JP4670707B2 - Control apparatus and control method for steam power plant - Google Patents

Control apparatus and control method for steam power plant Download PDF

Info

Publication number
JP4670707B2
JP4670707B2 JP2006098567A JP2006098567A JP4670707B2 JP 4670707 B2 JP4670707 B2 JP 4670707B2 JP 2006098567 A JP2006098567 A JP 2006098567A JP 2006098567 A JP2006098567 A JP 2006098567A JP 4670707 B2 JP4670707 B2 JP 4670707B2
Authority
JP
Japan
Prior art keywords
turbine
controlling
feed water
control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006098567A
Other languages
Japanese (ja)
Other versions
JP2007271189A (en
Inventor
義明 河野
裕二 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006098567A priority Critical patent/JP4670707B2/en
Publication of JP2007271189A publication Critical patent/JP2007271189A/en
Application granted granted Critical
Publication of JP4670707B2 publication Critical patent/JP4670707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、火力発電所等の汽力発電設備において、特に低負荷運転時の効率を向上するようにした汽力発電設備の制御装置および制御方法に関するものである。   TECHNICAL FIELD The present invention relates to a control apparatus and a control method for a steam power generation facility in which the efficiency during a low load operation is improved in a steam power generation facility such as a thermal power plant.

電気事業者は、電力の安定供給と地球温暖化ガスである二酸化炭素の削減といった観点から、原子力発電やガスタービン複合発電(コンバインドサイクル)設備など、発電効率が高く、二酸化炭素の排出量の少ない発電設備を高い利用率(定格出力に近い出力)で運用することが求められている。従って、汽力発電設備は、需要に応じた供給力(発電出力調整)の役割を担うことになる。
近年、省エネルギ対策として、汽力発電設備にはできるだけ高い発電効率で運用することが期待されている。
従来、このような汽力発電設備として、プラント熱効率の向上策の一つとして変圧運転を行うようにしたものがあった(例えば、特許文献1参照)。
Electric utilities have high power generation efficiency and low carbon dioxide emissions, such as nuclear power generation and gas turbine combined power generation (combined cycle) facilities, from the viewpoint of stable power supply and reduction of carbon dioxide, a global warming gas It is required to operate power generation facilities at a high utilization factor (output close to the rated output). Therefore, the steam power generation facility plays a role of supply power (power generation output adjustment) according to demand.
In recent years, steam power generation facilities are expected to operate with the highest possible power generation efficiency as an energy saving measure.
Conventionally, as such a steam power generation facility, there has been one in which a transformer operation is performed as one of the measures for improving the plant thermal efficiency (see, for example, Patent Document 1).

特開2005−291113号公報JP 2005-291113 A

汽力発電設備においては、一般的なボイラへの給水手段として、電気駆動式給水ポンプ(電動給水ポンプ)と蒸気タービン駆動式給水ポンプ(BFP−T)の2種類が、単独あるいは併用して用いられている。BFP−Tを用いる利点は、モータ動力が不要なため、所内電力の低減(発電所における省エネルギ化)に有効である。一方、電動給水ポンプは主にプラント起動時や低負荷帯で用いられるが、電動であるため、特に低負荷運転時における効率向上の妨げとなっていた。   In a steam power generation facility, two types of water supply means for general boilers, an electric drive water pump (electric water pump) and a steam turbine drive water pump (BFP-T), are used alone or in combination. ing. The advantage of using BFP-T is effective in reducing in-house power (energy saving in a power plant) because motor power is unnecessary. On the other hand, although the electric water supply pump is mainly used at the time of starting the plant or in a low load zone, since it is electric, it has been an obstacle to improving the efficiency particularly during low load operation.

即ち、電動給水ポンプを用いて低負荷運転を行うには次のような問題点があった。
(1)供給信頼度の低下:ユニット起動/停止時は電動給水ポンプにて行う。そして、その後はタービン駆動給水ポンプを用いて運転を行うが、ある低負荷帯の運転値(例えば、定格負荷運転の値が60万kWのプラントにおける15万kW)以下の運転を行う場合は、電動給水ポンプへの切替操作を行うことになる。従って、定格負荷運転から低負荷運転の間の変圧運転を行う場合、このような運転値を境にして幾度も電動給水ポンプの運転/停止を行うことになる。その結果、モータ故障へのリスクが増大し、本来のユニット起動/停止時に電動給水ポンプが使用できなくなる可能性が大きくなる。
That is, there are the following problems in performing a low load operation using an electric water supply pump.
(1) Reduction in supply reliability: When starting / stopping the unit, use an electric water supply pump. And after that, the turbine-driven feed water pump is used for operation, but when operating below a certain low load operating value (for example, 150,000 kW in a plant with a rated load operating value of 600,000 kW), Switching operation to the electric water supply pump is performed. Therefore, when performing the transformation operation between the rated load operation and the low load operation, the electric water supply pump is operated / stopped several times with such an operation value as a boundary. As a result, the risk of motor failure increases and there is a greater possibility that the electric water supply pump cannot be used when the unit is originally started / stopped.

(2)給電運用の阻害:例えば上記運転値である15万kW以下の給電指令を受けた場合、また、15万kW以下の運転の後、再度15万kWを超える給電指令を受けた場合、タービン駆動給水ポンプから電動給水ポンプへの切替、あるいはその逆の切替が必要となる。その結果、このような負荷下げ/上げで60分出力固定が必要となり、給電指令に制約をかけることになる。   (2) Impedance of power supply operation: For example, when a power supply command of 150,000 kW or less which is the above operation value is received, or after a power supply command exceeding 150,000 kW after operation of 150,000 kW or less, It is necessary to switch from the turbine-driven feed pump to the electric feed pump or vice versa. As a result, it is necessary to fix the output for 60 minutes by such load reduction / increase, and this restricts the power supply command.

(3)プラント効率低下:電動給水ポンプ運転による電力消費により、所内率および送電端効率の低下となる。   (3) Reduction in plant efficiency: The power consumption due to the operation of the electric water supply pump causes a reduction in the in-house ratio and the power transmission end efficiency.

また、このような問題を解決するため、低負荷運転でもタービン駆動給水ポンプを用いることが考えられる。しかしながら、タービン駆動給水ポンプには、所定の流量以下になった場合のタービン駆動給水ポンプの保護を行うために、吐出側から吸込側に水を再循環させるための再循環弁が接続されており、低負荷運転時には吸込流量が所定の流量以下となるため、この再循環弁が開となる。ところが、その結果、タービン駆動給水ポンプの流量が増加し、軸動力以上の出力が要求されてしまうことからタービン駆動給水ポンプが過負荷となってしまい、このような点からタービン駆動給水ポンプを低負荷運転時に使用することは困難であった。   In order to solve such a problem, it is conceivable to use a turbine-driven feed water pump even in a low load operation. However, a recirculation valve for recirculating water from the discharge side to the suction side is connected to the turbine drive water pump in order to protect the turbine drive water pump when the flow rate is below a predetermined flow rate. During the low load operation, the recirculation valve is opened because the suction flow rate is equal to or lower than the predetermined flow rate. However, as a result, the flow rate of the turbine-driven feed water pump increases, and an output higher than the shaft power is required, so that the turbine-driven feed water pump becomes overloaded. It was difficult to use during load operation.

