JPH11241807A - Controller for boiler - Google Patents

Controller for boiler

Info

Publication number
JPH11241807A
JPH11241807A JP4216098A JP4216098A JPH11241807A JP H11241807 A JPH11241807 A JP H11241807A JP 4216098 A JP4216098 A JP 4216098A JP 4216098 A JP4216098 A JP 4216098A JP H11241807 A JPH11241807 A JP H11241807A
Authority
JP
Japan
Prior art keywords
temperature
maximum value
furnace water
value
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4216098A
Other languages
Japanese (ja)
Inventor
Tadashi Sumita
忠 住田
Takayo Kawase
隆世 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4216098A priority Critical patent/JPH11241807A/en
Publication of JPH11241807A publication Critical patent/JPH11241807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive the reduction of the increase of a metal temperature as well as a difference (maximum value-average temperature) due to unbalance of furnace heat absorption in a variable pressure once-through boiler. SOLUTION: In a variable pressure once-through boiler equipped with superheater temperature reducers 6, 8, the rise 25 of the maximum value of a furnace water-cooled wall metal temperature and/or the increase 24 of a temperature difference between the maximum value and an average value are detected to regulate the flow rate of passing fluid of the superheater temperature reducer 6 by the detecting output, whereby the flow rate of passing fluid of the furnace water-cooled wall is changed to reduce the maximum value of the furnace water-cooled wall metal temperature and/or a temperature difference between the maximum value and the average value. Further, in a variable pressure once-through boiler equipped with a gas re-circulation system, the rise of the maximum value of the furnace water-cooled wall metal temperature and/or the increase of a temperature difference between the maximum value and the average value are detected to regulate the flow rate of re-circulation of gas at the regulator 11 and change the heat absorbing amount of the furnace water-cooled wall, whereby the maximum value of the furnace water-cooled wall metal temperature or a temperature difference between the maximum value and the average value is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は変圧貫流ボイラの蒸
気温度制御装置に係わり、火炉水冷壁の設計温度に対す
る裕度および温度差熱応力低減による信頼性向上に好適
な制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam temperature control device for a once-through boiler of a variable pressure type, and more particularly to a control device suitable for improving the tolerance by reducing the thermal stress due to the tolerance to the design temperature of the furnace water cooling wall.

【0002】[0002]

【従来の技術】従来の貫流ボイラにおける蒸気温度制御
は、火炉出口の温度と圧力を検出し、火炉出口流体過熱
度制御信号を出力する調節器を設け、前記調節器出力を
高信号選択器を介して上流段スプレー制御系統に接続し
たスプレー制御装置であり、その制御装置を図2に示
す。
2. Description of the Related Art In a conventional once-through boiler, a steam temperature control is performed by detecting a temperature and a pressure at a furnace outlet and outputting a controller for controlling a fluid superheat degree at a furnace outlet. FIG. 2 shows a spray control device connected to an upstream spray control system via the control unit.

【0003】前記スプレー制御装置は、給水ポンプ1、
火炉水冷壁2、汽水分離器3、過熱器減温器4,6,
8、過熱器5,7,9、スプレー制御弁10,11,1
2、第1過熱器出口蒸気温度設定器13、第2過熱器出
口蒸気温度設定器14、第3過熱器出口蒸気温度(主蒸
気温度)設定器15、第1過熱器出口蒸気温度検出器1
6、第2過熱器出口蒸気温度検出器17、第3過熱器出
口蒸気温度検出器18、減算器19,20,21、調節
器22,23,24、火炉水冷壁出口流体圧力検出器
A、火炉水冷壁出口温度検出器B、過熱度演算器C、減
算器D、調節器E及び高信号選択器Fから成る。
[0003] The spray control device includes a water supply pump 1,
Furnace water wall 2, brackish water separator 3, desuperheater 4,6
8, superheaters 5, 7, 9 and spray control valves 10, 11, 1
2. First superheater outlet steam temperature setter 13, second superheater outlet steam temperature setter 14, third superheater outlet steam temperature (main steam temperature) setter 15, first superheater outlet steam temperature detector 1
6. Second superheater outlet steam temperature detector 17, third superheater outlet steam temperature detector 18, subtractors 19, 20, 21, regulators 22, 23, 24, furnace water cooling wall outlet fluid pressure detector A, It comprises a furnace water wall exit temperature detector B, a superheat degree calculator C, a subtractor D, a controller E and a high signal selector F.

【0004】スプレー制御弁10,11,12は、各過
熱器出口蒸気温度と設定値との偏差を調節器を介して制
御信号に用い、各過熱器出口蒸気温度を制御する。また
火炉出口流体圧力検出器Aによって検出された値に対し
ての過熱度を演算器Cによって算出して設定値とし、減
算器Dで検出器Bからの火炉出口流体温度との偏差を求
め、調節器Eでこの偏差を減少させる方向の信号を形成
し、火炉出口流体過熱度が不十分な場合に調節器Eの信
号を選択しスプレー制御弁10は火炉出口流体過熱度を
制御する。即ち、給水ポンプ1からの給水量を火炉側へ
の給水量とスプレー制御弁への給水量とに適宜に分配給
水することにより、火炉出口流体過熱度を制御すること
ができるのである。
The spray control valves 10, 11, and 12 control the temperature of each superheater outlet steam by using the deviation between the superheater outlet steam temperature and a set value as a control signal via a controller. Further, the degree of superheat with respect to the value detected by the furnace outlet fluid pressure detector A is calculated by a calculator C as a set value, and a subtractor D is used to obtain a deviation from the furnace outlet fluid temperature from the detector B, The controller E generates a signal in the direction of reducing this deviation, and selects the signal of the controller E when the furnace outlet fluid superheat is insufficient, and the spray control valve 10 controls the furnace outlet fluid superheat. That is, by appropriately distributing and supplying the amount of water supplied from the water supply pump 1 to the amount of water supplied to the furnace and the amount of water supplied to the spray control valve, the degree of superheat of the fluid at the furnace outlet can be controlled.

【0005】前記制御装置は変圧貫流ボイラにおける、
燃焼特性により火炉水冷壁熱吸収量にアンバランスが生
じ当該部位のメタル温度の最大値が上昇又は平均温度と
の温度差が増大し熱応力が増加する事象について考慮さ
れていなかった(特開昭59ー212607号公報)。
[0005] The control device is a variable-pressure once-through boiler,
An event in which the heat absorption amount of the furnace water wall becomes unbalanced due to the combustion characteristics, and the maximum value of the metal temperature at the relevant site increases or the temperature difference from the average temperature increases, and the thermal stress increases, has not been considered. 59-212607).

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、次の
ような点が配慮されておらず解決すべき問題点となって
いた。
The prior art described above has been a problem to be solved without considering the following points.

【0007】第1の点として、変圧貫流ボイラにおいて
は、バーナパターン等により火炉水冷壁の熱吸収量にア
ンバランスが生じ、局部的に熱吸収量が増加した部位の
メタル温度が設計値を超過し損壊を生ずる場合がある
が、従来技術はこの点について考慮されておらず、信頼
性の点において問題があった。
[0007] First, in a variable-pressure once-through boiler, the heat absorption of the furnace water cooling wall becomes unbalanced due to a burner pattern or the like, and the metal temperature of the portion where the heat absorption locally increases exceeds the design value. However, the prior art does not consider this point and has a problem in reliability.

【0008】第2の点として、メタル温度最大値が設計
値を超えなくとも局部的に熱吸収量が増加した部位と平
均メタル温度との温度差により熱応力が生じ当該部位を
損壊する場合があるが、従来技術はこの点について考慮
されておらず、信頼性の点において問題があった。
The second point is that even if the maximum value of the metal temperature does not exceed the design value, thermal stress occurs due to a temperature difference between a portion where the amount of heat absorption locally increases and the average metal temperature, and the portion may be damaged. However, the prior art does not consider this point and has a problem in reliability.

