力(BWR)の一次系及び火力発電設備の復水器から節炭器までの配管及び伝熱管において発生し、各種の管を含む機器を安全かつ高信頼性で運転していくためには、機器各部での減肉速度を高精度に把握するとともに要因の影響度を定量的に求める必要があり、また、更新までの間の信頼性を得るためには流れ加速腐食の抑制策の効果を高精度に評価することが求められていた。   As described above, in the embodiment of the present invention, the thinning due to the flow accelerated corrosion (FAC) caused by the hot water and the high temperature water is applied to the pressurized water nuclear power (PWR) power generation facility in addition to the economizer system of the exhaust heat recovery boiler. It is generated in the secondary system, the primary system of boiling water nuclear power (BWR), and the pipes and heat transfer pipes from the condenser to the economizer of the thermal power generation facility, and the equipment including various pipes is operated safely and with high reliability. In order to achieve this, it is necessary to grasp the thinning speed at each part of the equipment with high accuracy and quantitatively determine the influence of the factors. It has been required to evaluate the effect of the corrosion control measures with high accuracy.

そこで、本発明では、その主たる技術思想として、50〜250℃の流動温水及び流動高温水による流れ加速腐食による減肉速度を給水pHの指数又はべき乗則回帰式とし、この式の係数にプラント係数A、給水Fe濃度による補正指数cを導入し、この流れ加速腐食減肉速度式において、プラント係数Aを、減肉量の実測値、運転時間、水質pH測定値及び水質Fe濃度測定値からなる過去の運転データから算定することを特徴としている。   Therefore, in the present invention, as the main technical idea, the rate of thinning due to flow accelerated corrosion by flowing hot water and flowing hot water at 50 to 250 ° C. is used as an index of water supply pH or a power law regression equation, and the coefficient of this equation is a plant coefficient. A, a correction index c based on the feedwater Fe concentration is introduced, and in this flow accelerated corrosion thinning rate equation, the plant coefficient A is composed of an actual value of the thinning amount, an operating time, a water quality pH measurement value, and a water quality Fe concentration measurement value. It is characterized by calculating from past operation data.

本発明の実施形態に係る流れ加速腐食(FAC)による減肉速度と寿命予測においてpHを変化させた場合の評価診断フローを示す図である。It is a figure which shows the evaluation diagnostic flow at the time of changing pH in the thinning rate by flow accelerated corrosion (FAC) which concerns on embodiment of this invention, and lifetime prediction. 本発明の実施形態に係る余寿命の診断解析例及び水質pH上昇効果の解析結果を示す図である(FAC減肉速度が一定の場合)。It is a figure which shows the diagnostic analysis example of the remaining life which concerns on embodiment of this invention, and the analysis result of the water quality pH rise effect (when FAC thinning rate is constant). 本発明の実施形態に係る余寿命の診断解析例及び水質pH上昇効果の解析結果を示す図である(FAC減肉速度が経時的に加速される場合)。It is a figure which shows the analysis analysis example of the remaining life which concerns on embodiment of this invention, and the analysis result of a water quality pH rise effect (when a FAC thinning rate is accelerated with time). ベンド管で発生する流れ加速腐食のモデルとその要因を示す説明図である。It is explanatory drawing which shows the model of the flow accelerated corrosion which generate | occur | produces in a bend pipe, and its factor. 流動温水及び高温水による流れ加速腐食の減肉速度と温水温度との関係を示す図である。It is a figure which shows the relationship between the thinning rate of the flow accelerated corrosion by flowing hot water and high temperature water, and warm water temperature. 流れ加速腐食の減肉速度と水質pHとの関係を示す図である。It is a figure which shows the relationship between the thinning rate of flow acceleration corrosion, and water quality pH. 余寿命の診断解析においてFe濃度を一定とした場合における水質pH上昇時の解析結果を示す図であるIt is a figure which shows the analysis result at the time of water quality pH rise in the case where Fe concentration is made constant in the diagnostic analysis of a remaining life 従来の排熱回収ボイラシステムと水−蒸気系統を示す構成図である。It is a block diagram which shows the conventional waste heat recovery boiler system and a water-steam system.