更に、タービン駆動給水ポンプの駆動は主蒸気より抽気した蒸気によって行われるため、タービン駆動給水ポンプからボイラやタービンに至るループが形成されることになり、また、低負荷運転時では、タービン駆動給水ポンプの回転数を制御したり、ボイラ絞り弁やガバナの開度を制御した場合、これらの制御動作が実際の設定値に反映される迄に所定の遅れ時間を有することになる。従って、低負荷運転時にタービン駆動給水ポンプを用いた場合、ボイラ絞り弁やガバナの開度制御やタービン駆動給水ポンプの回転数制御で相互干渉が発生してしまい、このような点からも、低負荷運転時では安定した制御を行うのが困難であった。   Furthermore, since the turbine-driven feed water pump is driven by steam extracted from the main steam, a loop from the turbine-driven feed water pump to the boiler and turbine is formed. When the rotational speed of the pump is controlled or the opening of the boiler throttle valve or governor is controlled, there is a predetermined delay time until these control operations are reflected in the actual set values. Therefore, when a turbine-driven feedwater pump is used during low-load operation, mutual interference occurs in the opening control of the boiler throttle valve and governor and the rotational speed control of the turbine-driven feedwater pump. It was difficult to perform stable control during load operation.

この発明は上記のような課題を解決するためになされたもので、汽力発電設備としての効率向上を達成でき、かつ、信頼性を向上させると共に、給電指令にも速やかに応答することのできる汽力発電設備の制御装置および制御方法を得ることを目的とする。   The present invention has been made to solve the above-described problems, and can improve efficiency as a steam power generation facility, improve reliability, and can quickly respond to a power supply command. An object is to obtain a control device and a control method for a power generation facility.

この発明に係る汽力発電設備の制御装置は、主給水を行うタービン駆動給水ポンプと、タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを備えた汽力発電設備の制御を行う汽力発電設備の制御装置であって、再循環弁の開度をタービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、開度制御をヒステリシス付き制御とする再循環弁制御手段と、給水弁の開度を一定として、タービン駆動給水ポンプの回転数を制御することで、主給水の流量制御を行う給水制御手段と、所定の負荷以下の負荷運転時では、ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、ガバナの感度を負荷の値に応じて変化させた制御を行う主蒸気圧力制御手段とを備えたものである。   A control apparatus for a steam power generation facility according to the present invention includes a turbine-driven feed water pump that performs main feed water, a recirculation valve for recirculating water from a discharge side of the turbine-driven feed water pump to a suction side, and a turbine-driven feed water pump Steam provided on the discharge side and provided with a water supply valve for controlling the flow rate of the main water supply, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam A control device for a steam power generation facility that controls a power generation facility, wherein the opening degree of the recirculation valve is controlled in accordance with the suction flow rate and the discharge pressure of the turbine-driven feed water pump, and the opening degree control is controlled with hysteresis. A recirculation valve control means, a feed water control means for controlling the flow rate of the main feed water by controlling the rotation speed of the turbine-driven feed water pump with a constant opening of the feed water valve, and a load operation below a predetermined load The main throttle pressure control means for controlling the opening of the boiler throttle valve by providing a dead band of deviation with respect to the target control value and performing control by changing the sensitivity of the governor according to the load value. It is a thing.

この発明に係る汽力発電設備の制御装置は、主給水を行うタービン駆動給水ポンプと、タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを備えた汽力発電設備の制御を行う汽力発電設備の制御装置であって、再循環弁の開度をタービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、開度制御をヒステリシス付き制御とする再循環弁制御手段と、給水弁の開度制御によって給水弁を流れる流量を制御し、かつ、給水弁の入口側と出口側の差圧をタービン駆動給水ポンプの回転数で制御することで、主給水の流量制御を行うと共に、タービン駆動給水ポンプの吐出流量に対応して給水弁の感度補正を行う給水制御手段と、所定の負荷以下の負荷運転時では、ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、ガバナの感度を負荷の値に応じて変化させた制御を行う主蒸気圧力制御手段とを備えたものである。   A control apparatus for a steam power generation facility according to the present invention includes a turbine-driven feed water pump that performs main feed water, a recirculation valve for recirculating water from a discharge side of the turbine-driven feed water pump to a suction side, and a turbine-driven feed water pump Steam provided on the discharge side and provided with a water supply valve for controlling the flow rate of the main water supply, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam A control device for a steam power generation facility that controls a power generation facility, wherein the opening degree of the recirculation valve is controlled in accordance with the suction flow rate and the discharge pressure of the turbine-driven feed water pump, and the opening degree control is controlled with hysteresis. Recirculation valve control means for controlling the flow rate through the water supply valve by controlling the opening of the water supply valve, and controlling the differential pressure between the inlet side and the outlet side of the water supply valve by the number of revolutions of the turbine-driven water supply pump , Water supply control means that controls the flow rate of the feedwater and corrects the sensitivity of the feedwater valve in response to the discharge flow rate of the turbine-driven feedwater pump. And a main steam pressure control means for performing control by changing the sensitivity of the governor according to the load value.

また、この発明に係る汽力発電設備の制御装置は、再循環弁制御手段による再循環弁の開度制御に対応した保護設定値に基づいて、タービン駆動給水ポンプの保護を行う給水ポンプ保護手段を備えたものである。   Further, the control apparatus for a steam power generation facility according to the present invention includes a feed water pump protection means for protecting the turbine-driven feed water pump based on a protection set value corresponding to the opening degree control of the recirculation valve by the recirculation valve control means. It is provided.

また、この発明の汽力発電設備の制御方法は、主給水を行うタービン駆動給水ポンプと、タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを制御する汽力発電設備の制御方法であって、再循環弁の開度をタービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、開度制御をヒステリシス付き制御とし、給水弁の開度を一定として、タービン駆動給水ポンプの回転数を制御することで、主給水の流量制御を行い、所定の負荷以下の負荷運転時では、ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、ガバナの感度を負荷の値に応じて変化させた制御を行うようにしたものである。 In addition, the control method of the steam power generation facility of the present invention includes a turbine-driven feed pump that performs main feed water, a recirculation valve that recirculates water from the discharge side of the turbine-driven feed pump to the suction side, and a turbine-driven feed pump Is provided on the discharge side of the boiler and controls a water supply valve for controlling the flow rate of the main water supply, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam. A control method for a steam power generation facility, wherein the opening degree of the recirculation valve is controlled in accordance with the suction flow rate and the discharge pressure of the turbine-driven feed water pump, and the opening degree control is controlled with hysteresis, and the opening degree of the feed water valve The flow rate of the main feed water is controlled by controlling the number of revolutions of the turbine-driven feed water pump, and the opening of the boiler throttle valve with respect to the target control value during load operation below a predetermined load. Controls provided dead zone difference, in which to perform the control is changed according to the sensitivity of the governor to the value of the load.

