JP5039606B2 - Corrosion rate estimation method for boiler heat transfer tubes - Google Patents

Corrosion rate estimation method for boiler heat transfer tubes Download PDF

Info

Publication number
JP5039606B2
JP5039606B2 JP2008045261A JP2008045261A JP5039606B2 JP 5039606 B2 JP5039606 B2 JP 5039606B2 JP 2008045261 A JP2008045261 A JP 2008045261A JP 2008045261 A JP2008045261 A JP 2008045261A JP 5039606 B2 JP5039606 B2 JP 5039606B2
Authority
JP
Japan
Prior art keywords
corrosion
heat transfer
concentration
transfer tube
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008045261A
Other languages
Japanese (ja)
Other versions
JP2009204198A (en
Inventor
政智 鎌田
康弘 田中
佳彦 土山
敏昭 西尾
繁光 國領
俊之 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008045261A priority Critical patent/JP5039606B2/en
Publication of JP2009204198A publication Critical patent/JP2009204198A/en
Application granted granted Critical
Publication of JP5039606B2 publication Critical patent/JP5039606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、産業廃棄物を燃料としたボイラ設備にて、伝熱管が腐食して減肉する腐食速度を推定するボイラ伝熱管の腐食速度推定方法に関し、特に、重質油、廃タイヤ、スラッジ、木屑、RDF等の粗悪燃料を用いる場合であっても精度良く腐食速度を推定することができるボイラ伝熱管の腐食速度推定方法に関する。   The present invention relates to a method for estimating the corrosion rate of a boiler heat transfer tube that estimates the corrosion rate at which the heat transfer tube corrodes and thins in a boiler facility using industrial waste as fuel, and in particular, heavy oil, waste tire, sludge The present invention relates to a method for estimating the corrosion rate of a boiler heat transfer tube, which can accurately estimate the corrosion rate even when using poor fuel such as wood chips and RDF.

一般に、ボイラ設備においては、燃料を火炉で燃焼させ、火炉で発生した高温の燃焼排ガスからボイラにて熱回収を行なうようにしている。図10に火炉併設ボイラ設備の一例を示す。火炉51内に投入された燃料は炉内で燃焼し、高温の燃焼排ガスを発生する。燃焼排ガスは、火炉51に併設されたボイラ52に送られる。ボイラ52には、再熱器、二次過熱器、一次過熱器、節炭器などからなる熱交換器53が設けられており、ボイラ52内の排ガス通路54を通る高温の燃焼排ガスと、給水とをボイラ伝熱管を介して熱交換することにより燃焼排ガスから熱回収する構成となっている。ボイラ52にて冷却された燃焼排ガスは、必要に応じて後段の排ガス処理設備(図示略)に送られる。   In general, in boiler equipment, fuel is burned in a furnace, and heat is recovered in a boiler from high-temperature combustion exhaust gas generated in the furnace. FIG. 10 shows an example of a boiler-equipped boiler facility. The fuel charged into the furnace 51 is burned in the furnace, and high-temperature combustion exhaust gas is generated. The combustion exhaust gas is sent to a boiler 52 provided in the furnace 51. The boiler 52 is provided with a heat exchanger 53 including a reheater, a secondary superheater, a primary superheater, a economizer, etc., and high-temperature combustion exhaust gas passing through the exhaust gas passage 54 in the boiler 52 and water supply Is heat-recovered from the combustion exhaust gas by exchanging heat through a boiler heat transfer tube. The combustion exhaust gas cooled by the boiler 52 is sent to a downstream exhaust gas treatment facility (not shown) as necessary.

このようなボイラ設備においては、炉内構造物、特に腐食が進みやすい過熱器管等の伝熱管の腐食減肉が問題となっており、最悪の場合、運転中の漏洩トラブルに到ってしまう。これを未然に防止するためには、該当部位の腐食減肉速度を精度良く求めて、適切なタイミングで取替えを行う必要がある。
そこで腐食減肉を求める方法として、例えば特許文献1(特公平1−16364号公報)には、ボイラの水管に取り付けられたスタッドの長さを測定して管肉の減肉量を推定する方法が開示されている。スタッドの長さを測定する際には、超音波厚さ計が用いられる。これにより、管の肉厚を正確に測定でき腐食状態を把握可能であるが、この方法では炉を停止した状態でしか測定できなかった。また、腐食に影響を及ぼす燃焼灰の付着状況や燃焼ガスの流れの状態が水管本体と異なるため、推定精度の面でも問題が残っている。
In such boiler facilities, corrosion reduction of heat transfer tubes such as superheater tubes that are prone to corrosion is a problem, and in the worst case, it may lead to leakage trouble during operation. . In order to prevent this, it is necessary to accurately determine the corrosion thinning rate of the corresponding part and replace it at an appropriate timing.
Thus, as a method for obtaining corrosion thinning, for example, in Patent Document 1 (Japanese Patent Publication No. 1-16364), a method of estimating the amount of thinning of a pipe by measuring the length of a stud attached to a water pipe of a boiler. Is disclosed. An ultrasonic thickness meter is used to measure the length of the stud. As a result, the thickness of the pipe can be accurately measured and the corrosion state can be grasped, but this method can only be measured with the furnace stopped. Moreover, since the adhesion state of combustion ash that affects corrosion and the state of the flow of combustion gas are different from those of the water pipe main body, there is still a problem in terms of estimation accuracy.

そこで他の方法として、腐食推定式を用いて腐食速度を推定する方法が提案、実用化されていた。例えば、ごみ発電用ボイラ設備においては、以下の腐食推定式が用いられていた。
ΔW = KLt (ΔW:減肉量、KL:係数、t:時間)
KL = Tg5.65×Tm7.86×HCl0.61×Cl0.37×(Cr+Mo+Ni)-0.39 ・・・(1)
尚、Tg:ガス温度、Tm:メタル温度、HCl:ガス中塩酸濃度、Cl:ガス中塩素濃度
Cr、Mo、Ni:材料(鉄鋼)中のそれぞれクロム、モリブデン、ニッケル濃度、である。
Therefore, as another method, a method for estimating the corrosion rate using a corrosion estimation formula has been proposed and put into practical use. For example, the following corrosion estimation formula has been used in a waste power generation boiler facility.
ΔW = KLt (ΔW: thinning amount, KL: coefficient, t: time)
KL = Tg 5.65 × Tm 7.86 × HC l0.61 × C l0.37 × (Cr + Mo + Ni) -0.39 (1)
Tg: gas temperature, Tm: metal temperature, HCl: hydrochloric acid concentration in gas, Cl: chlorine concentration in gas
Cr, Mo, Ni: Concentrations of chromium, molybdenum and nickel in the material (steel), respectively.