【0009】本発明の目的は、上記従来制御の問題点を
解決し、火炉水冷壁の設計温度に対する裕度を確保し、
且つ最大と平均温度の差による熱応力を低減することに
より、プラントの信頼性を向上することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the conventional control and to secure a margin for a design temperature of a furnace water cooling wall.
Another object of the present invention is to improve the reliability of the plant by reducing the thermal stress caused by the difference between the maximum temperature and the average temperature.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0011】過熱器減温器を備える変圧貫流ボイラにお
いて、火炉水冷壁メタル温度の最大値の上昇およびまた
は前記最大値と平均値との温度差の増大を検知し、前記
検知出力により、前記過熱器減温器の通過流体流量を調
節し、火炉水冷壁の通過流体流量を変化させて、火炉水
冷壁メタル温度の最大値およびまたは前記最大値と平均
値との温度差を低減させるボイラ制御装置。
In a variable-pressure once-through boiler provided with a superheater desuperheater, an increase in the maximum value of the temperature of the metal wall of the furnace water and / or an increase in the temperature difference between the maximum value and the average value are detected. A boiler control device that adjusts the flow rate of the fluid flowing through the heater desuperheater and changes the flow rate of the fluid flowing through the furnace water wall to reduce the maximum value of the metal temperature of the furnace water wall and / or the temperature difference between the maximum value and the average value. .

【0012】また、ガス再循環系統を備える変圧貫流ボ
イラにおいて、火炉水冷壁メタル温度の最大値の上昇お
よびまたは前記最大値と平均値との温度差の増大を検知
し、前記検知出力により、ガス再循環流量を調節し、火
炉水冷壁熱吸収量を変化させて、火炉水冷壁メタル温度
の最大値およびまたは前記最大値と平均値との温度差を
低減させるボイラ制御装置。
In a variable-pressure once-through boiler provided with a gas recirculation system, an increase in the maximum value of the temperature of the metal wall of the furnace water and / or an increase in the temperature difference between the maximum value and the average value are detected. A boiler control device that adjusts a recirculation flow rate and changes a furnace water wall heat absorption amount to reduce a maximum value of a furnace water wall metal temperature and / or a temperature difference between the maximum value and an average value.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図1を
用いて説明する。主蒸気温度制御装置は、給水ポンプ
1、節炭器2、火炉水冷壁3、汽水分離器4、過熱器
5,7,9、過熱器減温器6,8、ガス再循環ファン1
0、火炉ホッパダンパ11、火炉水冷壁メタル温度計1
2、計算機13、スプレー制御弁14,15、調節器1
6,17,18,19、減算器20,21,22,2
3,24,25、加算器26,27,28、高値選択器
29、第1スプレー流量設定器30、第2過熱器出口蒸
気温度設定器31、第3過熱器出口蒸気温度設定器3
2、火炉水冷壁メタル温度差上限設定器33、火炉水冷
壁メタル温度上限設定器34、火炉ホッパダンパ開度設
定器35、第1スプレー流量検出器36、第2過熱器出
口蒸気温度検出器37及び第3過熱器出口蒸気温度検出
器38から構成される。
An embodiment of the present invention will be described below with reference to FIG. The main steam temperature control device includes a feedwater pump 1, a economizer 2, a furnace water cooling wall 3, a steam separator 4, superheaters 5, 7, 9, a superheater desuperheater 6, 8, a gas recirculation fan 1.
0, furnace hopper damper 11, furnace water cooling wall metal thermometer 1
2. Computer 13, spray control valves 14, 15, controller 1
6, 17, 18, 19, subtractors 20, 21, 22, 2
3, 24, 25, adders 26, 27, 28, high value selector 29, first spray flow rate setting device 30, second superheater outlet steam temperature setting device 31, third superheater outlet steam temperature setting device 3
2. Furnace water cooling wall metal temperature difference upper limit setting device 33, furnace water cooling wall metal temperature upper limit setting device 34, furnace hopper damper opening degree setting device 35, first spray flow rate detector 36, second superheater outlet steam temperature detector 37, It comprises a third superheater outlet steam temperature detector 38.