また、この発明の汽力発電設備の制御方法は、主給水を行うタービン駆動給水ポンプと、タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを制御する汽力発電設備の制御方法であって、再循環弁の開度をタービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、開度制御をヒステリシス付き制御とし、給水弁の開度制御によって給水弁を流れる流量を制御し、かつ、給水弁の入口側と出口側の差圧をタービン駆動給水ポンプの回転数で制御することで、主給水の流量制御を行うと共に、タービン駆動給水ポンプの吐出流量に対応して給水弁の感度補正を行い、所定の負荷以下の負荷運転時では、ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、ガバナの感度を負荷の値に応じて変化させた制御を行うようにしたものである。   In addition, the control method of the steam power generation facility of the present invention includes a turbine-driven feed pump that performs main feed water, a recirculation valve that recirculates water from the discharge side of the turbine-driven feed pump to the suction side, and a turbine-driven feed pump Is provided on the discharge side of the boiler and controls a water supply valve for controlling the flow rate of the main water supply, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam. A control method for a steam power generation facility, wherein the opening degree of the recirculation valve is controlled in accordance with the suction flow rate and the discharge pressure of the turbine-driven feed water pump, and the opening degree control is controlled with hysteresis, and the opening degree of the feed water valve By controlling the flow rate through the water supply valve and controlling the differential pressure between the inlet side and the outlet side of the water supply valve by the number of rotations of the turbine-driven water supply pump, the flow rate control of the main water supply and the turbine drive are performed. The sensitivity of the water supply valve is corrected according to the discharge flow rate of the water supply pump, and during load operation below a predetermined load, the opening of the boiler throttle valve is controlled by providing a dead band of deviation from the target control value. The control is performed by changing the sensitivity of the governor in accordance with the load value.

この発明の汽力発電設備の制御装置によれば、汽力発電設備としての効率向上を達成でき、かつ、信頼性を向上させると共に、給電指令にも速やかに応答することができる。
また、この発明の汽力発電設備の制御装置によれば、給水制御手段を備えたので、更に低負荷運転時における安定した制御が実現でき、より汽力発電設備としての効率向上を達成することができる。
また、この発明の汽力発電設備の制御装置によれば、再循環弁制御手段による再循環弁の制御に対応したタービン駆動給水ポンプの保護動作を行うことができる。
According to the control apparatus for a steam power generation facility of the present invention, it is possible to achieve an improvement in efficiency as a steam power generation facility, improve reliability, and promptly respond to a power supply command.
Further, according to the control device for a steam power generation facility of the present invention, since it is provided with a water supply control means, it is possible to realize more stable control at the time of low load operation, and to further improve the efficiency as a steam power generation facility. .
Moreover, according to the control apparatus of the steam power generation facility of this invention, the protection operation | movement of the turbine drive water supply pump corresponding to control of the recirculation valve by a recirculation valve control means can be performed.

また、この発明の汽力発電設備の制御方法によれば、汽力発電設備としての効率向上を達成でき、かつ、信頼性を向上させると共に、給電指令にも速やかに応答することができる制御を実現することができる。
また、この発明の汽力発電設備の制御方法によれば、給水弁とタービン駆動給水ポンプの制御を行うようにしたので、更に低負荷運転時における安定した制御が実現でき、より汽力発電設備としての効率向上を達成することができる。
Moreover, according to the control method of the steam power generation equipment of this invention, the efficiency improvement as the steam power generation equipment can be achieved, the reliability can be improved, and the control capable of promptly responding to the power supply command is realized. be able to.
Moreover, according to the control method of the steam power generation equipment of this invention, since it controlled the feed valve and the turbine drive feed water pump, stable control at the time of low load operation can be realized, and more as a steam power generation equipment. Efficiency improvements can be achieved.

実施の形態1.
図1は、この発明の実施の形態1による制御装置が適用される汽力発電設備の構成図である。
図において、脱気器1、タービン駆動給水ポンプ(TD−BFP)2、電動給水ポンプ(M−BFP)3、再循環弁(PRC)4、電動給水ポンプ流量制御弁(FWB)5、第1の給水弁(FWV)6、第2の給水弁(FWVB)7、高圧ヒータ8、エコノマイザ(ECO)9、ボイラ循環ポンプ(BCP)10、水冷壁(WW)11、第1のボイラ絞り弁(BT)12、第2のボイラ絞り弁(BTB)13、スーパーヒータ(SH1,SH2)14a,14b、ガバナ(GOV)15、タービン(HP)16、低レンジ給水流量計17、高レンジ給水流量計18、制御装置100を備えている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a steam power generation facility to which a control device according to Embodiment 1 of the present invention is applied.
In the figure, a deaerator 1, a turbine-driven feed water pump (TD-BFP) 2, an electric feed water pump (M-BFP) 3, a recirculation valve (PRC) 4, an electric feed water pump flow control valve (FWB) 5, a first Water supply valve (FWV) 6, second water supply valve (FWVB) 7, high pressure heater 8, economizer (ECO) 9, boiler circulation pump (BCP) 10, water cooling wall (WW) 11, first boiler throttle valve ( BT) 12, second boiler throttle valve (BTB) 13, super heater (SH1, SH2) 14a, 14b, governor (GOV) 15, turbine (HP) 16, low range feed water flow meter 17, high range feed water flow meter 18. A control device 100 is provided.

脱気器1は、図示しない復水器からの気体を含んだ液体の脱気処理を行う装置である。タービン駆動給水ポンプ2は、図示省略したタービンによって駆動される給水ポンプであり、主給水を行うためのポンプである。また、電動給水ポンプ3は、電力によって駆動され、プラント起動時に用いられる給水ポンプである。再循環弁4は、タービン駆動給水ポンプ2や電動給水ポンプ3の吐出側から吸込側に水を再循環させるためのバルブであり、制御装置100の後述する再循環弁制御手段101によって制御されるよう構成されている。また、電動給水ポンプ流量制御弁5は、電動給水ポンプ3の流量を制御するためのバルブである。   The deaerator 1 is a device that performs a deaeration process on a liquid containing gas from a condenser (not shown). The turbine-driven feed water pump 2 is a feed water pump that is driven by a turbine (not shown), and is a pump for performing main feed water. In addition, the electric water supply pump 3 is a water supply pump that is driven by electric power and used at the time of starting the plant. The recirculation valve 4 is a valve for recirculating water from the discharge side of the turbine-driven water supply pump 2 or the electric water supply pump 3 to the suction side, and is controlled by a recirculation valve control means 101 described later of the control device 100. It is configured as follows. The electric water supply pump flow control valve 5 is a valve for controlling the flow rate of the electric water supply pump 3.

第1の給水弁6は、タービン駆動給水ポンプ2及び電動給水ポンプ3と高圧ヒータ8との間の主給水路に設けられた開閉弁である。また、第2の給水弁7は、第1の給水弁6を流れる水量を制御するためのバイパス弁であり、制御装置100の後述する給水制御手段102によって制御されるよう構成されている。尚、これら第1の給水弁6および第2の給水弁7は、主給水の流量を制御するための給水弁に相当する構成であり、以下、第1の給水弁6は単に給水弁6と称し、第2の給水弁7は給水バイパス弁7と称する。また、高圧ヒータ8は、主給水を加熱する加熱器である。   The first water supply valve 6 is an on-off valve provided in the main water supply path between the turbine-driven water supply pump 2 and the electric water supply pump 3 and the high-pressure heater 8. The second water supply valve 7 is a bypass valve for controlling the amount of water flowing through the first water supply valve 6, and is configured to be controlled by a water supply control means 102 described later of the control device 100. The first water supply valve 6 and the second water supply valve 7 correspond to a water supply valve for controlling the flow rate of the main water supply, and hereinafter, the first water supply valve 6 is simply referred to as the water supply valve 6. The second water supply valve 7 is referred to as a water supply bypass valve 7. The high-pressure heater 8 is a heater that heats the main feed water.