特公平1−16364号公報Japanese Patent Publication No. 1-16364

上記したように、ボイラ設備を安定して運転するためには、炉内構造物、特に腐食が進みやすい伝熱管の腐食減肉を的確に把握し、適切なタイミングで伝熱管の取替え、メンテナンスを行なう必要がある。しかしながら、ボイラ伝熱管或いはこれに取り付けられるスタッドを直接測定する方法では、ボイラ停止時にしか測定できないという問題があった。また、推定精度の面でも問題が残っている。
また、上記式(1)に示されるような腐食速度推定式から腐食減肉を推定する方法では、実機における減肉との乖離が大きく、実用には値しないものであった。その理由としては、上記式腐食速度推定式は元来ごみを燃料としたごみ発電用ボイラ設備を対象としていること、またガス温度、メタル温度、ガス中塩酸濃度及びガス中塩素濃度等の多種類のパラメータが存在するため、夫々の測定値に誤差が生じた場合、実際の減肉量に対して推定された減肉量が大きな乖離を生んでしまうこと、さらに、燃料中に含まれる腐食成分の定量化が不十分であるため、精度の良い結果が出ないことなどが考えられる。
従って、本発明は上記従来技術の問題点に鑑み、重質油、廃タイヤ、RDF等の粗悪燃料を用いる場合であっても精度良く腐食速度を推定することができるボイラ伝熱管の腐食速度推定方法を提供することを目的とする。
As mentioned above, in order to operate the boiler equipment stably, it is necessary to accurately grasp the corrosion thinning of the furnace internals, especially heat transfer tubes that are prone to corrosion, and replace and maintain the heat transfer tubes at an appropriate timing. Need to do. However, the method of directly measuring the boiler heat transfer tube or the stud attached thereto has a problem that it can be measured only when the boiler is stopped. There is also a problem in terms of estimation accuracy.
Moreover, in the method of estimating the corrosion thinning from the corrosion rate estimation formula as shown in the above formula (1), the deviation from the thinning in the actual machine is large and is not practical. The reason for this is that the above corrosion rate estimation formula is originally intended for waste power generation boiler facilities that use waste as fuel, and there are many types such as gas temperature, metal temperature, hydrochloric acid concentration in gas, and chlorine concentration in gas. Therefore, if an error occurs in each measured value, the estimated thinning amount may cause a large difference from the actual thinning amount, and the corrosive components contained in the fuel. It is conceivable that accurate results cannot be obtained due to insufficient quantification.
Therefore, in view of the above-mentioned problems of the prior art, the present invention can estimate the corrosion rate of a boiler heat transfer tube that can accurately estimate the corrosion rate even when using poor fuels such as heavy oil, waste tires, and RDF. It aims to provide a method.

そこで、本発明はかかる課題を解決するために、
粗悪燃料の燃焼により発生させた燃焼排ガスから熱交換器にて熱回収するボイラ設備にて、前記熱交換器が具備する伝熱管の腐食速度を推定するボイラ伝熱管の腐食速度推定方法において、
前記粗悪燃料の成分分析に基づいて、前記燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる成分のうち前記伝熱管の腐食に最も影響が大きいと推定される腐食主要元素を特定する工程と、
前記特定した腐食主要元素の濃度と前記伝熱管の減肉速度との相関関係に基づいて腐食速度の基本推定式を導出する工程と、
前記ボイラ設備の伝熱管肉厚を含む測定データを取得し、該測定データに応じて前記基本推定式を補正した腐食速度推定式を設定する工程と、
前記腐食速度推定式に基づいて前記伝熱管の腐食速度を求める工程とを備えたことを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
In a boiler facility for recovering heat in a heat exchanger from combustion exhaust gas generated by burning bad fuel, in a method for estimating the corrosion rate of a boiler heat transfer tube, the corrosion rate of the heat transfer tube included in the heat exchanger is estimated.
Based on the component analysis of the inferior fuel, a step of identifying a corrosive main element that is estimated to have the greatest influence on the corrosion of the heat transfer tube among components contained in at least one of the combustion exhaust gas and combustion ash;
Deriving a basic estimation formula of the corrosion rate based on the correlation between the concentration of the specified corrosion main element and the thinning rate of the heat transfer tube;
Obtaining measurement data including the heat transfer tube thickness of the boiler equipment, and setting a corrosion rate estimation formula in which the basic estimation formula is corrected according to the measurement data;
And a step of obtaining a corrosion rate of the heat transfer tube based on the corrosion rate estimation formula.

本発明によれば、腐食速度推定式におけるパラメータを腐食主要元素の一つのみとしているため、測定時の誤差が与える影響を最小限に抑えることができる。また、腐食速度推定式は、腐食主要元素濃度と伝熱管減肉速度との相関関係に基づいて導出した腐食速度の基本推定式に対して、実機の測定データに基づき補正を行なっているため、推定精度の向上が可能となった。   According to the present invention, since the parameter in the corrosion rate estimation formula is only one of the main corrosion elements, the influence of measurement errors can be minimized. In addition, the corrosion rate estimation formula is corrected based on the measurement data of the actual machine with respect to the basic estimation formula of the corrosion rate derived based on the correlation between the corrosion main element concentration and the heat transfer tube thinning rate. The estimation accuracy can be improved.

また、前記燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる成分のうち前記腐食主要元素の次に前記伝熱管の腐食に影響が大きいと推定される腐食第2元素を特定し、該特定した腐食第2元素の減肉速度への影響度に応じて腐食第2元素濃度を腐食主要元素濃度に等価換算し、該換算にて得られた腐食主要元素濃度により前記基本推定式を補正することを特徴とする。
このように、腐食に影響を及ぼす腐食第2元素の濃度を腐食主要元素濃度に等価換算し、基本推定式を補正することにより、腐食速度の推定精度を高めることが可能となる。
さらに、前記燃焼排ガスの成分のうち前記腐食主要元素の他に前記伝熱管の腐食に影響を与える2以上の腐食要因元素を選出し、該選出した腐食要因元素の減肉速度への影響度に応じて夫々の腐食要因元素濃度を腐食主要元素濃度に等価換算し、該換算にて得られた腐食主要元素濃度により前記基本推定式を補正することを特徴とする。
このように、複数の腐食要因元素を選出して、これらの影響度に応じて腐食主要元素濃度に等価換算し、基本推定式を補正することにより、腐食速度の推定精度をより一層高めることが可能となる。
Further, the second element of corrosion that is estimated to have the greatest influence on the corrosion of the heat transfer tube next to the main element of corrosion among the components contained in at least one of the combustion exhaust gas and combustion ash is identified and identified. Correspondingly convert the corrosion second element concentration to the corrosion main element concentration according to the degree of influence of the corrosion second element on the thinning rate, and correct the basic estimation formula by the corrosion main element concentration obtained by the conversion It is characterized by.
In this way, the corrosion rate estimation accuracy can be improved by equivalently converting the concentration of the second corrosion element affecting the corrosion to the concentration of the main corrosion element and correcting the basic estimation formula.
Furthermore, in addition to the main corrosion element, two or more corrosion factor elements that affect the corrosion of the heat transfer tube are selected from the components of the combustion exhaust gas, and the degree of influence of the selected corrosion factor elements on the thinning rate is selected. Accordingly, each corrosion factor element concentration is equivalently converted to a corrosion main element concentration, and the basic estimation formula is corrected by the corrosion main element concentration obtained by the conversion.
In this way, by selecting multiple corrosion-causing elements, equivalently converting to the concentration of main corrosion elements according to the degree of their influence, and correcting the basic estimation formula, the accuracy of corrosion rate estimation can be further improved. It becomes possible.

さらにまた、前記伝熱管の腐食速度を推定する工程にて、前記ボイラ設備に投入される粗悪燃料の成分比率に基づいて前記腐食主要元素の濃度を算出し、該算出した腐食主要元素濃度から前記腐食速度推定式に基づいて前記伝熱管の腐食速度を求めるようにし、
所定期間内における前記腐食主要元素の平均濃度を算出し、該平均濃度から前記伝熱管の腐食速度を求めることを特徴とする。
これは、粗悪燃料中の腐食性元素の量は常に一定とは限らないため、上記したように腐食主要元素の平均濃度を用いることによって腐食速度の推定精度を向上させることが可能となる。
このとき、前記腐食主要元素及び前記腐食第2元素の等価量を算出し、前記等価量に基づいて前記基本推定式を補正することが好適である。
Furthermore, in the step of estimating the corrosion rate of the heat transfer tube, the concentration of the corrosion main element is calculated based on the component ratio of the inferior fuel input to the boiler equipment, and the concentration of the corrosion main element is calculated from the calculated concentration of the corrosion main element. The corrosion rate of the heat transfer tube is obtained based on the corrosion rate estimation formula,
An average concentration of the corrosion main element within a predetermined period is calculated, and a corrosion rate of the heat transfer tube is obtained from the average concentration.
This is because the amount of corrosive elements in the inferior fuel is not always constant, so that the estimation accuracy of the corrosion rate can be improved by using the average concentration of the main corrosive elements as described above.
At this time, it is preferable to calculate an equivalent amount of the corrosion main element and the corrosion second element and correct the basic estimation formula based on the equivalent amount.

また、前記熱交換器が、前記ボイラ設備に配設された過熱器であることを特徴とする。前記過熱器は、ボイラ設備に配設される伝熱管のうち最も温度条件、腐食条件が厳しいため、過熱器の腐食速度を推定することによって他の伝熱管の状況も把握することが可能となる。
さらに、前記腐食主要元素が塩素であることを特徴とする。これは、重質油、廃タイヤ、RDF等の粗悪燃料を燃焼させた燃焼排ガス中には、多量の塩素が含有されることが多く、塩素成分は腐食に最も影響度が高いことから、これを腐食主要元素とすることで、より精度よく腐食速度を推定することが可能である。
さらにまた、前記腐食第2元素が亜鉛であることを特徴とする。これにより、より一層精度よく腐食速度を推定することが可能である。
Further, the heat exchanger is a superheater disposed in the boiler facility. Since the superheater has the most severe temperature and corrosion conditions among the heat transfer tubes installed in the boiler equipment, it is possible to grasp the status of other heat transfer tubes by estimating the corrosion rate of the superheater. .
Furthermore, the corrosion main element is chlorine. This is because the combustion exhaust gas that burns heavy fuel, waste tires, and bad fuels such as RDF often contains a large amount of chlorine, and the chlorine component has the highest influence on corrosion. It is possible to estimate the corrosion rate more accurately by using as the main corrosion element.
Furthermore, the corrosion second element is zinc. Thereby, it is possible to estimate the corrosion rate with higher accuracy.

以上記載のごとく本発明によれば、腐食速度推定式におけるパラメータを腐食主要元素の一つのみとしているため、測定時の誤差が与える影響を最小限に抑えることができる。また、腐食速度推定式は、腐食主要元素濃度と伝熱管減肉速度との相関関係に基づいて導出した腐食速度の基本推定式に対して、実機の測定データに基づき補正を行なっているため、推定精度の向上が可能となった。
また、腐食に影響を及ぼす腐食第2元素の濃度を腐食主要元素濃度に等価換算し、基本推定式を補正することにより、腐食速度の推定精度を高めることが可能となる。
さらに、複数の腐食要因元素を選出して、これらの影響度に応じて腐食主要元素濃度に等価換算し、基本推定式を補正することにより、腐食速度の推定精度をより一層高めることが可能となる。
さらにまた、腐食主要元素濃度の平均濃度を用いることによって腐食速度の推定精度を向上させることが可能となる。
As described above, according to the present invention, since the parameter in the corrosion rate estimation formula is only one of the main corrosion elements, the influence of measurement errors can be minimized. In addition, the corrosion rate estimation formula is corrected based on the measurement data of the actual machine with respect to the basic estimation formula of the corrosion rate derived based on the correlation between the corrosion main element concentration and the heat transfer tube thinning rate. The estimation accuracy can be improved.
Moreover, it is possible to improve the estimation accuracy of the corrosion rate by equivalently converting the concentration of the second corrosion element affecting the corrosion to the concentration of the main corrosion element and correcting the basic estimation formula.
Furthermore, it is possible to further increase the estimation accuracy of the corrosion rate by selecting multiple corrosion-causing elements, equivalently converting them to the concentration of major corrosion elements according to the degree of their influence, and correcting the basic estimation formula. Become.
Furthermore, the estimation accuracy of the corrosion rate can be improved by using the average concentration of the corrosion main element concentration.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施形態は、重質油、廃タイヤ、スラッジ、木屑、RDF等の粗悪燃料を燃料としたボイラ設備に適用され、該ボイラ設備に配設される伝熱管の腐食減肉に基づく腐食速度を推定する。ボイラ設備は、循環流動床ボイラ、気泡流動床ボイラ及び他の形式のボイラ設備を含むものである。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
This embodiment is applied to boiler equipment fueled with crude fuel such as heavy oil, waste tires, sludge, wood chips, RDF, etc., and has a corrosion rate based on corrosion thinning of heat transfer tubes arranged in the boiler equipment. presume. Boiler equipment includes circulating fluidized bed boilers, bubbling fluidized bed boilers and other types of boiler equipment.

まず、図9を参照して、本実施形態の腐食速度推定方法が適用される装置の一例として循環流動層ボイラ設備につき説明する。
図9に示すように、循環流動層ボイラ設備1において、流動床炉2では、下方より一次空気を導入してけい砂等の流動砂と粗悪燃料を流動混合して一次燃焼を行った後、その上方のフリーボード部2aに二次空気を導入して二次燃焼を行って可燃性ガスの燃焼完結を図り、これにより高温の燃焼ガスが発生する。流動床炉2の出口側には、配管2bを介して燃焼ガスと流動砂を分離するサイクロン3が設けられている。該サイクロン3の下部には、配管4を介してシールポット5が連結され、シールポット5には配管7を介して外部熱交換器8が連結され、この外部熱交換器8は流動床火炉2の下部に連結されている。また、シールポット5は配管6を介して流動床炉2の下部に連結されている。
First, a circulating fluidized bed boiler facility will be described with reference to FIG. 9 as an example of an apparatus to which the corrosion rate estimation method of the present embodiment is applied.
As shown in FIG. 9, in the circulating fluidized bed boiler facility 1, in the fluidized bed furnace 2, after primary air is introduced from below and fluidized sand such as silica sand and poor fuel are fluidly mixed to perform primary combustion, Secondary air is introduced into the upper freeboard portion 2a to perform secondary combustion to complete combustion of the combustible gas, thereby generating high-temperature combustion gas. A cyclone 3 for separating combustion gas and fluidized sand is provided on the outlet side of the fluidized bed furnace 2 through a pipe 2b. A seal pot 5 is connected to the lower portion of the cyclone 3 via a pipe 4, and an external heat exchanger 8 is connected to the seal pot 5 via a pipe 7. The external heat exchanger 8 is connected to the fluidized bed furnace 2. It is connected to the lower part. The seal pot 5 is connected to the lower part of the fluidized bed furnace 2 through a pipe 6.

サイクロン3の上部は、燃焼排ガス通路9を介してボイラ10に接続されている。ボイラ10には、再熱器、二次過熱器、一次過熱器、節炭器などからなる複数の熱交換器11、12が設けられており、ボイラ10を通過する燃焼排ガスは、熱交換器11、12への給水と熱交換することにより熱回収される。
本実施形態は、熱交換器11、12及び外部熱交換器8の腐食速度を推定する際に用いられ、好適には400℃以上の燃焼排ガス雰囲気下に設けられた過熱器に用いられる。
The upper part of the cyclone 3 is connected to the boiler 10 via the combustion exhaust gas passage 9. The boiler 10 is provided with a plurality of heat exchangers 11 and 12 including a reheater, a secondary superheater, a primary superheater, a economizer, and the combustion exhaust gas passing through the boiler 10 is a heat exchanger. Heat is recovered by exchanging heat with water supplied to 11 and 12.
This embodiment is used when estimating the corrosion rates of the heat exchangers 11 and 12 and the external heat exchanger 8, and is preferably used for a superheater provided in a combustion exhaust gas atmosphere of 400 ° C or higher.

また、本実施形態では、腐食速度の推定に関する各種演算処理を行なうプログラムが格納された演算装置20を備えている。該演算装置20は、後述する実施例1乃至実施例3に示す処理フローに従って演算処理を行う。また、演算装置20は記憶部21を備えており、該記憶部21には、演算装置20にて設定された腐食速度推定式が記憶される。
さらに、燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる所定成分濃度を取得する濃度算出手段31又は濃度検出手段32の少なくとも何れか一方を備える。前記濃度算出手段31は、流動床炉2に投入される粗悪燃料の成分分析を行い、該分析結果に基づいて、これを燃焼した時に発生する燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる前記所定成分濃度を求める手段である。前記濃度検出手段32は、燃焼排ガス又は燃焼灰を直接測定し、前記所定成分濃度を検出する手段である。
Moreover, in this embodiment, the arithmetic device 20 in which the program which performs the various arithmetic processing regarding estimation of a corrosion rate was stored is provided. The arithmetic device 20 performs arithmetic processing according to the processing flow shown in the first to third embodiments described later. Moreover, the arithmetic unit 20 includes a storage unit 21, and the corrosion rate estimation formula set by the arithmetic unit 20 is stored in the storage unit 21.
Furthermore, at least one of the concentration calculation means 31 and the density | concentration detection means 32 which acquire the predetermined component density | concentration contained in at least any one of combustion exhaust gas and combustion ash is provided. The concentration calculation means 31 performs a component analysis of the inferior fuel introduced into the fluidized bed furnace 2 and is included in at least one of combustion exhaust gas and combustion ash generated when the fuel is burned based on the analysis result. It is means for obtaining the predetermined component concentration. The concentration detection means 32 is means for directly measuring combustion exhaust gas or combustion ash and detecting the predetermined component concentration.

図1を参照して、本実施例1の腐食速度推定方法では、まず伝熱管の腐食に最も影響が大きいと推定される腐食主要元素を特定する(S11)。これは、各プラントで用いられる主要燃料を分析し、燃料を燃焼した際に発生する燃焼排ガス及び該燃焼排ガス中に含有する燃焼灰の少なくとも何れか一方の成分及び量を求めて、腐食主要元素を特定するとよい。尚、好適には、腐食主要元素は塩素とする。これは、重質油、廃タイヤ、RDF等の粗悪燃料を燃焼させた燃焼排ガスや燃焼灰中には多量の塩素が含有されることが多く、塩素成分は腐食に最も影響度が高いことから、これを腐食主要元素とすることで、より精度よく腐食速度を推定することが可能である。   Referring to FIG. 1, in the corrosion rate estimation method of the first embodiment, first, a corrosion main element estimated to have the greatest influence on the corrosion of the heat transfer tube is specified (S11). This is to analyze the main fuel used in each plant, determine the component and amount of at least one of the combustion exhaust gas generated when the fuel is burned and the combustion ash contained in the combustion exhaust gas, Should be specified. Preferably, the main corrosion element is chlorine. This is because a large amount of chlorine is often contained in combustion exhaust gas and combustion ash obtained by burning heavy fuel, waste tires, RDF and other poor fuels, and the chlorine component has the highest influence on corrosion. By using this as the main element of corrosion, it is possible to estimate the corrosion rate more accurately.

そして、特定した腐食主要元素の濃度と伝熱管の減肉速度との相関関係に基づいて、腐食速度の基本推定式を導出する(S12)。腐食主要元素濃度と伝熱管減肉速度の相関関係は、例えば図1(a)に示される曲線により表される。この相関関係は、実機を模擬した試験装置を用いて、腐食主要元素濃度を変化させた時の伝熱管の減肉速度を求め、グラフ化したものである。このとき、ガス中に含有される場合、付着灰中に含有される場合、その両者の場合等、実機の腐食環境に合わせて試験を行なうとよい。材料も実機に用いるものと同等のもので実施することが好ましい。   Then, a basic estimation formula for the corrosion rate is derived based on the correlation between the specified concentration of the main corrosion element and the thinning rate of the heat transfer tube (S12). The correlation between the corrosion main element concentration and the heat transfer tube thinning rate is represented by, for example, a curve shown in FIG. This correlation is obtained by graphing the thinning rate of the heat transfer tube when the concentration of the main corrosion element is changed using a test apparatus that simulates an actual machine. At this time, when it is contained in the gas, when it is contained in the adhering ash, in both cases, the test may be performed according to the corrosive environment of the actual machine. The material is preferably the same as that used in the actual machine.

次いで、ボイラ設備の伝熱管肉厚を含む実機測定データを取得し、この測定データに応じて前記基本推定式を補正した腐食速度推定式を設定する(S13)。これは、基本推定式に実機との相関係数項を付け加え、一定期間運転後の実機測定データより相関係数を求めて、この相関係数を相関係数項に当てはめたものを腐食速度推定式とする。
基本推定式に対して実機測定データによる補正を行った腐食速度推定式を図1(b)、(c)に示す。図1(b)は、実機測定データの補正により基本推定式よりも減肉速度が増加した場合の腐食速度推定式を示し、(c)は減肉速度が減少した場合の腐食速度推定式を示す。
上記により設定された腐食速度推定式に実機の腐食主要元素濃度を当てはめて実機の腐食速度を推定し(S14)、想定する時間における腐食減肉量を算出する。実機の腐食主要元素濃度は、図9の濃度算出手段31又は濃度検出手段32により取得する。
Next, actual machine measurement data including the heat transfer tube wall thickness of the boiler equipment is acquired, and a corrosion rate estimation formula obtained by correcting the basic estimation formula is set according to the measurement data (S13). This is because the correlation coefficient term with the actual machine is added to the basic estimation formula, the correlation coefficient is obtained from the actual machine measurement data after a certain period of operation, and the correlation coefficient is applied to the correlation coefficient term to estimate the corrosion rate. Let it be an expression.
FIGS. 1B and 1C show corrosion rate estimation formulas obtained by correcting the basic estimation formula with actual machine measurement data. FIG. 1 (b) shows the corrosion rate estimation formula when the thinning rate is increased from the basic estimation formula by correcting the actual machine measurement data, and (c) shows the corrosion rate estimation formula when the thinning rate is reduced. Show.
By applying the corrosion main element concentration of the actual machine to the corrosion rate estimation formula set as described above, the corrosion rate of the actual machine is estimated (S14), and the corrosion thinning amount at the assumed time is calculated. The corrosion main element concentration of the actual machine is acquired by the concentration calculation means 31 or the concentration detection means 32 in FIG.

本実施例1によれば、腐食速度推定式におけるパラメータを腐食主要元素の一つのみとしているため、測定時の誤差が与える影響を最小限に抑えることができる。また、腐食速度推定式は、腐食主要元素濃度と伝熱管減肉速度との相関関係に基づいて導出した腐食速度の基本推定式に対して、実機の測定データに基づき補正を行なっているため、推定精度の向上が可能となった。   According to the first embodiment, since the parameter in the corrosion rate estimation formula is only one of the main corrosion elements, the influence of measurement errors can be minimized. In addition, the corrosion rate estimation formula is corrected based on the measurement data of the actual machine with respect to the basic estimation formula of the corrosion rate derived based on the correlation between the corrosion main element concentration and the heat transfer tube thinning rate. The estimation accuracy can be improved.

本実施例1を用いて、2つのプラントA、Bにて、減肉推定精度を評価した表を図2に示す。図中、既存式は従来の腐食速度推定式(式(1)参照)により算出した値を示し、基本推定式、腐食速度推定式は何れも本実施例1に示した式により算出した値を示す。
尚、推定精度値=(実機の減肉量)/(推定式より求めた減肉量)である。
図2に示されるように、実施例1に示した腐食速度推定式により推定した値が最も精度が高くなり、従来の推定式を用いた場合に比べて2倍程度の精度向上が可能となった。
The table | surface which evaluated the thinning estimation precision in the two plants A and B using the present Example 1 is shown in FIG. In the figure, the existing formula shows a value calculated by a conventional corrosion rate estimation formula (see formula (1)), and the basic estimation formula and the corrosion rate estimation formula both have values calculated by the formula shown in the first embodiment. Show.
Note that the estimated accuracy value = (thickening amount of actual machine) / (thinning amount obtained from the estimation formula).
As shown in FIG. 2, the value estimated by the corrosion rate estimation formula shown in Example 1 has the highest accuracy, and the accuracy can be improved by a factor of about two compared to the case where the conventional estimation formula is used. It was.

本実施例2では、上記した実施例1の推定方法に他の補正手段を加えた方法となっている。図3に示すように、まず実施例1と同様に、伝熱管の腐食に最も影響が大きいと推定される腐食主要元素を特定し(S11)、特定した腐食主要元素の濃度と伝熱管の減肉速度との相関関係に基づいて、腐食速度の基本推定式を導出する(S12)。
さらに、燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる成分のうち腐食主要元素の次に伝熱管の腐食に影響が大きいと推定される腐食第2元素を特定し、該特定した腐食第2元素の減肉速度への影響度に応じて腐食第2元素濃度を腐食主要元素濃度に等価換算し、該換算にて得られた腐食主要元素濃度により前記基本推定式を補正する(S15)。腐食第2元素の特定は、腐食主要元素と同様にして特定される。尚、腐食第2元素は亜鉛とすることが好ましい。
In the second embodiment, another correction means is added to the estimation method of the first embodiment described above. As shown in FIG. 3, first, in the same manner as in Example 1, the main corrosion element estimated to have the greatest influence on the corrosion of the heat transfer tube is specified (S11), and the concentration of the specified main corrosion element and the reduction of the heat transfer tube are identified. Based on the correlation with the meat speed, a basic estimation formula for the corrosion rate is derived (S12).
Further, a corrosion second element estimated to have the greatest influence on the corrosion of the heat transfer tube is identified next to the main corrosion element among the components contained in at least one of the combustion exhaust gas and combustion ash, and the identified corrosion second The corrosion second element concentration is equivalently converted to the corrosion main element concentration according to the degree of influence of the element on the thinning rate, and the basic estimation formula is corrected by the corrosion main element concentration obtained by the conversion (S15). The identification of the corrosion second element is specified in the same manner as the corrosion main element. The corrosion second element is preferably zinc.

腐食第2元素濃度の等価換算では、試験装置により等価係数αを試験的に求め、この等価係数により腐食第2元素濃度を腐食主要元素濃度に換算する。そして、下記式(2)により、腐食主要元素等価濃度を算出する。尚、式(2)では腐食主要元素を塩素(Cl)、腐食第2元素を亜鉛(Zn)としている。
Cl=[%Cl]+α[%Zn] ・・・(2)
ここで、Clは腐食主要元素等価濃度、[%Cl]は腐食主要元素濃度、[%Zn]は腐食第2元素濃度である。
In the equivalent conversion of the corrosion second element concentration, the equivalent coefficient α is experimentally obtained by a test apparatus, and the corrosion second element concentration is converted into the corrosion main element concentration by this equivalent coefficient. And the corrosion main element equivalent density | concentration is computed by following formula (2). In the formula (2), the main corrosion element is chlorine (Cl), and the second corrosion element is zinc (Zn).
Cl * = [% Cl] + α [% Zn] (2)
Here, Cl * is a corrosion main element equivalent concentration, [% Cl] is a corrosion main element concentration, and [% Zn] is a corrosion second element concentration.

次いで、腐食第2元素も加味した試験により、腐食主要元素と腐食第2元素の濃度と腐食速度の相関関係を示す基本推定式を導出する。これは、ガス中に含有される場合、付着灰中に含有される場合、その両者の場合等のように、実機の腐食環境に合わせて試験を実施することが好ましい。これより腐食主要元素等価濃度を求める。材料も実機に用いるものと同等のもので実施する。腐食第2元素により補正した基本推定式は、例えば図3(d)に示される。
そして、実施例1と同様に、ボイラ設備の伝熱管肉厚を含む実機測定データを取得し、この測定データに応じて前記基本推定式を補正した腐食速度推定式を設定(S13)した後、この腐食速度推定式に実機の腐食主要元素濃度を当てはめて実機の腐食速度を推定し(S14)、想定する時間における腐食減肉量を算出する。
Next, a basic estimation formula showing a correlation between the concentration of the corrosion main element and the concentration of the corrosion second element and the corrosion rate is derived by a test including the corrosion second element. When this is contained in the gas, when it is contained in the adhering ash, it is preferable to carry out the test according to the corrosive environment of the actual machine, as in the case of both. From this, the equivalent concentration of the main corrosion element is obtained. The material is the same as that used for the actual machine. The basic estimation formula corrected by the corrosion second element is shown in FIG.
And like Example 1, after acquiring actual machine measurement data including the heat transfer tube thickness of boiler equipment, and setting the corrosion rate estimation formula which corrected the basic estimation formula according to this measurement data (S13), The corrosion rate of the actual machine is estimated by applying the corrosion main element concentration of the actual machine to this corrosion rate estimation formula (S14), and the corrosion thinning amount at the assumed time is calculated.

本実施例2のように、腐食に影響を及ぼす腐食第2元素の濃度を腐食主要元素濃度に等価換算し、基本推定式を補正することにより、腐食速度の推定精度を高めることが可能となる。
さらにまた、本実施例2では腐食に影響を及ぼす腐食第2元素までを考慮したが、第3元素、第4元素、・・・と2以上の腐食要因元素を選出し、これらに基づき基本推定式を補正してもよい。この場合、選出した複数の腐食要因元素の減肉速度への影響度に応じて夫々の腐食要因元素濃度を腐食主要元素濃度に等価換算し、該換算にて得られた腐食主要元素濃度により基本推定式を補正する。これにより、腐食速度の推定精度をより一層高めることが可能となる。
本実施例2を用いて、減肉推定精度を評価した表を図4に示す。同図に示されるように、上記実施例2の腐食速度推定式を用いた値が最も精度が高くなり、従来の推定式を用いた場合に比べて2倍程度の精度向上が可能となった。
Like Example 2, the concentration of the corrosion second element that affects the corrosion is equivalently converted to the concentration of the main corrosion element, and the basic estimation formula is corrected to improve the estimation accuracy of the corrosion rate. .
Furthermore, in the second embodiment, the corrosion second element that affects the corrosion is considered, but the third element, the fourth element,... And two or more corrosion factor elements are selected, and the basic estimation is performed based on these elements. The equation may be corrected. In this case, the concentration of each corrosion factor element is equivalently converted to the corrosion main element concentration according to the degree of influence of the selected plurality of corrosion factor elements on the metal thinning rate, and the basic value is determined based on the corrosion main element concentration obtained by the conversion. Correct the estimation formula. Thereby, it is possible to further increase the estimation accuracy of the corrosion rate.
The table | surface which evaluated the thinning estimation accuracy using the present Example 2 is shown in FIG. As shown in the figure, the value using the corrosion rate estimation formula of Example 2 is the most accurate, and the accuracy can be improved by a factor of about 2 compared to the case using the conventional estimation formula. .

本実施例3は、上記した実施例1の推定方法に対して、平均濃度を用いて腐食速度を算出するようにしたものである。これは、粗悪燃料中の腐食性元素の量は常に一定とは限らないため、腐食速度推定式において平均濃度を用いることで推定精度を上げるようにした。
腐食主要元素平均濃度の算出方法を以下に示す。
予め、使用される各種燃料の腐食主要元素量を把握しておく。これは、腐食環境に合わせてガス中濃度、灰中濃度等を分析することにより得られる。次いで、腐食量推定時(総運転時間)までの各種燃料の使用量割合より、期間中の平均主要元素濃度を算出する。
そして、上記の平均主要元素濃度を実施例1にて求められた腐食速度推定式に当てはめて腐食速度を求め、想定する時間における腐食減肉量を算出する。腐食主要元素平均濃度により補正した腐食速度推定式は、例えば図5(e)、(f)に示される。
In the third embodiment, the corrosion rate is calculated using the average concentration with respect to the estimation method of the first embodiment. This is because the amount of corrosive elements in the poor fuel is not always constant, so that the estimation accuracy is improved by using the average concentration in the corrosion rate estimation formula.
The calculation method of the corrosion main element average concentration is shown below.
The amount of main elements of corrosion of various fuels to be used is grasped in advance. This can be obtained by analyzing gas concentration, ash concentration, etc. according to the corrosive environment. Next, the average main element concentration during the period is calculated from the ratio of the amount of various fuels used until the estimation of the amount of corrosion (total operation time).
Then, the corrosion rate is calculated by applying the above average main element concentration to the corrosion rate estimation formula obtained in Example 1, and the corrosion thinning amount at the assumed time is calculated. Corrosion rate estimation formulas corrected by the average concentration of corrosion main elements are shown in FIGS. 5 (e) and 5 (f), for example.

本実施例によれば、腐食主要元素濃度の平均濃度を用いることによって腐食速度の推定精度を向上させることが可能となる。
本実施例3を用いて、各プラントA、プラントBにおいて減肉推定精度を評価した表を図6に示す。同図に示されるように、実施例3の腐食速度推定式を用いた値が最も精度が高くなり、従来の推定式を用いた場合に比べて2〜3倍程度の精度向上が可能となった。
According to the present embodiment, it is possible to improve the estimation accuracy of the corrosion rate by using the average concentration of the corrosion main element concentration.
FIG. 6 shows a table in which the thinning estimation accuracy is evaluated in each plant A and plant B using the third embodiment. As shown in the figure, the value using the corrosion rate estimation formula of Example 3 has the highest accuracy, and the accuracy can be improved by about 2 to 3 times compared to the case using the conventional estimation formula. It was.