符号の説明Explanation of symbols

1 補給水タンク
2 低圧給水ポンプ
3 低圧節炭器
4 低圧ドラム
5 低圧蒸発器
6 高圧給水ポンプ
7 高圧節炭器
8 高圧ドラム
9 高圧蒸発器
10 低圧過熱器
11 高圧過熱器
12 蒸気タービン
13 復水器
14 脱硝装置
15 給水薬注装置
16 清缶剤注入装置
DESCRIPTION OF SYMBOLS 1 Supply water tank 2 Low pressure feed water pump 3 Low pressure economizer 4 Low pressure drum 5 Low pressure evaporator 6 High pressure feed pump 7 High pressure economizer 8 High pressure drum 9 High pressure evaporator 10 Low pressure superheater 11 High pressure superheater 12 Steam turbine 13 Condensate 14 Denitration equipment 15 Water supply chemical injection equipment 16

Claims (7)

50〜250℃の流動温水又は流動高温水による流れ加速腐食(FAC)による減肉速度を算出する方法において、
FAC減肉速度を、FAC減肉速度=A×Exp(B×pH)×Fe の式を用いて算出し、
ここで、pHは前記流動温水又は流動高温水中のpH値であり、Feは前記流動温水又は流動高温水中のFeイオン濃度であり、A,B,Cは係数であって、係数Aはプラントに特有のプラント係数である
ことを特徴とする流れ加速腐食減肉速度の算出方法。
In the method of calculating the rate of thinning by flow accelerated corrosion (FAC) with flowing hot water or flowing hot water at 50 to 250 ° C.,
The FAC thinning rate is calculated using the formula: FAC thinning rate = A × Exp (B × pH) × Fe C ,
Here, pH is the pH value in the flowing hot water or flowing hot water, Fe is the Fe ion concentration in the flowing hot water or flowing hot water, A, B, C are coefficients, and the coefficient A is a factor for the plant. A method for calculating the flow accelerated corrosion thinning rate characterized by a unique plant coefficient.
請求項1において、
プラント係数Aは、減肉量の実測値、運転時間、水質pH測定値及び水質Fe濃度測定値からなる過去の運転データから算定する
ことを特徴とする加速腐食減肉速度の算出方法。
In claim 1,
The plant coefficient A is calculated from past operation data consisting of measured values of thinning amount, operating time, measured water quality pH value, and measured water quality Fe concentration, A method for calculating an accelerated corrosion thinning rate.
50〜250℃の流動温水又は流動高温水による流れ加速腐食(FAC)の損傷による余寿命の診断法において、
FAC減肉速度を、FAC減肉速度=A×Exp(B×pH)×Fe の式を用いて算出し、
ここで、pHは前記流動温水又は流動高温水中のpH値であり、Feは前記流動温水又は流動高温水中のFeイオン濃度であり、A,B,Cは係数であって、係数Aはプラントに特有のプラント係数であり、前記プラント係数Aは、減肉量の実測値、運転時間、水質pH測定値及び水質Fe濃度測定値からなる過去の運転データから算定し、
前記FAC減肉速度、限界肉厚値及び測定肉厚値に基づいて余寿命を診断する
ことを特徴とする流れ加速腐食損傷による余寿命診断法。
In the diagnostic method of remaining life due to damage of flow accelerated corrosion (FAC) caused by flowing hot water or flowing hot water of 50 to 250 ° C.,
The FAC thinning rate is calculated using the formula: FAC thinning rate = A × Exp (B × pH) × Fe C ,
Here, pH is the pH value in the flowing hot water or flowing hot water, Fe is the Fe ion concentration in the flowing hot water or flowing hot water, A, B, C are coefficients, and the coefficient A is a factor for the plant. The plant coefficient is a specific plant coefficient, and the plant coefficient A is calculated from past operation data consisting of an actual measurement value of the thinning amount, an operation time, a water quality pH measurement value, and a water quality Fe concentration measurement value,
A remaining life diagnosis method based on flow accelerated corrosion damage, wherein the remaining life is diagnosed based on the FAC thinning rate, the limit wall thickness value, and the measured wall thickness value.
管を流れる50〜250℃の流動水による流れ加速腐食(FAC)の損傷による余寿命の診断法において、
運転時間、管の初期肉厚測定値及び現時点肉厚測定値を元に診断評価の対象部位における減肉速度を算定する第1のステップと、
現時点までの水質のpH及びFe濃度の平均値又は代表値を求める第2のステップと、
Fe濃度のpH依存性から、pHを変化させた場合のFe濃度を、Fe=a×pHa,bは係数、の式を用いて予測する第3のステップと、
FAC減肉速度のpH依存性及びFe濃度依存性から、pHを変化させた場合の減肉速度を、FAC減肉速度=A×Exp(B×pH)×Fe の式を用いて算出する第4のステップと、ここで、A,B,Cは係数であって、係数Aはプラントに特有のプラント係数であり、運転時間、肉厚測定による減肉量の実測値、水質pH測定値及び水質Fe濃度測定値からなる運転データから算定するものであり、
限界肉厚までの残肉厚と前記第4のステップで算出したFAC減肉速度から余寿命を算定する第5のステップと、からなる
ことを特徴とする流れ加速腐食損傷による余寿命診断法。
In the diagnostic method of remaining life due to damage of flow accelerated corrosion (FAC) caused by flowing water at 50 to 250 ° C. flowing through the pipe,
A first step of calculating the rate of thinning at the target site for diagnostic evaluation based on the operating time, the initial wall thickness measurement value and the current wall thickness measurement value;
A second step for obtaining an average or representative value of pH and Fe concentration of water quality up to the present time;
A third step of predicting the Fe concentration when the pH is changed from the pH dependence of the Fe concentration by using the equation: Fe = a × pH b a, b is a coefficient;