【0014】通常運転時において、スプレー制御弁14
は負荷制定時に、第1スプレー流量36と設定値30と
の偏差を調節器16を介して制御信号に用い、第1スプ
レー流量を制御し、また負荷変化時は第2次過熱器出口
蒸発温度37と設定値31との偏差を調節器16を介し
て制御信号に用い、第2次過熱器出口蒸発温度を制御す
る。スプレー制御弁15は、第3次過熱器出口蒸発温度
38と設定値32との偏差を調節器17を介して制御信
号に用い、第3次過熱器出口蒸発温度を制御する。
During normal operation, the spray control valve 14
Controls the first spray flow rate by using the deviation between the first spray flow rate 36 and the set value 30 as a control signal through the controller 16 when the load is established, and when the load changes, the secondary superheater outlet evaporation temperature. The deviation between 37 and the set value 31 is used as a control signal via the controller 16 to control the secondary superheater outlet evaporation temperature. The spray control valve 15 controls the tertiary superheater outlet evaporating temperature by using a deviation between the tertiary superheater outlet evaporating temperature 38 and the set value 32 as a control signal via the controller 17.

【0015】また火炉ホッパダンパ11は通常、開度設
定器35によるプログラム制御で、過渡的且つ補助的に
再熱蒸気温度変動を制御している。また図1には記載し
ていないが、再熱蒸気温度はガス分配ダンパが主に制御
している。
The furnace hopper damper 11 normally and transiently and auxiliary controls the reheat steam temperature fluctuation by program control by the opening degree setting device 35. Although not shown in FIG. 1, the reheat steam temperature is mainly controlled by the gas distribution damper.

【0016】火炉水冷壁メタル温度及び平均との温度差
が増大した場合は次のような動作により、これを補正す
る。火炉水冷壁メタル温度計12により検出された各部
温度により計算機13は火炉水冷壁メタル温度最大値及
び平均値を算出し、最大温度は減算器25にて火炉水冷
壁メタル温度上限設定器34にて設定された上限値と比
較され、上限を超過している場合は補正信号を高値選択
器29に出力する。
When the temperature difference between the furnace water cooling wall metal temperature and the average temperature increases, this is corrected by the following operation. The calculator 13 calculates the maximum value and the average value of the furnace water cooling wall metal temperature based on the temperature of each part detected by the furnace water cooling wall metal thermometer 12, and the maximum temperature is calculated by the furnace water cooling wall metal temperature upper limiter 34 by the subtractor 25. The value is compared with the set upper limit, and if the upper limit is exceeded, a correction signal is output to the high value selector 29.

【0017】また、減算器23において最大温度と平均
温度の温度差が算出され、減算器24にて火炉水冷壁メ
タル温度差上限設定器33にて設定された上限値と比較
され、上限を超過している場合は補正信号を高値選択器
29に出力する。
Further, the temperature difference between the maximum temperature and the average temperature is calculated in the subtractor 23 and compared with the upper limit value set in the furnace water-cooled wall metal temperature difference upper limit setting device 33 in the subtractor 24, and exceeds the upper limit. If so, a correction signal is output to the high value selector 29.

【0018】高値選択器29では前記減算器24と25
からの前記補正信号の内、補正量の多い方が選択されて
出力される。よって、火炉水冷壁メタル温度の最大値が
上昇した場合、及び(最大値−平均温度)差が増大した
場合のどちらにおいても補正信号は出力され、より補正
量の多い方が出力されることとなる。
In the high value selector 29, the subtractors 24 and 25 are used.
Is selected and output from the correction signal having the larger correction amount. Therefore, the correction signal is output both when the maximum value of the furnace water wall metal temperature increases and when the (maximum value-average temperature) difference increases, and the one with the larger correction amount is output. Become.