エコノマイザ9〜スーパーヒータ14a,14bは、汽力発電設備のボイラを構成する構成であり、エコノマイザ9は、排ガスにより高圧ヒータ8からの水を加熱する加熱器である。ボイラ循環ポンプ10は、水冷壁11への給水を行うポンプであり、水冷壁11は、図示しないバーナによってボイラ循環ポンプ10で送られた水を加熱する熱交換器である。   The economizer 9 to super heaters 14a and 14b constitute a boiler of a steam power generation facility, and the economizer 9 is a heater that heats water from the high-pressure heater 8 with exhaust gas. The boiler circulation pump 10 is a pump that supplies water to the water cooling wall 11, and the water cooling wall 11 is a heat exchanger that heats the water sent by the boiler circulation pump 10 by a burner (not shown).

第1のボイラ絞り弁12および第2のボイラ絞り弁13は、水冷壁11の圧力制御を行うためのボイラ絞り弁に相当する構成であり、これらボイラ絞り弁は、制御装置100の後述する主蒸気圧力制御手段103によって制御されるよう構成されている。また、第2のボイラ絞り弁13は、第1のボイラ絞り弁12のバイパス弁であり、以下、第1のボイラ絞り弁12は単にボイラ絞り弁12と称し、第2のボイラ絞り弁13は、ボイラ絞り弁バイパス弁13と称する。スーパーヒータ14a,14bは、1次過熱器および2次過熱器である。ガバナ15は、タービン16に供給する蒸気を制御するための制御弁であり、このガバナ15も制御装置100の後述する主蒸気圧力制御手段103によって制御されるよう構成されている。また、タービン16は、主蒸気によって駆動される高圧タービンである。   The 1st boiler throttle valve 12 and the 2nd boiler throttle valve 13 are the structures corresponded to the boiler throttle valve for performing the pressure control of the water cooling wall 11, and these boiler throttle valves are the mains which the control apparatus 100 mentions later. It is configured to be controlled by the steam pressure control means 103. The second boiler throttle valve 13 is a bypass valve of the first boiler throttle valve 12. Hereinafter, the first boiler throttle valve 12 is simply referred to as a boiler throttle valve 12, and the second boiler throttle valve 13 is This is referred to as a boiler throttle valve bypass valve 13. The super heaters 14a and 14b are a primary superheater and a secondary superheater. The governor 15 is a control valve for controlling the steam supplied to the turbine 16, and the governor 15 is also configured to be controlled by main steam pressure control means 103 described later of the control device 100. The turbine 16 is a high-pressure turbine driven by main steam.

低レンジ給水流量計17は、給水弁6が全閉状態となり、給水バイパス弁7を介して給水が行われる場合の低レンジの流量を計測する流量計であり、その出力は制御装置100に入力されるよう構成されている。また、高レンジ給水流量計18は、高圧ヒータ8の下流側に設けられ、主給水の流量を計測する流量計であり、その出力は制御装置100に入力されるよう構成されている。   The low-range feed water flow meter 17 is a flow meter that measures a low-range flow rate when the feed valve 6 is fully closed and water is supplied through the feed water bypass valve 7, and its output is input to the control device 100. It is configured to be. The high-range feed water flow meter 18 is a flow meter that is provided on the downstream side of the high-pressure heater 8 and measures the flow rate of the main feed water, and its output is input to the control device 100.

制御装置100は、汽力発電設備としての各制御弁やタービン駆動給水ポンプ2の制御を行うものであり、再循環弁制御手段101、給水制御手段102、主蒸気圧力制御手段103、給水ポンプ保護手段104を備えている。再循環弁制御手段101は、再循環弁4の開度をタービン駆動給水ポンプ2の吸込流量と吐出圧力とに対応させて制御すると共に、その開度制御をヒステリシス付きの制御を行う手段である。給水制御手段102は、給水バイパス弁7の開度制御によって給水バイパス弁7を流れる流量を制御し、かつ、給水バイパス弁7の入口側と出口側の差圧をタービン駆動給水ポンプ2の回転数で制御することで、主給水の流量制御を行うと共に、タービン駆動給水ポンプ2の吐出流量に対応して給水バイパス弁7の感度補正を行う手段である。   The control device 100 controls each control valve as a steam power generation facility and the turbine-driven feed water pump 2, and includes a recirculation valve control means 101, a feed water control means 102, a main steam pressure control means 103, a feed water pump protection means. 104 is provided. The recirculation valve control means 101 is a means for controlling the opening degree of the recirculation valve 4 in correspondence with the suction flow rate and the discharge pressure of the turbine-driven feed water pump 2 and controlling the opening degree with hysteresis. . The feed water control means 102 controls the flow rate through the feed water bypass valve 7 by controlling the opening degree of the feed water bypass valve 7, and the differential pressure between the inlet side and the outlet side of the feed water bypass valve 7 is set to the rotational speed of the turbine driven feed pump 2. This is a means for controlling the flow rate of the main feed water and correcting the sensitivity of the feed water bypass valve 7 in accordance with the discharge flow rate of the turbine-driven feed water pump 2.

主蒸気圧力制御手段103は、所定の負荷以下の負荷運転時では、ボイラ絞り弁バイパス弁13の開度制御に対して不感帯を設けて制御すると共に、ガバナ15の感度を負荷の値に応じて変化させた制御を行う手段である。給水ポンプ保護手段104は、保護設定値104aに基づいてタービン駆動給水ポンプ2の保護を行う手段であり、この保護設定値104aは、再循環弁制御手段101による再循環弁4の開度制御に対応した設定値となっている。   The main steam pressure control means 103 provides a dead zone for controlling the opening degree of the boiler throttle valve bypass valve 13 during load operation below a predetermined load, and controls the sensitivity of the governor 15 according to the load value. It is a means for performing changed control. The feed water pump protection means 104 is means for protecting the turbine-driven feed water pump 2 based on the protection set value 104a. The protection set value 104a is used for opening control of the recirculation valve 4 by the recirculation valve control means 101. The corresponding setting value.