From the pH dependency and the Fe concentration dependency of the FAC thinning rate, the thinning rate when the pH is changed is calculated using the formula: FAC thinning rate = A × Exp (B × pH) × Fe C The fourth step, where A, B, and C are coefficients, the coefficient A is a plant coefficient unique to the plant, the operating time, the measured value of the thinning amount by measuring the wall thickness, the measured value of water quality pH And the water quality Fe concentration measurement value is calculated from the operation data,
A remaining life diagnosis method based on flow accelerated corrosion damage, comprising: a fifth step of calculating a remaining life from a remaining wall thickness up to a limit wall thickness and a FAC thinning rate calculated in the fourth step.
50〜250℃の流動温水又は流動高温水による流れ加速腐食(FAC)の損傷に対する抑制方法において、
FAC減肉速度を、FAC減肉速度=A×Exp(B×pH)×Fe の式を用いて算出し、
ここで、pHは前記流動温水又は流動高温水中のpH値であり、Feは前記流動温水又は流動高温水中のFeイオン濃度であり、A,B,Cは係数であって、係数Aはプラントに特有のプラント係数であり、前記プラント係数Aは、減肉量の実測値、運転時間、水質pH測定値及び水質中Fe濃度測定値からなる過去の運転データから算定し、
前記式の特性を利用して、前記FAC減肉速度を適宜に低下させるために必要な高さの水質pH値を求める
ことを特徴とする流れ加速腐食損傷抑制方法。
In a method for suppressing damage of flow accelerated corrosion (FAC) caused by flowing hot water or flowing hot water at 50 to 250 ° C.,
The FAC thinning rate is calculated using the formula: FAC thinning rate = A × Exp (B × pH) × Fe C ,
Here, pH is the pH value in the flowing hot water or flowing hot water, Fe is the Fe ion concentration in the flowing hot water or flowing hot water, A, B, C are coefficients, and the coefficient A is a factor for the plant. The plant coefficient A is a specific plant coefficient, and the plant coefficient A is calculated from past operation data consisting of an actual measurement value of the thinning amount, an operation time, a water quality pH measurement value, and a water quality Fe concentration measurement value,
A flow accelerated corrosion damage suppression method characterized by obtaining a water quality pH value of a height necessary for appropriately reducing the FAC thinning rate using the characteristics of the above equation.
50〜250℃の流動温水又は流動高温水による流れ加速腐食(FAC)の損傷による余寿命の診断法において、
FAC減肉速度を、FAC減肉速度=A1×A2×Exp(B×pH)×
Fe の式を用いて算出し、
ここで、pHは前記流動温水又は流動高温水中のpH値であり、Feは前記流動温水又は流動高温水中のFeイオン濃度であり、A1,A2,B,Cは係数であって、
係数A1はプラントに特有のプラント係数であり、前記プラント係数A1は、減肉量の実測値、運転時間、水質pH測定値及び水質中Fe濃度測定値からなる過去の運転データから算定し、係数A2は経時加速係数であり、A2=Yで求め、ここで、Yは運転年数又は運転時間、Dは経時加速指数であり、
上記FAC減肉速度は運転年数又は運転時間Yで変化し経時的に加速されることを表し、
前記経時的に加速するFAC減肉速度、限界肉厚値及び測定肉厚値に基づいて余寿命を診断する
ことを特徴とする流れ加速腐食損傷による余寿命診断法。
In the diagnostic method of remaining life due to damage of flow accelerated corrosion (FAC) caused by flowing hot water or flowing hot water of 50 to 250 ° C.,
FAC thinning rate, FAC thinning rate = A1 x A2 x Exp (B x pH) x
Calculated using the formula of Fe C ,
Here, pH is the pH value in the flowing hot water or flowing hot water, Fe is the Fe ion concentration in the flowing hot water or flowing hot water, A1, A2, B, C are coefficients,
The coefficient A1 is a plant coefficient peculiar to the plant, and the plant coefficient A1 is calculated from the past operation data consisting of the actual measurement value of the thinning amount, the operation time, the water quality pH measurement value, and the water Fe concentration measurement value. A2 is the time acceleration factor, calculated by A2 = Y D, where, Y is the operating life or operating time, D is aging acceleration index,
The above FAC thinning rate indicates that it changes with the operation years or operation time Y and is accelerated over time,
A remaining life diagnosis method based on flow accelerated corrosion damage, characterized in that the remaining life is diagnosed based on the FAC thinning rate, the limit wall thickness value, and the measured wall thickness value that accelerate with time.
請求項1または2において、
前記FAC減肉速度のpH依存性について、前記指数回帰式Exp(B×pH)に代えて、べき乗回帰式pH Eは係数、に基づいて算出する
ことを特徴とする流れ加速腐食減肉速度の算出方法。
In claim 1 or 2,
The pH dependence of the FAC thinning rate, instead of the exponential regression Exp (B × pH), power regression pH E E is a coefficient, meat velocity flow accelerated corrosion decrease, characterized in that calculated on the basis of the Calculation method.
JP2005196356A 2005-07-05 2005-07-05 Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method Expired - Fee Related JP4630745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196356A JP4630745B2 (en) 2005-07-05 2005-07-05 Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196356A JP4630745B2 (en) 2005-07-05 2005-07-05 Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method