【0019】前記選択された補正信号は、まず調節器1
8を介して第1スプレー流量設定を補正量に見合って引
き下げ、これによって第1スプレー制御弁が閉方向に動
作し、第1過熱器減温器通過流体流量、即ちスプレー水
流量が減少することにより火炉水冷壁通過流体流量が増
加し(給水ポンプ1を通過する水量は略一定である)、
当該部位のメタル温度最大値及び(最大値−平均温度)
差を低減することが可能となる。
The selected correction signal is first sent to the controller 1
8, the first spray flow setting is reduced in proportion to the correction amount, whereby the first spray control valve is operated in the closing direction and the first superheater desuperheater fluid flow, ie the spray water flow, is reduced. As a result, the flow rate of the fluid passing through the furnace water cooling wall increases (the amount of water passing through the feedwater pump 1 is substantially constant),
Maximum value of metal temperature and (maximum value-average temperature)
The difference can be reduced.

【0020】具体的に云えば、設定器34で設定された
上限値と温度計12からの検出温度が比較されて、検出
温度が上限値に達しない場合は、減算器25からは出力
せず、上限値を超えた場合には、越えた温度に見合った
分が出力される。減算器24も、(最大値−平均温度)
差を求めてこれと設定値とが比較されて、高値選択器2
9に同様に入力されて、高い値の方が選択されて出力さ
れる。調節器18においては、高値選択器29からの出
力が入力され、適宜に、符号を含めて入出力値が変換さ
れて出力される。
More specifically, the upper limit value set by the setting unit 34 is compared with the detected temperature from the thermometer 12, and if the detected temperature does not reach the upper limit value, the subtractor 25 does not output the detected temperature. If the temperature exceeds the upper limit, a value corresponding to the temperature that has been exceeded is output. The subtractor 24 also has (maximum value-average temperature).
The difference is obtained and the set value is compared with the difference.
9 is similarly input, and the higher value is selected and output. The output from the high value selector 29 is input to the controller 18, and the input / output value including the sign is appropriately converted and output.

【0021】また同時に補正信号は調節器19を介して
加算器27において火炉ホッパダンパ設定器35で設定
された開度指令に加算され、火炉ホッパダンパを開方向
に動作させ、温度の低いガス再循環流量を増加させ火炉
ガス温度を低減し輻射を主とする火炉水冷壁熱吸収量を
減少させることで火炉水冷壁メタル温度を低下し、且つ
熱吸収アンバランスを低減しメタル温度差を低減するこ
とが可能となる。
At the same time, the correction signal is added to the opening command set by the furnace hopper damper setting device 35 in the adder 27 via the controller 19, and the furnace hopper damper is operated in the opening direction, so that the low temperature gas recirculation flow rate is set. By reducing the furnace gas temperature and reducing the heat absorption of the furnace water wall mainly due to radiation, the furnace water wall metal temperature can be reduced, and the heat absorption unbalance can be reduced to reduce the metal temperature difference. It becomes possible.

【0022】そして、以上説明したような補正動作が作
動している状態においても、主蒸気温度は第2スプレー
制御弁15が制御しており、また、再熱蒸気温度はガス
分配ダンパが制御しているため、主蒸気温度および再熱
蒸気温度が制御不能となることはない。
Even in the state where the above-described correction operation is in operation, the main spray temperature is controlled by the second spray control valve 15, and the reheat steam temperature is controlled by the gas distribution damper. Therefore, the main steam temperature and the reheat steam temperature do not become uncontrollable.

【0023】以上の説明では、火炉のメタル温度の最大
値と、前記最大値と平均値との温度差の、双方の検出対
象に着目して制御するものであるが、その検出対象の片
方の検出対象に着目して制御しても良いことは当然であ
る。
In the above description, the control is performed by paying attention to both of the maximum value of the metal temperature of the furnace and the temperature difference between the maximum value and the average value. It goes without saying that the control may be performed by focusing on the detection target.

【0024】以上説明したように、本発明の実施形態を
取りまとめると次のような構成、作用を有するものであ
る。
As described above, the embodiments of the present invention have the following configuration and operation.

【0025】本発明の実施形態は、前流側減温器スプレ
ー弁開度指令に火炉水冷壁メタル温度による補正値を加
えること、また火炉ホッパダンパ(ガス再循環流量調節
ダンパ)指令値に火炉水冷壁メタル温度による補正値を
加える構成を有するものである。
In the embodiment of the present invention, the correction value based on the furnace water cooling wall metal temperature is added to the upstream desuperheater spray valve opening command, and the furnace water hopper damper (gas recirculation flow rate control damper) command value is added to the furnace water cooling command. It has a configuration for adding a correction value based on the wall metal temperature.

【0026】そして、その作用については、火炉水冷壁
メタル温度最大値とその設定値との偏差により前流側減
温器スプレー弁指令値に補正値を加えることにより、減
温器通過流体流量を減少させ火炉水冷壁通過流体流量を
増加させることで、メタル流体熱伝達を促進させ、火炉
水冷壁メタル温度を全体的に低減させる。
Regarding the operation, the correction value is added to the command value of the spray valve of the upstream desuperheater according to the deviation between the maximum value of the furnace water wall metal temperature and the set value, so that the flow rate of the fluid passing through the desuperheater is reduced. Decreasing and increasing the flow rate of fluid through the furnace water wall promotes metal fluid heat transfer and reduces the overall temperature of the furnace water wall metal.

【0027】また、前記補正値を火炉ホッパダンパ指令
値に加えることにより、ガス再循環流量を増加させるた
め、温度の低い再循環ガスの増加により火炉ガス温度は
低下し、火炉における熱吸収の大部分を占める輻射熱伝
達量(輻射熱伝達量はガス温度とメタル温度の温度差に
より決まる。)が減少することにより火炉水冷壁熱吸収
量を減少させ火炉水冷壁メタル温度を全体的に低減する
ので当該温度が設計値を超過することがない。
In addition, since the gas recirculation flow rate is increased by adding the correction value to the furnace hopper damper command value, the furnace gas temperature decreases due to the increase of the recirculated gas having a low temperature, and most of the heat absorption in the furnace is performed. The amount of radiant heat transfer that occupies (the amount of radiant heat transfer is determined by the temperature difference between the gas temperature and the metal temperature) is reduced, thereby reducing the amount of heat absorbed in the furnace water wall and reducing the overall temperature of the furnace water wall metal. Does not exceed the design value.

【0028】更に、火炉水冷壁メタル温度の(最大値ー
平均温度)差とその設定値との偏差により、前流側減温
器スプレー弁指令値に補正値を加え減温器通過流体流量
を減少させ火炉水冷壁通過流体流量を増加することによ
り火炉水冷壁メタル温度を全体的に低減するため、(最
大値−平均温度)差はこの温度低下に比例して減少す
る。
Further, a correction value is added to the command value of the spray valve of the upstream desuperheater according to the difference between the (maximum value-average temperature) difference between the furnace water cooling wall metal temperature and the set value, and the flow rate of the fluid passing through the desuperheater is adjusted. The (maximum-average temperature) difference decreases in proportion to this temperature drop because the furnace water wall metal temperature is reduced overall by decreasing and increasing the furnace water wall passing fluid flow rate.

【0029】また、前記補正値を火炉ホッパダンパ指令
値に加えることにより再循環流量を増加させるため、温
度の低い再循環ガスの増加により火炉ガス温度は低下
し、火炉における熱吸収の大部分を占める輻射熱伝達量
(輻射熱伝達量はガス温度とメタル温度の温度差により
決まる。)が減少することにより火炉水冷壁熱吸収量が
減少するため、熱吸収アンバランス自体も減少し火炉水
冷壁メタル温度の(最大値−平均温度)差は減少し、熱
応力が温度に増大することがない。
Further, since the recirculation flow rate is increased by adding the correction value to the furnace hopper damper command value, the furnace gas temperature decreases due to the increase of the recirculated gas having a low temperature, and occupies most of the heat absorption in the furnace. Since the amount of radiant heat transfer (the amount of radiant heat transfer is determined by the temperature difference between the gas temperature and the metal temperature) decreases, the heat absorption amount of the furnace water wall decreases, so the heat absorption unbalance itself also decreases, and the temperature of the furnace water wall metal temperature decreases. The (maximum-average temperature) difference is reduced and the thermal stress does not increase with temperature.

【0030】[0030]

【発明の効果】本発明の制御系を利用することにより、
変圧貫流ボイラの基本的な課題である火炉熱吸収アンバ
ランスによる当該部位のメタル温度上昇及び(最大値−
平均温度)差が低減され、この部位の設計値に対する裕
度向上及び温度差による応力低減が可能であり、プラン
トの信頼性向上が可能となる。
By using the control system of the present invention,
The metal temperature rise at the relevant site due to the furnace heat absorption imbalance, which is the basic problem of the once-through boiler, and (maximum value-
(Average temperature) difference is reduced, the tolerance for the design value of this part can be improved, and the stress can be reduced due to the temperature difference, and the reliability of the plant can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態である変圧貫流ボイラの主蒸
気温度制御系を示す図である。
FIG. 1 is a diagram showing a main steam temperature control system of a variable-pressure once-through boiler according to an embodiment of the present invention.

【図2】従来技術の変圧貫流ボイラ主蒸気温度制御系を
示す図である。
FIG. 2 is a diagram showing a prior art variable-pressure once-through boiler main steam temperature control system.

【符号の説明】[Explanation of symbols]

1 給水ポンプ 2 節炭器 3 火炉水冷壁 4 汽水分離器 5,7,9 過熱器 6,8 過熱器減温器 10 ガス再循環ファン 11 火炉ホッパダンパ 12 火炉水冷壁メタル温度計 13 計算機 14,15 スプレー制御弁 16,17,18,19 調節器 20,21,22,23,24,25 減算器 26,27,28加算器 29 高値選択器 30 第1スプレー流量設定器 31 第2過熱器出口蒸気温度設定器 32 第3過熱器出口蒸気温度設定器 33 火炉水冷壁メタル温度差上限設定器 34 火炉水冷壁メタル温度上限設定器 35 火炉ホッパダンパ開度設定器 36 第1スプレー流量検出器 37 第2過熱器出口蒸気温度検出器 38 第3過熱器出口蒸気温度検出器 REFERENCE SIGNS LIST 1 feed water pump 2 economizer 3 furnace water cooling wall 4 steam separator 5,7,9 superheater 6,8 superheater desuperheater 10 gas recirculation fan 11 furnace hopper damper 12 furnace water cooling wall metal thermometer 13 computer 14,15 Spray control valve 16, 17, 18, 19 Controller 20, 21, 22, 23, 24, 25 Subtractor 26, 27, 28 Adder 29 High value selector 30 First spray flow rate setting device 31 Second superheater outlet steam Temperature setting device 32 Third superheater outlet steam temperature setting device 33 Furnace water cooling wall metal temperature difference upper limit setting device 34 Furnace water cooling wall metal temperature upper limit setting device 35 Furnace hopper damper opening degree setting device 36 First spray flow rate detector 37 Second superheating Steam outlet temperature detector 38 Third superheater outlet steam temperature detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 過熱器減温器を備える変圧貫流ボイラに
おいて、 火炉水冷壁メタル温度の最大値の上昇およびまたは前記
最大値と平均値との温度差の増大を検知し、 前記検知出力により、前記過熱器減温器の通過流体流量
を調節し、火炉水冷壁の通過流体流量を変化させて、火
炉水冷壁メタル温度の最大値およびまたは前記最大値と
平均値との温度差を低減させることを特徴とするボイラ
制御装置。
1. A variable-pressure once-through boiler provided with a superheater desuperheater, wherein an increase in the maximum value of the temperature of the metal wall of the furnace water and / or an increase in the temperature difference between the maximum value and the average value are detected. Adjusting the passing fluid flow rate of the superheater desuperheater and changing the passing fluid flow rate of the furnace water wall to reduce the maximum value of the furnace water wall metal temperature and / or the temperature difference between the maximum value and the average value. A boiler control device.
【請求項2】 ガス再循環系統を備える変圧貫流ボイラ
において、 火炉水冷壁メタル温度の最大値の上昇およびまたは前記
最大値と平均値との温度差の増大を検知し、 前記検知出力により、ガス再循環流量を調節し、火炉水
冷壁熱吸収量を変化させて、火炉水冷壁メタル温度の最
大値およびまたは前記最大値と平均値との温度差を低減
させることを特徴とするボイラ制御装置。
2. A variable-pressure once-through boiler equipped with a gas recirculation system, comprising detecting an increase in the maximum value of the temperature of the metal wall of the furnace water and / or an increase in a temperature difference between the maximum value and the average value. A boiler control device comprising: adjusting a recirculation flow rate and changing a furnace water wall heat absorption amount to reduce a maximum value of a furnace water wall metal temperature and / or a temperature difference between the maximum value and an average value.
【請求項3】 過熱器減温器とガス再循環系統を備える
変圧貫流ボイラにおいて、 火炉水冷壁メタル温度の最大値の上昇およびまたは前記
最大値と平均値との温度差の増大を検知し、 前記検知出力により、前記過熱器減温器の通過流体流量
を調節し、火炉水冷壁の通過流体流量を変化させるとと
もに、ガス再循環流量を調節し、火炉水冷壁熱吸収量を
変化させて、火炉水冷壁メタル温度の最大値およびまた
は前記最大値と平均値との温度差を低減させることを特
徴とするボイラ制御装置。
3. A variable-pressure once-through boiler comprising a superheater desuperheater and a gas recirculation system, wherein an increase in the maximum value of the furnace water wall metal temperature and / or an increase in the temperature difference between the maximum value and the average value are detected. By the detection output, adjusting the passing fluid flow rate of the superheater desuperheater, changing the passing fluid flow rate of the furnace water cooling wall, adjusting the gas recirculation flow rate, changing the furnace water cooling wall heat absorption amount, A boiler control device for reducing a maximum value of a furnace water wall metal temperature and / or a temperature difference between the maximum value and an average value.
JP4216098A 1998-02-24 1998-02-24 Controller for boiler Pending JPH11241807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216098A JPH11241807A (en) 1998-02-24 1998-02-24 Controller for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216098A JPH11241807A (en) 1998-02-24 1998-02-24 Controller for boiler

Publications (1)

Publication Number Publication Date
JPH11241807A true JPH11241807A (en) 1999-09-07

Family

ID=12628213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216098A Pending JPH11241807A (en) 1998-02-24 1998-02-24 Controller for boiler

Country Status (1)

Country Link
JP (1) JPH11241807A (en)

Similar Documents

Publication Publication Date Title
JP2010223579A (en) Single loop temperature regulation control mechanism
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JPH0942606A (en) Once-through boiler steam temperature control device
JPH0417324B2 (en)
JPH10292902A (en) Main steam temperature controller
JPH11241807A (en) Controller for boiler
JP2686259B2 (en) Operating method of once-through boiler
JP2006071166A (en) Steam temperature control device for once-through boiler
KR102704840B1 (en) Control device of power plant, power plant and control method of power plant
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JP2001108202A (en) Waste heat recovery boiler
TWI813086B (en) Power generation system and its control method and program
JPH0688605A (en) Controlling device for temperature of steam in boiler
JPS6291703A (en) Steaming preventive device for fuel economizer
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
JPH11351512A (en) Reheat steam temperature controller for boiler
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH10148305A (en) Boiler control device
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH1151306A (en) Boiler and control method therefor
JP4062034B2 (en) Boiler steam temperature control method and apparatus
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler