JPS5843308A - Boiler - Google Patents
BoilerInfo
- Publication number
- JPS5843308A JPS5843308A JP13979681A JP13979681A JPS5843308A JP S5843308 A JPS5843308 A JP S5843308A JP 13979681 A JP13979681 A JP 13979681A JP 13979681 A JP13979681 A JP 13979681A JP S5843308 A JPS5843308 A JP S5843308A
- Authority
- JP
- Japan
- Prior art keywords
- boiler
- heat absorption
- valve
- furnace
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 本発明はボイラに関するものである。[Detailed description of the invention] The present invention relates to a boiler.
ボイラの火炉水冷壁は、第1a図、第2a図にそれぞれ
その横断面図、縦断面図、および第1b図、gZb図に
それぞれ各部の熱吸収率分布曲線図を示すように、通常
炉中央部(a)は熱吸収量が太き1周辺部(b)、(b
りは小さい。起動時等においてこれらの熱吸収量の差に
よって第3図の管内各部(a)、(b)、(bリ にお
ける管内圧力損失Δpと管内流量Gとの関係図に示され
るように管内の圧力抵抗特性とがある。これは周辺部の
低熱吸収量チューブが燃焼用空気等で冷却されるときに
更に著しく、場合によっては流量の極端な減少又は停滞
を生じ、局部的なオーバヒ゛−トにより管の膨出又は噴
破に至ることもあり得た。゛
すなわち、第4図に示すように起動時における液体温度
は時間に従って変化するが、これに伴って管内流量Gは
炉^各部(a)、(b)、(br)ニオイテ第5図に示
される局な分布つなる・こ0結未第°図に示されるよう
に炉内各部(a) 、 (b)、(bりの管メタル温
度が変化し、(bりにおける管メタルの温度のように使
用材料限界以上になることがある。The furnace water-cooled wall of a boiler is usually located at the center of the furnace, as shown in Figures 1a and 2a, which show its cross-sectional view and longitudinal sectional view, and Figures 1b and gZb, which show the heat absorption rate distribution curves of each part, respectively. Part (a) has a large amount of heat absorption, 1 peripheral part (b), (b
ri is small. Due to the difference in heat absorption during startup, etc., the pressure inside the pipe increases as shown in the relationship diagram between the pressure loss Δp in the pipe and the flow rate G in the pipe at each part (a), (b), and (b) in the pipe in Figure 3. This is even more noticeable when the low heat absorption tube in the peripheral area is cooled by combustion air, etc., and in some cases, the flow rate may be extremely reduced or stagnate, and the tube may be damaged due to local overheat. In other words, as shown in Fig. 4, the liquid temperature at startup changes over time, and as a result, the flow rate G in the pipe changes at each part (a) of the furnace. , (b), (br) As shown in Fig. 5, the local distribution is connected. The temperature changes and may exceed the limit of the material used (as in the case of the temperature of the tube metal in the process).
最近6ボイ2はますます頻繁な起動・発゛停が要求全負
荷迄1円滑かつ安全に運転できることは不可欠の条件で
あり、本発明はこの完全な解決を目的とするものである
。す、なわち、第5図および第6図の(b′)のような
傾向を防止し、(C)のような特性を得ようとするもの
である。。Nowadays, it is an essential condition for 6BOI 2 to be able to operate smoothly and safely up to the required full load even with increasingly frequent starting and stopping operations, and the present invention aims at providing a complete solution to this problem. That is, it is intended to prevent the tendency shown in (b') in FIGS. 5 and 6 and to obtain the characteristics shown in (C). .
第7図は従来のボイラの系統図である。FIG. 7 is a system diagram of a conventional boiler.
すなわち、給水加熱器より送られてくる給水は、節炭器
1にて加熱され混合法に入る。混合法を出た流体はボイ
ラ循環ポンプ3にて昇圧され火炉水冷壁4へ入る。4a
は火炉中央の熱吸収量の多い管群な。That is, the feed water sent from the feed water heater is heated by the economizer 1 and enters the mixing method. The fluid exiting the mixing method is pressurized by the boiler circulation pump 3 and enters the water cooling wall 4 of the furnace. 4a
is the group of tubes in the center of the furnace that absorbs a lot of heat.
4bは周辺部の熱吸収量の少い管群な示す。火炉にて加
熱された流体はボイラ絞り弁5を通り、過熱器6を経て
タービンに至る。−万人炉出口流体の一部は低負荷時ボ
イラ絞り弁5の′上流側から再循環ライン7を通り、逆
止弁8を経て混合法2に於て給水と混合され、火炉水冷
壁内の流量をできるだけ多(保つようにしであるが、こ
の場合でも熱吸収量に大巾な差がある場合は流動の阻害
を生じ、場合によっては管の噴破に至ることがあるのは
前述の通りである。4b shows a tube group with a small amount of heat absorption in the peripheral portion. The fluid heated in the furnace passes through the boiler throttle valve 5, passes through the superheater 6, and reaches the turbine. - A part of the universal reactor outlet fluid passes through the recirculation line 7 from the upstream side of the boiler throttle valve 5 during low load, passes through the check valve 8, and is mixed with the feed water in the mixing method 2, and is mixed with the feed water in the water cooling wall of the furnace. However, even in this case, if there is a large difference in the amount of heat absorbed, the flow will be obstructed, and in some cases, this may lead to a pipe blowout. That's right.
本発明はかかる不具合点を一挙にかつ根本的に解決しう
るもので、その1つの実施例の系統を第8図に示す。The present invention can fundamentally solve these problems all at once, and the system of one embodiment thereof is shown in FIG.
・′:111
給水加熱器より送られた絵筆は選炭器1を通り、可動オ
リフィス10を経て混合法2へ入る。混合法2を出た流
体はボイラ循環ポンプ3を経て、火炉水冷壁は相対的に
熱吸収量の多い管群4aと少い管群4bに分けられ、こ
れは入口管寄せで既に相異なる水室12a% 12bに
分けられている。火炉水冷壁を出た流体はボイラ絞り弁
5を通り、過熱器6を経てタービンへ至る。また低置荷
時火炉を出た流体の一部はボイラ絞り9F5の上流側か
ら分岐され、再循環ライン7を通り、逆止弁8を経て混
合法2に入り給水と混合される。・′:111 The paintbrush sent from the feed water heater passes through the coal selector 1, passes through the movable orifice 10, and enters the mixing method 2. The fluid exiting the mixing method 2 passes through the boiler circulation pump 3, and the furnace water-cooled wall is divided into a tube group 4a with a relatively large amount of heat absorption and a tube group 4b with a relatively small amount of heat absorption. It is divided into chambers 12a% and 12b. The fluid exiting the furnace water-cooled wall passes through the boiler throttle valve 5, passes through the superheater 6, and reaches the turbine. Also, a part of the fluid leaving the furnace at low loading is branched from the upstream side of the boiler throttle 9F5, passes through the recirculation line 7, passes through the check valve 8, enters the mixing method 2, and is mixed with the feed water.
次に本発明により、ボイラ起動時の問題点がいかに改善
されるかを説明する。Next, a description will be given of how the present invention improves the problems encountered when starting a boiler.
まずボイラ起動時、ある時点で可動オリフィス10を絞
り込み抵抗を与える。通常ボイラ起動時の給水量は少い
ため管内の摩擦抵抗は小さいのであるが、この可動オリ
フィスを繰り込むことにより充分な差圧を与えることが
できる。火炉水冷壁の管群4aには、この可動オリフィ
ス10を通り、ボイラ循環ポンプ3を経た一体が供給さ
れる。同時に、止弁9は閉められ、パイ′具ス弁11が
開かれているので、管1v+4bには可動オリフィス1
0の上流側から分岐された流体が流れる。管群4aと4
bは出口管寄せは共通であり、ボイラ循環ポンプ3の差
圧より大きな用損を可動オリフィス10に与えれば、管
群4bの出入口差圧を管群4aの出入口差圧より大きく
することができる。この流量差は可動オリフィスlOの
開度により自由に調整するこ、とができる。本発明を使
用した時の起動時の管内流量は第5図の(C)、管なお
負荷が上がり、もはやかかる流量調整が必要でない場合
は、バイパス弁′11を閉愉止芹9を開けることによっ
て従来と全(同、じ運転が可能である。First, when the boiler is started, the movable orifice 10 is throttled at a certain point to provide resistance. Normally, the amount of water supplied when starting a boiler is small, so the frictional resistance inside the pipe is small, but by incorporating this movable orifice, a sufficient differential pressure can be provided. The tube group 4a of the furnace water-cooled wall is supplied with the fluid that passes through this movable orifice 10 and passes through the boiler circulation pump 3. At the same time, stop valve 9 is closed and piping valve 11 is opened, so that pipe 1v+4b has movable orifice 1.
A branched fluid flows from the upstream side of 0. Tube groups 4a and 4
In b, the outlet header is common, and if the movable orifice 10 is given a loss greater than the differential pressure of the boiler circulation pump 3, the differential pressure at the outlet and outlet of the tube group 4b can be made larger than the differential pressure at the outlet and outlet of the tube group 4a. . This flow rate difference can be freely adjusted by adjusting the opening degree of the movable orifice lO. When using the present invention, the flow rate in the pipe at startup is shown in (C) in Figure 5. If the load on the pipe increases and such flow rate adjustment is no longer necessary, close the bypass valve '11 and open the valve 9. The same operation as before is possible.
勿論このときは可動オリフィス10は全開として糸の圧
損は最小とする。Of course, at this time, the movable orifice 10 is fully opened to minimize the pressure loss of the thread.
第9図は本発明の一変形であり、可動オリフィスlOを
節炭器lの入口に設置湿たものである。これなり、設計
温度が低(かつ容積流量が小さいため設計が容易となる
。一方そのままでは管群4a、4bに入る流体温度差7
9(大きく、過度の熱応力を生じる懸念もあるので、熱
交換器20で適当な温度迄昇温できるようになっている
。即ち加熱側流体流量調整弁21によって温度計22に
よって検知された被加熱側出口流体温度が所定の温度に
なるようにコントロールする。FIG. 9 shows a modification of the present invention in which a movable orifice lO is installed at the entrance of the economizer l. This makes the design easy because the design temperature is low (and the volumetric flow rate is small).On the other hand, if the design temperature is low (and the volumetric flow rate is small), the fluid temperature difference 7
9 (Since there is a concern that excessive thermal stress may occur, the temperature can be raised to an appropriate temperature using the heat exchanger 20. In other words, the temperature detected by the thermometer 22 is The heating side outlet fluid temperature is controlled to a predetermined temperature.
明の一形態であり、主流に絞り機
栴を与える代りに、低熱吸収管群への流体をポンプによ
り昇圧し流量を確保しようとするものである。In this method, instead of providing a throttle to the main stream, a pump increases the pressure of the fluid flowing to the low heat absorption tube group to ensure a sufficient flow rate.
30は昇圧ポンプ、31は仝出入口弁、3:2は昇圧ポ
ンプバイパス管逆止弁−である。30 is a boost pump, 31 is an inlet/outlet valve, and 3:2 is a boost pump bypass pipe check valve.
なお、本発明の実用性をより高める□ためのいくつかな
考案も示す。第11図は第9.9図における可動オリフ
ィスlOの構造を示す縦断面図で弁棒41を完全に閉め
込んでも流路は全開にならず起動時に必要充、分な差圧
を与えるよう考慮しである。第12ル弁42の例を示す
横断面図で、必要に応じて3柚類のポート面積が選べる
ようになっている。第13図は第8.9図における弁9
.11を連動させる1個の切換弁43の縦断面図で、万
一誤動作が起っても流量零となることがないようにして
安全性を高めたものである。In addition, some ideas for further enhancing the practicality of the present invention will also be presented. Fig. 11 is a vertical cross-sectional view showing the structure of the movable orifice lO in Fig. 9.9. Even if the valve stem 41 is completely closed, the flow path will not be fully open, so consideration has been given to providing the necessary and sufficient differential pressure at startup. It is. This is a cross-sectional view showing an example of the twelfth valve 42, and three port areas can be selected as needed. Figure 13 shows valve 9 in Figure 8.9.
.. 11 is a vertical cross-sectional view of one switching valve 43 that interlocks the switching valve 11, and is designed to improve safety by preventing the flow rate from becoming zero even if a malfunction occurs.
第1a図および第2a図はそれぞれ火炉氷壁の横断面図
および縦断面図、第1b図および第2b図はそれぞれ火
炉内各部における熱吸収率の分布図、第3図は管内各部
の圧力損失と管内流量と関係を示す曲線図、第4図〜第
6図はそれぞれボイラ起動時における時間に対する液体
温度、流量および管メタルの温度の変化を示す曲線図、
第7図は従来のボイラの系統図、第8〜第10図は本発
明の実施例を示すボイラの系統図、第11図および第1
2図はそれぞれ異なった可動オリフィスの実施例の断面
図、および第13図は切換弁の実施例の縦断面図である
。
1・・節炭器、2・・混合法、3・・ボイラ循環ポンプ
、4・・火炉水冷壁、5・・ボイラ絞り弁、6・・過熱
器、7・・再循環ライン、8・・逆止弁、9−・止弁、
10・・可動オリフィス、11・・ ゛イ2.ニオ、1
□0.い。W□島2a、12b * *オ室、2゜・・
熱交換器、2、・−嘉量調整弁、2゜・・温度計、30
−・昇圧ポンプ、31−・ポンプ出入口弁、32・・バ
イパス管逆止弁、41・・弁棒、42・・ボール弁、4
3・・切換弁。
“;
・、′
:・
11゜
14図
第δ図Figures 1a and 2a are a cross-sectional view and a vertical cross-sectional view of the furnace ice wall, respectively. Figures 1b and 2b are distribution diagrams of the heat absorption rate at various parts inside the furnace, and Figure 3 shows the pressure loss at various parts inside the pipe. Figures 4 to 6 are curve diagrams showing the relationship with the flow rate in the pipe, respectively.
Fig. 7 is a system diagram of a conventional boiler, Figs. 8 to 10 are system diagrams of a boiler showing an embodiment of the present invention, and Figs.
2 is a sectional view of different embodiments of the movable orifice, and FIG. 13 is a longitudinal sectional view of the embodiment of the switching valve. 1. Economizer, 2. Mixing method, 3. Boiler circulation pump, 4. Furnace water wall, 5. Boiler throttle valve, 6. Superheater, 7. Recirculation line, 8. Check valve, 9-・stop valve,
10...Movable orifice, 11... 2. Nio, 1
□0. stomach. W□Island 2a, 12b * *Omuro, 2°...
Heat exchanger, 2, - Capacity adjustment valve, 2゜... Thermometer, 30
- Boost pump, 31- Pump inlet/outlet valve, 32... Bypass pipe check valve, 41... Valve stem, 42... Ball valve, 4
3...Switching valve. “; ・,′ :・ 11゜Fig. 14 Fig. δ
Claims (1)
有するボイラにおいて、前記管群の入口管寄せの翼なる
水室により熱吸収量の大きい群と熱吸収量の小さい群と
を分け、ボイラ起動時には熱吸収量の小さい管群な通る
流量を増加、門せる回路装置を設けたことを特徴とする
ボイラ。In a boiler that has a heating tube group consisting of tube groups with different heat absorption amounts on the water cooling wall of the furnace, a group with a large amount of heat absorption and a group with a small amount of heat absorption are separated by a water chamber, which is a wing of the inlet header of the tube group. A boiler characterized by being equipped with a circuit device that increases and gates the flow rate through a group of tubes with a small amount of heat absorption when the boiler is started.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13979681A JPS5843308A (en) | 1981-09-07 | 1981-09-07 | Boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13979681A JPS5843308A (en) | 1981-09-07 | 1981-09-07 | Boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5843308A true JPS5843308A (en) | 1983-03-14 |
JPS6244161B2 JPS6244161B2 (en) | 1987-09-18 |
Family
ID=15253619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13979681A Granted JPS5843308A (en) | 1981-09-07 | 1981-09-07 | Boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5843308A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133203A (en) * | 1983-12-19 | 1985-07-16 | バブコツク日立株式会社 | Once-through boiler device |
WO2010064466A1 (en) * | 2008-12-03 | 2010-06-10 | 三菱重工業株式会社 | Boiler structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053383Y2 (en) * | 1987-04-02 | 1993-01-27 | ||
JP4507098B2 (en) * | 2005-05-20 | 2010-07-21 | 東京電力株式会社 | Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler |
-
1981
- 1981-09-07 JP JP13979681A patent/JPS5843308A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60133203A (en) * | 1983-12-19 | 1985-07-16 | バブコツク日立株式会社 | Once-through boiler device |
JPH0465282B2 (en) * | 1983-12-19 | 1992-10-19 | Babcock Hitachi Kk | |
WO2010064466A1 (en) * | 2008-12-03 | 2010-06-10 | 三菱重工業株式会社 | Boiler structure |
JP2010133595A (en) * | 2008-12-03 | 2010-06-17 | Mitsubishi Heavy Ind Ltd | Boiler structure |
US9291343B2 (en) | 2008-12-03 | 2016-03-22 | Mitsubishi Heavy Industries, Ltd. | Boiler structure |
Also Published As
Publication number | Publication date |
---|---|
JPS6244161B2 (en) | 1987-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6609483B1 (en) | System for controlling flue gas exit temperature for optimal SCR operations | |
JPS5843308A (en) | Boiler | |
EP1772656B1 (en) | Mixer valve | |
JPH01167554A (en) | Heat exchanger of hot water feed appliance | |
US3448797A (en) | Pressurizer | |
JPS60165597A (en) | Heating system of nuclear power plant | |
US3327689A (en) | Boiler plant including a regenerative heat exchanger | |
JPS6339768B2 (en) | ||
JPS627929Y2 (en) | ||
JP2565012B2 (en) | Water heater | |
JP3855456B2 (en) | Heat source equipment | |
JPS62252848A (en) | Heat exchanger | |
JPS6022262Y2 (en) | After-boiling prevention device in instantaneous water heaters | |
JPS6032518Y2 (en) | Circulating heating bath pot | |
JPS5979194A (en) | Secondary cooling device for fast breeder | |
JPS6122207B2 (en) | ||
JPH0330755Y2 (en) | ||
JPS63187194A (en) | Nuclear reactor pressure controller | |
DE1194888B (en) | Equipment on recuperators, in particular deep-furnace air recuperators, to prevent the high wall temperatures that occur during control | |
JPS61208425A (en) | Oil-header for burner of boiler | |
JPH033045B2 (en) | ||
JPH05118655A (en) | Bypass mixing type hot-water supplying apparatus | |
JPS60140098A (en) | Heat exchanger | |
JPS5967497A (en) | Reactor coolant clean-up device | |
JPH0454914B2 (en) |