Publications (2)

Publication Number Publication Date
JP2007017186A true JP2007017186A (en) 2007-01-25
JP4630745B2 JP4630745B2 (en) 2011-02-09

Family

ID=37754485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196356A Expired - Fee Related JP4630745B2 (en) 2005-07-05 2005-07-05 Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method

Country Status (1)

Country Link
JP (1) JP4630745B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122075A (en) * 2008-11-19 2010-06-03 Mitsubishi Heavy Ind Ltd Method of estimating corrosion rate
JP2010266285A (en) * 2009-05-13 2010-11-25 Mitsubishi Heavy Ind Ltd Simulation test device and simulation test method
JP2017172838A (en) * 2016-03-22 2017-09-28 三浦工業株式会社 Drain recovery system
KR101916304B1 (en) * 2017-04-21 2018-11-08 재단법인 건설기계부품연구원 Apparatus for testing and evaluating concrete feed pipe and method for controlling the same
CN108931619A (en) * 2018-08-28 2018-12-04 大唐(北京)水务工程技术有限公司 A kind of waste water of heat-engine plant processing equipment life-span prediction method and device
KR20190043968A (en) * 2017-10-19 2019-04-29 한국생산기술연구원 Simulator of measuring the corrosion rate of pipe internal material and method using this
CN110887899A (en) * 2019-11-27 2020-03-17 西安交通大学 Turbine blade water erosion defect monitoring and identifying method
KR102376996B1 (en) * 2021-05-28 2022-03-21 롯데이네오스화학(주) Corrosion alarm system for pipe life management and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7225025B2 (en) * 2019-05-10 2023-02-20 三菱重工業株式会社 Corrosion control system, water treatment equipment and power plant, and corrosion control method and corrosion control program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178172A (en) * 1994-12-27 1996-07-12 Toshiba Corp Calculation and evaluation of thickness reduction caused by erosion and corrosion of equipment and piping device
JPH10141600A (en) * 1996-11-05 1998-05-29 Toshiba Eng Co Ltd Piping wall thinning control system
JP2000088207A (en) * 1998-09-18 2000-03-31 Babcock Hitachi Kk Steam feedwater heater and anti-erosion and anti- corrosion method therefor
JP2000258380A (en) * 1999-03-05 2000-09-22 Mitsubishi Chemicals Corp Method and device for measuring erosion
JP2001012698A (en) * 1999-06-24 2001-01-16 Hitachi Ltd Thickness reduction control system of piping system
JP2001280599A (en) * 2000-03-31 2001-10-10 Hitachi Ltd Service life prediction method for power generation plant piping
JP2004198006A (en) * 2002-12-17 2004-07-15 Kansai Electric Power Co Inc:The Iron ion crystallization restricting system and superheated steam plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178172A (en) * 1994-12-27 1996-07-12 Toshiba Corp Calculation and evaluation of thickness reduction caused by erosion and corrosion of equipment and piping device
JPH10141600A (en) * 1996-11-05 1998-05-29 Toshiba Eng Co Ltd Piping wall thinning control system
JP2000088207A (en) * 1998-09-18 2000-03-31 Babcock Hitachi Kk Steam feedwater heater and anti-erosion and anti- corrosion method therefor
JP2000258380A (en) * 1999-03-05 2000-09-22 Mitsubishi Chemicals Corp Method and device for measuring erosion
JP2001012698A (en) * 1999-06-24 2001-01-16 Hitachi Ltd Thickness reduction control system of piping system
JP2001280599A (en) * 2000-03-31 2001-10-10 Hitachi Ltd Service life prediction method for power generation plant piping
JP2004198006A (en) * 2002-12-17 2004-07-15 Kansai Electric Power Co Inc:The Iron ion crystallization restricting system and superheated steam plant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122075A (en) * 2008-11-19 2010-06-03 Mitsubishi Heavy Ind Ltd Method of estimating corrosion rate
JP2010266285A (en) * 2009-05-13 2010-11-25 Mitsubishi Heavy Ind Ltd Simulation test device and simulation test method
JP2017172838A (en) * 2016-03-22 2017-09-28 三浦工業株式会社 Drain recovery system
KR101916304B1 (en) * 2017-04-21 2018-11-08 재단법인 건설기계부품연구원 Apparatus for testing and evaluating concrete feed pipe and method for controlling the same
KR20190043968A (en) * 2017-10-19 2019-04-29 한국생산기술연구원 Simulator of measuring the corrosion rate of pipe internal material and method using this
KR102014318B1 (en) * 2017-10-19 2019-08-26 한국생산기술연구원 Simulator of measuring the corrosion rate of pipe internal material and method using this
CN108931619A (en) * 2018-08-28 2018-12-04 大唐(北京)水务工程技术有限公司 A kind of waste water of heat-engine plant processing equipment life-span prediction method and device
CN108931619B (en) * 2018-08-28 2023-09-08 大唐(北京)水务工程技术有限公司 Thermal power plant wastewater treatment equipment life prediction method and device
CN110887899A (en) * 2019-11-27 2020-03-17 西安交通大学 Turbine blade water erosion defect monitoring and identifying method
KR102376996B1 (en) * 2021-05-28 2022-03-21 롯데이네오스화학(주) Corrosion alarm system for pipe life management and method thereof

Also Published As

Publication number Publication date
JP4630745B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4630745B2 (en) Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method
Staehle et al. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 2
Dooley et al. Flow-accelerated corrosion in steam generating plants
JPWO2010104062A1 (en) Water quality management method and system for power plant
Rodríguez Corrosion control of nuclear steam generators under normal operation and plant-outage conditions: a review
WO2018092259A1 (en) Method for estimating operating temperature of cu (copper)-containing austenitic heat-resistant steel, method for estimating creep damage life of cu-containing austenitic heat-resistant steel, method for estimating operating temperature of heat-conductive tube made of cu-containing austenitic heat-resistant steel, and method for estimating creep damage life of heat-conductive tube made of cu-containing austenitic heat-resistant steel
Tapping et al. CANDU steam generator life management
JP5039606B2 (en) Corrosion rate estimation method for boiler heat transfer tubes
JP4968734B2 (en) Operating temperature estimation method for austenitic steel
Scott et al. Corrosion in pressurized water reactors
Drexler Steam-water cycle chemistry relevant to nuclear steam generators
Chung A review of CANDU feeder wall thinning
Kreider et al. Thermal performance degradation and heat-transfer fouling
CA2926597A1 (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
US20090010377A1 (en) INHIBITOR OF CORROSION AND STRESS CORROSION CRACKING CONTAINING NICKEL BORIDE (NiB) IN THE SECONDARY SIDE OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT AND INHIBITING METHOD USING THE SAME
Yoneda et al. Development of flow-accelerated corrosion prediction method (1) Acquisition of basic experimental data including low temperature condition
Hwang et al. Degradation of alloy 600 steam generator tubes in operating pressurized water reactor nuclear power plants
Drexler et al. Water chemistry operation experience and steam generator maintenance measures in PWRs
JP4107428B2 (en) Nitrate stress corrosion cracking diagnosis method for carbon steel and low alloy steel materials
Syrett Corrosion control in electric power plants—success stories
JP2020514674A (en) Corrosion rate control method for recirculation facility of nuclear power plant
Kreider et al. Dominion Engineering, Inc., Reston, VA, United States
Zhao et al. Investigation on flow accelerated corrosion mitigation for secondary circuit piping of the third Qinshan nuclear power plant
Tyapkov et al. Experience Gained with Chemically Cleaning the Evaporators of the Beloyarsk NPP BN-600 Reactor Plant Sodium–Water Steam Generators from Deposits
Zotica Cernavoda NPP-Boiler and steam cycle chemistry control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees