JP2001355806A - Controller for waste heat recovery steam generator - Google Patents
Controller for waste heat recovery steam generatorInfo
- Publication number
- JP2001355806A JP2001355806A JP2000177302A JP2000177302A JP2001355806A JP 2001355806 A JP2001355806 A JP 2001355806A JP 2000177302 A JP2000177302 A JP 2000177302A JP 2000177302 A JP2000177302 A JP 2000177302A JP 2001355806 A JP2001355806 A JP 2001355806A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- pressure
- hot water
- valve
- economizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は排熱回収ボイラ中に
低圧節炭器と高圧節炭器とを設けて高温熱水を高圧蒸気
ドラムに供給すると共に、給水ポンプの中段から再循環
配管を経て低圧節炭器の給水流入管路内に熱水を還流さ
せるようにした排熱回収ボイラの制御装置に関する。The present invention relates to a waste heat recovery boiler provided with a low-pressure economizer and a high-pressure economizer to supply high-temperature hot water to a high-pressure steam drum and to connect a recirculation pipe from a middle stage of a water supply pump. The present invention relates to a control device of an exhaust heat recovery boiler that recirculates hot water into a feedwater inflow pipe of a low-pressure economizer through a low-pressure economizer.
【0002】[0002]
【従来の技術】ガスタービン等から排出される排熱を有
効活用するために、排ガスを排熱回収ボイラに導いて、
内部の排ガス流路中に配設された節炭器等により熱回収
するように構成されたボイラ装置は良く知られている。
図3は排熱回収ボイラの給水系統を示す給水系統図であ
る。復水ポンプ1により供給された給水は低圧節炭器入
口配管2を経て低圧節炭器3に送られる。低圧節炭器3
で熱回収され、温められた給水の一部は低圧蒸気ドラム
4へ供給され、残りは連絡管5を経て高圧給水ポンプ6
に送られる。高圧給水ポンプ6で昇圧された熱水の多く
は高圧給水調節弁8により流量調節されて高圧節炭器7
に送られ、熱回収により高温に昇温された熱水が高圧蒸
気ドラム9に送り込まれる。一方、高圧給水ポンプ6の
中段から節炭器再循環配管10内に送り込まれた熱水は
再循環流量調節弁11により流量調節されて低圧節炭器
入口配管2に合流する。2. Description of the Related Art In order to effectively utilize exhaust heat discharged from a gas turbine or the like, exhaust gas is guided to an exhaust heat recovery boiler,
A boiler device configured to recover heat by using a economizer disposed in an internal exhaust gas passage is well known.
FIG. 3 is a water supply system diagram showing a water supply system of the exhaust heat recovery boiler. The feedwater supplied by the condensate pump 1 is sent to the low-pressure economizer 3 via the low-pressure economizer inlet pipe 2. Low pressure economizer 3
A part of the warmed supply water is recovered to the low-pressure steam drum 4, and the rest is supplied to the high-pressure water pump 6 through the connecting pipe 5.
Sent to Most of the hot water pressurized by the high-pressure water supply pump 6 is flow-regulated by the high-pressure water supply control valve 8, and
The hot water heated to a high temperature by heat recovery is sent to the high-pressure steam drum 9. On the other hand, the hot water sent from the middle stage of the high-pressure water supply pump 6 into the economizer recirculation pipe 10 is flow-regulated by the recirculation flow control valve 11 and joins the low-pressure economizer inlet pipe 2.
