WO2012039225A1 - Rankine cycle device - Google Patents

Rankine cycle device Download PDF

Info

Publication number
WO2012039225A1
WO2012039225A1 PCT/JP2011/068981 JP2011068981W WO2012039225A1 WO 2012039225 A1 WO2012039225 A1 WO 2012039225A1 JP 2011068981 W JP2011068981 W JP 2011068981W WO 2012039225 A1 WO2012039225 A1 WO 2012039225A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
working fluid
expander
heat exchanger
boiler
Prior art date
Application number
PCT/JP2011/068981
Other languages
French (fr)
Japanese (ja)
Inventor
村上 和朗
井口 雅夫
英文 森
榎島 史修
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2012039225A1 publication Critical patent/WO2012039225A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a Rankine cycle device including a working fluid circuit in which a pump, a heat exchanger, an expander, and a condenser are sequentially connected.
  • the Rankine cycle apparatus disclosed in Patent Document 1 can be cited.
  • the Rankine cycle apparatus of Patent Document 1 is configured by connecting a pressure feed pump, a regenerative heat exchanger, an evaporator, an expander, and a condenser in order through a flow path.
  • the working fluid pumped from the pump is heated by the regenerative heat exchanger and then further heated by the evaporator.
  • the amount of heat (the amount of heat absorbed by the working fluid) of the working fluid immediately after passing through the evaporator and before being sucked into the expander may be excessive.
  • the heat quantity of the working fluid at the outlet of the expander is excessive and exceeds the heat dissipation capacity of the condenser, the heat of the working fluid cannot be thrown away by the condenser and it operates in the condenser. Cavitation occurs at the inlet of the pressure pump because the fluid is mixed with gas and liquid. In order to prevent the occurrence of cavitation, the heat dissipation capability of the condenser must be increased.
  • An object of the present invention is to provide a Rankine cycle device capable of limiting the amount of heat received by the working fluid between the outlet of the pump and the inlet of the expander.
  • a Rankine cycle device including a waste heat source, a working fluid circuit, and a limiting unit.
  • the working fluid circuit is configured by sequentially connecting a pump, a heat exchanger, an expander, and a condenser.
  • the pump pumps the working fluid.
  • the heat exchanger causes the working fluid pumped from the pump to exchange heat with waste heat from the waste heat source.
  • the expander expands the working fluid heat-exchanged by the heat exchanger and outputs mechanical energy.
  • the condenser condenses the working fluid expanded by the expander.
  • the restricting unit is configured to provide the working fluid between the outlet of the pump and the inlet of the expander on the working fluid circuit based on temperature information detected at the inlet of the pump or the inlet of the expander. Limit the amount of heat received.
  • the amount of heat (amount of heat absorbed) received by the working fluid between the outlet of the pump and the inlet of the expander can be limited, and is sucked into the expander. It is possible to prevent an excessive amount of heat from the working fluid before the operation. And since a part of heat amount which a working fluid has is taken out as mechanical energy with an expander, the heat amount which a working fluid has at an expander exit will decrease from the heat amount which it had at an expander entrance.
  • the Rankine cycle apparatus further includes a waste heat path through which a waste heat medium flows. Waste heat from the waste heat source is transferred to the waste heat medium. In the heat exchanger, heat is exchanged between the waste heat medium and the working fluid.
  • the restriction unit is a heat exchanger bypass passage provided so that at least a part of the waste heat medium flowing through the waste heat path bypasses the heat exchanger.
  • the waste heat path is a cooling medium circulation circuit that circulates a cooling medium that cools the waste heat source.
  • the waste heat medium is the cooling medium.
  • a part of the cooling medium that has received heat by heat exchange with the waste heat source can be bypassed by the heat exchanger bypass passage. For this reason, the amount of the cooling medium that can exchange heat with the working fluid in the heat exchanger can be reduced, and the amount of heat received by the working fluid in the heat exchanger can be limited (reduced).
  • the restriction portion is a heat exchanger bypass passage provided so that at least a part of the working fluid flowing in the working fluid circuit bypasses the heat exchanger.
  • a part of the working fluid circulating in the working fluid circuit is bypassed by the heat exchanger by the heat exchanger bypass passage, thereby reducing the amount of the working fluid that can be heat exchanged by the heat exchanger, and the working fluid.
  • the amount of heat received from the heat exchanger can be reduced.
  • the heat exchanger Adjust the opening of the bypass passage.
  • the heat exchanger has a first heat exchanger that exchanges heat with the working fluid pumped by the pump, and a second heat exchange that exchanges heat with the working fluid that has exchanged heat with the first heat exchanger.
  • the restriction portion is a throttle whose opening degree can be adjusted provided in a portion of the working fluid circuit downstream of the first heat exchanger and upstream of the second heat exchanger.
  • the opening degree of the throttle is adjusted so that the pressure of the working fluid that has passed through the first heat exchanger is higher than the saturation pressure of the working fluid at the waste heat medium temperature of the first heat exchanger. To do.
  • the amount of heat that can be received by the working fluid in the first heat exchanger can be reduced by increasing the pressure of the working fluid at the pump outlet by the throttle.
  • the amount of heat of the working fluid that has passed through the second heat exchanger can be reduced.
  • the opening of the throttle is preferably determined. Adjust the degree.
  • the pump is driven according to the rotational speed of an external drive source.
  • the amount of heat (amount of heat absorbed) received by the working fluid between the outlet of the pump and the inlet of the expander can be limited, and is sucked into the expander.
  • the temperature of the working fluid before the operation can be lowered. Therefore, in order to lower the suction temperature at the inlet of the expander, it is not necessary to increase the flow rate of the working fluid autonomously by increasing the rotation speed of the pump, and the Rankine cycle device uses a pump that cannot adjust the flow rate autonomously. Even so, the suction temperature of the expander can be lowered.
  • (A) is a schematic diagram which shows the Rankine cycle apparatus which concerns on the 1st Embodiment of this invention.
  • (B) is a figure which shows the change of the enthalpy and pressure in a Rankine cycle apparatus.
  • (A) is a schematic diagram which shows the Rankine cycle apparatus which concerns on 2nd Embodiment.
  • (B) is a figure which shows the change of the enthalpy and pressure in a Rankine cycle apparatus.
  • (A) is a schematic diagram which shows the Rankine-cycle apparatus which concerns on 3rd Embodiment.
  • (B) is a figure which shows the change of the enthalpy and pressure in the conventional Rankine cycle apparatus.
  • (C) is a figure which shows the change of the enthalpy and pressure in the Rankine cycle apparatus of 3rd Embodiment.
  • Rankine cycle apparatus 10 connects the expander 20, the condenser 30, the pump 40, and the boiler 50 as a heat exchanger by the flow path 11, 14, 15, 16 sequentially.
  • a refrigerant circulation circuit 12 is provided as a working fluid circuit. In the refrigerant circulation circuit 12, the refrigerant circulates as a working fluid. In the refrigerant circulation circuit 12, the refrigerant flows through the refrigerant circulation circuit 12 along the arrangement order of the expander 20, the condenser 30, the pump 40, and the boiler 50. The direction in which the refrigerant flows is the refrigerant circulation direction.
  • a drive shaft (not shown) is operatively connected to an external drive source Fb via a pulley Fa.
  • the driving force of the external drive source Fb is directly transmitted to the pump 40 via the pulley Fa, and the pump 40 is always rotated when the external drive source Fb is rotated. For this reason, the pump 40 is driven according to the rotational speed of the external drive source Fb, and the pump 40 itself cannot adjust the rotational speed, so that the flow rate cannot be adjusted autonomously.
  • a boiler 50 is connected to a discharge port (not shown) that is an outlet of the pump 40 via the first flow path 11.
  • the boiler 50 is provided on a cooling medium circulation circuit 52 as a waste heat path connected to the waste heat source 51. Waste heat from the waste heat source 51 is transmitted (heat exchanged) to a cooling medium (cooling water in this embodiment) as a waste heat medium circulating in the cooling medium circulation circuit 52, and by the heat transfer (heat exchange) The waste heat source 51 is cooled. Then, the cooling water heated by receiving the waste heat from the waste heat source 51 circulates in the cooling medium circulation circuit 52 along the direction indicated by the arrow Y in FIG. The refrigerant discharged from the pump 40 is heated by heat exchange in the boiler 50 with the cooling water to which the waste heat is transmitted from the waste heat source 51.
  • a suction port (not shown) that is the inlet of the expander 20 is connected to the boiler 50 via the second flow path 14, and the refrigerant heated by the boiler 50 passes through the second flow path 14 and the suction port.
  • coolant has was taken out as mechanical energy, and it temperature-falls and pressure-reduced is the 3rd flow path 15 and the suction port (not shown) from the exit of the expander 20. It is sucked into the condenser 30 via the.
  • a suction port (not shown) that is an inlet of the pump 40 is connected to the discharge port (not shown) of the condenser 30 via the fourth flow path 16.
  • the refrigerant is condensed to change into a liquid refrigerant, and the liquid refrigerant is sucked into the pump 40 through the fourth flow path 16 and the suction port.
  • a position downstream from the boiler 50 and upstream from the waste heat source 51 and a position downstream from the waste heat source 51 and upstream from the boiler 50 are a heat exchanger bypass passage 53 as a limiting unit. Connected by. On the heat exchanger bypass passage 53, an opening / closing valve 54 is provided as a restricting portion, and the opening degree of the heat exchanger bypass passage 53 can be adjusted by the opening / closing valve 54.
  • the on-off valve 54 is in the closed state, all of the cooling water heat exchanged by the waste heat source 51 flows toward the boiler 50.
  • a temperature sensor S is provided on the flow path 14 located downstream of the boiler 50 and upstream of the expander 20 (near the inlet) in the refrigerant circulation direction in the refrigerant circulation circuit 12.
  • the temperature sensor S detects the suction temperature at the inlet of the expander 20 and detects the suction temperature as temperature information.
  • the temperature sensor S is signal-connected to the control unit 73. Then, the control unit 73 adjusts the opening degree of the heat exchanger bypass passage 53 by adjusting the opening / closing of the on-off valve 54 based on the temperature information detected by the temperature sensor S.
  • the opening degree adjustment of the on-off valve 54 is performed to limit the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50. This restriction on the amount of heat is performed so that the amount of heat of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capability at the outlet of the condenser 30.
  • the opening degree of the on-off valve 54 is adjusted in order to prevent the gas-liquid mixture state of the refrigerant in the condenser 30 from occurring. As the opening degree of the on-off valve 54 becomes smaller, the flow rate of the cooling water flowing to the boiler 50 increases. Therefore, the amount of heat that can be received by the boiler 50 increases, and the opening degree of the on-off valve 54 becomes larger. Since the flow rate of the cooling water flowing through the boiler 50 decreases, the amount of heat that the refrigerant can receive in the boiler 50 decreases.
  • the control unit 73 opens the on-off valve 54 with respect to temperature information (suction temperature of the expander 20).
  • temperature information suction temperature of the expander 20.
  • a map in which the degrees are associated is stored in advance.
  • the temperature of the refrigerant immediately after passing through the boiler 50 indirectly represents the heat absorption amount of the refrigerant in the boiler 50.
  • the opening degree of the on-off valve 54 is obtained in advance by experiments so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capacity in the condenser 30 with respect to the temperature information.
  • the control unit 73 is signal-connected to the on-off valve 54 so that the opening degree of the on-off valve 54 can be controlled.
  • FIG. 1B shows changes in the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus 10 of the first embodiment.
  • the horizontal axis represents enthalpy
  • the vertical axis represents pressure
  • the curve E represents a saturated liquid line and a saturated vapor line.
  • enthalpy is the amount of internal pressure added to the product of refrigerant pressure and volume
  • the amount of heat entering and exiting the refrigerant is equal to the amount of change in enthalpy under constant pressure conditions.
  • the quantity indicates the amount of change in the heat quantity of the refrigerant.
  • a solid line G1 from the intersection M1 to the intersection M2 represents a condensation stroke by the condenser 30, and a solid line G2 from the intersection M2 to the intersection M3 represents a pumping stroke by the pump 40.
  • a solid line G3 from the intersection M3 to the intersection M4 represents a heating stroke by the boiler 50, and a solid line G4 from the intersection M4 to the intersection M1 represents an expansion stroke by the expander 20.
  • the solid lines G1 to G4 indicate the change in the enthalpy and pressure of the refrigerant in the Rankine cycle device 10 according to the first embodiment.
  • a straight line obtained by combining the two-dot chain line G5 from the intersection point M5 to the intersection point M1 in the two-dot chain line in FIG. 1B and the above-described solid line G1 is a case where the heat exchanger bypass passage 53 and the on-off valve 54 are not provided. Indicates the condensation process. Further, a straight line obtained by combining the two-dot chain line G6 from the intersection point M6 to the intersection point M4 and the above-described solid line G3 indicates a heating stroke when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided.
  • a two-dot chain line G7 from the intersection point M6 to the intersection point M5 indicates an expansion stroke when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided. Further, the amount of enthalpy increase in the boiler 50 in the first embodiment (the length of the solid line G3) is ⁇ h11, and the amount of enthalpy increase in the boiler 50 when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided ( The total length of the solid line G3 and the two-dot chain line G6) is ⁇ h12.
  • the control unit 73 adjusts the opening degree of the on-off valve 54 with reference to a map based on the temperature information detected by the temperature sensor S. That is, the amount of heat absorbed by the boiler 50 becomes excessive, the temperature of the refrigerant before being sucked into the expander 20 is high, and the amount of heat of the refrigerant at the outlet of the expander 20 exceeds the heat dissipation capability of the condenser 30. If so, the controller 73 opens the on-off valve 54 and adjusts its opening.
  • the refrigerant exchanges heat with the cooling water whose amount of heat has decreased.
  • the cooling medium circulation circuit 52 of the waste heat source 51 is provided with a heat exchanger bypass passage 53 for bypassing the boiler 50, and an open / close valve 54 is provided in the heat exchanger bypass passage 53.
  • the opening degree of the heat exchanger bypass passage 53 can be adjusted.
  • the amount of heat that the refrigerant can receive in the boiler 50 can be limited by opening the on-off valve 54 and bypassing the boiler 50 with a part of the cooling water circulating in the cooling medium circulation circuit 52. Therefore, the amount of heat received by the refrigerant between the outlet of the pump 40 and the inlet of the expander 20 can be limited.
  • the Rankine cycle device 10 of the first embodiment by providing the heat exchanger bypass passage 53 and the on-off valve 54, the occurrence of cavitation at the inlet of the pump 40 is prevented, and the pumping capability of the refrigerant by the pump 40 is achieved. A decrease can be prevented.
  • the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50 can be limited.
  • the amount of heat of the refrigerant after passing through the boiler 50 is large and the suction temperature at the inlet of the expander 20 is high, it is conceivable to increase the flow rate by increasing the rotational speed of the pump 40 in order to lower the suction temperature.
  • the rotational speed of the pump 40 cannot be increased and the suction temperature is lowered. I can't.
  • the heat exchanger bypass passage 53 and the on-off valve 54 in the cooling medium circulation circuit 52, it is possible to limit the amount of heat received by the refrigerant in the boiler 50, and the intake of the inlet of the expander 20 The temperature can be lowered. Therefore, the suction temperature of the expander 20 can be lowered even when the pump 40 that cannot autonomously adjust the flow rate is used in the Rankine cycle device 10.
  • the Rankine cycle apparatus 10 is provided only with a restricting portion (a heat exchanger bypass passage 53 and an on-off valve 54) in order to liquefy all the refrigerant in the condenser 30, and the refrigerant in the condenser 30 There is no need to increase the pressure of the expander 20, and there is no decrease in mechanical energy output in the expander 20.
  • a restricting portion a heat exchanger bypass passage 53 and an on-off valve 54
  • the cooling medium circulation circuit 52 is not provided with the heat exchanger bypass passage 53 and the on-off valve 54.
  • a position downstream from the pump 40 and upstream from the boiler 50 and a position downstream from the boiler 50 and upstream from the expander 20 are defined as a restriction unit. It is connected by a boiler bypass passage 55 which is a heat exchanger bypass passage.
  • an opening / closing valve 56 is provided as a restricting portion, and the opening degree of the boiler bypass passage 55 can be adjusted by the opening / closing valve 56.
  • the on-off valve 56 When the on-off valve 56 is in the closed state, the refrigerant pumped from the pump 40 flows toward the boiler 50. On the other hand, when the on-off valve 56 is in the open state, a part of the refrigerant pumped from the pump 40 flows toward the boiler 50, and the remaining refrigerant flows through the boiler bypass passage 55. The refrigerant flowing through the boiler 50 and the refrigerant flowing through the boiler bypass passage 55 are merged in the vicinity of the outlet of the boiler bypass passage 55 and flow toward the expander 20.
  • a superheat degree sensor 57 is provided on the flow path 14 located downstream of the boiler 50 and upstream of the expander 20 (near the inlet) in the refrigerant circulation direction in the refrigerant circulation circuit 12.
  • This superheat degree sensor 57 detects the superheat degree (difference between the temperature of superheated steam and the temperature of saturated steam (boiling point)) at the inlet of the expander 20 as temperature information.
  • the superheat degree sensor 57 is signal-connected to the control unit 73, and the control unit 73 adjusts the opening degree of the on-off valve 56 based on temperature information (superheat degree) from the superheat degree sensor 57. This opening / closing adjustment of the on-off valve 56 is performed to limit the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50.
  • the opening degree of the on-off valve 56 is adjusted based on the temperature information from the superheat degree sensor 57 so that the superheat degree of the refrigerant after passing through the boiler 50 does not exceed a predetermined value. The amount of heat possessed by the refrigerant at the outlet 20 is prevented from exceeding the heat dissipation capability of the condenser 30.
  • the opening degree of the on-off valve 56 increases, the amount of refrigerant flowing through the boiler bypass passage 55 increases and the amount of refrigerant flowing through the boiler 50 decreases, so the amount of heat that can be received by the boiler 50 decreases, and overheating The degree can be reduced.
  • the opening degree of the on-off valve 56 becomes smaller, the amount of refrigerant flowing into the boiler bypass passage 55 decreases and the amount of refrigerant flowing into the boiler 50 increases, so the amount of heat that can be received by the boiler 50 increases, and the degree of superheat Becomes bigger.
  • the controller 73 associates the opening degree of the on-off valve 56 with the temperature information (degree of superheat) so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capability of the condenser 30. Maps are stored in advance.
  • FIG. 2B shows changes in the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus 10 of the second embodiment.
  • the horizontal axis represents enthalpy
  • the vertical axis represents pressure
  • the curve E represents a saturated liquid line and a saturated vapor line.
  • enthalpy is the amount of internal pressure added to the product of refrigerant pressure and volume
  • the amount of heat entering and exiting the refrigerant is equal to the amount of change in enthalpy under constant pressure conditions.
  • the quantity indicates the amount of change in the heat quantity of the refrigerant.
  • a solid line K1 from the intersection H1 to the intersection H2 represents a condensation stroke by the condenser 30, and a solid line K2 from the intersection H2 to the intersection H3 represents a pumping stroke by the pump 40.
  • a solid line K3 from the intersection H3 to the intersection H4 represents a heating stroke by the boiler 50, and a solid line K4 from the intersection H4 to the intersection H1 represents an expansion stroke by the expander 20.
  • the solid lines K1 to K4 indicate changes in the enthalpy and pressure of the refrigerant in the Rankine cycle device 10 according to the second embodiment.
  • the straight line obtained by combining the two-dot chain line K5 from the intersection point H5 to the intersection point H1 in the two-dot chain line in FIG. 2B and the solid line K1 described above is a condensation process when the boiler bypass passage 55 and the on-off valve 56 are not provided.
  • a straight line obtained by combining the two-dot chain line K6 from the intersection H6 to the intersection H4 and the above-described solid line K3 indicates a heating stroke when the boiler bypass passage 55 and the on-off valve 56 are not provided.
  • a two-dot chain line K7 from the intersection H6 to the intersection H5 indicates an expansion stroke when the boiler bypass passage 55 and the on-off valve 56 are not provided.
  • the amount of enthalpy increase in the boiler 50 in the second embodiment (heat absorption amount: length of the solid line K3) is ⁇ h21, and the amount of enthalpy increase in the boiler 50 when the boiler bypass passage 55 and the on-off valve 56 are not provided. (Endothermic amount: the total length of the solid line K3 and the two-dot chain line K6) is ⁇ h22.
  • the control unit 73 adjusts the opening degree of the on-off valve 56 from the map based on the temperature information detected by the superheat degree sensor 57. That is, when the degree of superheat of the refrigerant after passing through the boiler 50 is high (a large amount of heat absorption), and the amount of heat that the refrigerant has at the outlet of the expander 20 after mechanical energy is taken out exceeds the heat dissipation capability of the condenser 30, The control unit 73 opens the on-off valve 56 and adjusts the opening degree.
  • the enthalpy increase amount (heat absorption amount) in the heating stroke is ⁇ h21. It is shown in Therefore, in the Rankine cycle device 10 of the second embodiment, the enthalpy increase amount ⁇ h21 in the heating stroke is smaller than the enthalpy increase amount ⁇ h22 in the heating stroke when the boiler bypass passage 55 and the on-off valve 56 are not provided. It is shown that the endothermic amount in the boiler 50 is decreasing.
  • the temperature of the refrigerant immediately after passing through the boiler 50 is lower than the temperature of the refrigerant immediately after passing through the boiler 50 in a Rankine cycle device in which the boiler bypass passage 55 and the on-off valve 56 are not provided.
  • the refrigerant circulation circuit 12 is provided with a boiler bypass passage 55 for bypassing the boiler 50, and an open / close valve 56 is provided in the boiler bypass passage 55, so that the opening degree of the boiler bypass passage 55 is increased. Made adjustable. Then, by opening the on-off valve 56 and bypassing the boiler 50 with a part of the refrigerant circulating in the refrigerant circulation circuit 12, the amount of heat received by the refrigerant from the boiler 50 can be limited, and the expander is provided from the outlet of the pump 40. It is possible to limit the amount of heat received by the refrigerant up to 20 inlets.
  • the amount of heat (heat absorption amount) of the refrigerant before the expander 20 is sucked can be reduced, and after the mechanical energy is taken out by the expander 20, the amount of heat of the refrigerant at the outlet of the expander 20 is reduced. It is possible to prevent the heat dissipation capacity from being exceeded. As a result, the refrigerant is liquefied by the condenser 30, and the pump 40 can be prevented from being supplied with the refrigerant in a gas-liquid mixed state.
  • the provision of the boiler bypass passage 55 and the on-off valve 56 prevents the pump 40 from generating cavitation and prevents the pump 40 from reducing the pressure of the refrigerant. can do.
  • the intake temperature of the expander 20 can be prevented from becoming excessively high, and an increase in cost due to the use of the heat resistant design of the expander 20 also occurs. Absent.
  • a first heat exchanger is connected to a discharge port (not shown) that is an outlet of the pump 40 via a first flow path 11.
  • a first boiler 64 is connected.
  • the first boiler 64 is provided on a first cooling water circulation path 59 connected to an engine 58 as a waste heat source.
  • a radiator 62 is provided on the first cooling water circulation path 59. Then, the waste heat from the engine 58 is transmitted, and the coolant as a waste heat medium that has cooled the engine 58 circulates through the first coolant circulation path 59 and serves as a heat source for the first boiler 64. Therefore, the refrigerant discharged from the outlet of the pump 40 receives heat from the cooling water by heat exchange with the cooling water in the first boiler 64 and is heated.
  • an exhaust passage 66 for exhaust gas exhaust is connected to the engine 58, and exhaust gas as a waste heat medium to which waste heat from the engine 58 is transmitted flows through the exhaust passage 66. Yes.
  • An exhaust gas heat exchanger 67 is provided on the exhaust passage 66.
  • the exhaust gas heat exchanger 67 is provided on the second cooling water circulation path 68.
  • a second boiler 65 as a second heat exchanger is provided on the second cooling water circulation path 68, and the second boiler 65 is connected to the outlet of the first boiler 64 via the connection flow path 63. ing.
  • the exhaust gas heat exchanger 67 heat exchange is performed between the exhaust gas and the cooling water in the second cooling water circulation path 68. Then, the cooling water heat-exchanged with the waste heat of the exhaust gas is heated and circulated through the second cooling water circulation path 68.
  • the cooling water circulating in the second cooling water circulation path 68 is a heat source for the second boiler 65. In the cooling water that is the heat source in the first boiler 64 and the cooling water that is the heat source in the second boiler 65, the temperature of the cooling water in the second boiler 65 is slightly higher, and the temperature difference is small.
  • a suction port (not shown) that is the inlet of the expander 20 is connected to the outlet of the second boiler 65 via the second flow path 14.
  • a condenser 30 is connected to the expander 20 via a flow path 15, and a pump 40 is connected to the condenser 30 via a flow path 16.
  • a restrictor 69 is provided as a restricting portion on the connection flow path 63 that is downstream from the first boiler 64 and upstream from the second boiler 65.
  • the aperture 69 can be adjusted in opening.
  • the refrigerant introduced into the throttle 69 is expanded and depressurized, and then introduced into the second boiler 65 through the connection channel 63.
  • a temperature sensor 70 is provided on the flow path 14 located downstream from the second boiler 65 and upstream from the expander 20 in the refrigerant circulation direction in the refrigerant circulation circuit 12.
  • the temperature sensor 70 is the temperature of the refrigerant immediately after passing through the second boiler 65, and detects the suction temperature at the inlet of the expander 20.
  • the temperature sensor 70 is signal-connected to the control unit 73. Then, the control unit 73 adjusts the opening degree of the diaphragm 69 based on the temperature information from the temperature sensor 70.
  • control unit 73 opens the throttle 69 with respect to the temperature information (suction temperature of the expander 20).
  • a map in which the degrees are associated is stored in advance.
  • FIG. 3 (b) shows changes in the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus without the throttle 69
  • FIG. 3 (c) shows the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus 10 of the third embodiment. Showing change. 3 (b) and 3 (c), the horizontal axis represents enthalpy, the vertical axis represents pressure, the curve E represents a saturated liquid line and a saturated vapor line, and the curve T represents cooling water. Represents the isotherm.
  • enthalpy is the amount of internal pressure added to the product of refrigerant pressure and volume, and the amount of heat entering and exiting the refrigerant is equal to the amount of change in enthalpy under constant pressure conditions.
  • the quantity indicates the amount of change in the heat quantity of the refrigerant.
  • a two-dot chain line J1 from the intersection point Q1 to the intersection point Q2 represents a condensation stroke by the condenser 30, and a two-dot chain line J2 from the intersection point Q2 to the intersection point Q3 represents a pumping stroke by the pump 40.
  • a two-dot chain line J3 from the intersection point Q3 to the intersection point Q4 is a first heating stroke by the first boiler 64
  • a two-dot chain line J4 from the intersection point Q4 to the intersection point Q5 is a second heating stroke by the second boiler 65, the intersection point from the intersection point Q5.
  • a two-dot chain line J5 up to Q1 represents an expansion stroke by the expander 20.
  • the two-dot chain lines J1 to J5 indicate changes in the enthalpy and pressure of the refrigerant in the Rankine cycle device without the throttle 69.
  • a solid line D1 from the intersection R1 to the intersection R2 represents a condensation stroke by the condenser 30, and a solid line D2 from the intersection R2 to the intersection R3 represents a pressure feed stroke by the pump 40.
  • a solid line D3 from the intersection R3 to the intersection R4 is a first heating stroke by the first boiler 64
  • a solid line D4 from the intersection R4 to the intersection R5 is a decompression stroke by the throttle 69
  • a solid line D5 from the intersection R5 to the intersection R6 is a second line D5.
  • the second heating stroke by the boiler 65, the solid line D6 from the intersection R6 to the intersection R1 represents the expansion stroke by the expander 20.
  • the solid lines D1 to D6 indicate changes in the enthalpy and pressure of the refrigerant in the Rankine cycle device 10 according to the third embodiment.
  • the circuit components other than the throttle 69 are the same as the circuit components of the Rankine cycle device 10 of the third embodiment. These circuit constituent members will be described using the same member numbers as the circuit constituent members in the Rankine cycle apparatus 10 of the third embodiment.
  • the expansion of the pump 40 and the pump 40 is performed such that the refrigerant pressure P1 at the outlet of the pump 40 is lower than the saturation pressure Psat (t11) at t11 which is the refrigerant temperature in the first boiler 64.
  • the capacity ratio of the machine 20 is preset (Formula 1).
  • the refrigerant receives heat from the first boiler 64 by ⁇ h31 and also receives heat from the second boiler 65 by ⁇ h32. Since the refrigerant can receive heat up to a position where the curve T (isothermal line) and the pressure P1 intersect at the maximum, the amount of heat received (heat absorption amount) may be excessive.
  • the temperature of the refrigerant immediately after passing through the first boiler 64 is t21, and the pressure of the refrigerant is P2. Further, as shown in FIG. 3C, the enthalpy increase amount (endothermic amount: length of the solid line D3) in the first boiler 64 is ⁇ h41, and the enthalpy increase amount (endothermic amount: solid line D5) in the second boiler 65. Is set to ⁇ h42.
  • the control unit 73 determines that the endothermic amount is excessive based on the temperature information detected by the temperature sensor 70, the control unit 73 decreases the opening of the throttle 69. That is, the temperature of the refrigerant after passing through the second boiler 65 is high (a large amount of heat absorption), and after the mechanical energy is taken out by the expander 20, the heat quantity of the refrigerant at the outlet of the expander 20 becomes the heat dissipation of the condenser 30. If the control unit 73 determines that the capacity is exceeded, the control unit 73 reduces the opening of the diaphragm 69.
  • the refrigerant pressure P1 in the second boiler 65 does not change. Therefore, when the opening degree of the throttle 69 is reduced, the pressure of the refrigerant upstream of the throttle 69 increases to P2. That is, the opening degree of the throttle 69 is adjusted by the first boiler 64 so that the refrigerant pressure P2 is higher than the saturation pressure Psat (t1) at the temperature t1 of the cooling water (waste heat medium) (Equation 2). .
  • the refrigerant is depressurized by the throttle 69 and receives heat by the second boiler 65 by an enthalpy increase amount ⁇ h42. Since the enthalpy increase amount ⁇ h42 in the second boiler 65 is substantially the same as the enthalpy increase amount ⁇ h32 in the second boiler 65 in the Rankine cycle device without the throttle 69, the amount of heat received in the first boiler 64 is (increase amount). The amount of heat received by the Rankine cycle apparatus 10 provided with the throttle 69 is decreased by the amount of decrease (Equation 4).
  • the amount of heat of the refrigerant immediately after passing through the second boiler 65 is less than the amount of heat of the refrigerant immediately after passing through the second boiler 65 in the Rankine cycle device without the throttle 69.
  • the refrigerant circulation circuit 12 of the Rankine cycle device 10 is provided with the first boiler 64 and the second boiler 65, and is throttled 69 downstream from the first boiler 64 and upstream from the second boiler 65 in the refrigerant circulation direction.
  • the amount of heat received by the refrigerant in the first boiler 64 intersects with the pressure P2 of the refrigerant in the first boiler 64 and the isotherm T by increasing the refrigerant pressure P2 in the first boiler 64 by the throttle 69. It is limited to the position (until it becomes equal to the temperature t1 of the cooling water).
  • the enthalpy increase amount ⁇ h41 in the first boiler 64 is smaller than the enthalpy increase amount ⁇ h31 in the first boiler 64 in the Rankine cycle device without the throttle 69, and the expander 20 is discharged from the pump 40 outlet.
  • the amount of heat received by the refrigerant can be limited up to the entrance (first boiler 64). As a result, it is possible to prevent the amount of heat of the refrigerant at the outlet of the expander 20 from exceeding the heat dissipation capability of the condenser 30.
  • the intake temperature at the inlet of the expander 20 can be prevented from becoming too high, and the cost of adopting the heat resistant design of the expander 20 There is no increase.
  • the waste heat medium is embodied in the cooling water to which the waste heat from the waste heat source 51 is transmitted, and is embodied in the cooling medium circulation circuit 52 in which the cooling water circulates in the waste heat path.
  • the waste heat path is embodied in the exhaust passage 66 connected to the engine 58, and the waste heat medium is embodied in the exhaust gas flowing in the exhaust passage 66.
  • a second boiler 65 is provided on the exhaust passage 66, and the second boiler 65 enables heat exchange between the exhaust passage 66 and the connection flow path 63.
  • a muffler 74 is provided in the exhaust passage 66.
  • the upstream and downstream sides of the second boiler 65 are connected by a heat exchanger bypass passage 75 as a restricting portion.
  • the heat exchanger bypass passage 75 allows the exhaust gas to bypass the second boiler 65 when the exhaust gas flows through the exhaust passage 66.
  • an on-off valve 76 is provided as a limiting portion.
  • the control part 73 adjusts the opening / closing of the on-off valve 76, and adjusts the opening degree of the heat exchanger bypass passage 75.
  • the opening degree of the opening / closing valve 76 becomes smaller, the flow rate of the exhaust gas flowing through the second boiler 65 increases, so the amount of heat that can be received by the refrigerant in the second boiler 65 increases, and the opening degree of the opening / closing valve 76 becomes larger.
  • the opening degree of the on-off valve 76 is controlled by the control unit 73 so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capacity in the condenser 30 with respect to the temperature information.
  • a supercooling degree sensor is provided at the inlet of the pump 40.
  • the degree of supercooling may be detected as temperature information, and the opening degree of the on-off valves 54 and 56 and the throttle 69 may be adjusted based on the degree of supercooling.
  • the temperature sensor S is deleted, and a supercooling degree sensor 71 is provided at a position that becomes the inlet (suction side) of the pump 40 in the refrigerant circulation circuit 12.
  • the supercooling degree sensor 71 is provided and connected to the control unit 73. If the heat absorption amount in the boiler 50 becomes excessive, the degree of supercooling at the inlet of the pump 40 detected by the supercooling degree sensor 71 is less than a predetermined value (for example, 5 ° C. or less, usually 5 to 15 ° C.), the control unit 73 adjusts the opening degree of the on-off valve 54. As a result, the amount of heat received by the refrigerant between the outlet of the pump 40 and the inlet of the expander 20 is limited.
  • a predetermined value for example, 5 ° C. or less, usually 5 to 15 ° C.
  • a superheat degree sensor 57 may be provided instead of the temperature sensor S, and the superheat degree detected by the superheat degree sensor 57 may be used as temperature information.
  • a temperature sensor S may be provided instead of the superheat degree sensor 57, and the temperature detected by the temperature sensor S may be used as temperature information.
  • the opening degree of the diaphragm 69 is adjusted by the control of the control unit 73, but instead of the diaphragm 69, a limiter that can be controlled internally may be used.
  • the Rankine cycle device 10 may be used for a solar power generation system, a power generation system in a factory, and the like in addition to the vehicle.
  • the working fluid may be changed to water or the like instead of the refrigerant.
  • the waste heat medium may be a gas instead of a liquid such as cooling water.
  • the pump 40 may be driven by a motor. In this case, the motor cannot be controlled by the inverter.
  • the pump 40 and the expander 20 may be one in which the pump 40 and the shaft of the expander 20 are directly connected. In this case, the pump 40 is driven by the external drive source Fb. When the expander 20 starts to output mechanical energy, the pump 40 is driven using the output mechanical energy as a power source.
  • a temperature-sensitive expansion valve is used instead of the superheat degree sensor 57, and a change in the superheat degree of the refrigerant that has exited the boiler 50 is detected by a temperature-sensitive cylinder, and flows into the boiler 50 according to the detection result.
  • the refrigerant to be adjusted may be adjusted.
  • the temperature-sensitive expansion valve keeps the degree of superheating of the refrigerant constant, and limits the amount of heat absorption so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capability of the condenser 30. Also good.
  • Fb external drive source
  • 10 Rankine cycle device
  • 12 refrigerant circulation circuit as working fluid circuit
  • 20 expander, 30 ... condenser, 40 ... pump
  • 50 boiler as heat exchanger
  • 51 waste heat source
  • 52 ... Cooling medium circulation circuit as a waste heat path
  • 53 Heat exchanger bypass passage as a restriction section
  • 54 Open / close valve as a restriction section
  • 55 ... Boiler bypass passage as a heat exchanger bypass passage of the restriction section
  • 56 Open / close valve as a limiting unit
  • 58 ... Engine as a waste heat source
  • 64 First boiler as a first heat exchanger
  • 65 ... Second boiler as a second heat exchanger
  • 66 As a waste heat path Exhaust passage, 69... Restriction as restricting portion, 75... Heat exchanger bypass passage as restricting portion, 76.