さらに本実施例3において、腐食速度推定式にて腐食主要元素と腐食第2元素の等価量を用いて演算を行なうことが好ましい。
腐食第2元素を扱う場合の等価量の算出方法を以下に示す。
予め、使用される各種燃料の腐食主要元素量を把握しておく。これは、腐食環境に合わせてガス中濃度、灰中濃度等を分析することにより得られる。
次いで、実機を模擬した試験装置で、腐食に及ぼす腐食主要元素と腐食第2元素の相関係数を把握し、腐食主要元素の等価量の形で表現する。この試験は、材料も実機に用いるものと同等のもので実施する。
腐食量推定時(総運転時間)までの各種燃料の使用量割合より、期間中の主要元素等価量平均濃度を算出する。そして、上記の主要元素等価量平均濃度を実施例1にて求められた腐食速度推定式に当てはめて腐食速度を求め、腐食減肉量を算出する。第2元素を考慮して主要元素等価量平均濃度により補正した式は、例えば図7に示される。
Furthermore, in the third embodiment, it is preferable to perform calculation using the equivalent amounts of the main corrosion element and the second corrosion element in the corrosion rate estimation formula.
The calculation method of the equivalent amount in the case of handling the corrosion second element is shown below.
The amount of main elements of corrosion of various fuels to be used is grasped in advance. This can be obtained by analyzing gas concentration, ash concentration, etc. according to the corrosive environment.
Next, using a test apparatus that simulates an actual machine, the correlation coefficient between the corrosion main element and the corrosion second element affecting the corrosion is grasped and expressed in the form of an equivalent amount of the corrosion main element. This test is carried out with materials equivalent to those used for actual equipment.
The average concentration of major element equivalents during the period is calculated based on the amount of fuel used up to the time of corrosion estimation (total operation time). Then, the above-mentioned main element equivalent amount average concentration is applied to the corrosion rate estimation formula obtained in Example 1 to obtain the corrosion rate, and the corrosion thinning amount is calculated. For example, FIG. 7 shows an equation corrected by the principal element equivalent amount average concentration in consideration of the second element.

本実施例によれば、腐食第2元素の腐食主要元素への等価係数を求め、減肉速度との関係を主要元素等価量平均濃度で表すことによって、腐食速度の推定精度を高めることが可能となる。
上記構成を用いて、プラントAの減肉推定精度を評価した表を図8に示す。同図に示されるように、本構成の腐食速度推定式を用いた値が最も精度が高くなり、従来の推定式を用いた場合に比べてより一層精度向上が可能となった。
According to the present embodiment, it is possible to improve the estimation accuracy of the corrosion rate by calculating the equivalent coefficient of the corrosion second element to the corrosion main element and expressing the relationship with the thinning rate by the average concentration of the equivalent amount of the main element. It becomes.
The table | surface which evaluated the thinning estimation precision of the plant A using the said structure is shown in FIG. As shown in the figure, the value using the corrosion rate estimation formula of this configuration has the highest accuracy, and the accuracy can be further improved as compared with the case where the conventional estimation formula is used.

本発明の実施例1に係る腐食速度推定方法を説明する図である。It is a figure explaining the corrosion rate estimation method which concerns on Example 1 of this invention. 実施例1における腐食推定精度を比較する表である。It is a table | surface which compares the corrosion estimation precision in Example 1. FIG. 本発明の実施例2に係る腐食速度推定方法を説明する図である。It is a figure explaining the corrosion rate estimation method which concerns on Example 2 of this invention. 実施例2における腐食推定精度を比較する表である。It is a table | surface which compares the corrosion estimation precision in Example 2. FIG. 本発明の実施例3に係り、平均濃度補正をした腐食速度推定式を表す図である。It is a figure concerning the Example 3 of this invention, and represents the corrosion rate estimation formula which carried out average density | concentration correction | amendment. 実施例3における腐食推定精度を比較する表である。It is a table | surface which compares the corrosion estimation precision in Example 3. FIG. 図5に加えて、第2元素等価補正をした腐食速度推定式を表す図である。In addition to FIG. 5, it is a figure showing the corrosion rate estimation formula which carried out 2nd element equivalent correction | amendment. 実施例3における腐食推定精度を比較する表である。It is a table | surface which compares the corrosion estimation precision in Example 3. FIG. 本発明の実施形態が適用されるボイラ設備を示す概略構成図である。It is a schematic block diagram which shows the boiler equipment with which embodiment of this invention is applied. 従来のボイラ設備の概略構成図を示す。The schematic block diagram of the conventional boiler equipment is shown.

符号の説明Explanation of symbols

1 循環流動層ボイラ設備
2 流動床炉
2b 4、6、7 配管
3 サイクロン
5 シールポット
8 外部熱交換器
10 ボイラ
11、12 熱交換器
20 演算装置
21 記憶部
31 濃度算出手段
32 濃度検出手段
51 火炉
52 ボイラ
53 熱交換器
54 排ガス通路
DESCRIPTION OF SYMBOLS 1 Circulating fluidized bed boiler equipment 2 Fluidized bed furnace 2b 4, 6, 7 Piping 3 Cyclone 5 Seal pot 8 External heat exchanger 10 Boiler 11, 12 Heat exchanger 20 Arithmetic device 21 Memory | storage part 31 Concentration calculation means 32 Concentration detection means 51 Furnace 52 Boiler 53 Heat exchanger 54 Exhaust gas passage

Claims (7)