【0003】低圧節炭器入口配管2中の給水温度が低下
すると、低圧節炭器3の低圧節炭器入口配管2からの入
口近傍に結露が生じて、そこに低温腐食が発生する。そ
こで、このように、節炭器再循環配管10を経て熱水を
低圧節炭器入口配管2中に還流させることにより、その
中の給水温度を露点以上に維持している。高圧給水ポン
プ6の高圧節炭器7側および節炭器再循環配管10側の
配管にはそれぞれ高圧側吐出流量計13および中段抽水
流量計14が接続され、それぞれの配管中を流れる熱水
の流量ih ,ir が検出されるようになっている。ま
た、低圧節炭器3への低圧節炭器入口配管2の入口近傍
には給水温度計12が設置されていて、低圧節炭器入口
配管2中の給水温度Tを検出している。なお、給水ポン
プ1により供給される給水の流量は直接的には高圧給水
ポンプ6の吸引側で必要とされる流量に見合ったものに
なっている。When the temperature of the feedwater in the low-pressure economizer inlet pipe 2 decreases, dew condensation occurs near the inlet of the low-pressure economizer 3 from the low-pressure economizer inlet pipe 2, and low-temperature corrosion occurs there. Thus, by thus returning hot water to the low-pressure economizer inlet pipe 2 through the economizer recirculation pipe 10, the feedwater temperature therein is maintained above the dew point. A high pressure side discharge flow meter 13 and a middle stage extraction flow meter 14 are connected to the high pressure water saving pump 7 side of the high pressure water pump 6 and the side of the economizer recirculation pipe 10 respectively, and the hot water flowing in each pipe is connected. The flow rates i h and ir are detected. A feedwater thermometer 12 is installed near the inlet of the low-pressure economizer inlet pipe 2 to the low-pressure economizer 3, and detects a feedwater temperature T in the low-pressure economizer inlet pipe 2. The flow rate of the water supplied by the water supply pump 1 directly corresponds to the flow rate required on the suction side of the high-pressure water supply pump 6.
【0004】再循環流量調節弁11は給水温度計12が
検出した低圧節炭器入口配管2中の給水温度T、高圧側
吐出流量計13および中段抽水流量計14が検出した高
圧節炭器7側および節炭器再循環配管10側の配管中の
熱水流量ih ,ir に基づいて、図示しない調整弁制御
装置により開度制御されている。The recirculation flow control valve 11 is provided with a feedwater temperature T in the low-pressure economizer inlet pipe 2 detected by the feedwater thermometer 12, a high-pressure side discharge flowmeter 13 and a high-pressure economizer 7 detected by the middle-stage extraction flowmeter 14. hot water flow rate i h in the side and economizer recirculation pipe 10 pipe, based on the i r, are opening control by a not-shown control valve control device.
【0005】図4は調整弁制御装置における再循環流量
制御の流れを示す系統図である。同図に示すように、給
水温度計12が検出した低圧節炭器入口配管2中の給水
温度Tは減算器21に入力され、同様に信号発生器22
から入力される、予め露点以上の値に設定された基準給
水温度TS との差が演算される。その偏差は比例積分器
23に入力されて比例積分され、比例積分値に応じた再
循環流量調節弁11の開度制御値Rg とされる。即ち、
比例積分器23で演算された比例積分値が小さくなった
時は開度制御値Rg は小さな値に、比例積分値が大きく
なった時は開度制御値Rg は大きな値となるように制御
される。FIG. 4 is a system diagram showing the flow of recirculation flow control in the regulating valve control device. As shown in the figure, the feedwater temperature T in the low-pressure economizer inlet pipe 2 detected by the feedwater thermometer 12 is input to a subtractor 21, and similarly, a signal generator 22.
Is calculated from the reference water supply temperature T S, which is set in advance to a value equal to or higher than the dew point. The deviation is input to the proportional integrator 23 and proportionally integrated, and is set as an opening control value Rg of the recirculation flow control valve 11 according to the proportional integral value. That is,
When the proportional integral value calculated by the proportional integrator 23 decreases, the opening control value Rg is controlled to a small value, and when the proportional integral value increases, the opening control value Rg is controlled to a large value. You.