Abstract

Disclosed is a Rankine cycle device including a waste heat source, an operating fluid circuit, and a limiting unit. The operating fluid circuit is configured by sequentially connecting a pump, a heat exchanger, an expander, and a condenser. The pump delivers under pressure the operating fluid. The heat exchanger subjects the operating fluid, which is delivered from the pump under pressure, to heat exchange with waste heat from the waste heat source. The expander outputs mechanical energy by expanding the operating fluid having been subjected to the heat exchange at the heat exchanger. The condenser condenses the operating fluid expanded by the expander. The limiting unit limits the amount of heat which, on the basis of temperature information detected at the inlet of the pump or the inlet of the expander, the operating fluid receives in the portion of the operating fluid circuit which extends from the outlet of the pump to the inlet of the expander.

Description

ランキンサイクル装置Rankine cycle equipment
 本発明は、ポンプと、熱交換器と、膨張機と、凝縮器と、を順次接続してなる作動流体回路を備えるランキンサイクル装置に関する。 The present invention relates to a Rankine cycle device including a working fluid circuit in which a pump, a heat exchanger, an expander, and a condenser are sequentially connected.
 この種のランキンサイクル装置として、例えば特許文献1に開示のランキンサイクル装置が挙げられる。特許文献1のランキンサイクル装置は、圧送ポンプ、再生熱交換器、蒸発器、膨張機、及び凝縮器を順に流路で接続して構成されている。そして、圧送ポンプから圧送された作動流体は再生熱交換器で加熱された後、蒸発器でさらに加熱されるようになっている。 As this type of Rankine cycle apparatus, for example, the Rankine cycle apparatus disclosed in Patent Document 1 can be cited. The Rankine cycle apparatus of Patent Document 1 is configured by connecting a pressure feed pump, a regenerative heat exchanger, an evaporator, an expander, and a condenser in order through a flow path. The working fluid pumped from the pump is heated by the regenerative heat exchanger and then further heated by the evaporator.
特開2009-138684号公報JP 2009-138684 A
 特許文献1のランキンサイクル装置において、蒸発器通過直後であり、膨張機に吸入される前の作動流体が持つ熱量(作動流体の吸熱量)が過多になる場合がある。そして、膨張機出口での作動流体の持つ熱量が過多であり、凝縮器の持つ放熱能力を越えていると、凝縮器で作動流体の持つ熱を捨て切ることができず、凝縮器内で作動流体が気体と液体とが混合した状態になって、圧送ポンプ入口ではキャビテーションが発生してしまう。このキャビテーションの発生を防止するためには凝縮器の放熱能力を高めなければならず、放熱能力を高めると凝縮器が大型化して、コスト増加に繋がってしまう。また、膨張機に吸入される前の作動流体が持つ熱量が過多になると、膨張機入口での吸入温度が高くなり過ぎてしまい、膨張機としては耐熱設計を採用しなければならず、コスト増加に繋がってしまう。 In the Rankine cycle device of Patent Document 1, the amount of heat (the amount of heat absorbed by the working fluid) of the working fluid immediately after passing through the evaporator and before being sucked into the expander may be excessive. And if the heat quantity of the working fluid at the outlet of the expander is excessive and exceeds the heat dissipation capacity of the condenser, the heat of the working fluid cannot be thrown away by the condenser and it operates in the condenser. Cavitation occurs at the inlet of the pressure pump because the fluid is mixed with gas and liquid. In order to prevent the occurrence of cavitation, the heat dissipation capability of the condenser must be increased. If the heat dissipation capability is increased, the size of the condenser will increase, leading to an increase in cost. In addition, if the amount of heat in the working fluid before being sucked into the expander becomes excessive, the suction temperature at the expander inlet becomes too high, and the expander must adopt a heat-resistant design, increasing costs. It will lead to.
 本発明の目的は、ポンプの出口から膨張機の入口までの間に作動流体が受け取る熱量を制限することができるランキンサイクル装置を提供することにある。 An object of the present invention is to provide a Rankine cycle device capable of limiting the amount of heat received by the working fluid between the outlet of the pump and the inlet of the expander.
 上記目的を達成するために、本発明の一態様では、廃熱源と、作動流体回路と、制限部とを含むランキンサイクル装置が提供される。作動流体回路は、ポンプと、熱交換器と、膨張機と、凝縮器と、を順次接続することによって構成される。前記ポンプは作動流体を圧送する。前記熱交換機は前記ポンプより圧送された前記作動流体を前記廃熱源からの廃熱と熱交換させる。前記膨張機は前記熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する。前記凝縮器は前記膨張機で膨張された作動流体を凝縮させる。前記制限部は、前記ポンプの入口、又は前記膨張機の入口で検知される温度情報に基づいて、前記作動流体回路上での前記ポンプの出口から前記膨張機の入口までの間に前記作動流体が受け取る熱量を制限する。 In order to achieve the above object, according to one aspect of the present invention, a Rankine cycle device including a waste heat source, a working fluid circuit, and a limiting unit is provided. The working fluid circuit is configured by sequentially connecting a pump, a heat exchanger, an expander, and a condenser. The pump pumps the working fluid. The heat exchanger causes the working fluid pumped from the pump to exchange heat with waste heat from the waste heat source. The expander expands the working fluid heat-exchanged by the heat exchanger and outputs mechanical energy. The condenser condenses the working fluid expanded by the expander. The restricting unit is configured to provide the working fluid between the outlet of the pump and the inlet of the expander on the working fluid circuit based on temperature information detected at the inlet of the pump or the inlet of the expander. Limit the amount of heat received.
 これによれば、前記ランキンサイクル装置に制限部を設けることで、ポンプの出口から膨張機の入口までの間に作動流体が受け取る熱量(吸熱量)を制限することができ、膨張機に吸入される前の作動流体が持つ熱量が過多になることを防止することができる。そして、作動流体の持つ熱量の一部は、膨張機で機械的エネルギーとして取り出されるため、膨張機出口で作動流体が持つ熱量は、膨張機入口で持っていた熱量より減ることとなる。このため、膨張機出口で作動流体の持つ熱量が、凝縮器の放熱能力を上回ることが防止され、作動流体を凝縮器で液化することができる。その結果として、作動流体が凝縮器で気液混合状態になることを防止することができ、ポンプ入口でのキャビテーションの発生を防止することができ、キャビテーション発生防止のために凝縮器を大型化する必要もなくなる。加えて、前記ランキンサイクル装置に制限部を設けることで、膨張機吸入前の作動流体が持つ熱量が過多になることを防止することができるため、膨張機入口での吸入温度が高くなり過ぎることが防止でき、膨張機に耐熱設計を採用する必要もなくなる。 According to this, by providing the limiting portion in the Rankine cycle device, the amount of heat (amount of heat absorbed) received by the working fluid between the outlet of the pump and the inlet of the expander can be limited, and is sucked into the expander. It is possible to prevent an excessive amount of heat from the working fluid before the operation. And since a part of heat amount which a working fluid has is taken out as mechanical energy with an expander, the heat amount which a working fluid has at an expander exit will decrease from the heat amount which it had at an expander entrance. For this reason, it is prevented that the calorie | heat_amount which a working fluid has at an expander exit exceeds the heat dissipation capability of a condenser, and a working fluid can be liquefied with a condenser. As a result, the working fluid can be prevented from becoming a gas-liquid mixed state in the condenser, cavitation can be prevented from occurring at the pump inlet, and the condenser can be enlarged to prevent cavitation. There is no need. In addition, by providing a restriction part in the Rankine cycle device, it is possible to prevent the amount of heat of the working fluid before inhaling the expander from being excessive, so that the intake temperature at the expander inlet becomes too high. This eliminates the need to adopt a heat resistant design for the expander.
 好ましくは、前記ランキンサイクル装置は廃熱媒体が流れる廃熱路をさらに備える。前記廃熱源からの廃熱は、前記廃熱媒体に伝達される。前記熱交換器では、前記廃熱媒体と前記作動流体との間で熱交換される。前記制限部は、前記廃熱路を流れる前記廃熱媒体の少なくとも一部が前記熱交換器をバイパスするように設けられた熱交換器バイパス通路である。 Preferably, the Rankine cycle apparatus further includes a waste heat path through which a waste heat medium flows. Waste heat from the waste heat source is transferred to the waste heat medium. In the heat exchanger, heat is exchanged between the waste heat medium and the working fluid. The restriction unit is a heat exchanger bypass passage provided so that at least a part of the waste heat medium flowing through the waste heat path bypasses the heat exchanger.
 これによれば、熱交換器バイパス通路により、廃熱路を流れる廃熱媒体の一部を熱交換器をバイパスさせることで、熱交換器で作動流体と熱交換可能となる廃熱媒体の量を減らし、作動流体が熱交換器で受け取る熱量を制限する(減らす)ことができる。 According to this, the amount of the waste heat medium that can exchange heat with the working fluid in the heat exchanger by bypassing the heat exchanger with a part of the waste heat medium flowing through the waste heat path by the heat exchanger bypass passage. And the amount of heat the working fluid receives in the heat exchanger can be limited (reduced).
 好ましくは、前記廃熱路は、前記廃熱源を冷却する冷却媒体を循環させる冷却媒体循環回路である。前記廃熱媒体は前記冷却媒体である。 Preferably, the waste heat path is a cooling medium circulation circuit that circulates a cooling medium that cools the waste heat source. The waste heat medium is the cooling medium.
 これによれば、廃熱源との熱交換により熱を受け取った冷却媒体の一部を、熱交換器バイパス通路により熱交換器をバイパスさせることができる。このため、熱交換器で作動流体と熱交換可能となる冷却媒体の量を減らし、作動流体が熱交換器で受け取る熱量を制限する(減らす)ことができる。 According to this, a part of the cooling medium that has received heat by heat exchange with the waste heat source can be bypassed by the heat exchanger bypass passage. For this reason, the amount of the cooling medium that can exchange heat with the working fluid in the heat exchanger can be reduced, and the amount of heat received by the working fluid in the heat exchanger can be limited (reduced).
 好ましくは、前記制限部は、前記作動流体回路を流れる前記作動流体の少なくとも一部が前記熱交換器をバイパスするように設けられた熱交換器バイパス通路である。 Preferably, the restriction portion is a heat exchanger bypass passage provided so that at least a part of the working fluid flowing in the working fluid circuit bypasses the heat exchanger.
 これによれば、熱交換器バイパス通路により、作動流体回路を循環する作動流体の一部を熱交換器をバイパスさせることで、熱交換器で熱交換可能な作動流体の量を減らし、作動流体が熱交換器から受け取る熱量を減らすことができる。 According to this, a part of the working fluid circulating in the working fluid circuit is bypassed by the heat exchanger by the heat exchanger bypass passage, thereby reducing the amount of the working fluid that can be heat exchanged by the heat exchanger, and the working fluid. The amount of heat received from the heat exchanger can be reduced.
 好ましくは、前記温度情報としての前記作動流体の前記膨張機の入口での吸入温度、前記膨張機の入口での過熱度、又は前記ポンプの入口での過冷却度に基づいて、前記熱交換器バイパス通路の開度を調節する。 Preferably, based on the suction temperature of the working fluid at the inlet of the expander as the temperature information, the degree of superheat at the inlet of the expander, or the degree of supercooling at the inlet of the pump, the heat exchanger Adjust the opening of the bypass passage.
 これによれば、各温度情報を用いることで、作動流体の持つ熱量(吸熱量)が過多であるか否かを明確に把握することができる。 According to this, it is possible to clearly grasp whether or not the amount of heat (absorption amount) of the working fluid is excessive by using each temperature information.
 好ましくは、前記熱交換器は、前記ポンプより圧送された前記作動流体を熱交換させる第1熱交換器と、前記第1熱交換器で熱交換された作動流体を熱交換させる第2熱交換器とを含む。前記制限部は、前記第1熱交換器より下流で、かつ前記第2熱交換器より上流となる前記作動流体回路の部位に設けられた、開度調節可能な絞りである。好ましくは、前記第1熱交換器を通過した前記作動流体の圧力が、前記第1熱交換器の廃熱媒体温度での前記作動流体の飽和圧力より高くなるように前記絞りの開度を調節する。 Preferably, the heat exchanger has a first heat exchanger that exchanges heat with the working fluid pumped by the pump, and a second heat exchange that exchanges heat with the working fluid that has exchanged heat with the first heat exchanger. Including The restriction portion is a throttle whose opening degree can be adjusted provided in a portion of the working fluid circuit downstream of the first heat exchanger and upstream of the second heat exchanger. Preferably, the opening degree of the throttle is adjusted so that the pressure of the working fluid that has passed through the first heat exchanger is higher than the saturation pressure of the working fluid at the waste heat medium temperature of the first heat exchanger. To do.
 これによれば、絞りにより、ポンプ出口の作動流体の圧力を上昇させることにより、第1熱交換器で作動流体が受け取り可能な熱量を減らすことができる。その結果、第2熱交換器を通過した作動流体の持つ熱量を減らすことができる。 According to this, the amount of heat that can be received by the working fluid in the first heat exchanger can be reduced by increasing the pressure of the working fluid at the pump outlet by the throttle. As a result, the amount of heat of the working fluid that has passed through the second heat exchanger can be reduced.
 好ましくは、前記温度情報としての前記作動流体の前記膨張機の入口での吸入温度、前記膨張機の入口での過熱度、又は前記ポンプの入口での過冷却度に基づいて、前記絞りの開度を調節する。 Preferably, based on the suction temperature of the working fluid at the inlet of the expander as the temperature information, the degree of superheat at the inlet of the expander, or the degree of supercooling at the inlet of the pump, the opening of the throttle is preferably determined. Adjust the degree.
 これによれば、各温度情報を用いることで、作動流体の持つ熱量(吸熱量)が過多である場合か否かを明確に把握することができる。 According to this, it is possible to clearly grasp whether or not the amount of heat (heat absorption amount) of the working fluid is excessive by using each temperature information.
 好ましくは、前記ポンプは、外部駆動源の回転数に応じて駆動される。 Preferably, the pump is driven according to the rotational speed of an external drive source.
 これによれば、前記ランキンサイクル装置に制限部を設けることで、ポンプの出口から膨張機の入口までの間に作動流体が受け取る熱量(吸熱量)を制限することができ、膨張機に吸入される前の作動流体の温度を下げることができる。したがって、膨張機入口の吸入温度を下げるために、自律的にポンプの回転数を上げて作動流体の流量を増加させる必要がなく、ランキンサイクル装置に自律的に流量調整することができないポンプを用いても、膨張機の吸入温度を下げることができる。 According to this, by providing the limiting portion in the Rankine cycle device, the amount of heat (amount of heat absorbed) received by the working fluid between the outlet of the pump and the inlet of the expander can be limited, and is sucked into the expander. The temperature of the working fluid before the operation can be lowered. Therefore, in order to lower the suction temperature at the inlet of the expander, it is not necessary to increase the flow rate of the working fluid autonomously by increasing the rotation speed of the pump, and the Rankine cycle device uses a pump that cannot adjust the flow rate autonomously. Even so, the suction temperature of the expander can be lowered.
(a)は本発明の第1の実施形態に係るランキンサイクル装置を示す模式図。(b)はランキンサイクル装置におけるエンタルピー及び圧力の変化を示す図。(A) is a schematic diagram which shows the Rankine cycle apparatus which concerns on the 1st Embodiment of this invention. (B) is a figure which shows the change of the enthalpy and pressure in a Rankine cycle apparatus. (a)は第2の実施形態に係るランキンサイクル装置を示す模式図。(b)はランキンサイクル装置におけるエンタルピー及び圧力の変化を示す図。(A) is a schematic diagram which shows the Rankine cycle apparatus which concerns on 2nd Embodiment. (B) is a figure which shows the change of the enthalpy and pressure in a Rankine cycle apparatus. (a)は第3の実施形態に係るランキンサイクル装置を示す模式図。(b)は従来のランキンサイクル装置におけるエンタルピー及び圧力の変化を示す図。(c)は第3の実施形態のランキンサイクル装置におけるエンタルピー及び圧力の変化を示す図。(A) is a schematic diagram which shows the Rankine-cycle apparatus which concerns on 3rd Embodiment. (B) is a figure which shows the change of the enthalpy and pressure in the conventional Rankine cycle apparatus. (C) is a figure which shows the change of the enthalpy and pressure in the Rankine cycle apparatus of 3rd Embodiment. 廃熱路の別例として排気ガス回路を適用したランキンサイクル装置を示す図。The figure which shows the Rankine-cycle apparatus which applied the exhaust gas circuit as another example of a waste heat path. 温度情報を過冷却度によって検知可能にしたランキンサイクル装置を示す図。The figure which shows the Rankine cycle apparatus which made temperature information detectable by a supercooling degree.
 (第1の実施形態)
 以下、本発明を具体化した第1の実施形態を図1にしたがって説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