粗悪燃料の燃焼により発生させた燃焼排ガスから熱交換器にて熱回収するボイラ設備にて、前記熱交換器が具備する伝熱管の腐食速度を推定するボイラ伝熱管の腐食速度推定方法において、
前記粗悪燃料の成分分析に基づいて、前記燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる成分のうち前記伝熱管の腐食に最も影響が大きいと推定される腐食主要元素を特定する工程と、
前記特定した腐食主要元素の濃度と前記伝熱管の減肉速度との相関関係に基づいて腐食速度の基本推定式を導出する工程と、
前記ボイラ設備の伝熱管肉厚を含む測定データを取得し、該測定データに応じて前記基本推定式を補正した腐食速度推定式を設定する工程と、
前記腐食速度推定式に基づいて前記伝熱管の腐食速度を求める工程とを備えたことを特徴とするボイラ伝熱管の腐食速度推定方法。
In a boiler facility for recovering heat in a heat exchanger from combustion exhaust gas generated by burning bad fuel, in a method for estimating the corrosion rate of a boiler heat transfer tube, the corrosion rate of the heat transfer tube included in the heat exchanger is estimated.
Based on the component analysis of the inferior fuel, a step of identifying a corrosive main element that is estimated to have the greatest influence on the corrosion of the heat transfer tube among components contained in at least one of the combustion exhaust gas and combustion ash;
Deriving a basic estimation formula of the corrosion rate based on the correlation between the concentration of the specified corrosion main element and the thinning rate of the heat transfer tube;
Obtaining measurement data including the heat transfer tube thickness of the boiler equipment, and setting a corrosion rate estimation formula in which the basic estimation formula is corrected according to the measurement data;
And a step of obtaining a corrosion rate of the heat transfer tube based on the corrosion rate estimation formula.
前記燃焼排ガス及び燃焼灰の少なくとも何れか一方に含まれる成分のうち前記腐食主要元素の次に前記伝熱管の腐食に影響が大きいと推定される腐食第2元素を特定し、該特定した腐食第2元素の減肉速度への影響度に応じて腐食第2元素濃度を腐食主要元素濃度に等価換算し、該換算にて得られた腐食主要元素濃度により前記基本推定式を補正することを特徴とする請求項1記載のボイラ伝熱管の腐食速度推定方法。   Of the components contained in at least one of the combustion exhaust gas and combustion ash, a second corrosion element that is estimated to have the greatest effect on the corrosion of the heat transfer tube is identified next to the main corrosion element, and the identified corrosion second The second element concentration of corrosion is equivalently converted to the concentration of major corrosion elements according to the degree of influence of the two elements on the thinning rate, and the basic estimation formula is corrected by the concentration of major corrosion elements obtained by the conversion. The method for estimating the corrosion rate of a boiler heat transfer tube according to claim 1. 前記燃焼排ガスの成分のうち前記腐食主要元素の他に前記伝熱管の腐食に影響を与える2以上の腐食要因元素を選出し、該選出した腐食要因元素の減肉速度への影響度に応じて夫々の腐食要因元素濃度を腐食主要元素濃度に等価換算し、該換算にて得られた腐食主要元素濃度により前記基本推定式を補正することを特徴とする請求項1記載のボイラ伝熱管の腐食速度推定方法。   Among the components of the combustion exhaust gas, in addition to the main corrosion element, two or more corrosion factor elements that affect the corrosion of the heat transfer tube are selected, and the selected corrosion factor element is selected according to the degree of influence on the thinning rate. The corrosion of a boiler heat transfer tube according to claim 1, wherein each corrosion factor element concentration is equivalently converted to a corrosion main element concentration, and the basic estimation formula is corrected by the corrosion main element concentration obtained by the conversion. Speed estimation method. 前記伝熱管の腐食速度を推定する工程にて、前記ボイラ設備に投入される粗悪燃料の成分比率に基づいて前記腐食主要元素の濃度を算出し、該算出した腐食主要元素濃度から前記腐食速度推定式に基づいて前記伝熱管の腐食速度を求めるようにし、
所定期間内における前記腐食主要元素の平均濃度を算出し、該平均濃度から前記伝熱管の腐食速度を求めることを特徴とする請求項1乃至3の何れかに記載のボイラ伝熱管の腐食速度推定方法。
In the step of estimating the corrosion rate of the heat transfer tube, the concentration of the corrosion main element is calculated based on the component ratio of the inferior fuel input to the boiler equipment, and the corrosion rate is estimated from the calculated concentration of the corrosion main element. Based on the equation, the corrosion rate of the heat transfer tube is obtained,
The corrosion rate estimation of a boiler heat transfer tube according to any one of claims 1 to 3, wherein an average concentration of the corrosion main element within a predetermined period is calculated, and a corrosion rate of the heat transfer tube is obtained from the average concentration. Method.
前記熱交換器が、前記ボイラ設備に配設された過熱器であることを特徴とする請求項1乃至4の何れかに記載のボイラ伝熱管の腐食速度推定方法。   The said heat exchanger is a superheater arrange | positioned at the said boiler installation, The corrosion rate estimation method of the boiler heat exchanger tube in any one of the Claims 1 thru | or 4 characterized by the above-mentioned. 前記腐食主要元素が塩素であることを特徴とする請求項1乃至5の何れかに記載のボイラ伝熱管の腐食速度推定方法。   6. The method for estimating a corrosion rate of a boiler heat transfer tube according to claim 1, wherein the main corrosion element is chlorine. 前記腐食第2元素が亜鉛であることを特徴とする請求項1乃至6の何れかに記載のボイラ伝熱管の腐食速度推定方法。   The said corrosion 2nd element is zinc, The corrosion rate estimation method of the boiler heat exchanger tube in any one of Claim 1 thru | or 6 characterized by the above-mentioned.
JP2008045261A 2008-02-26 2008-02-26 Corrosion rate estimation method for boiler heat transfer tubes Active JP5039606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045261A JP5039606B2 (en) 2008-02-26 2008-02-26 Corrosion rate estimation method for boiler heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045261A JP5039606B2 (en) 2008-02-26 2008-02-26 Corrosion rate estimation method for boiler heat transfer tubes

Publications (2)

Publication Number Publication Date
JP2009204198A JP2009204198A (en) 2009-09-10
JP5039606B2 true JP5039606B2 (en) 2012-10-03

Family

ID=41146666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045261A Active JP5039606B2 (en) 2008-02-26 2008-02-26 Corrosion rate estimation method for boiler heat transfer tubes

Country Status (1)

Country Link
JP (1) JP5039606B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916215B2 (en) * 2012-04-03 2016-05-11 株式会社サムソン boiler
JP5990811B2 (en) * 2013-05-27 2016-09-14 株式会社神戸製鋼所 Method for predicting sulfide corrosion of boiler furnace wall pipes.
JP6847711B2 (en) * 2017-03-02 2021-03-24 三菱重工業株式会社 Anticorrosion method and anticorrosion control device
JP7064078B2 (en) * 2018-02-08 2022-05-10 三菱重工業株式会社 Combustion furnace ash deposit control condition determination device, combustion system, and ash adhesion control condition determination method
JP6871662B1 (en) * 2020-11-10 2021-05-12 日本エネルギーパートナーズ株式会社 Boiler heat transfer tube wall thickness estimation method, boiler heat transfer tube wall thickness estimation device, boiler heat transfer tube wall thickness estimation program and boiler heat transfer tube management method based on the method

Also Published As

Publication number Publication date
JP2009204198A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5039606B2 (en) Corrosion rate estimation method for boiler heat transfer tubes
CN109253870B (en) The assessment device and method in biomass fuel boiler heat-exchange tube service life
JP4630745B2 (en) Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method
CN105091944A (en) Thermal power plant set coal-fired calorific value and coal consumption rate index online monitoring method
JP4466232B2 (en) Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program
KR102581072B1 (en) Method for evaluating life and risk degree of high temperature pipe
JP5380219B2 (en) Method for estimating metal temperature and life of boiler heat transfer tubes
JP4367408B2 (en) Pipe thickness reduction management system
JP3832142B2 (en) Pipe thickness reduction management system
JP3171285B2 (en) Creep damage evaluation method for heat transfer tubes.
JP5592685B2 (en) Hematite scale adhesion diagnostic method
JP5990811B2 (en) Method for predicting sulfide corrosion of boiler furnace wall pipes.
Tapping et al. CANDU steam generator life management
Pronobis et al. Kinetics of low NOx corrosion of waterwalls in utility boilers
KR20160039099A (en) Evaluating method for degree of risk using creep and wall thinning of heat exchanger steam tube
CN114937512A (en) Method and system for flow compensation of coolant of nuclear power unit primary loop
JP2009036670A (en) Working temperature estimating method of austenitic steel
JP4831624B2 (en) Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
Cohn et al. Optimization of NDE Reexamination Locations and Intervals for Grade 91 Piping System Girth Welds
JP4107428B2 (en) Nitrate stress corrosion cracking diagnosis method for carbon steel and low alloy steel materials
RU162551U1 (en) DEVICE FOR DETERMINING THE FULL AND RESIDUAL RESOURCE OF STEAM HEATER PIPES FROM AUSTENITIC STEEL
CN111919104A (en) Method for evaluating remaining life of piping
Ang Development of iterative analytical procedure for boiler tube analysis in matlab
WO2023139927A1 (en) Plant instrumentation device and equipment deterioration monitoring system and plant maintenance optimization system provided with same
KR20240037297A (en) Method for determining leaks in heat transfer fluid channels of heat transfer reactor systems and heat transfer reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5039606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250