次に、実施の形態1の動作について説明する。
再循環弁制御手段101は、タービン駆動給水ポンプ2における吸込流量と吐出圧力との関係に基づいて再循環弁4の開度制御を行う。
図2は、再循環弁4の開度制御の一例を示す説明図であり、吸込流量と吐出圧力(ゲージ圧)との関係を示している。
図中、実線200a,200bは本実施の形態の全開、全閉直線を示し、破線300a,300bは従来の全開、全閉の値を示している。図示のように、従来では、吸込流量のみによる全開または全閉制御(この例では、吸込流量290(t/h)で全開、370(t/h)で全閉)であったのに対し、本実施の形態では、吐出圧力と吸込流量との値に応じて開度制御を行っている。例えば、従来では、吸込流量が290(t/h)の値になれば、再循環弁4は全開であったのに対し、本実施の形態では、吸込流量が290(t/h)以下で再循環弁4が開き始め、図中の矢印のように吐出圧力が一定の場合は、そのまま吸込流量が200(t/h)強の値になるまで、吸込流量の減少に応じて開度制御が行われる。また、再循環弁制御手段101は再循環弁4の開度制御をヒステリシス付きの制御で行っているため、再循環弁は、吸込流量が260(t/h)になるまで全開状態で保持され、それ以上の流量で340(t/h)まで吸込流量の増大に応じて開度制御される。尚、ヒステリシス付き制御については後述する。
Next, the operation of the first embodiment will be described.
The recirculation valve control means 101 controls the opening degree of the recirculation valve 4 based on the relationship between the suction flow rate and the discharge pressure in the turbine-driven feed water pump 2.
FIG. 2 is an explanatory diagram showing an example of the opening degree control of the recirculation valve 4, and shows the relationship between the suction flow rate and the discharge pressure (gauge pressure).
In the figure, solid lines 200a and 200b indicate fully open and fully closed straight lines in the present embodiment, and broken lines 300a and 300b indicate conventional fully open and fully closed values. As shown in the figure, in the prior art, the fully open or fully closed control based only on the suction flow rate (in this example, full open at the suction flow rate 290 (t / h), full close at 370 (t / h)), In the present embodiment, the opening degree is controlled according to the values of the discharge pressure and the suction flow rate. For example, conventionally, when the suction flow rate becomes a value of 290 (t / h), the recirculation valve 4 is fully open, whereas in this embodiment, the suction flow rate is 290 (t / h) or less. When the recirculation valve 4 starts to open and the discharge pressure is constant as indicated by the arrow in the figure, the opening degree is controlled according to the decrease in the suction flow rate until the suction flow rate becomes a value of 200 (t / h) or more. Is done. Further, since the recirculation valve control means 101 controls the opening degree of the recirculation valve 4 with control with hysteresis, the recirculation valve is held in a fully opened state until the suction flow rate becomes 260 (t / h). The opening degree is controlled according to the increase of the suction flow rate up to 340 (t / h) at a flow rate higher than that. The control with hysteresis will be described later.

このように、従来では、吸込流量のみによる再循環弁4の全開/全閉制御であったため、再循環弁4全開時のタービン駆動給水ポンプ2の過負荷防止の観点から低負荷帯でのタービン駆動給水ポンプ2による給水が困難であったのに対し、本実施の形態では、吸込流量と吐出圧力との値に応じて再循環弁4を流れる流量をきめ細かく制御するため、低負荷帯での給水制御を可能とすることができる。   Thus, conventionally, since the recirculation valve 4 is fully opened / closed only by the suction flow rate, the turbine in the low load zone is used from the viewpoint of preventing overload of the turbine-driven feed water pump 2 when the recirculation valve 4 is fully opened. While it is difficult to supply water with the drive water pump 2, in the present embodiment, the flow rate flowing through the recirculation valve 4 is finely controlled according to the values of the suction flow rate and the discharge pressure. Water supply control can be made possible.

次に、再循環弁制御手段101の再循環弁4に対するヒステリシス付きの開度制御について説明する。
図3は、吸込流量と再循環弁4の開度との関係を示す説明図である。
図示のように、吸込流量290(t/h)以下になると、再循環弁4が開かれ、200(t/h)強で全開となる。また、全開状態から吸込流量が増加しても直ちに閉側に制御せず、260(t/h)まで全開状態のままとし、それ以上の値で閉側に制御し、340(t/h)で全閉状態まで制御する。その後は全閉状態のままとし、290(t/h)以下の吸込流量となると、上記の開閉制御を繰り返す。このような制御を行うことにより、タービン駆動給水ポンプ2の給水制御に外乱を与えることがなく、安定したタービン駆動給水ポンプ2の給水制御を行うことができる。
Next, opening control with hysteresis for the recirculation valve 4 of the recirculation valve control means 101 will be described.
FIG. 3 is an explanatory diagram showing the relationship between the suction flow rate and the opening degree of the recirculation valve 4.
As shown in the figure, when the suction flow rate is 290 (t / h) or less, the recirculation valve 4 is opened and fully opened at 200 (t / h) or more. In addition, even if the suction flow rate increases from the fully open state, it is not immediately controlled to the closed side, but remains in the fully open state until 260 (t / h), and is controlled to a closed side with a value higher than that, 340 (t / h) Control until fully closed. Thereafter, the fully closed state is maintained, and when the suction flow rate is 290 (t / h) or less, the above opening / closing control is repeated. By performing such control, it is possible to perform stable water supply control of the turbine-driven water supply pump 2 without causing disturbance to the water supply control of the turbine-driven water supply pump 2.

このような再循環弁制御手段101の制御により、吸込流量を小さくしても、再循環流量を多くすることなくタービン駆動給水ポンプ2の運転が可能となることから、タービン駆動給水ポンプ2の過負荷を防止することができると共に、ヒステリシス付き制御により、安定した給水制御を行うことができる。   By controlling the recirculation valve control means 101 as described above, even if the suction flow rate is reduced, the turbine-driven feed water pump 2 can be operated without increasing the recirculation flow rate. While being able to prevent a load, stable water supply control can be performed by control with hysteresis.

次に、給水制御手段102の動作について説明する。
給水制御手段102は、低負荷帯での流量制御として、給水バイパス弁7の制御により、タービン駆動給水ポンプ2から高圧ヒータ8に至る給水路の流量制御を行い、かつ、給水バイパス弁7の差圧制御をタービン駆動給水ポンプ2の回転数によって制御する。即ち、給水制御手段102は、低レンジ給水流量計17で計測された流量に基づいて給水バイパス弁7を開閉制御することによって、給水バイパス弁7を流れる流量を所望する値に制御すると共に、流量変化によって、給水バイパス弁7の入口側と出口側の差圧が変化した場合、その差圧に応じてタービン駆動給水ポンプ2の回転数を制御する。
Next, the operation of the water supply control means 102 will be described.
The water supply control means 102 controls the flow rate of the water supply path from the turbine-driven water supply pump 2 to the high-pressure heater 8 by the control of the water supply bypass valve 7 as the flow control in the low load zone, and the difference between the water supply bypass valve 7 The pressure control is controlled by the rotational speed of the turbine-driven feed water pump 2. That is, the water supply control means 102 controls the flow rate through the feed water bypass valve 7 to a desired value by controlling the flow rate of the feed water bypass valve 7 based on the flow rate measured by the low range feed water flow meter 17. When the differential pressure between the inlet side and the outlet side of the feed water bypass valve 7 changes due to the change, the rotational speed of the turbine-driven feed water pump 2 is controlled according to the differential pressure.

このように、給水制御手段102は、低負荷帯では、給水弁6を全閉状態に制御し、給水バイパス弁7の開度制御とタービン駆動給水ポンプ2の回転数制御によって流量制御を行う。また、所定の値以上の負荷帯では給水弁6を開状態、給水バイパス弁7を閉状態に制御して、高レンジ給水流量計18からの流量計測値に基づいてタービン駆動給水ポンプ2の回転数制御を行って流量制御を行う。   Thus, the water supply control means 102 controls the water supply valve 6 in a fully closed state in the low load zone, and performs flow rate control by controlling the opening degree of the water supply bypass valve 7 and the rotational speed of the turbine-driven water supply pump 2. In addition, in a load range of a predetermined value or more, the feed water valve 6 is controlled to be opened and the feed water bypass valve 7 is closed to rotate the turbine-driven feed pump 2 based on the flow rate measurement value from the high range feed water flow meter 18. Number control is performed to control the flow rate.

更に、タービン駆動給水ポンプ2からの吐出流量に応じて、給水バイパス弁7の開閉制御量を変化させる。即ち、吐出流量が小さい場合は給水バイパス弁7が大きく動くよう制御し、吐出流量が大きい場合は給水バイパス弁7が小さく動くよう制御する。つまり、タービン駆動給水ポンプ2の吐出流量が小さい場合は給水バイパス弁7の感度が高く、吐出流量が大きい場合は給水バイパス弁7の感度が低くなるよう給水バイパス弁7の感度補正を行うのと同等の制御を行うものである。   Furthermore, the open / close control amount of the feed water bypass valve 7 is changed according to the discharge flow rate from the turbine-driven feed water pump 2. That is, when the discharge flow rate is small, the feed water bypass valve 7 is controlled to move greatly, and when the discharge flow rate is large, the feed water bypass valve 7 is controlled to move small. That is, when the discharge flow rate of the turbine-driven feed water pump 2 is small, the sensitivity of the feed water bypass valve 7 is high, and when the discharge flow rate is large, the sensitivity correction of the feed water bypass valve 7 is performed so that the sensitivity of the feed water bypass valve 7 is low. Equivalent control is performed.

このような給水バイパス弁7の開閉制御とタービン駆動給水ポンプ2の回転数の制御とを行うことにより、ポンプの特性が良好な領域での制御が行え、その結果、流量が小さい値であっても、安定してその値に制御することができる。   By controlling the opening / closing of the feed water bypass valve 7 and the rotation speed of the turbine-driven feed water pump 2 in this way, it is possible to perform control in a region where the pump characteristics are good, and as a result, the flow rate is a small value. Can be stably controlled to that value.

次に、主蒸気圧力制御手段103の動作について説明する。
低負荷運転時では、タービン駆動給水ポンプ2の駆動蒸気は主蒸気から抽気されるため、ボイラ、ガバナ15、タービン駆動給水ポンプ2といったループが形成される。また、低負荷運転時では、ボイラ絞り弁バイパス弁13およびガバナ15の開閉動作と、実際の蒸気圧力との間には制御遅れが大きくなる。このような理由から、低負荷運転では、定格運転時と同じ制御を行った場合、タービン駆動給水ポンプ2と、ボイラ絞り弁バイパス弁13やガバナ15の制御によって相互干渉が発生し易くなる。
Next, the operation of the main steam pressure control means 103 will be described.
During low-load operation, the driving steam of the turbine-driven feed water pump 2 is extracted from the main steam, so that a loop such as the boiler, the governor 15, and the turbine-driven feed water pump 2 is formed. Further, during low-load operation, a control delay increases between the opening / closing operation of the boiler throttle valve bypass valve 13 and the governor 15 and the actual steam pressure. For these reasons, in the low-load operation, when the same control as that during the rated operation is performed, mutual interference is likely to occur due to the control of the turbine-driven feed water pump 2, the boiler throttle valve bypass valve 13, and the governor 15.

そこで、本実施の形態では、主蒸気圧力制御手段103は、低負荷帯では、ボイラ絞り弁バイパス弁13について、目標とする制御値に対する偏差の不感帯を設け、この不感帯の範囲では、ボイラ絞り弁バイパス弁13の開閉動作を行わないよう制御する。尚、低負荷運転時では、ボイラ絞り弁12は全閉状態に制御され、ボイラ絞り弁バイパス弁13の開度のみが制御される。また、主蒸気圧力制御手段103は、ガバナ15の感度を負荷に応じて変化させる。即ち、負荷が低くなればなるほど、感度が低くなるよう設定する。これは、低負荷運転時では、プラント全体の制御の時定数が大きくなるため、この時定数に対応させてゆっくりとした制御を行うようにするためである。   Therefore, in the present embodiment, the main steam pressure control means 103 provides a dead zone of deviation with respect to the target control value for the boiler throttle valve bypass valve 13 in the low load zone, and the boiler throttle valve in this dead zone range. Control is performed so as not to open and close the bypass valve 13. In the low load operation, the boiler throttle valve 12 is controlled to be fully closed, and only the opening degree of the boiler throttle valve bypass valve 13 is controlled. Moreover, the main steam pressure control means 103 changes the sensitivity of the governor 15 according to the load. That is, the sensitivity is set to be lower as the load is lower. This is because during the low-load operation, the time constant of the control of the entire plant becomes large, so that slow control is performed corresponding to this time constant.

このような制御を行うことにより、低負荷運転時におけるタービン駆動給水ポンプ2とボイラ絞り弁バイパス弁13とガバナ15との相互干渉を回避することができ、低負荷運転時においても安定して流量制御を行うことができる。
尚、上記の不感帯については、固定した値の不感帯とするのではなく、負荷が低くなればなるほど、不感帯の範囲が大きくなるよう設定してもよい。
By performing such control, mutual interference among the turbine-driven feed water pump 2, the boiler throttle valve bypass valve 13 and the governor 15 during low load operation can be avoided, and the flow rate can be stabilized even during low load operation. Control can be performed.
Note that the dead zone described above is not a fixed dead zone, but may be set such that the range of the dead zone increases as the load decreases.

次に、給水ポンプ保護手段104の動作について説明する。
給水ポンプ保護手段104は、再循環弁4が所定の開度になってもタービン駆動給水ポンプ2の吐出流量が所定の値に達しない場合、タービン駆動給水ポンプ2を保護するため、タービン駆動給水ポンプ2を停止させるよう制御する。ここで、保護設定値104aは、再循環弁4の開度とタービン駆動給水ポンプ2の吸込流量との関係によって定められた設定値である。即ち、本実施の形態では、タービン駆動給水ポンプの吸込流量が従来よりも小さい値まで制御されるため、このような低流量で給水ポンプ保護手段104が誤動作しないよう、再循環弁4の開度に対応したタービン駆動給水ポンプ2の最低流量の値に基づいて保護設定値104aが設定されている。本実施の形態では、このような保護設定値104aを用いることにより、給水ポンプ保護手段104は、再循環弁制御手段101による再循環弁4の制御に対応したタービン駆動給水ポンプ2の保護動作を行うことができる。
Next, the operation of the feed pump protection means 104 will be described.
The feed water pump protection means 104 protects the turbine drive feed water pump 2 in order to protect the turbine drive feed water pump 2 when the discharge flow rate of the turbine drive feed water pump 2 does not reach a prescribed value even when the recirculation valve 4 reaches a predetermined opening degree. Control is performed to stop the pump 2. Here, the protection set value 104a is a set value determined by the relationship between the opening degree of the recirculation valve 4 and the suction flow rate of the turbine-driven feed water pump 2. That is, in this embodiment, since the suction flow rate of the turbine-driven feed water pump is controlled to a value smaller than the conventional value, the opening degree of the recirculation valve 4 is prevented so that the feed water pump protection means 104 does not malfunction at such a low flow rate. The protection set value 104a is set based on the value of the minimum flow rate of the turbine-driven feed water pump 2 corresponding to the above. In the present embodiment, by using such a protection set value 104a, the feed water pump protection means 104 performs the protection operation of the turbine driven feed water pump 2 corresponding to the control of the recirculation valve 4 by the recirculation valve control means 101. It can be carried out.

尚、上記実施の形態では、給水弁の構成として給水弁6と給水バイパス弁7とを有し、低負荷帯では、給水バイパス弁7のみを制御する構成について説明したが、このような構成以外にも、例えば、給水弁6が常時開状態に設定され、タービン駆動給水ポンプ2の回転数制御によって流量制御が行われるような汽力発電設備であっても、本発明は適用可能である。即ち、この場合、給水制御手段102は、上述した所定の値以上の負荷帯における流量制御と同様に、給水弁6を一定開度とし、かつ、給水バイパス弁7を閉状態に制御して、タービン駆動給水ポンプ2の回転数を制御することで流量制御を行う。   In the above embodiment, the structure of the water supply valve has the water supply valve 6 and the water supply bypass valve 7, and the structure for controlling only the water supply bypass valve 7 in the low load zone has been described. In addition, for example, the present invention can be applied to a steam power generation facility in which the water supply valve 6 is set in a normally open state and the flow rate is controlled by controlling the rotational speed of the turbine-driven water supply pump 2. That is, in this case, the water supply control means 102 controls the water supply valve 6 to have a constant opening and the water supply bypass valve 7 to be in a closed state, similarly to the flow rate control in the load band above the predetermined value. The flow rate is controlled by controlling the rotation speed of the turbine-driven feed water pump 2.

この発明の実施の形態1による汽力発電設備の制御装置を示す構成図である。It is a block diagram which shows the control apparatus of the steam power generation equipment by Embodiment 1 of this invention. この発明の実施の形態1における再循環弁の開度制御を示す説明図である。It is explanatory drawing which shows the opening degree control of the recirculation valve in Embodiment 1 of this invention. この発明の実施の形態1における吸込流量と再循環弁の開度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the suction flow volume and the opening degree of a recirculation valve in Embodiment 1 of this invention.

符号の説明Explanation of symbols

2 タービン駆動給水ポンプ
4 再循環弁
6 第1の給水弁
7 第2の給水弁
12 第1のボイラ絞り弁
13 第2のボイラ絞り弁
15 ガバナ
100 制御装置
101 再循環弁制御手段
102 給水制御手段
103 主蒸気圧力制御手段
104 給水ポンプ保護手段
104a 保護設定値
2 Turbine-driven feed water pump 4 Recirculation valve 6 First feed valve 7 Second feed valve 12 First boiler throttle valve 13 Second boiler throttle valve 15 Governor 100 Control device 101 Recirculation valve control means 102 Feed water control means 103 Main steam pressure control means 104 Water supply pump protection means 104a Protection set value

Claims (5)

主給水を行うタービン駆動給水ポンプと、当該タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、前記タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを備えた汽力発電設備の制御を行う汽力発電設備の制御装置であって、
前記再循環弁の開度を前記タービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、当該開度制御をヒステリシス付き制御とする再循環弁制御手段と、
前記給水弁の開度を一定として、前記タービン駆動給水ポンプの回転数を制御することで、主給水の流量制御を行う給水制御手段と、
所定の負荷以下の負荷運転時では、前記ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、前記ガバナの感度を負荷の値に応じて変化させた制御を行う主蒸気圧力制御手段とを備えた汽力発電設備の制御装置。
A turbine-driven feed water pump for performing main feed water, a recirculation valve for recirculating water from the discharge side of the turbine-driven feed water pump to the suction side, and a flow rate of the main feed water provided on the discharge side of the turbine-driven feed water pump Of a steam power generation facility for controlling a steam power generation facility having a water supply valve for controlling the pressure, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam. A control device,
Recirculation valve control means for controlling the opening degree of the recirculation valve in correspondence with the suction flow rate and discharge pressure of the turbine-driven feed water pump, and making the opening degree control control with hysteresis;
Water supply control means for controlling the flow rate of the main water supply by controlling the rotation speed of the turbine-driven water supply pump with the opening of the water supply valve being constant,
During load operation below a predetermined load, the opening of the boiler throttle valve is controlled by providing a dead band of deviation with respect to the target control value, and the sensitivity of the governor is changed according to the load value. A control device for a steam power generation facility comprising main steam pressure control means for performing
主給水を行うタービン駆動給水ポンプと、当該タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、前記タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを備えた汽力発電設備の制御を行う汽力発電設備の制御装置であって、
前記再循環弁の開度を前記タービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、当該開度制御をヒステリシス付き制御とする再循環弁制御手段と、
前記給水弁の開度制御によって当該給水弁を流れる流量を制御し、かつ、当該給水弁の入口側と出口側の差圧を前記タービン駆動給水ポンプの回転数で制御することで、主給水の流量制御を行うと共に、前記タービン駆動給水ポンプの吐出流量に対応して前記給水弁の感度補正を行う給水制御手段と、
所定の負荷以下の負荷運転時では、前記ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、前記ガバナの感度を負荷の値に応じて変化させた制御を行う主蒸気圧力制御手段とを備えた汽力発電設備の制御装置。
A turbine-driven feed water pump for performing main feed water, a recirculation valve for recirculating water from the discharge side of the turbine-driven feed water pump to the suction side, and a flow rate of the main feed water provided on the discharge side of the turbine-driven feed water pump Of a steam power generation facility for controlling a steam power generation facility having a water supply valve for controlling the pressure, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam. A control device,
Recirculation valve control means for controlling the opening degree of the recirculation valve in correspondence with the suction flow rate and discharge pressure of the turbine-driven feed water pump, and making the opening degree control control with hysteresis;
By controlling the flow rate of the water supply valve by controlling the opening of the water supply valve, and controlling the differential pressure between the inlet side and the outlet side of the water supply valve by the number of rotations of the turbine-driven water supply pump, Water supply control means for performing flow rate control and correcting sensitivity of the water supply valve corresponding to the discharge flow rate of the turbine-driven water supply pump;
During load operation below a predetermined load, the opening of the boiler throttle valve is controlled by providing a dead band of deviation with respect to the target control value, and the sensitivity of the governor is changed according to the load value. A control device for a steam power generation facility comprising main steam pressure control means for performing
再循環弁制御手段による再循環弁の開度制御に対応した保護設定値に基づいて、タービン駆動給水ポンプの保護を行う給水ポンプ保護手段を備えたことを特徴とする請求項1記載の汽力発電設備の制御装置。   2. The steam power generation according to claim 1, further comprising a feed water pump protection means for protecting the turbine-driven feed water pump based on a protection set value corresponding to the opening degree control of the recirculation valve by the recirculation valve control means. Equipment control device. 主給水を行うタービン駆動給水ポンプと、当該タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、前記タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを制御する汽力発電設備の制御方法であって、
前記再循環弁の開度を前記タービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、当該開度制御をヒステリシス付き制御とし、
前記給水弁の開度を一定として、前記タービン駆動給水ポンプの回転数を制御することで、主給水の流量制御を行い、
所定の負荷以下の負荷運転時では、前記ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、前記ガバナの感度を負荷の値に応じて変化させた制御を行うことを特徴とする汽力発電設備の制御方法。
A turbine-driven feed water pump for performing main feed water, a recirculation valve for recirculating water from the discharge side of the turbine-driven feed water pump to the suction side, and a flow rate of the main feed water provided on the discharge side of the turbine-driven feed water pump A control method for a steam power generation facility for controlling a water supply valve for controlling the pressure, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam,
While controlling the opening degree of the recirculation valve corresponding to the suction flow rate and the discharge pressure of the turbine-driven feed water pump, the opening degree control is a control with hysteresis,
The flow rate control of the main feed water is performed by controlling the rotation speed of the turbine-driven feed water pump with the opening of the feed water valve being constant.
During load operation below a predetermined load, the opening of the boiler throttle valve is controlled by providing a dead band of deviation with respect to the target control value, and the sensitivity of the governor is changed according to the load value. The control method of the steam power generation equipment characterized by performing.
主給水を行うタービン駆動給水ポンプと、当該タービン駆動給水ポンプの吐出側から吸込側に水を再循環させるための再循環弁と、前記タービン駆動給水ポンプの吐出側に設けられ、主給水の流量を制御するための給水弁と、ボイラの水冷壁の圧力制御を行うためのボイラ絞り弁と、主蒸気の圧力制御を行うためのガバナとを制御する汽力発電設備の制御方法であって、
前記再循環弁の開度を前記タービン駆動給水ポンプの吸込流量と吐出圧力とに対応させて制御すると共に、当該開度制御をヒステリシス付き制御とし、
前記給水弁の開度制御によって当該給水弁を流れる流量を制御し、かつ、当該給水弁の入口側と出口側の差圧を前記タービン駆動給水ポンプの回転数で制御することで、主給水の流量制御を行うと共に、前記タービン駆動給水ポンプの吐出流量に対応して前記給水弁の感度補正を行い、
所定の負荷以下の負荷運転時では、前記ボイラ絞り弁の開度を、目標とする制御値に対する偏差の不感帯を設けて制御すると共に、前記ガバナの感度を負荷の値に応じて変化させた制御を行うことを特徴とする汽力発電設備の制御方法。
A turbine-driven feed water pump for performing main feed water, a recirculation valve for recirculating water from the discharge side of the turbine-driven feed water pump to the suction side, and a flow rate of the main feed water provided on the discharge side of the turbine-driven feed water pump A control method for a steam power generation facility for controlling a water supply valve for controlling the pressure, a boiler throttle valve for controlling the pressure of the water cooling wall of the boiler, and a governor for controlling the pressure of the main steam,
While controlling the opening degree of the recirculation valve corresponding to the suction flow rate and the discharge pressure of the turbine-driven feed water pump, the opening degree control is a control with hysteresis,
By controlling the flow rate of the water supply valve by controlling the opening of the water supply valve, and controlling the differential pressure between the inlet side and the outlet side of the water supply valve by the number of rotations of the turbine-driven water supply pump, While performing flow rate control, performing sensitivity correction of the water supply valve corresponding to the discharge flow rate of the turbine-driven water supply pump,
During load operation below a predetermined load, the opening of the boiler throttle valve is controlled by providing a dead band of deviation with respect to the target control value, and the sensitivity of the governor is changed according to the load value. The control method of the steam power generation equipment characterized by performing.
JP2006098567A 2006-03-31 2006-03-31 Control apparatus and control method for steam power plant Expired - Fee Related JP4670707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098567A JP4670707B2 (en) 2006-03-31 2006-03-31 Control apparatus and control method for steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098567A JP4670707B2 (en) 2006-03-31 2006-03-31 Control apparatus and control method for steam power plant