 図1(a)に示すように、ランキンサイクル装置10は、膨張機20、凝縮器30、ポンプ40、及び熱交換器としてのボイラ50を流路11、14,15,16により順次接続してなる作動流体回路としての冷媒循環回路12を備える。この冷媒循環回路12では、作動流体として冷媒が循環するようになっている。そして、冷媒循環回路12では、冷媒は、膨張機20、凝縮器30、ポンプ40、ボイラ50、の並び順に沿って冷媒循環回路12を流れて循環するようになっており、冷媒循環回路12での冷媒の流れる方向を、冷媒の循環方向とする。なお、ポンプ40は、図示しない駆動軸がプーリFaを介して外部駆動源Fbに作動連結されている。よって、外部駆動源Fbの駆動力は、プーリFaを介してポンプ40に直接伝達されるようになっており、外部駆動源Fbの回転時にはポンプ40が常時回転するようになっている。このため、ポンプ40は、外部駆動源Fbの回転数に応じて駆動され、ポンプ40自ら回転数調節できず、自律的に流量を調節できないようになっている。 As shown to Fig.1 (a), Rankine cycle apparatus 10 connects the expander 20, the condenser 30, the pump 40, and the boiler 50 as a heat exchanger by the flow path 11, 14, 15, 16 sequentially. A refrigerant circulation circuit 12 is provided as a working fluid circuit. In the refrigerant circulation circuit 12, the refrigerant circulates as a working fluid. In the refrigerant circulation circuit 12, the refrigerant flows through the refrigerant circulation circuit 12 along the arrangement order of the expander 20, the condenser 30, the pump 40, and the boiler 50. The direction in which the refrigerant flows is the refrigerant circulation direction. In the pump 40, a drive shaft (not shown) is operatively connected to an external drive source Fb via a pulley Fa. Therefore, the driving force of the external drive source Fb is directly transmitted to the pump 40 via the pulley Fa, and the pump 40 is always rotated when the external drive source Fb is rotated. For this reason, the pump 40 is driven according to the rotational speed of the external drive source Fb, and the pump 40 itself cannot adjust the rotational speed, so that the flow rate cannot be adjusted autonomously.
 ポンプ40の出口である吐出ポート(図示せず)には、第1流路11を介してボイラ50が接続されている。ボイラ50は、廃熱源51に接続された廃熱路としての冷却媒体循環回路52上に設けられている。廃熱源51からの廃熱は、冷却媒体循環回路52を循環する廃熱媒体としての冷却媒体(本実施形態では冷却水)に伝達され(熱交換される)、その熱伝達(熱交換)によって廃熱源51が冷却される。そして、廃熱源51からの廃熱を受けて加熱された冷却水は、図1の矢印Yに示す方向に沿って冷却媒体循環回路52を循環する。また、ポンプ40から吐出された冷媒は、廃熱源51から廃熱を伝達された冷却水とのボイラ50での熱交換により加熱される。 A boiler 50 is connected to a discharge port (not shown) that is an outlet of the pump 40 via the first flow path 11. The boiler 50 is provided on a cooling medium circulation circuit 52 as a waste heat path connected to the waste heat source 51. Waste heat from the waste heat source 51 is transmitted (heat exchanged) to a cooling medium (cooling water in this embodiment) as a waste heat medium circulating in the cooling medium circulation circuit 52, and by the heat transfer (heat exchange) The waste heat source 51 is cooled. Then, the cooling water heated by receiving the waste heat from the waste heat source 51 circulates in the cooling medium circulation circuit 52 along the direction indicated by the arrow Y in FIG. The refrigerant discharged from the pump 40 is heated by heat exchange in the boiler 50 with the cooling water to which the waste heat is transmitted from the waste heat source 51.
 ボイラ50には、第2流路14を介して膨張機20の入口である吸入ポート(図示せず)が接続されるとともに、ボイラ50で加熱された冷媒は第2流路14及び吸入ポートを介して膨張機20に吸入されるようになっている。そして、膨張機20で膨張し、冷媒の持つ熱量の一部が機械的エネルギーとして取り出されて降温及び降圧した冷媒は、膨張機20の出口から第3流路15及び吸入ポート(図示せず)を介して凝縮器30へ吸入されるようになっている。凝縮器30の吐出ポート(図示せず)には第4流路16を介してポンプ40の入口である吸入ポート(図示せず)が接続されている。そして、凝縮器30では冷媒が凝縮されて液冷媒に相変化し、その液冷媒は第4流路16及び吸入ポートを介してポンプ40に吸入されるようになっている。 A suction port (not shown) that is the inlet of the expander 20 is connected to the boiler 50 via the second flow path 14, and the refrigerant heated by the boiler 50 passes through the second flow path 14 and the suction port. Via the expander 20. And the refrigerant | coolant which expand | swelled with the expander 20 and a part of calorie | heat_amount which a refrigerant | coolant has was taken out as mechanical energy, and it temperature-falls and pressure-reduced is the 3rd flow path 15 and the suction port (not shown) from the exit of the expander 20. It is sucked into the condenser 30 via the. A suction port (not shown) that is an inlet of the pump 40 is connected to the discharge port (not shown) of the condenser 30 via the fourth flow path 16. In the condenser 30, the refrigerant is condensed to change into a liquid refrigerant, and the liquid refrigerant is sucked into the pump 40 through the fourth flow path 16 and the suction port.
 冷却媒体循環回路52において、ボイラ50より下流であり廃熱源51より上流となる位置と、廃熱源51より下流でありボイラ50より上流となる位置とは、制限部としての熱交換器バイパス通路53によって接続されている。また、熱交換器バイパス通路53上には、制限部としての開閉弁54が設けられるとともに、この開閉弁54により熱交換器バイパス通路53は開度を調節可能になっている。そして、開閉弁54が閉状態にあるときは、廃熱源51で熱交換した冷却水の全てがボイラ50に向けて流れる。一方、開閉弁54が開状態にあるときは、廃熱源51で熱交換した冷却水の一部が熱交換器バイパス通路53を流れるとともに、残りの冷却水がボイラ50に向けて冷却媒体循環回路52を流れる。そして、ボイラ50を流れた冷却水と熱交換器バイパス通路53を流れた冷却水とは、熱交換器バイパス通路53の出口付近で合流して廃熱源51に向けて流れるようになっている。 In the cooling medium circulation circuit 52, a position downstream from the boiler 50 and upstream from the waste heat source 51 and a position downstream from the waste heat source 51 and upstream from the boiler 50 are a heat exchanger bypass passage 53 as a limiting unit. Connected by. On the heat exchanger bypass passage 53, an opening / closing valve 54 is provided as a restricting portion, and the opening degree of the heat exchanger bypass passage 53 can be adjusted by the opening / closing valve 54. When the on-off valve 54 is in the closed state, all of the cooling water heat exchanged by the waste heat source 51 flows toward the boiler 50. On the other hand, when the on-off valve 54 is in the open state, a part of the cooling water exchanged by the waste heat source 51 flows through the heat exchanger bypass passage 53 and the remaining cooling water flows toward the boiler 50 as a cooling medium circulation circuit. Flow through 52. The cooling water that has flowed through the boiler 50 and the cooling water that has flowed through the heat exchanger bypass passage 53 are merged near the outlet of the heat exchanger bypass passage 53 and flow toward the waste heat source 51.
 また、冷媒循環回路12における冷媒の循環方向において、ボイラ50より下流であり、膨張機20より上流(入口近傍)に位置する流路14上には、温度センサSが設けられている。そして、温度センサSは、膨張機20入口での吸入温度を検出し、その吸入温度を温度情報として検知する。温度センサSは、制御部73に信号接続されている。そして、制御部73は、温度センサSで検知した温度情報に基づき開閉弁54の開閉を調節して熱交換器バイパス通路53の開度を調節する。 Further, a temperature sensor S is provided on the flow path 14 located downstream of the boiler 50 and upstream of the expander 20 (near the inlet) in the refrigerant circulation direction in the refrigerant circulation circuit 12. The temperature sensor S detects the suction temperature at the inlet of the expander 20 and detects the suction temperature as temperature information. The temperature sensor S is signal-connected to the control unit 73. Then, the control unit 73 adjusts the opening degree of the heat exchanger bypass passage 53 by adjusting the opening / closing of the on-off valve 54 based on the temperature information detected by the temperature sensor S.
 開閉弁54の開度調節は、ボイラ50で冷媒が受け取る熱量(吸熱量)を制限するために行われる。この熱量の制限は、膨張機20出口で冷媒が持つ熱量が、凝縮器30出口での放熱能力を上回らないようにするために行われる。具体的には、開閉弁54の開度調節は、凝縮器30での冷媒の気液混合状態が発生することを防止するために行われる。そして、開閉弁54の開度が小さくなればなるほど、ボイラ50に流れる冷却水の流量が増えるため、冷媒がボイラ50で受け取り可能な熱量は増加し、開閉弁54の開度が大きくなればなるほど、ボイラ50に流れる冷却水の流量が減るため、冷媒がボイラ50で受け取り可能な熱量は減少する。 The opening degree adjustment of the on-off valve 54 is performed to limit the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50. This restriction on the amount of heat is performed so that the amount of heat of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capability at the outlet of the condenser 30. Specifically, the opening degree of the on-off valve 54 is adjusted in order to prevent the gas-liquid mixture state of the refrigerant in the condenser 30 from occurring. As the opening degree of the on-off valve 54 becomes smaller, the flow rate of the cooling water flowing to the boiler 50 increases. Therefore, the amount of heat that can be received by the boiler 50 increases, and the opening degree of the on-off valve 54 becomes larger. Since the flow rate of the cooling water flowing through the boiler 50 decreases, the amount of heat that the refrigerant can receive in the boiler 50 decreases.
 制御部73には、膨張機20出口で冷媒の持つ熱量が凝縮器30の放熱能力を上回らないようにするために、温度情報(膨張機20の吸入温度)に対して、開閉弁54の開度を対応付けたマップが予め記憶されている。ボイラ50通過直後の冷媒の温度は、ボイラ50での冷媒の吸熱量を間接的に表している。そして、温度情報に対し、膨張機20出口で冷媒の持つ熱量が、凝縮器30での放熱能力を上回らないようにするための開閉弁54の開度が実験により予め求められている。また、制御部73は、開閉弁54に信号接続され、開閉弁54の開度を制御可能になっている。 In order to prevent the heat quantity of the refrigerant at the outlet of the expander 20 from exceeding the heat dissipation capability of the condenser 30, the control unit 73 opens the on-off valve 54 with respect to temperature information (suction temperature of the expander 20). A map in which the degrees are associated is stored in advance. The temperature of the refrigerant immediately after passing through the boiler 50 indirectly represents the heat absorption amount of the refrigerant in the boiler 50. Then, the opening degree of the on-off valve 54 is obtained in advance by experiments so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capacity in the condenser 30 with respect to the temperature information. The control unit 73 is signal-connected to the on-off valve 54 so that the opening degree of the on-off valve 54 can be controlled.
 図1(b)に第1の実施形態のランキンサイクル装置10での冷媒のエンタルピー及び圧力の変化を示す。なお、図1(b)において、横軸はエンタルピーを表し、縦軸は圧力を表すとともに、曲線Eは飽和液線と飽和蒸気線とを表す。なお、エンタルピーは、冷媒の圧力と体積との積に内部エネルギーを加えた量であり、圧力一定の条件のもとで、冷媒に出入する熱量はエンタルピーの変化量に等しいことから、エンタルピーの変化量は冷媒の熱量の変化量を示す。 FIG. 1B shows changes in the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus 10 of the first embodiment. In FIG. 1B, the horizontal axis represents enthalpy, the vertical axis represents pressure, and the curve E represents a saturated liquid line and a saturated vapor line. Note that enthalpy is the amount of internal pressure added to the product of refrigerant pressure and volume, and the amount of heat entering and exiting the refrigerant is equal to the amount of change in enthalpy under constant pressure conditions. The quantity indicates the amount of change in the heat quantity of the refrigerant.
 図1(b)において、交点M1から交点M2までの実線G1は凝縮器30による凝縮行程、交点M2から交点M3までの実線G2はポンプ40による圧送行程を表す。また、交点M3から交点M4までの実線G3はボイラ50による加熱行程、交点M4から交点M1までの実線G4は膨張機20による膨張行程を表す。そして、実線G1~G4により第1の実施形態でのランキンサイクル装置10における冷媒のエンタルピー及び圧力の変化を示している。 1B, a solid line G1 from the intersection M1 to the intersection M2 represents a condensation stroke by the condenser 30, and a solid line G2 from the intersection M2 to the intersection M3 represents a pumping stroke by the pump 40. A solid line G3 from the intersection M3 to the intersection M4 represents a heating stroke by the boiler 50, and a solid line G4 from the intersection M4 to the intersection M1 represents an expansion stroke by the expander 20. The solid lines G1 to G4 indicate the change in the enthalpy and pressure of the refrigerant in the Rankine cycle device 10 according to the first embodiment.
 また、図1(b)の2点鎖線における交点M5から交点M1までの2点鎖線G5と、上述の実線G1を合わせた直線は、熱交換器バイパス通路53及び開閉弁54を設けない場合の凝縮行程を示す。さらに、交点M6から交点M4までの2点鎖線G6と、上述の実線G3を合わせた直線は、熱交換器バイパス通路53及び開閉弁54を設けない場合の加熱行程を示す。また、交点M6から交点M5までの2点鎖線G7は、熱交換器バイパス通路53及び開閉弁54を設けない場合の膨張行程を示す。また、第1の実施形態でのボイラ50でのエンタルピー増加量(実線G3の長さ)をΔh11とし、熱交換器バイパス通路53及び開閉弁54を設けない場合のボイラ50でのエンタルピー増加量(実線G3と2点鎖線G6の合計の長さ)をΔh12とする。 Further, a straight line obtained by combining the two-dot chain line G5 from the intersection point M5 to the intersection point M1 in the two-dot chain line in FIG. 1B and the above-described solid line G1 is a case where the heat exchanger bypass passage 53 and the on-off valve 54 are not provided. Indicates the condensation process. Further, a straight line obtained by combining the two-dot chain line G6 from the intersection point M6 to the intersection point M4 and the above-described solid line G3 indicates a heating stroke when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided. A two-dot chain line G7 from the intersection point M6 to the intersection point M5 indicates an expansion stroke when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided. Further, the amount of enthalpy increase in the boiler 50 in the first embodiment (the length of the solid line G3) is Δh11, and the amount of enthalpy increase in the boiler 50 when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided ( The total length of the solid line G3 and the two-dot chain line G6) is Δh12.
 さて、第1の実施形態のランキンサイクル装置10において、制御部73は、温度センサSで検知した温度情報に基づきマップを参照して開閉弁54の開度を調節する。すなわち、ボイラ50での吸熱量が過多となり、膨張機20に吸入される前の冷媒の温度が高くなっており、膨張機20出口で冷媒の持つ熱量が、凝縮器30の放熱能力を上回っている場合、制御部73は開閉弁54を開状態とするとともに、その開度を調節する。 Now, in the Rankine cycle device 10 of the first embodiment, the control unit 73 adjusts the opening degree of the on-off valve 54 with reference to a map based on the temperature information detected by the temperature sensor S. That is, the amount of heat absorbed by the boiler 50 becomes excessive, the temperature of the refrigerant before being sucked into the expander 20 is high, and the amount of heat of the refrigerant at the outlet of the expander 20 exceeds the heat dissipation capability of the condenser 30. If so, the controller 73 opens the on-off valve 54 and adjusts its opening.
 すると、冷却媒体循環回路52を流れる冷却水の一部は、熱交換器バイパス通路53を流れるとともに、残りの冷却水はボイラ50に向けて流れる。その結果、ボイラ50に向けて流れる冷却水の流量が減り、冷媒がボイラ50から受け取る熱量は、開閉弁54が閉状態の場合と比べると減少する。 Then, a part of the cooling water flowing through the cooling medium circulation circuit 52 flows through the heat exchanger bypass passage 53 and the remaining cooling water flows toward the boiler 50. As a result, the flow rate of the cooling water flowing toward the boiler 50 is reduced, and the amount of heat received by the refrigerant from the boiler 50 is reduced as compared with the case where the on-off valve 54 is closed.
 ボイラ50では、熱量が減少した冷却水に対し、冷媒が熱交換を行う。このため、図1(b)に示すように、熱交換器バイパス通路53と開閉弁54を設けた第1の実施形態のランキンサイクル装置10においては、加熱行程でのエンタルピー増加量(吸熱量)はΔh11で示される。よって、第1の実施形態のランキンサイクル装置10では、加熱行程でのエンタルピー増加量(吸熱量)Δh11が、熱交換器バイパス通路53及び開閉弁54を設けない場合の加熱行程でのエンタルピー増加量(吸熱量)Δh12より小さくなっており、ボイラ50での吸熱量が減少していることが示されている。その結果、膨張機20に吸入される前の冷媒の温度は、従来のランキンサイクル装置に比べて低くなる。 In the boiler 50, the refrigerant exchanges heat with the cooling water whose amount of heat has decreased. For this reason, as shown in FIG.1 (b), in Rankine cycle apparatus 10 of 1st Embodiment which provided the heat exchanger bypass passage 53 and the on-off valve 54, the enthalpy increase amount (heat absorption amount) in a heating process Is represented by Δh11. Therefore, in the Rankine cycle device 10 of the first embodiment, the enthalpy increase amount (heat absorption amount) Δh11 in the heating stroke is the enthalpy increase amount in the heating stroke when the heat exchanger bypass passage 53 and the on-off valve 54 are not provided. (Endothermic amount) Δh12 is smaller, indicating that the endothermic amount in the boiler 50 is decreasing. As a result, the temperature of the refrigerant before being sucked into the expander 20 becomes lower than that of the conventional Rankine cycle device.
 上記第1の実施形態によれば、以下のような利点を得ることができる。 According to the first embodiment, the following advantages can be obtained.
 (1)ランキンサイクル装置10において、廃熱源51の冷却媒体循環回路52に、ボイラ50をバイパスさせるための熱交換器バイパス通路53を設けるとともに、この熱交換器バイパス通路53に開閉弁54を設け、熱交換器バイパス通路53の開度を調節可能にした。そして、開閉弁54を開状態とし、冷却媒体循環回路52を循環する冷却水の一部をボイラ50をバイパスさせることで、冷媒がボイラ50で受け取れる熱量を制限することができる。したがって、ポンプ40出口から膨張機20入口までの間に冷媒が受け取る熱量を制限することができる。その結果として、膨張機20で機械的エネルギーが取り出された後に、その膨張機20出口で冷媒の持つ熱量が、凝縮器30の放熱能力を上回ることを防止することができ、冷媒を凝縮器30で液化することができる。これにより、ポンプ40に気液混合状態の冷媒が供されることを防止することができる。 (1) In the Rankine cycle device 10, the cooling medium circulation circuit 52 of the waste heat source 51 is provided with a heat exchanger bypass passage 53 for bypassing the boiler 50, and an open / close valve 54 is provided in the heat exchanger bypass passage 53. The opening degree of the heat exchanger bypass passage 53 can be adjusted. The amount of heat that the refrigerant can receive in the boiler 50 can be limited by opening the on-off valve 54 and bypassing the boiler 50 with a part of the cooling water circulating in the cooling medium circulation circuit 52. Therefore, the amount of heat received by the refrigerant between the outlet of the pump 40 and the inlet of the expander 20 can be limited. As a result, after mechanical energy is taken out by the expander 20, it is possible to prevent the amount of heat of the refrigerant at the outlet of the expander 20 from exceeding the heat dissipation capability of the condenser 30. Can be liquefied. Thereby, it is possible to prevent the refrigerant in the gas-liquid mixed state from being supplied to the pump 40.
 よって、第1の実施形態のランキンサイクル装置10によれば、熱交換器バイパス通路53及び開閉弁54を設けることで、ポンプ40入口でのキャビテーションの発生を防止し、ポンプ40による冷媒の圧送能力低下を防止することができる。そして、キャビテーション発生防止のために、凝縮器30を大型化して放熱能力を高める必要がないため、凝縮器30の大型化によるコスト増加も生じない。加えて、膨張機20吸入前の冷媒が持つ熱量を減らすことで、膨張機20の吸入温度が高くなり過ぎることを防止することができ、膨張機20の耐熱設計を採用することによるコスト増加も生じない。 Therefore, according to the Rankine cycle device 10 of the first embodiment, by providing the heat exchanger bypass passage 53 and the on-off valve 54, the occurrence of cavitation at the inlet of the pump 40 is prevented, and the pumping capability of the refrigerant by the pump 40 is achieved. A decrease can be prevented. In order to prevent the occurrence of cavitation, it is not necessary to increase the size of the condenser 30 to increase the heat dissipation capability, and therefore, an increase in cost due to an increase in the size of the condenser 30 does not occur. In addition, it is possible to prevent the intake temperature of the expander 20 from becoming too high by reducing the amount of heat of the refrigerant before the expander 20 is sucked, and the cost is increased by adopting the heat resistant design of the expander 20. Does not occur.
 (2)冷却媒体循環回路52に熱交換器バイパス通路53及び開閉弁54を設けることで、ボイラ50で冷媒が受け取る熱量(吸熱量)を制限することができる。ボイラ50通過後の冷媒の持つ熱量が多く、膨張機20入口での吸入温度が高い場合、その吸入温度を下げるためにポンプ40の回転数を上げて流量を増加させることが考えられる。しかし、第1の実施形態では、ポンプ40が外部駆動源Fbによって直接駆動されており自律的に流量調整することができないため、ポンプ40の回転数を上げることができず、吸入温度を下げることができない。しかし、第1の実施形態では、冷却媒体循環回路52に熱交換器バイパス通路53及び開閉弁54を設けることで、ボイラ50で冷媒が受け取る熱量を制限することができ、膨張機20入口の吸入温度を下げることができる。したがって、ランキンサイクル装置10に自律的に流量調整することができないポンプ40を用いても、膨張機20の吸入温度を下げることができる。 (2) By providing the heat exchanger bypass passage 53 and the on-off valve 54 in the cooling medium circulation circuit 52, the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50 can be limited. When the amount of heat of the refrigerant after passing through the boiler 50 is large and the suction temperature at the inlet of the expander 20 is high, it is conceivable to increase the flow rate by increasing the rotational speed of the pump 40 in order to lower the suction temperature. However, in the first embodiment, since the pump 40 is directly driven by the external drive source Fb and the flow rate cannot be autonomously adjusted, the rotational speed of the pump 40 cannot be increased and the suction temperature is lowered. I can't. However, in the first embodiment, by providing the heat exchanger bypass passage 53 and the on-off valve 54 in the cooling medium circulation circuit 52, it is possible to limit the amount of heat received by the refrigerant in the boiler 50, and the intake of the inlet of the expander 20 The temperature can be lowered. Therefore, the suction temperature of the expander 20 can be lowered even when the pump 40 that cannot autonomously adjust the flow rate is used in the Rankine cycle device 10.
 (3)キャビテーション発生防止のために冷媒を凝縮器30で全て液化するには、凝縮器30での冷媒の圧力を上げ、冷媒を液化するための放熱量を小さくすることが考えられる。しかし、凝縮器30での冷媒の圧力を上げると、膨張機20での冷媒の膨張により出力される機械的エネルギーが低下してしまい好ましくない。これに対し、ランキンサイクル装置10は、冷媒を凝縮器30で全て液化するために、制限部(熱交換器バイパス通路53と開閉弁54)を設けているだけであり、凝縮器30での冷媒の圧力を上げる必要なく、膨張機20での機械的エネルギーの出力低下もない。 (3) In order to liquefy all the refrigerant with the condenser 30 in order to prevent the occurrence of cavitation, it is conceivable to increase the pressure of the refrigerant in the condenser 30 and reduce the amount of heat released to liquefy the refrigerant. However, increasing the pressure of the refrigerant in the condenser 30 is not preferable because the mechanical energy output by the expansion of the refrigerant in the expander 20 is reduced. On the other hand, the Rankine cycle apparatus 10 is provided only with a restricting portion (a heat exchanger bypass passage 53 and an on-off valve 54) in order to liquefy all the refrigerant in the condenser 30, and the refrigerant in the condenser 30 There is no need to increase the pressure of the expander 20, and there is no decrease in mechanical energy output in the expander 20.
 (第2の実施形態)
 次に、本発明を具体化した第2の実施形態を図2にしたがって説明する。なお、以下の説明では、既に説明した第1の実施形態と同一構成について同一符号を付すなどし、その重複する説明を省略又は簡略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment already described are denoted by the same reference numerals, and the redundant description thereof is omitted or simplified.
 図2(a)に示すように、ランキンサイクル装置10において、冷却媒体循環回路52に熱交換器バイパス通路53及び開閉弁54は設けられていない。また、冷媒循環回路12における冷媒の循環方向において、ポンプ40より下流でありボイラ50より上流となる位置と、ボイラ50より下流であり、膨張機20より上流となる位置とは、制限部としての熱交換器バイパス通路であるボイラバイパス通路55によって接続されている。また、ボイラバイパス通路55上には、制限部としての開閉弁56が設けられるとともに、この開閉弁56によりボイラバイパス通路55は開度を調節可能になっている。そして、開閉弁56が閉状態にあるときは、ポンプ40から圧送された冷媒は、ボイラ50に向けて流れる。一方、開閉弁56が開状態にあるときは、ポンプ40から圧送された冷媒の一部は、ボイラ50に向けて流れるとともに、残りの冷媒は、ボイラバイパス通路55を流れる。そして、ボイラ50を流れた冷媒とボイラバイパス通路55を流れた冷媒とは、ボイラバイパス通路55の出口付近で合流して膨張機20に向けて流れるようになっている。 As shown in FIG. 2A, in the Rankine cycle apparatus 10, the cooling medium circulation circuit 52 is not provided with the heat exchanger bypass passage 53 and the on-off valve 54. Further, in the refrigerant circulation direction in the refrigerant circulation circuit 12, a position downstream from the pump 40 and upstream from the boiler 50 and a position downstream from the boiler 50 and upstream from the expander 20 are defined as a restriction unit. It is connected by a boiler bypass passage 55 which is a heat exchanger bypass passage. On the boiler bypass passage 55, an opening / closing valve 56 is provided as a restricting portion, and the opening degree of the boiler bypass passage 55 can be adjusted by the opening / closing valve 56. When the on-off valve 56 is in the closed state, the refrigerant pumped from the pump 40 flows toward the boiler 50. On the other hand, when the on-off valve 56 is in the open state, a part of the refrigerant pumped from the pump 40 flows toward the boiler 50, and the remaining refrigerant flows through the boiler bypass passage 55. The refrigerant flowing through the boiler 50 and the refrigerant flowing through the boiler bypass passage 55 are merged in the vicinity of the outlet of the boiler bypass passage 55 and flow toward the expander 20.
 冷媒循環回路12における冷媒の循環方向において、ボイラ50より下流であり、膨張機20より上流(入口近傍)に位置する流路14上には、過熱度センサ57が設けられている。この過熱度センサ57は、膨張機20入口での過熱度(過熱蒸気の温度と飽和蒸気の温度(沸騰点)との差)を温度情報として検知する。過熱度センサ57は、制御部73に信号接続されるとともに、制御部73は、過熱度センサ57からの温度情報(過熱度)に基づき開閉弁56の開度を調節する。この開閉弁56の開度調節は、ボイラ50で冷媒が受け取る熱量(吸熱量)を制限するために行われる。 A superheat degree sensor 57 is provided on the flow path 14 located downstream of the boiler 50 and upstream of the expander 20 (near the inlet) in the refrigerant circulation direction in the refrigerant circulation circuit 12. This superheat degree sensor 57 detects the superheat degree (difference between the temperature of superheated steam and the temperature of saturated steam (boiling point)) at the inlet of the expander 20 as temperature information. The superheat degree sensor 57 is signal-connected to the control unit 73, and the control unit 73 adjusts the opening degree of the on-off valve 56 based on temperature information (superheat degree) from the superheat degree sensor 57. This opening / closing adjustment of the on-off valve 56 is performed to limit the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50.
 ボイラ50で冷媒が受け取る熱量(吸熱量)が過多になると、冷媒の過熱度が大きくなる。そして、吸熱量が過多になり過熱度が所定値を上回ると、膨張機20出口で冷媒の持つ熱量が、凝縮器30での放熱能力を上回ってしまう。よって、第2の実施形態では、ボイラ50通過後の冷媒の過熱度が所定値を越えないように、過熱度センサ57からの温度情報に基づいて開閉弁56の開度を調節し、膨張機20出口で冷媒の持つ熱量が凝縮器30での放熱能力を上回らないようにする。 If the amount of heat (heat absorption amount) received by the refrigerant in the boiler 50 becomes excessive, the degree of superheat of the refrigerant increases. If the heat absorption amount becomes excessive and the superheat degree exceeds a predetermined value, the heat amount of the refrigerant at the outlet of the expander 20 exceeds the heat dissipation capability in the condenser 30. Therefore, in the second embodiment, the opening degree of the on-off valve 56 is adjusted based on the temperature information from the superheat degree sensor 57 so that the superheat degree of the refrigerant after passing through the boiler 50 does not exceed a predetermined value. The amount of heat possessed by the refrigerant at the outlet 20 is prevented from exceeding the heat dissipation capability of the condenser 30.
 そして、開閉弁56の開度が大きくなればなるほど、ボイラバイパス通路55に流れる冷媒量が多くなるとともにボイラ50に流れる冷媒量が減るため、ボイラ50で冷媒が受け取り可能な熱量は減少し、過熱度を小さくすることができる。一方、開閉弁56の開度が小さくなればなるほど、ボイラバイパス通路55に流れる冷媒量が減るとともにボイラ50に流れる冷媒量が増えるため、ボイラ50で冷媒が受け取り可能な熱量は増加し、過熱度は大きくなる。 As the opening degree of the on-off valve 56 increases, the amount of refrigerant flowing through the boiler bypass passage 55 increases and the amount of refrigerant flowing through the boiler 50 decreases, so the amount of heat that can be received by the boiler 50 decreases, and overheating The degree can be reduced. On the other hand, as the opening degree of the on-off valve 56 becomes smaller, the amount of refrigerant flowing into the boiler bypass passage 55 decreases and the amount of refrigerant flowing into the boiler 50 increases, so the amount of heat that can be received by the boiler 50 increases, and the degree of superheat Becomes bigger.
 制御部73には、膨張機20出口で冷媒が持つ熱量が凝縮器30の放熱能力を上回らないようにするために、温度情報(過熱度)に対して、開閉弁56の開度を対応付けたマップが予め記憶されている。 The controller 73 associates the opening degree of the on-off valve 56 with the temperature information (degree of superheat) so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capability of the condenser 30. Maps are stored in advance.
 図2(b)に第2の実施形態のランキンサイクル装置10での冷媒のエンタルピー及び圧力の変化を示す。なお、図2(b)において、横軸はエンタルピーを表し、縦軸は圧力を表すとともに、曲線Eは飽和液線と飽和蒸気線とを表す。なお、エンタルピーは、冷媒の圧力と体積との積に内部エネルギーを加えた量であり、圧力一定の条件のもとで、冷媒に出入する熱量はエンタルピーの変化量に等しいことから、エンタルピーの変化量は冷媒の熱量の変化量を示す。 FIG. 2B shows changes in the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus 10 of the second embodiment. In FIG. 2B, the horizontal axis represents enthalpy, the vertical axis represents pressure, and the curve E represents a saturated liquid line and a saturated vapor line. Note that enthalpy is the amount of internal pressure added to the product of refrigerant pressure and volume, and the amount of heat entering and exiting the refrigerant is equal to the amount of change in enthalpy under constant pressure conditions. The quantity indicates the amount of change in the heat quantity of the refrigerant.
 図2(b)において、交点H1から交点H2までの実線K1は凝縮器30による凝縮行程、交点H2から交点H3までの実線K2はポンプ40による圧送行程を表す。また、交点H3から交点H4までの実線K3はボイラ50による加熱行程、交点H4から交点H1までの実線K4は膨張機20による膨張行程を表す。そして、実線K1~K4により第2の実施形態でのランキンサイクル装置10における冷媒のエンタルピー及び圧力の変化を示している。 2B, a solid line K1 from the intersection H1 to the intersection H2 represents a condensation stroke by the condenser 30, and a solid line K2 from the intersection H2 to the intersection H3 represents a pumping stroke by the pump 40. A solid line K3 from the intersection H3 to the intersection H4 represents a heating stroke by the boiler 50, and a solid line K4 from the intersection H4 to the intersection H1 represents an expansion stroke by the expander 20. The solid lines K1 to K4 indicate changes in the enthalpy and pressure of the refrigerant in the Rankine cycle device 10 according to the second embodiment.
 また、図2(b)の2点鎖線における交点H5から交点H1までの2点鎖線K5と、上述の実線K1を合わせた直線は、ボイラバイパス通路55及び開閉弁56を設けない場合の凝縮行程を示す。さらに、交点H6から交点H4までの2点鎖線K6と、上述の実線K3を合わせた直線は、ボイラバイパス通路55及び開閉弁56を設けない場合の加熱行程を示す。また、交点H6から交点H5までの2点鎖線K7は、ボイラバイパス通路55及び開閉弁56を設けない場合の膨張行程を示す。また、第2の実施形態でのボイラ50でのエンタルピー増加量(吸熱量:実線K3の長さ)をΔh21とし、ボイラバイパス通路55及び開閉弁56を設けない場合のボイラ50でのエンタルピー増加量(吸熱量:実線K3と2点鎖線K6の合計の長さ)をΔh22とする。 Further, the straight line obtained by combining the two-dot chain line K5 from the intersection point H5 to the intersection point H1 in the two-dot chain line in FIG. 2B and the solid line K1 described above is a condensation process when the boiler bypass passage 55 and the on-off valve 56 are not provided. Indicates. Furthermore, a straight line obtained by combining the two-dot chain line K6 from the intersection H6 to the intersection H4 and the above-described solid line K3 indicates a heating stroke when the boiler bypass passage 55 and the on-off valve 56 are not provided. A two-dot chain line K7 from the intersection H6 to the intersection H5 indicates an expansion stroke when the boiler bypass passage 55 and the on-off valve 56 are not provided. Further, the amount of enthalpy increase in the boiler 50 in the second embodiment (heat absorption amount: length of the solid line K3) is Δh21, and the amount of enthalpy increase in the boiler 50 when the boiler bypass passage 55 and the on-off valve 56 are not provided. (Endothermic amount: the total length of the solid line K3 and the two-dot chain line K6) is Δh22.
 さて、第2の実施形態のランキンサイクル装置10において、制御部73は、過熱度センサ57で検知した温度情報に基づきマップから開閉弁56の開度を調節する。すなわち、ボイラ50通過後の冷媒の過熱度が高く(吸熱量が多く)、機械的エネルギーが取り出された後の膨張機20出口で冷媒が持つ熱量が、凝縮器30の放熱能力を上回る場合、制御部73は開閉弁56を開状態とするとともに、その開度を調節する。 Now, in the Rankine cycle apparatus 10 of the second embodiment, the control unit 73 adjusts the opening degree of the on-off valve 56 from the map based on the temperature information detected by the superheat degree sensor 57. That is, when the degree of superheat of the refrigerant after passing through the boiler 50 is high (a large amount of heat absorption), and the amount of heat that the refrigerant has at the outlet of the expander 20 after mechanical energy is taken out exceeds the heat dissipation capability of the condenser 30, The control unit 73 opens the on-off valve 56 and adjusts the opening degree.
 すると、冷媒循環回路12を流れる冷媒の一部は、ボイラバイパス通路55を流れるとともに、残りの冷媒はボイラ50に向けて流れる。ボイラ50に流れる冷媒量が減るため、冷媒がボイラ50で受け取り可能な熱量は、ボイラバイパス通路55に冷媒が流れない場合に比べて減少する。このため、ボイラ50を流れた冷媒と、ボイラバイパス通路55を流れた冷媒とがボイラバイパス通路55の出口で合流したとき、その合流点での冷媒の持つ熱量は、全ての冷媒がボイラ50を流れた場合(開閉弁56が閉状態の場合)に比べて減少している。 Then, a part of the refrigerant flowing through the refrigerant circulation circuit 12 flows through the boiler bypass passage 55 and the remaining refrigerant flows toward the boiler 50. Since the amount of refrigerant flowing through the boiler 50 is reduced, the amount of heat that can be received by the boiler 50 is reduced as compared with the case where the refrigerant does not flow through the boiler bypass passage 55. Therefore, when the refrigerant that has flowed through the boiler 50 and the refrigerant that has flowed through the boiler bypass passage 55 merge at the outlet of the boiler bypass passage 55, the amount of heat that the refrigerant has at that junction is that all the refrigerant passes through the boiler 50. Compared to when it flows (when the on-off valve 56 is closed), it decreases.
 このため、図2(b)に示すように、ボイラバイパス通路55と開閉弁56を設けた第2の実施形態のランキンサイクル装置10においては、加熱行程でのエンタルピー増加量(吸熱量)はΔh21で示されている。よって、第2の実施形態のランキンサイクル装置10では、加熱行程でのエンタルピー増加量Δh21が、ボイラバイパス通路55と開閉弁56を設けない場合の加熱行程でのエンタルピー増加量Δh22より小さくなっており、ボイラ50での吸熱量が減少していることが示されている。その結果、ボイラ50通過直後の冷媒の温度は、ボイラバイパス通路55と開閉弁56を設けないランキンサイクル装置でのボイラ50通過直後の冷媒の温度より低くなる。 Therefore, as shown in FIG. 2B, in the Rankine cycle device 10 of the second embodiment provided with the boiler bypass passage 55 and the on-off valve 56, the enthalpy increase amount (heat absorption amount) in the heating stroke is Δh21. It is shown in Therefore, in the Rankine cycle device 10 of the second embodiment, the enthalpy increase amount Δh21 in the heating stroke is smaller than the enthalpy increase amount Δh22 in the heating stroke when the boiler bypass passage 55 and the on-off valve 56 are not provided. It is shown that the endothermic amount in the boiler 50 is decreasing. As a result, the temperature of the refrigerant immediately after passing through the boiler 50 is lower than the temperature of the refrigerant immediately after passing through the boiler 50 in a Rankine cycle device in which the boiler bypass passage 55 and the on-off valve 56 are not provided.
 上記第2の実施形態によれば、第1の実施形態の(2)、(3)と同様な利点に加え、以下のような利点を得ることができる。 According to the second embodiment, in addition to the same advantages as (2) and (3) of the first embodiment, the following advantages can be obtained.
 (4)ランキンサイクル装置10において、冷媒循環回路12に、ボイラ50をバイパスさせるためのボイラバイパス通路55を設けるとともに、このボイラバイパス通路55に開閉弁56を設け、ボイラバイパス通路55の開度を調節可能にした。そして、開閉弁56を開状態とし、冷媒循環回路12を循環する冷媒の一部をボイラ50をバイパスさせることで、冷媒がボイラ50から受け取る熱量を制限することができ、ポンプ40出口から膨張機20入口までの間に冷媒が受け取る熱量を制限することができる。したがって、膨張機20吸入前に冷媒が持つ熱量(吸熱量)を減らすことができ、膨張機20で機械的エネルギーが取り出された後に、その膨張機20出口で冷媒の持つ熱量が凝縮器30の放熱能力を上回ることを防止することができる。その結果として、冷媒は凝縮器30で液化され、ポンプ40に気液混合状態の冷媒が供されることを防止することができる。 (4) In the Rankine cycle device 10, the refrigerant circulation circuit 12 is provided with a boiler bypass passage 55 for bypassing the boiler 50, and an open / close valve 56 is provided in the boiler bypass passage 55, so that the opening degree of the boiler bypass passage 55 is increased. Made adjustable. Then, by opening the on-off valve 56 and bypassing the boiler 50 with a part of the refrigerant circulating in the refrigerant circulation circuit 12, the amount of heat received by the refrigerant from the boiler 50 can be limited, and the expander is provided from the outlet of the pump 40. It is possible to limit the amount of heat received by the refrigerant up to 20 inlets. Accordingly, the amount of heat (heat absorption amount) of the refrigerant before the expander 20 is sucked can be reduced, and after the mechanical energy is taken out by the expander 20, the amount of heat of the refrigerant at the outlet of the expander 20 is reduced. It is possible to prevent the heat dissipation capacity from being exceeded. As a result, the refrigerant is liquefied by the condenser 30, and the pump 40 can be prevented from being supplied with the refrigerant in a gas-liquid mixed state.
 よって、第2の実施形態のランキンサイクル装置10によれば、ボイラバイパス通路55及び開閉弁56を設けることで、ポンプ40でのキャビテーションの発生を防止し、ポンプ40による冷媒の圧送能力低下を防止することができる。そして、キャビテーション発生防止のために、凝縮器30を大型化して放熱能力を高める必要がないため、凝縮器30の大型化によるコスト増加も生じない。加えて、ボイラ50通過直後の冷媒の持つ熱量を減らすことで、膨張機20の吸入温度が高くなり過ぎることを防止することができ、膨張機20の耐熱設計を採用することによるコスト増加も生じない。 Therefore, according to the Rankine cycle device 10 of the second embodiment, the provision of the boiler bypass passage 55 and the on-off valve 56 prevents the pump 40 from generating cavitation and prevents the pump 40 from reducing the pressure of the refrigerant. can do. In order to prevent the occurrence of cavitation, it is not necessary to increase the size of the condenser 30 to increase the heat dissipation capability, and therefore, an increase in cost due to an increase in the size of the condenser 30 does not occur. In addition, by reducing the amount of heat of the refrigerant immediately after passing through the boiler 50, the intake temperature of the expander 20 can be prevented from becoming excessively high, and an increase in cost due to the use of the heat resistant design of the expander 20 also occurs. Absent.
 (第3の実施形態)
 次に、本発明を具体化した第3の実施形態を図3にしたがって説明する。なお、以下の説明では、既に説明した第1の実施形態と同一構成について同一符号を付すなどし、その重複する説明を省略又は簡略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those in the first embodiment already described are denoted by the same reference numerals, and the redundant description thereof is omitted or simplified.
 図3(a)に示すように、ランキンサイクル装置10の冷媒循環回路12において、ポンプ40の出口である吐出ポート(図示せず)には、第1流路11を介して第1熱交換器としての第1ボイラ64が接続されている。第1ボイラ64は、廃熱源としてのエンジン58に接続された第1冷却水循環経路59上に設けられている。第1冷却水循環経路59上にはラジエータ62が設けられている。そして、エンジン58からの廃熱が伝達され、エンジン58を冷却した廃熱媒体としての冷却水は、第1冷却水循環経路59を循環するとともに、第1ボイラ64の熱源となっている。よって、ポンプ40出口から吐出された冷媒は、第1ボイラ64での冷却水との熱交換により冷却水から熱を受け取り、加熱される。 As shown in FIG. 3A, in the refrigerant circulation circuit 12 of the Rankine cycle device 10, a first heat exchanger is connected to a discharge port (not shown) that is an outlet of the pump 40 via a first flow path 11. As a first boiler 64 is connected. The first boiler 64 is provided on a first cooling water circulation path 59 connected to an engine 58 as a waste heat source. A radiator 62 is provided on the first cooling water circulation path 59. Then, the waste heat from the engine 58 is transmitted, and the coolant as a waste heat medium that has cooled the engine 58 circulates through the first coolant circulation path 59 and serves as a heat source for the first boiler 64. Therefore, the refrigerant discharged from the outlet of the pump 40 receives heat from the cooling water by heat exchange with the cooling water in the first boiler 64 and is heated.
 また、エンジン58には、排気ガスを排出する排気通路66が接続されるとともに、この排気通路66にはエンジン58からの廃熱が伝達された廃熱媒体としての排気ガスが流れるようになっている。この排気通路66上には、排気ガス用熱交換器67が設けられている。また、この排気ガス用熱交換器67は、第2冷却水循環経路68上に設けられている。第2冷却水循環経路68上には、第2熱交換器としての第2ボイラ65が設けられており、この第2ボイラ65は、第1ボイラ64の出口に接続流路63を介して接続されている。 Further, an exhaust passage 66 for exhaust gas exhaust is connected to the engine 58, and exhaust gas as a waste heat medium to which waste heat from the engine 58 is transmitted flows through the exhaust passage 66. Yes. An exhaust gas heat exchanger 67 is provided on the exhaust passage 66. The exhaust gas heat exchanger 67 is provided on the second cooling water circulation path 68. A second boiler 65 as a second heat exchanger is provided on the second cooling water circulation path 68, and the second boiler 65 is connected to the outlet of the first boiler 64 via the connection flow path 63. ing.
 排気ガス用熱交換器67では、排気ガスと、第2冷却水循環経路68の冷却水との間で熱交換が行われるようになっている。そして、排気ガスの持つ廃熱と熱交換した冷却水は加熱されるとともに、第2冷却水循環経路68を循環する。そして、第2冷却水循環経路68を循環する冷却水は、第2ボイラ65の熱源となっている。第1ボイラ64での熱源となる冷却水と、第2ボイラ65での熱源となる冷却水とでは、第2ボイラ65の冷却水の温度の方が若干高くなっており、温度差は小さい。 In the exhaust gas heat exchanger 67, heat exchange is performed between the exhaust gas and the cooling water in the second cooling water circulation path 68. Then, the cooling water heat-exchanged with the waste heat of the exhaust gas is heated and circulated through the second cooling water circulation path 68. The cooling water circulating in the second cooling water circulation path 68 is a heat source for the second boiler 65. In the cooling water that is the heat source in the first boiler 64 and the cooling water that is the heat source in the second boiler 65, the temperature of the cooling water in the second boiler 65 is slightly higher, and the temperature difference is small.
 第2ボイラ65の出口には、第2流路14を介して膨張機20の入口である吸入ポート(図示せず)が接続されている。膨張機20には流路15を介して凝縮器30が接続されるとともに、凝縮器30には流路16を介してポンプ40が接続されている。 A suction port (not shown) that is the inlet of the expander 20 is connected to the outlet of the second boiler 65 via the second flow path 14. A condenser 30 is connected to the expander 20 via a flow path 15, and a pump 40 is connected to the condenser 30 via a flow path 16.
 冷媒循環回路12における冷媒の循環方向において、第1ボイラ64より下流であり、第2ボイラ65より上流となる接続流路63上には、制限部としての絞り69が設けられている。この絞り69は、開度を調節可能になっている。絞り69に導入された冷媒は、膨張して減圧された後、接続流路63を介して第2ボイラ65に導入されるようになっている。 In the refrigerant circulation direction in the refrigerant circulation circuit 12, a restrictor 69 is provided as a restricting portion on the connection flow path 63 that is downstream from the first boiler 64 and upstream from the second boiler 65. The aperture 69 can be adjusted in opening. The refrigerant introduced into the throttle 69 is expanded and depressurized, and then introduced into the second boiler 65 through the connection channel 63.
 また、冷媒循環回路12における冷媒の循環方向において、第2ボイラ65より下流であり、膨張機20より上流に位置する流路14上には、温度センサ70が設けられている。そして、温度センサ70は、第2ボイラ65を通過した直後の冷媒の温度であり、膨張機20入口での吸入温度を検知する。温度センサ70は、制御部73に信号接続されている。そして、制御部73は、温度センサ70からの温度情報に基づき絞り69の開度を調節する。 Further, a temperature sensor 70 is provided on the flow path 14 located downstream from the second boiler 65 and upstream from the expander 20 in the refrigerant circulation direction in the refrigerant circulation circuit 12. The temperature sensor 70 is the temperature of the refrigerant immediately after passing through the second boiler 65, and detects the suction temperature at the inlet of the expander 20. The temperature sensor 70 is signal-connected to the control unit 73. Then, the control unit 73 adjusts the opening degree of the diaphragm 69 based on the temperature information from the temperature sensor 70.
 制御部73には、膨張機20出口で冷媒の持つ熱量が、凝縮器30の放熱能力を上回らないようにするために、温度情報(膨張機20の吸入温度)に対して、絞り69の開度を対応付けたマップが予め記憶されている。 In order to prevent the heat quantity of the refrigerant at the outlet of the expander 20 from exceeding the heat dissipation capacity of the condenser 30, the control unit 73 opens the throttle 69 with respect to the temperature information (suction temperature of the expander 20). A map in which the degrees are associated is stored in advance.
 図3(b)に絞り69を設けないランキンサイクル装置での冷媒のエンタルピー及び圧力の変化を示し、図3(c)に第3の実施形態のランキンサイクル装置10での冷媒のエンタルピー及び圧力の変化を示す。なお、図3(b)及び図3(c)それぞれにおいて、横軸はエンタルピーを表し、縦軸は圧力を表すとともに、曲線Eは飽和液線と飽和蒸気線とを表し、曲線Tは冷却水の等温線を表す。なお、エンタルピーは、冷媒の圧力と体積との積に内部エネルギーを加えた量であり、圧力一定の条件のもとで、冷媒に出入する熱量はエンタルピーの変化量に等しいことから、エンタルピーの変化量は冷媒の熱量の変化量を示す。 FIG. 3 (b) shows changes in the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus without the throttle 69, and FIG. 3 (c) shows the enthalpy and pressure of the refrigerant in the Rankine cycle apparatus 10 of the third embodiment. Showing change. 3 (b) and 3 (c), the horizontal axis represents enthalpy, the vertical axis represents pressure, the curve E represents a saturated liquid line and a saturated vapor line, and the curve T represents cooling water. Represents the isotherm. Note that enthalpy is the amount of internal pressure added to the product of refrigerant pressure and volume, and the amount of heat entering and exiting the refrigerant is equal to the amount of change in enthalpy under constant pressure conditions. The quantity indicates the amount of change in the heat quantity of the refrigerant.
 図3(b)において、交点Q1から交点Q2までの2点鎖線J1は凝縮器30による凝縮行程、交点Q2から交点Q3までの2点鎖線J2はポンプ40による圧送行程を表す。また、交点Q3から交点Q4までの2点鎖線J3は第1ボイラ64による第1加熱行程、交点Q4から交点Q5までの2点鎖線J4は第2ボイラ65による第2加熱行程、交点Q5から交点Q1までの2点鎖線J5は膨張機20による膨張行程を表す。そして、2点鎖線J1~J5により、絞り69を設けないランキンサイクル装置における冷媒のエンタルピー及び圧力の変化を示している。 3B, a two-dot chain line J1 from the intersection point Q1 to the intersection point Q2 represents a condensation stroke by the condenser 30, and a two-dot chain line J2 from the intersection point Q2 to the intersection point Q3 represents a pumping stroke by the pump 40. A two-dot chain line J3 from the intersection point Q3 to the intersection point Q4 is a first heating stroke by the first boiler 64, and a two-dot chain line J4 from the intersection point Q4 to the intersection point Q5 is a second heating stroke by the second boiler 65, the intersection point from the intersection point Q5. A two-dot chain line J5 up to Q1 represents an expansion stroke by the expander 20. The two-dot chain lines J1 to J5 indicate changes in the enthalpy and pressure of the refrigerant in the Rankine cycle device without the throttle 69.
 図3(c)において、交点R1から交点R2までの実線D1は凝縮器30による凝縮行程、交点R2から交点R3までの実線D2はポンプ40による圧送行程を表す。また、交点R3から交点R4までの実線D3は第1ボイラ64による第1加熱行程、交点R4から交点R5までの実線D4は絞り69による減圧行程、交点R5から交点R6までの実線D5は第2ボイラ65による第2加熱行程、交点R6から交点R1までの実線D6は膨張機20による膨張行程を表す。そして、実線D1~D6により第3の実施形態でのランキンサイクル装置10における冷媒のエンタルピー及び圧力の変化を示している。 3C, a solid line D1 from the intersection R1 to the intersection R2 represents a condensation stroke by the condenser 30, and a solid line D2 from the intersection R2 to the intersection R3 represents a pressure feed stroke by the pump 40. A solid line D3 from the intersection R3 to the intersection R4 is a first heating stroke by the first boiler 64, a solid line D4 from the intersection R4 to the intersection R5 is a decompression stroke by the throttle 69, and a solid line D5 from the intersection R5 to the intersection R6 is a second line D5. The second heating stroke by the boiler 65, the solid line D6 from the intersection R6 to the intersection R1 represents the expansion stroke by the expander 20. The solid lines D1 to D6 indicate changes in the enthalpy and pressure of the refrigerant in the Rankine cycle device 10 according to the third embodiment.
 なお、絞り69を設けないランキンサイクル装置において、絞り69以外の回路構成部材は、第3の実施形態のランキンサイクル装置10の回路構成部材と同じであるため、絞り69を設けないランキンサイクル装置での回路構成部材は第3の実施形態のランキンサイクル装置10での回路構成部材と同じ部材番号を用いて説明を行う。 Note that in the Rankine cycle device that does not include the throttle 69, the circuit components other than the throttle 69 are the same as the circuit components of the Rankine cycle device 10 of the third embodiment. These circuit constituent members will be described using the same member numbers as the circuit constituent members in the Rankine cycle apparatus 10 of the third embodiment.
 絞り69を設けないランキンサイクル装置において、ポンプ40出口の冷媒の圧力P1が、第1ボイラ64での冷媒の温度であるt11での飽和圧力Psat(t11)より低くなるように、ポンプ40と膨張機20の容量比が予め設定されている(式1)。 In the Rankine cycle device not provided with the throttle 69, the expansion of the pump 40 and the pump 40 is performed such that the refrigerant pressure P1 at the outlet of the pump 40 is lower than the saturation pressure Psat (t11) at t11 which is the refrigerant temperature in the first boiler 64. The capacity ratio of the machine 20 is preset (Formula 1).
 P1<Psat(t11)…式1
 また、絞り69を設けないランキンサイクル装置において、冷媒は、第1ボイラ64よりΔh31だけ熱を受け取るとともに、第2ボイラ65よりΔh32だけ熱を受け取る。冷媒は、最大で曲線T(等温線)と圧力P1が交差する位置まで熱を受け取ることができるため、受熱量(吸熱量)が過多となることがある。
P1 <Psat (t11) ... Formula 1
Further, in the Rankine cycle device in which the throttle 69 is not provided, the refrigerant receives heat from the first boiler 64 by Δh31 and also receives heat from the second boiler 65 by Δh32. Since the refrigerant can receive heat up to a position where the curve T (isothermal line) and the pressure P1 intersect at the maximum, the amount of heat received (heat absorption amount) may be excessive.
 第3の実施形態のランキンサイクル装置10において、第1ボイラ64通過直後の冷媒の温度をt21、冷媒の圧力をP2とする。また、図3(c)に示すように、第1ボイラ64でのエンタルピー増加量(吸熱量:実線D3の長さ)をΔh41とし、第2ボイラ65でのエンタルピー増加量(吸熱量:実線D5の長さ)をΔh42とする。 In the Rankine cycle device 10 of the third embodiment, the temperature of the refrigerant immediately after passing through the first boiler 64 is t21, and the pressure of the refrigerant is P2. Further, as shown in FIG. 3C, the enthalpy increase amount (endothermic amount: length of the solid line D3) in the first boiler 64 is Δh41, and the enthalpy increase amount (endothermic amount: solid line D5) in the second boiler 65. Is set to Δh42.
 さて、第3の実施形態のランキンサイクル装置10において、温度センサ70で検知した温度情報に基づき、制御部73が吸熱量過多と判断した場合、制御部73は絞り69の開度を小さくする。すなわち、第2ボイラ65通過後の冷媒の温度が高く(吸熱量が多く)、膨張機20で機械的エネルギーを取り出された後に、膨張機20出口で冷媒の持つ熱量が、凝縮器30の放熱能力を上回ると制御部73で判断された場合、制御部73は絞り69の開度を小さくする。このとき、膨張機20の吸入容積と冷媒流量は変化しないことから、第2ボイラ65での冷媒圧力P1は変化しない。よって、絞り69の開度が小さくされることにより、絞り69上流側の冷媒の圧力はP2に上昇する。すなわち、絞り69の開度は、第1ボイラ64で冷媒の圧力P2が、冷却水(廃熱媒体)の温度t1での飽和圧力Psat(t1)より高くなるように調節される(式2)。 Now, in the Rankine cycle device 10 of the third embodiment, when the control unit 73 determines that the endothermic amount is excessive based on the temperature information detected by the temperature sensor 70, the control unit 73 decreases the opening of the throttle 69. That is, the temperature of the refrigerant after passing through the second boiler 65 is high (a large amount of heat absorption), and after the mechanical energy is taken out by the expander 20, the heat quantity of the refrigerant at the outlet of the expander 20 becomes the heat dissipation of the condenser 30. If the control unit 73 determines that the capacity is exceeded, the control unit 73 reduces the opening of the diaphragm 69. At this time, since the suction volume of the expander 20 and the refrigerant flow rate do not change, the refrigerant pressure P1 in the second boiler 65 does not change. Therefore, when the opening degree of the throttle 69 is reduced, the pressure of the refrigerant upstream of the throttle 69 increases to P2. That is, the opening degree of the throttle 69 is adjusted by the first boiler 64 so that the refrigerant pressure P2 is higher than the saturation pressure Psat (t1) at the temperature t1 of the cooling water (waste heat medium) (Equation 2). .
  P2>Psat(t1)…式2
 上述のように絞り69の開度が調節されると、第1ボイラ64で冷媒が受け取ることができる最大熱量(エンタルピー増加量)Δh41は、第1ボイラ64での冷媒の圧力P2と曲線Tが交差する位置までに制限される。よって、第3の実施形態のランキンサイクル装置10において、第1ボイラ64でのエンタルピー増加量Δh41は、絞り69を設けないランキンサイクル装置における第1ボイラ64でのエンタルピー増加量Δh31より小さくなる(式3)。
P2> Psat (t1) ... Formula 2
When the opening degree of the throttle 69 is adjusted as described above, the maximum amount of heat (increased enthalpy) Δh41 that can be received by the refrigerant in the first boiler 64 is equal to the refrigerant pressure P2 and the curve T in the first boiler 64. Limited to the intersection. Therefore, in the Rankine cycle device 10 of the third embodiment, the enthalpy increase amount Δh41 in the first boiler 64 is smaller than the enthalpy increase amount Δh31 in the first boiler 64 in the Rankine cycle device without the throttle 69 (formula 3).
 Δh41<Δh31…式3
 その後、冷媒は、絞り69によって減圧され、第2ボイラ65でエンタルピー増加量Δh42だけ熱を受け取る。第2ボイラ65でのエンタルピー増加量Δh42は、絞り69を設けないランキンサイクル装置における第2ボイラ65でのエンタルピー増加量Δh32とほぼ同じのため、第1ボイラ64での受熱量が(増加量)が減少した分だけ、絞り69を設けたランキンサイクル装置10での受熱量は減少する(式4)。
Δh41 <Δh31 ... Formula 3
Thereafter, the refrigerant is depressurized by the throttle 69 and receives heat by the second boiler 65 by an enthalpy increase amount Δh42. Since the enthalpy increase amount Δh42 in the second boiler 65 is substantially the same as the enthalpy increase amount Δh32 in the second boiler 65 in the Rankine cycle device without the throttle 69, the amount of heat received in the first boiler 64 is (increase amount). The amount of heat received by the Rankine cycle apparatus 10 provided with the throttle 69 is decreased by the amount of decrease (Equation 4).
 Δh41+Δh42<Δh31+Δh32…式4
 その結果、第2ボイラ65通過直後の冷媒が持つ熱量は、絞り69を設けないランキンサイクル装置での第2ボイラ65通過直後の冷媒が持つ熱量より少なくなる。
Δh41 + Δh42 <Δh31 + Δh32 (Formula 4)
As a result, the amount of heat of the refrigerant immediately after passing through the second boiler 65 is less than the amount of heat of the refrigerant immediately after passing through the second boiler 65 in the Rankine cycle device without the throttle 69.
 上記第3の実施形態によれば、第1の実施形態の(2)、(3)と同様な利点に加え、以下のような利点を得ることができる。 According to the third embodiment, in addition to the same advantages as (2) and (3) of the first embodiment, the following advantages can be obtained.
 (5)ランキンサイクル装置10の冷媒循環回路12に、第1ボイラ64及び第2ボイラ65を設けるとともに、冷媒の循環方向における第1ボイラ64より下流であり、第2ボイラ65より上流に絞り69を設けた。そして、絞り69により、第1ボイラ64での冷媒の圧力P2を上昇させることにより、第1ボイラ64で冷媒が受け取る熱量は、第1ボイラ64での冷媒の圧力P2と等温線Tが交差する位置まで(冷却水の温度t1と等しくなるまで)に制限される。よって、ランキンサイクル装置10において、第1ボイラ64でのエンタルピー増加量Δh41は、絞り69を設けないランキンサイクル装置における第1ボイラ64でのエンタルピー増加量Δh31より小さくなり、ポンプ40出口から膨張機20入口までの間(第1ボイラ64)で冷媒が受け取る熱量を制限することができる。その結果、膨張機20出口で冷媒の持つ熱量が、凝縮器30の放熱能力を上回ることを防止することができる。したがって、冷媒を凝縮器30で液化し、ポンプ40に気液混合状態の冷媒が供されることを防止することができ、ポンプ40でのキャビテーションの発生を防止し、ポンプ40による冷媒の圧送能力低下を防止することができる。そして、キャビテーション発生防止のために、凝縮器30を大型化して放熱能力を高める必要がないため、凝縮器30の大型化によるコスト増加も生じない。加えて、第1ボイラ64通過直後の冷媒の持つ熱量を減らすことで、膨張機20入口の吸入温度が高くなり過ぎることを防止することができ、膨張機20の耐熱設計を採用することによるコスト増加も生じない。 (5) The refrigerant circulation circuit 12 of the Rankine cycle device 10 is provided with the first boiler 64 and the second boiler 65, and is throttled 69 downstream from the first boiler 64 and upstream from the second boiler 65 in the refrigerant circulation direction. Was provided. The amount of heat received by the refrigerant in the first boiler 64 intersects with the pressure P2 of the refrigerant in the first boiler 64 and the isotherm T by increasing the refrigerant pressure P2 in the first boiler 64 by the throttle 69. It is limited to the position (until it becomes equal to the temperature t1 of the cooling water). Therefore, in the Rankine cycle device 10, the enthalpy increase amount Δh41 in the first boiler 64 is smaller than the enthalpy increase amount Δh31 in the first boiler 64 in the Rankine cycle device without the throttle 69, and the expander 20 is discharged from the pump 40 outlet. The amount of heat received by the refrigerant can be limited up to the entrance (first boiler 64). As a result, it is possible to prevent the amount of heat of the refrigerant at the outlet of the expander 20 from exceeding the heat dissipation capability of the condenser 30. Therefore, it is possible to prevent the refrigerant from being liquefied by the condenser 30 and supplied to the pump 40 in the gas-liquid mixed state, to prevent the pump 40 from generating cavitation, and to pump the refrigerant by the pump 40. A decrease can be prevented. In order to prevent the occurrence of cavitation, it is not necessary to increase the size of the condenser 30 to increase the heat dissipation capability, and therefore, an increase in cost due to an increase in the size of the condenser 30 does not occur. In addition, by reducing the amount of heat of the refrigerant immediately after passing through the first boiler 64, the intake temperature at the inlet of the expander 20 can be prevented from becoming too high, and the cost of adopting the heat resistant design of the expander 20 There is no increase.
 なお、第1~第3の実施形態は以下のように変更してもよい。 Note that the first to third embodiments may be modified as follows.
 第1の実施形態では、廃熱媒体を廃熱源51からの廃熱が伝達される冷却水に具体化し、廃熱路を冷却水が循環する冷却媒体循環回路52に具体化したが、これに限らない。図4に示すように、第3の実施形態のランキンサイクル装置10において、廃熱路をエンジン58に接続された排気通路66に具体化し、廃熱媒体を排気通路66を流れる排気ガスに具体化する。また、排気通路66上に第2ボイラ65を設け、第2ボイラ65は、排気通路66と接続流路63との間の熱交換を可能にする。すなわち、排気通路66を流れる排気ガスと、接続流路63を流れる冷媒とで熱交換可能にし、エンジン58からの廃熱を、排気ガスを介して冷媒に伝達して熱交換させる。排気通路66にはマフラ74が設けられている。 In the first embodiment, the waste heat medium is embodied in the cooling water to which the waste heat from the waste heat source 51 is transmitted, and is embodied in the cooling medium circulation circuit 52 in which the cooling water circulates in the waste heat path. Not exclusively. As shown in FIG. 4, in the Rankine cycle device 10 of the third embodiment, the waste heat path is embodied in the exhaust passage 66 connected to the engine 58, and the waste heat medium is embodied in the exhaust gas flowing in the exhaust passage 66. To do. Further, a second boiler 65 is provided on the exhaust passage 66, and the second boiler 65 enables heat exchange between the exhaust passage 66 and the connection flow path 63. That is, heat exchange is possible between the exhaust gas flowing through the exhaust passage 66 and the refrigerant flowing through the connection flow path 63, and waste heat from the engine 58 is transferred to the refrigerant via the exhaust gas to exchange heat. A muffler 74 is provided in the exhaust passage 66.
 また、排気通路66での排気ガスの排気方向において、第2ボイラ65より上流と下流とは、制限部としての熱交換器バイパス通路75により接続されている。そして、この熱交換器バイパス通路75により、排気ガスが排気通路66を流れるときに、排気ガスが第2ボイラ65をバイパスするようになっている。また、熱交換器バイパス通路75上には制限部としての開閉弁76が設けられている。そして、温度センサ70からの温度情報に基づき、制御部73は開閉弁76の開閉を調節して熱交換器バイパス通路75の開度を調節する。 Also, in the exhaust gas exhaust direction in the exhaust passage 66, the upstream and downstream sides of the second boiler 65 are connected by a heat exchanger bypass passage 75 as a restricting portion. The heat exchanger bypass passage 75 allows the exhaust gas to bypass the second boiler 65 when the exhaust gas flows through the exhaust passage 66. On the heat exchanger bypass passage 75, an on-off valve 76 is provided as a limiting portion. And based on the temperature information from the temperature sensor 70, the control part 73 adjusts the opening / closing of the on-off valve 76, and adjusts the opening degree of the heat exchanger bypass passage 75. FIG.
 開閉弁76の開度が小さくなればなるほど、第2ボイラ65に流れる排気ガスの流量が増えるため、冷媒が第2ボイラ65で受け取り可能な熱量は増加し、開閉弁76の開度が大きくなればなるほど、第2ボイラ65に流れる排気ガスの流量が減るため、冷媒が第2ボイラ65で受け取り可能な熱量は減少する。そして、温度情報に対し、膨張機20出口で冷媒の持つ熱量が、凝縮器30での放熱能力を上回らないようにするために、開閉弁76の開度が制御部73により制御される。 As the opening degree of the opening / closing valve 76 becomes smaller, the flow rate of the exhaust gas flowing through the second boiler 65 increases, so the amount of heat that can be received by the refrigerant in the second boiler 65 increases, and the opening degree of the opening / closing valve 76 becomes larger. As the flow rate increases, the flow rate of the exhaust gas flowing through the second boiler 65 decreases, and the amount of heat that the refrigerant can receive by the second boiler 65 decreases. Then, the opening degree of the on-off valve 76 is controlled by the control unit 73 so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capacity in the condenser 30 with respect to the temperature information.
 第1~第3の実施形態において、温度センサS、過熱度センサ57、温度センサ70の代わりに、ポンプ40の入口に過冷却度センサを設け、この過冷却度センサによりポンプ40の入口での過冷却度を温度情報として検知し、過冷却度に基づいて開閉弁54,56、絞り69の開度を調節するようにしてもよい。 In the first to third embodiments, instead of the temperature sensor S, the superheat degree sensor 57, and the temperature sensor 70, a supercooling degree sensor is provided at the inlet of the pump 40. The degree of supercooling may be detected as temperature information, and the opening degree of the on-off valves 54 and 56 and the throttle 69 may be adjusted based on the degree of supercooling.
 具体的には、図5に示すように、第1の実施形態において、温度センサSを削除するとともに、冷媒循環回路12におけるポンプ40の入口(吸入側)となる位置に過冷却度センサ71を設け、この過冷却度センサ71を制御部73に接続する。そして、ボイラ50での吸熱量が過多となると、過冷却度センサ71によって検知されるポンプ40入口での過冷却度が、予め設定された所定値以下(例えば、5℃以下、通常は5~15℃)になるため、制御部73は開閉弁54の開度を調節する。その結果、ポンプ40出口から膨張機20入口までの間に冷媒が受け取る熱量が制限される。 Specifically, as shown in FIG. 5, in the first embodiment, the temperature sensor S is deleted, and a supercooling degree sensor 71 is provided at a position that becomes the inlet (suction side) of the pump 40 in the refrigerant circulation circuit 12. The supercooling degree sensor 71 is provided and connected to the control unit 73. If the heat absorption amount in the boiler 50 becomes excessive, the degree of supercooling at the inlet of the pump 40 detected by the supercooling degree sensor 71 is less than a predetermined value (for example, 5 ° C. or less, usually 5 to 15 ° C.), the control unit 73 adjusts the opening degree of the on-off valve 54. As a result, the amount of heat received by the refrigerant between the outlet of the pump 40 and the inlet of the expander 20 is limited.
 第1の実施形態において、温度センサSの代わりに過熱度センサ57を設け、過熱度センサ57により検知される過熱度を温度情報としてもよい。 In the first embodiment, a superheat degree sensor 57 may be provided instead of the temperature sensor S, and the superheat degree detected by the superheat degree sensor 57 may be used as temperature information.
 第2の実施形態において、過熱度センサ57の代わりに温度センサSを設け、温度センサSにより検知される温度を温度情報としてもよい。 In the second embodiment, a temperature sensor S may be provided instead of the superheat degree sensor 57, and the temperature detected by the temperature sensor S may be used as temperature information.
 第3の実施形態では、絞り69の開度を、制御部73の制御により調節するようにしたが、絞り69の代わりに内部制御可能な制限部を用いてもよい。 In the third embodiment, the opening degree of the diaphragm 69 is adjusted by the control of the control unit 73, but instead of the diaphragm 69, a limiter that can be controlled internally may be used.
 ランキンサイクル装置10は、車両以外にも太陽発電システムや工場での発電システム等に用いてもよい。 The Rankine cycle device 10 may be used for a solar power generation system, a power generation system in a factory, and the like in addition to the vehicle.
 作動流体は冷媒でなく、水等に変更してもよい。また、廃熱媒体は、冷却水のような液体ではなく気体であってもよい。 The working fluid may be changed to water or the like instead of the refrigerant. Further, the waste heat medium may be a gas instead of a liquid such as cooling water.
 ポンプ40をプーリを介して外部駆動源に直結したが、ポンプ40をモータにより駆動させるタイプとしてもよい。この場合、モータはインバータによる回転数制御ができないものである。 Although the pump 40 is directly connected to an external drive source through a pulley, the pump 40 may be driven by a motor. In this case, the motor cannot be controlled by the inverter.
 ポンプ40と膨張機20とは、該ポンプ40と膨張機20の軸とを直結させたものでもよい。この場合、ポンプ40は外部駆動源Fbにより駆動されるが、膨張機20が機械的エネルギーを出力し始めたら、その出力された機械的エネルギーを動力源としてポンプ40が駆動される。 The pump 40 and the expander 20 may be one in which the pump 40 and the shaft of the expander 20 are directly connected. In this case, the pump 40 is driven by the external drive source Fb. When the expander 20 starts to output mechanical energy, the pump 40 is driven using the output mechanical energy as a power source.
 第2の実施形態において、過熱度センサ57の代わりに感温膨張弁を用い、ボイラ50を出た冷媒の過熱度の変化を感温筒で検知し、その検知結果に応じてボイラ50へ流入する冷媒を調整してもよい。そして、感温膨張弁により、冷媒の過熱度を一定に保持して、膨張機20出口で冷媒の持つ熱量が、凝縮器30の放熱能力を上回らないように、吸熱量を制限するようにしてもよい。 In the second embodiment, a temperature-sensitive expansion valve is used instead of the superheat degree sensor 57, and a change in the superheat degree of the refrigerant that has exited the boiler 50 is detected by a temperature-sensitive cylinder, and flows into the boiler 50 according to the detection result. The refrigerant to be adjusted may be adjusted. And the temperature-sensitive expansion valve keeps the degree of superheating of the refrigerant constant, and limits the amount of heat absorption so that the heat quantity of the refrigerant at the outlet of the expander 20 does not exceed the heat dissipation capability of the condenser 30. Also good.
 Fb…外部駆動源、10…ランキンサイクル装置、12…作動流体回路としての冷媒循環回路、20…膨張機、30…凝縮器、40…ポンプ、50…熱交換器としてのボイラ、51…廃熱源、52…廃熱路としての冷却媒体循環回路、53…制限部としての熱交換器バイパス通路、54…制限部としての開閉弁、55…制限部の熱交換器バイパス通路としてのボイラバイパス通路、56…制限部としての開閉弁、58…廃熱源としてのエンジン、64…第1熱交換器としての第1ボイラ、65…第2熱交換器としての第2ボイラ、66…廃熱路としての排気通路、69…制限部としての絞り、75…制限部としての熱交換器バイパス通路、76…制限部としての開閉弁。 Fb: external drive source, 10: Rankine cycle device, 12: refrigerant circulation circuit as working fluid circuit, 20: expander, 30 ... condenser, 40 ... pump, 50 ... boiler as heat exchanger, 51 ... waste heat source 52 ... Cooling medium circulation circuit as a waste heat path, 53 ... Heat exchanger bypass passage as a restriction section, 54 ... Open / close valve as a restriction section, 55 ... Boiler bypass passage as a heat exchanger bypass passage of the restriction section, 56: Open / close valve as a limiting unit, 58 ... Engine as a waste heat source, 64 ... First boiler as a first heat exchanger, 65 ... Second boiler as a second heat exchanger, 66 ... As a waste heat path Exhaust passage, 69... Restriction as restricting portion, 75... Heat exchanger bypass passage as restricting portion, 76.

Claims (9)

  1.  ランキンサイクル装置であって、
     廃熱源と、
     作動流体回路であって、該作動流体回路は、
      作動流体を圧送するポンプと、
      前記ポンプより圧送された前記作動流体を前記廃熱源からの廃熱と熱交換させる熱交換器と、
      前記熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する膨張機と、
      前記膨張機で膨張された作動流体を凝縮させる凝縮器と、
      を順次接続することによって構成される前記作動流体回路と、
     前記ポンプの入口、又は前記膨張機の入口で検知される温度情報に基づいて、前記作動流体回路上での前記ポンプの出口から前記膨張機の入口までの間に前記作動流体が受け取る熱量を制限する制限部と、
    を備えるランキンサイクル装置。
    Rankine cycle device,
    Waste heat source,
    A working fluid circuit, the working fluid circuit comprising:
    A pump for pumping the working fluid;
    A heat exchanger for exchanging heat between the working fluid pumped from the pump and waste heat from the waste heat source;
    An expander that expands the working fluid heat-exchanged by the heat exchanger and outputs mechanical energy;
    A condenser for condensing the working fluid expanded by the expander;
    The working fluid circuit configured by sequentially connecting
    Limiting the amount of heat received by the working fluid from the outlet of the pump to the inlet of the expander on the working fluid circuit based on temperature information sensed at the pump inlet or the expander inlet A restriction section to
    A Rankine cycle device comprising:
  2.  前記ランキンサイクル装置は廃熱媒体が流れる廃熱路をさらに備え、
     前記廃熱源からの廃熱は、前記廃熱媒体に伝達されるとともに、前記熱交換器では、前記廃熱媒体と前記作動流体との間で熱交換され、
     前記制限部は、前記廃熱路を流れる前記廃熱媒体の少なくとも一部が前記熱交換器をバイパスするように設けられた熱交換器バイパス通路である請求項1に記載のランキンサイクル装置。
    The Rankine cycle device further includes a waste heat path through which a waste heat medium flows,
    Waste heat from the waste heat source is transferred to the waste heat medium, and in the heat exchanger, heat is exchanged between the waste heat medium and the working fluid,
    The Rankine cycle apparatus according to claim 1, wherein the restriction unit is a heat exchanger bypass passage provided so that at least a part of the waste heat medium flowing through the waste heat path bypasses the heat exchanger.
  3.  前記廃熱路は、前記廃熱源を冷却する冷却媒体を循環させる冷却媒体循環回路であり、前記廃熱媒体は前記冷却媒体である請求項2に記載のランキンサイクル装置。 The Rankine cycle apparatus according to claim 2, wherein the waste heat path is a cooling medium circulation circuit that circulates a cooling medium that cools the waste heat source, and the waste heat medium is the cooling medium.
  4.  前記制限部は、前記作動流体回路を流れる前記作動流体の少なくとも一部が前記熱交換器をバイパスするように設けられた熱交換器バイパス通路である請求項1に記載のランキンサイクル装置。 2. The Rankine cycle device according to claim 1, wherein the restriction unit is a heat exchanger bypass passage provided so that at least a part of the working fluid flowing in the working fluid circuit bypasses the heat exchanger.
  5.  前記温度情報としての前記作動流体の前記膨張機の入口での吸入温度、前記膨張機の入口での過熱度、又は前記ポンプの入口での過冷却度に基づいて、前記熱交換器バイパス通路の開度を調節する請求項2~請求項4のうちいずれか一項に記載のランキンサイクル装置。 Based on the intake temperature of the working fluid at the inlet of the expander as the temperature information, the degree of superheat at the inlet of the expander, or the degree of supercooling at the inlet of the pump, the heat exchanger bypass passage The Rankine cycle device according to any one of claims 2 to 4, wherein the opening degree is adjusted.
  6.  前記熱交換器は、前記ポンプより圧送された前記作動流体を熱交換させる第1熱交換器と、前記第1熱交換器で熱交換された作動流体を熱交換させる第2熱交換器とを含み、
     前記制限部は、前記第1熱交換器より下流で、かつ前記第2熱交換器より上流となる前記作動流体回路の部位に設けられた、開度調節可能な絞りである請求項1に記載のランキンサイクル装置。
    The heat exchanger includes: a first heat exchanger that exchanges heat with the working fluid pumped from the pump; and a second heat exchanger that exchanges heat with the working fluid heat-exchanged in the first heat exchanger. Including
    2. The restriction is an aperture-adjustable throttle provided in a portion of the working fluid circuit that is downstream from the first heat exchanger and upstream from the second heat exchanger. Rankine cycle equipment.
  7.  前記第1熱交換器を通過した前記作動流体の圧力が、前記第1熱交換器の廃熱媒体温度での前記作動流体の飽和圧力より高くなるように前記絞りの開度を調節する請求項6に記載のランキンサイクル装置。 The throttle opening is adjusted so that the pressure of the working fluid that has passed through the first heat exchanger is higher than the saturation pressure of the working fluid at the waste heat medium temperature of the first heat exchanger. 6. Rankine cycle device according to 6.
  8.  前記温度情報としての前記作動流体の前記膨張機の入口での吸入温度、前記膨張機の入口での過熱度、又は前記ポンプの入口での過冷却度に基づいて、前記絞りの開度を調節する請求項6又は請求項7に記載のランキンサイクル装置。 The opening degree of the throttle is adjusted based on the intake temperature of the working fluid at the inlet of the expander, the degree of superheat at the inlet of the expander, or the degree of supercooling at the inlet of the pump as the temperature information The Rankine cycle apparatus according to claim 6 or 7.
  9.  前記ポンプは、外部駆動源の回転数に応じて駆動される請求項1~請求項8のうちいずれか一項に記載のランキンサイクル装置。 The Rankine cycle device according to any one of claims 1 to 8, wherein the pump is driven in accordance with the rotational speed of an external drive source.
PCT/JP2011/068981 2010-09-24 2011-08-23 Rankine cycle device WO2012039225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-213520 2010-09-24
JP2010213520A JP2012067687A (en) 2010-09-24 2010-09-24 Rankine cycle device

Publications (1)

Publication Number Publication Date
WO2012039225A1 true WO2012039225A1 (en) 2012-03-29

Family

ID=45873715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068981 WO2012039225A1 (en) 2010-09-24 2011-08-23 Rankine cycle device

Country Status (2)

Country Link
JP (1) JP2012067687A (en)
WO (1) WO2012039225A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017021033A1 (en) * 2015-08-03 2017-02-09 Robert Bosch Gmbh Waste-heat utilisation assembly of an internal combustion engine, and a method for operating said waste-heat utilisation assembly
CN112196634A (en) * 2020-10-16 2021-01-08 南昌智能新能源汽车研究院 Power generation system based on cooling circulation loop of automobile internal combustion engine and CFD simulation optimization method thereof
US11350371B2 (en) 2015-03-06 2022-05-31 Sony Corporation Communication control apparatus, communication apparatus, communication control method, communication method, and program which use uplink multiplex communication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993316A1 (en) * 2012-10-17 2016-03-09 Norgren Limited Waste heat recovery system
JP6223886B2 (en) * 2014-03-28 2017-11-01 株式会社神戸製鋼所 Power generator
CN113864012B (en) * 2021-12-02 2022-05-20 中国电力工程顾问集团西北电力设计院有限公司 System and method for comprehensively utilizing residual heat and residual pressure of coal-fired boiler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296401A (en) * 1992-04-22 1993-11-09 Toshiba Corp Exhaust heat recoverying boiler system and its main steam temperature controller
JP2010038108A (en) * 2008-08-07 2010-02-18 Sanden Corp Device for using waste heat of internal combustion engine
JP2010151023A (en) * 2008-12-25 2010-07-08 Calsonic Kansei Corp Rankine cycle system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296401A (en) * 1992-04-22 1993-11-09 Toshiba Corp Exhaust heat recoverying boiler system and its main steam temperature controller
JP2010038108A (en) * 2008-08-07 2010-02-18 Sanden Corp Device for using waste heat of internal combustion engine
JP2010151023A (en) * 2008-12-25 2010-07-08 Calsonic Kansei Corp Rankine cycle system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11350371B2 (en) 2015-03-06 2022-05-31 Sony Corporation Communication control apparatus, communication apparatus, communication control method, communication method, and program which use uplink multiplex communication
WO2017021033A1 (en) * 2015-08-03 2017-02-09 Robert Bosch Gmbh Waste-heat utilisation assembly of an internal combustion engine, and a method for operating said waste-heat utilisation assembly
CN112196634A (en) * 2020-10-16 2021-01-08 南昌智能新能源汽车研究院 Power generation system based on cooling circulation loop of automobile internal combustion engine and CFD simulation optimization method thereof
CN112196634B (en) * 2020-10-16 2022-12-30 南昌智能新能源汽车研究院 Power generation system based on cooling circulation loop of automobile internal combustion engine and CFD simulation optimization method thereof

Also Published As

Publication number Publication date
JP2012067687A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5621721B2 (en) Rankine cycle
JP7009227B2 (en) Thermal energy recovery device
WO2012039225A1 (en) Rankine cycle device
WO2009133620A1 (en) Waste heat utilization device for internal combustion
JP5008441B2 (en) Waste heat utilization device for internal combustion engine
US20110088397A1 (en) Waste heat recovery system
KR101708109B1 (en) Waste heat recovery apparatus and waste heat recovery method
WO2011122292A1 (en) Waste heat regeneration system
JP2010174848A (en) Waste heat regeneration system
WO2013046647A1 (en) Heat pump
JP2014231738A (en) Waste heat regeneration system
JP6433749B2 (en) Thermal energy recovery device
WO2009133619A1 (en) Waste heat utilization device for internal combustion
WO2013002018A1 (en) Rankine cycle
JP6342755B2 (en) Compression device
JP2011027000A (en) Waste heat utilization device
JP5571978B2 (en) Heat pump system
JP4857903B2 (en) Water heater
JP2008184906A (en) Heat recovery system in internal combustion engine
JP6831318B2 (en) Thermal energy recovery system
JP5790675B2 (en) heat pump
JP5653320B2 (en) Waste heat regeneration system
JP2008133727A (en) Waste heat utilization device for internal combustion engine
JP6616235B2 (en) Waste heat recovery system
JP2018155099A (en) Supercharged air cooling unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826671

Country of ref document: EP

Kind code of ref document: A1