【0006】[0006]
【発明が解決しようとする課題】ところで、ガスタービ
ン等の排熱供給側の負荷が増加した場合、排熱回収ボイ
ラの高圧側の熱吸収量が増加して蒸発量が増加し、高圧
蒸気ドラム9の水位が低下した場合に、調整弁制御装置
の制御により高圧給水調節弁8はその開度が大きくなる
ように制御されるから、高圧節炭器7側の熱水流量ih
が増加する。このため、連絡管5を通る熱水の流量、従
って、低圧節炭器入口配管2を経て復水ポンプ1により
供給される給水の流量が増加するから、低圧節炭器入口
配管2中の給水温度Tが一時的に低下する。これによ
り、上述の再循環流量調節弁11の開度制御に従って再
循環流量調節弁11が大きく開くから、節炭器再循環配
管10側の配管中の熱水流量ir が増加し、高圧給水ポ
ンプ6の吸込流量の急激な増加によって高圧給水ポンプ
6の過負荷あるいは節炭器再循環配管10中の熱水流量
ir の急激な増加により、キャビテーション(空洞現
象)が発生することがあった。When the load on the exhaust heat supply side of a gas turbine or the like increases, the amount of heat absorbed on the high pressure side of the exhaust heat recovery boiler increases, and the amount of evaporation increases. When the water level at 9 drops, the high-pressure water supply control valve 8 is controlled by the control of the control valve control device so as to increase the opening thereof, so that the hot water flow rate i h on the high-pressure economizer 7 side.
Increase. For this reason, the flow rate of hot water passing through the connecting pipe 5, that is, the flow rate of feed water supplied by the condensate pump 1 through the low-pressure economizer inlet pipe 2 increases, so that the water supply in the low-pressure economizer inlet pipe 2 increases. Temperature T drops temporarily. Thus, because the recirculation flow rate control valve 11 is open wide, hot water flow i r in the piping of the economizer recirculation pipe 10 side is increased in accordance with the opening degree control of the recirculation flow rate control valve 11 described above, the high-pressure feed water the rapid increase in hot water flow i r in overload or economizer recirculation pipe 10 of the high-pressure feed water pump 6 in response to a rapid increase in the suction flow rate of the pump 6, cavitation (cavitation) was sometimes occur .
【0007】本発明の目的は、熱源の負荷増加による高
圧節炭器側配管中の熱水流量の増加に伴って生じる高圧
給水ポンプの過負荷あるいはキャビテーションの発生を
防止できる排熱回収ボイラの制御装置を提供することに
ある。An object of the present invention is to control an exhaust heat recovery boiler capable of preventing an overload or cavitation of a high pressure feed pump caused by an increase in a flow rate of hot water in a high pressure economizer side pipe due to an increase in a load of a heat source. It is to provide a device.
【0008】[0008]
【課題を解決するための手段】本発明は上記課題を解決
するために、高圧節炭器側の配管中の熱水流量が、低圧
節炭器により温められた熱水を高圧節炭器に送り込む給
水ポンプの吸込流量制限値以下で、再循環配管中の熱水
流量が再循環流量制限値以下となるように、再循環流量
調節弁の開度を調整する調整弁制御装置を有したもので
ある。According to the present invention, in order to solve the above-mentioned problems, the flow rate of hot water in the piping on the high-pressure economizer is changed to the hot water warmed by the low-pressure economizer to the high-pressure economizer. With a regulating valve control device that adjusts the opening of the recirculation flow control valve so that the hot water flow rate in the recirculation pipe is equal to or less than the recirculation flow limit value when the suction flow rate of the feed water pump is less than the suction flow rate limit value It is.
【0009】[0009]
【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を詳細に説明する。図1は本実施形態に係る調
整弁制御装置における再循環流量制御の流れを示す系統
図である。同図において、15,17は信号発生器、1
6,19は減算器、18,24は低値選択器、20は比
例積分器である。従来例と同一または同一と見做せる個
所には同一の符号を付し、その重複する説明を省略す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing a flow of recirculation flow rate control in the regulating valve control device according to the present embodiment. In the figure, 15 and 17 are signal generators, 1
6, 19 are subtractors, 18 and 24 are low value selectors, and 20 is a proportional integrator. The same reference numerals are given to portions which are the same as or can be regarded as the same as those in the conventional example, and redundant description thereof will be omitted.
【0010】同図に示すように、高圧側吐出流量計13
が検出した高圧節炭器7側の配管中の熱水流量ih は減
算器16に入力され、信号発生器15から入力された、
高圧給水ポンプ6の吸込流量の制限値である吸込流量制
限値ilsとの差が演算される。その偏差は低値選択器1
8に入力され、信号発生器17から入力された、節炭器
再循環配管10中の熱水流量ir を制限する再循環流量
制限値ilrと比較され、小さい方の値が選択されて出力
される。低値選択器18で選択された低値信号は減算器
19に入力され、中段抽水流量計14が検出した節炭器
再循環配管10中の熱水流量ir との差が演算される。
その偏差は比例積分器20に入力されて比例積分され
る。[0010] As shown in FIG.
The detected hot water flow rate i h in the pipe on the high pressure economizer 7 side was input to the subtractor 16 and input from the signal generator 15.
The difference from the suction flow rate limiting value i ls that is the suction flow rate limiting value of the high-pressure water supply pump 6 is calculated. The deviation is determined by the low value selector 1
8 is compared with a recirculation flow rate limiting value i lr that limits the hot water flow rate i r in the economizer recirculation pipe 10, which is input from the signal generator 17, and a smaller value is selected. Is output. Low value signal selected by the low value selector 18 is input to the subtracter 19, middle emergent flow meter 14 is the difference between the hot water flow i r in economizer recirculation pipe 10 detected is calculated.
The deviation is input to the proportional integrator 20 and proportionally integrated.
【0011】一方、給水温度計12が検出した低圧節炭
器入口配管2中の給水温度Tは減算器21に入力され、
従来例と同様に信号発生器22から入力される基準給水
温度TS との差が演算される。その偏差は比例積分器2
3に入力されて比例積分され、比例積分値PI2 は低値選
択器24に入力され、前述の比例積分器20から出力さ
れた比例積分値PI1 と比較され、小さい方の値が選択さ
れて当該比例積分値PI i に応じた再循環流量調節弁11
の開度制御値Rg とされる。On the other hand, the low pressure
The feedwater temperature T in the vessel inlet pipe 2 is input to the subtractor 21,
Reference water supply input from signal generator 22 as in the conventional example
Temperature TS Is calculated. The deviation is proportional integrator 2
3 and is proportionally integrated and proportionally integrated PITwo Is low price
Selector 24 and output from the proportional integrator 20 described above.
PI1 And the smaller value is selected.
And the proportional integral PI i Recirculation flow control valve 11 according to
Is the opening control value Rg.
【0012】本実施形態では再循環流量調節弁11の開
度制御を上述の再循環流量制御により行っているから、
高圧節炭器7側の配管中の熱水流量ih が高圧給水ポン
プ6の吸込流量制限値ils以下で、節炭器再循環配管1
0中の熱水流量ir が再循環流量制限値ilr以下となる
ように、再循環流量調節弁11の開度が調整されるか
ら、熱源の負荷変化等により高圧節炭器7側の配管中の
熱水流量ih が増加しても、再循環流量制御により熱水
流量ih ,ir が過度に増加するのを抑制することがで
き、高圧給水ポンプ6のキャビテーションの発生を防止
することができる。In this embodiment, since the opening degree control of the recirculation flow control valve 11 is performed by the above-described recirculation flow control,
When the hot water flow rate i h in the pipe on the high pressure economizer 7 side is equal to or less than the suction flow rate limit value i ls of the high pressure feed pump 6, the economizer recirculation pipe 1
As the hot water flow i r in 0 becomes less recirculation flow limit value i lr, since the opening of the recirculation flow rate control valve 11 is adjusted, the high pressure economizer 7 side by the load change of the heat source also prevented the hot water flow rate i h in the piping is increased, the recirculation flow rate control by hot water flow rate i h, i r it is possible to suppress the excessive increase in the occurrence of cavitation of the high-pressure feed water pump 6 can do.
【0013】図2はガスタービンの負荷量が増大した時
の要部配管中の流量、低圧節炭器入口配管2中の給水温
度Tおよび再循環流量調節弁11の開度制御値Rg の経
時変化を示す経時変化図である。ある時点でガスタービ
ンの負荷量が増大すると、排熱回収ボイラの熱源温度が
上昇し、高圧側の蒸発量が増大するため高圧蒸気ドラム
9の水位が低下する。この水位低下を補うために、調整
弁制御装置の制御により高圧給水調節弁8が大きく開け
られるから、高圧節炭器7側の熱水流量ih が増加す
る。これに伴って、連絡管5を通る熱水の流量および給
水ポンプ1により低圧節炭器入口配管2中に供給される
給水の流量が増加する。これにより、節炭器再循環配管
10を経て低圧節炭器入口配管2中に供給される熱水の
流量ir は上記給水流量に対して相対的に比率が低下す
るから、低圧節炭器入口配管2中の給水温度Tは低下す
る。この給水温度低下に基づく再循環流量調節弁11の
開度制御によって、再循環流量調節弁11の開度が大き
くなる。FIG. 2 is a graph showing the aging of the flow rate in the main pipe, the feedwater temperature T in the low-pressure economizer inlet pipe 2 and the opening control value Rg of the recirculation flow control valve 11 when the load of the gas turbine increases. It is a time-dependent change figure which shows a change. When the load of the gas turbine increases at a certain point in time, the heat source temperature of the exhaust heat recovery boiler increases, and the amount of evaporation on the high pressure side increases, so that the water level of the high pressure steam drum 9 decreases. This in order to compensate for the drawdown, because the high-pressure feed water control valve 8 is opened largely by the control of the regulating valve control device, the high-pressure economizer 7 heat water flow i h increases. Along with this, the flow rate of hot water passing through the connecting pipe 5 and the flow rate of feed water supplied into the low-pressure economizer inlet pipe 2 by the feed water pump 1 increase. Thus, since the flow rate i r heat water supplied into the low-pressure economizer inlet pipe 2 via a economizer recirculation pipe 10 is relatively ratio is reduced relative to the feed water flow, low-pressure economizer The feedwater temperature T in the inlet pipe 2 decreases. The opening of the recirculation flow control valve 11 is increased by the opening control of the recirculation flow control valve 11 based on the decrease in the feedwater temperature.
【0014】これらの制御動作が強く働き過ぎると、連
絡管5を通る熱水の流量および節炭器再循環配管10中
の熱水流量ir がそれぞれ吸込流量制限値ilsおよび再
循環流量制限値ilrを越えてしまい、前述のような高圧
給水ポンプ6のキャビテーションが発生するので、本実
施形態では低圧節炭器入口配管2中の給水温度Tに基づ
く再循環流量調節弁11の開度制御により、再循環流量
調節弁11の開度制御値(PI2) が大きくなった場合は、
その開度を、高圧節炭器7側の配管中の熱水流量ih と
高圧給水ポンプ6の吸込流量制限値ilsとの偏差と再循
環流量制限値i lrの中の小さい方と節炭器再循環配管1
0中の熱水流量ir との偏差を求め、その比例積分値PI
i に応じた開度制御値Rg にまで制限することにより、
高圧給水ポンプ6の吸込み流量および節炭器再循環配管
10中の熱水流量ir がそれぞれ吸込流量制限値ilsお
よび再循環流量制限値ilr以下となるように制限してい
る(図2中で斜線で示した範囲の流量を抑制してい
る)。[0014] If these control operations work too strongly,
The flow rate of hot water through the pipe 5 and the recirculation pipe 10 of the economizer
Hot water flow rate ir Is the suction flow rate limit value ilsAnd re
Circulating flow rate limit value ilrHigh pressure as described above
Since cavitation of the water supply pump 6 occurs,
In the embodiment, based on the feedwater temperature T in the low-pressure economizer inlet pipe 2,
By controlling the opening of the recirculation flow control valve 11, the recirculation flow
The opening control value of the control valve 11 (PITwo) Is larger,
The opening degree is determined by the flow rate of hot water i in the pipe on the high-pressure economizer 7 side.h When
Suction flow rate limit value i of high pressure feed pump 6lsDeviation and recirculation
Ring flow limit value i lrThe smaller one of the inside and the economizer recirculation pipe 1
Hot water flow rate i during 0r And the proportional integral PI
i To the opening control value Rg corresponding to
Suction flow rate of high-pressure feed pump 6 and recirculation pipe of economizer
Hot water flow rate i in 10r Is the suction flow rate limit value ilsYou
And recirculation flow limit ilrIs restricted to:
(The flow rate in the shaded area in FIG.
).
【0015】[0015]
【発明の効果】以上説明したように本発明によれば、高
圧節炭器側の配管中の熱水流量が給水ポンプの吸込流量
制限値以下で、再循環配管中の熱水流量が再循環流量制
限値以下となるように、再循環流量調節弁の開度を調整
するようにしたので、熱源の負荷変化等により高圧節炭
器側の配管中の熱水流量が増加しても、再循環流量制御
により高圧節炭器側の配管中および再循環配管中の熱水
流量が過度に増加するのを抑制することができ、給水ポ
ンプのキャビテーションの発生を防止することができ
る。As described above, according to the present invention, the hot water flow rate in the high pressure economizer side pipe is less than the suction flow rate limit value of the feed water pump, and the hot water flow rate in the recirculation pipe is recirculated. Since the opening of the recirculation flow control valve is adjusted so that it is equal to or less than the flow rate limit value, even if the flow rate of hot water in the piping on the high pressure The circulation flow rate control can suppress an excessive increase in the flow rate of hot water in the pipe on the high-pressure economizer side and in the recirculation pipe, and can prevent cavitation of the feedwater pump.
【図1】本発明の実施形態に係る再循環流量制御の流れ
を示す系統図である。FIG. 1 is a system diagram showing a flow of recirculation flow control according to an embodiment of the present invention.
【図2】負荷量が増大した時の要部配管中の流量、給水
温度Tおよび再循環流量調節弁の開度制御値Rg の経時
変化を示す経時変化図である。FIG. 2 is a temporal change diagram showing a temporal change of a flow rate in a main pipe, a feedwater temperature T, and an opening control value Rg of a recirculation flow rate control valve when a load amount increases.
【図3】従来例に係る排熱回収ボイラの給水系統を示す
給水系統図である。FIG. 3 is a water supply system diagram showing a water supply system of a waste heat recovery boiler according to a conventional example.
【図4】従来例に係る再循環流量制御の流れを示す系統
図である。FIG. 4 is a system diagram showing a flow of recirculation flow control according to a conventional example.
1 給水ポンプ 2 低圧節炭器入口配管 3 低圧節炭器 5 連絡管 6 高圧給水ポンプ 7 高圧節炭器 8 高圧給水調節弁 9 高圧蒸気ドラム 10 節炭器再循環配管 11 再循環流量調節弁 12 給水温度計 13 高圧側吐出流量計 14 中段抽水流量計 15,17,22 信号発生器 16,19,21 減算器 18,24 低値選択器 20,23 比例積分器 REFERENCE SIGNS LIST 1 feedwater pump 2 low-pressure economizer inlet pipe 3 low-pressure economizer 5 connecting pipe 6 high-pressure water pump 7 high-pressure economizer 8 high-pressure water supply control valve 9 high-pressure steam drum 10 economizer recirculation pipe 11 recirculation flow control valve 12 Feed water thermometer 13 High-pressure side discharge flow meter 14 Middle stage extraction flow meter 15, 17, 22 Signal generator 16, 19, 21 Subtractor 18, 24 Low value selector 20, 23 Proportional integrator
Claims (1)
器により温められた熱水を給水ポンプで高圧節炭器に送
り込んで、さらに加熱して高温熱水を高圧給水調節弁を
介して高圧蒸気ドラムに供給すると共に、前記給水ポン
プの中段から再循環流量調節弁を介して再循環配管を経
て前記低圧節炭器の給水流入管路内に熱水を還流させる
ように流路を構成し、前記給水流入管路内の給水温度と
所定の基準給水温度との差が大きくならないように前記
流量調節弁の開度を制御する再循環流量制御を行うよう
にした排熱回収ボイラの制御装置において、前記高圧節
炭器側の配管中の熱水流量が前記給水ポンプの吸込流量
制限値以下で、前記再循環配管中の熱水流量が再循環流
量制限値以下となるように、再循環流量調節弁の開度を
調整する調整弁制御装置を有したことを特徴とする排熱
回収ボイラの制御装置。1. Hot water warmed by a low-pressure economizer provided in an exhaust heat recovery boiler is fed to a high-pressure economizer by a water supply pump, and further heated to produce high-temperature hot water via a high-pressure water supply control valve. While supplying the high-pressure steam to the high-pressure steam drum, and a flow path for returning hot water from the middle stage of the water supply pump to the low-pressure coal economizer through a recirculation pipe via a recirculation flow control valve. A waste heat recovery boiler configured to perform a recirculation flow rate control for controlling an opening degree of the flow rate control valve so that a difference between a feed water temperature in the feed water inflow pipe and a predetermined reference feed water temperature is not increased. In the control device, the hot water flow rate in the pipe on the high pressure economizer side is equal to or less than the suction flow rate limit value of the feedwater pump, and the hot water flow rate in the recirculation pipe is equal to or less than the recirculation flow rate limit value. Adjustment valve control to adjust the opening of the recirculation flow control valve A control device for an exhaust heat recovery boiler, comprising a device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000177302A JP2001355806A (en) | 2000-06-13 | 2000-06-13 | Controller for waste heat recovery steam generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000177302A JP2001355806A (en) | 2000-06-13 | 2000-06-13 | Controller for waste heat recovery steam generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001355806A true JP2001355806A (en) | 2001-12-26 |
Family
ID=18678918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000177302A Pending JP2001355806A (en) | 2000-06-13 | 2000-06-13 | Controller for waste heat recovery steam generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001355806A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020165614A (en) * | 2019-03-29 | 2020-10-08 | 三浦工業株式会社 | Water supply control device |
-
2000
- 2000-06-13 JP JP2000177302A patent/JP2001355806A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020165614A (en) * | 2019-03-29 | 2020-10-08 | 三浦工業株式会社 | Water supply control device |
JP7255293B2 (en) | 2019-03-29 | 2023-04-11 | 三浦工業株式会社 | Water supply controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5117197B2 (en) | Waste heat recovery boiler unit | |
US8104282B2 (en) | Power generation complex plant and plant control method | |
JP7111525B2 (en) | Once-through heat recovery boiler and control system for once-through heat recovery boiler | |
US6223520B1 (en) | Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section | |
JP2007071416A (en) | Reheat steam system of boiler, and control method of reheat steam temperature | |
EP2993398B1 (en) | Flue-gas treatment apparatus and its method of operation | |
JPH10292902A (en) | Main steam temperature controller | |
JP5276973B2 (en) | Once-through exhaust heat recovery boiler | |
JP2001355806A (en) | Controller for waste heat recovery steam generator | |
JP4507098B2 (en) | Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler | |
JPS60201008A (en) | Method and apparatus for controlling operation of plant | |
JPH09236207A (en) | Boiler | |
JPH06129208A (en) | Composite cycle plant | |
JP2758245B2 (en) | Drain water level control device for feed water heater | |
JP3745419B2 (en) | Waste heat recovery boiler | |
JP2000265968A (en) | Fluid feed pump recirculating control device | |
JPH05296401A (en) | Exhaust heat recoverying boiler system and its main steam temperature controller | |
JPS61118508A (en) | Control device for recirculating flow of feed pump | |
JP2863645B2 (en) | Feedwater flow control system for an exhaust gas reburning combined cycle power plant | |
JPH09195718A (en) | Main steam temperature control device | |
US20210048187A1 (en) | Exhaust gas cooler | |
JPH09145004A (en) | Emergency shutdown control of device pressurized fluidized bed boiler | |
JPH0735303A (en) | Once-through boiler controlling method | |
JPH04278101A (en) | Exhaust heat recovery boiler | |
JPS60159314A (en) | Recirculating flow control device for water supply pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091006 |