Publications (2)

Publication Number Publication Date
JP2007271189A JP2007271189A (en) 2007-10-18
JP4670707B2 true JP4670707B2 (en) 2011-04-13

Family

ID=38674178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098567A Expired - Fee Related JP4670707B2 (en) 2006-03-31 2006-03-31 Control apparatus and control method for steam power plant

Country Status (1)

Country Link
JP (1) JP4670707B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320013B2 (en) * 2008-10-16 2013-10-23 三菱重工業株式会社 Boiler unit and power generation system
KR101253750B1 (en) * 2011-06-17 2013-04-12 한국전력기술 주식회사 An apparatus controlling extraction steam of a top heater to improve speed regulation rate of power plant
CN113324600B (en) * 2021-04-21 2022-09-20 广西电网有限责任公司电力科学研究院 Method for testing bypass capacity of FCB functional thermal power generating unit
CN114233407B (en) * 2021-12-02 2023-11-24 中国船舶重工集团公司第七0三研究所 Interlocking control method for water supply electric valve and turbine rotating speed
CN114543072B (en) * 2022-02-14 2023-08-29 上海发电设备成套设计研究院有限责任公司 Self-treatment device system and method for water impact of water supply pipeline of thermal power generating unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140003A (en) * 1978-04-21 1979-10-30 Hitachi Ltd Method of controlling feed water pump recirculation in transformer driving thermal power plant
JPS553532A (en) * 1978-06-23 1980-01-11 Hitachi Ltd Method of controlling flow rate of feed water for boiler
JPS5520320A (en) * 1978-07-27 1980-02-13 Tokyo Shibaura Electric Co Apparatus for controlling recirculating amount of feed water pump
JPS6277502A (en) * 1985-10-01 1987-04-09 三菱重工業株式会社 Method of controlling pressure of water-wall outlet for boiler
JPS63159603U (en) * 1987-04-03 1988-10-19
JPH04103902A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Method and device for controlling feedwater to boiler
JPH0913908A (en) * 1995-06-29 1997-01-14 Mitsubishi Heavy Ind Ltd Turbine control device
JP2005291113A (en) * 2004-03-31 2005-10-20 Toshiba Corp Thermal power generation plant and method for operating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140003A (en) * 1978-04-21 1979-10-30 Hitachi Ltd Method of controlling feed water pump recirculation in transformer driving thermal power plant
JPS553532A (en) * 1978-06-23 1980-01-11 Hitachi Ltd Method of controlling flow rate of feed water for boiler
JPS5520320A (en) * 1978-07-27 1980-02-13 Tokyo Shibaura Electric Co Apparatus for controlling recirculating amount of feed water pump
JPS6277502A (en) * 1985-10-01 1987-04-09 三菱重工業株式会社 Method of controlling pressure of water-wall outlet for boiler
JPS63159603U (en) * 1987-04-03 1988-10-19
JPH04103902A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Method and device for controlling feedwater to boiler
JPH0913908A (en) * 1995-06-29 1997-01-14 Mitsubishi Heavy Ind Ltd Turbine control device
JP2005291113A (en) * 2004-03-31 2005-10-20 Toshiba Corp Thermal power generation plant and method for operating the same

Also Published As

Publication number Publication date
JP2007271189A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US8739509B2 (en) Single shaft combined cycle power plant start-up method and single shaft combined cycle power plant
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JP4670707B2 (en) Control apparatus and control method for steam power plant
JP4526558B2 (en) Steam temperature control method and control device for marine boiler
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP4929226B2 (en) Gas turbine control device and method for single-shaft combined cycle plant
JP2012184735A (en) Composite cycle plant
JP6071421B2 (en) Combined cycle plant, method for stopping the same, and control device therefor
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JP2010196473A (en) Electric power plant water supply device, and method for controlling the same
JP5276973B2 (en) Once-through exhaust heat recovery boiler
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP2918743B2 (en) Steam cycle controller
WO2018131654A1 (en) Control system, gas turbine, power generation plant, and method of controlling fuel temperature
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3285946B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2686259B2 (en) Operating method of once-through boiler
US11892160B1 (en) System to achieve full combustion turbine load in HRSG limited combined cycle plants
JP6317652B2 (en) Plant control device and combined cycle power plant
JP5289068B2 (en) Steam turbine power plant
JP7257203B2 (en) Turbine speed control device, power generation equipment, turbine speed control method and program
JP2013142357A (en) Combined cycle power generation plant
JP2000337603A (en) Water supply rate control apparatus for heat exchanger

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees