JPH04297701A - Steam temperature controller for pressurized fluidized bed boiler - Google Patents

Steam temperature controller for pressurized fluidized bed boiler

Info

Publication number
JPH04297701A
JPH04297701A JP8620791A JP8620791A JPH04297701A JP H04297701 A JPH04297701 A JP H04297701A JP 8620791 A JP8620791 A JP 8620791A JP 8620791 A JP8620791 A JP 8620791A JP H04297701 A JPH04297701 A JP H04297701A
Authority
JP
Japan
Prior art keywords
command
bed
fluidized bed
water supply
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8620791A
Other languages
Japanese (ja)
Inventor
Hirobumi Furukoshi
古越 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP8620791A priority Critical patent/JPH04297701A/en
Publication of JPH04297701A publication Critical patent/JPH04297701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To provide a pressurized fluidized bed boiler having generated electric energy having high follow-up properties to an output command. CONSTITUTION:A feed water command 48 obtained by converting an output command 39 by a function generator 47 is transmitted directly over a feed valve 24. The layer height 34 of a bed material in a fluidized bed boiler body is adjusted in place of the transmission of a feed water command 48, thus controlling the steam temperature 38 of the inlet of a steam turbine.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、加圧流動層ボイラの蒸
気温度制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam temperature control device for a pressurized fluidized bed boiler.

【0002】0002

【従来の技術】現在、熱効率が高く、環境汚染物質を発
生しにくい加圧流動層ボイラの開発が進められている。
BACKGROUND OF THE INVENTION Currently, pressurized fluidized bed boilers are being developed which have high thermal efficiency and are less likely to generate environmental pollutants.

【0003】該加圧流動層ボイラとは要するに、流動層
ボイラを圧力容器内部に収納して加圧条件下で運転する
ようにしたものであり、発生した蒸気を蒸気タービンに
導いて発電することに加えて、発生した排ガスでガスタ
ービンを回し発電を行うかあるいはコンプレッサを駆動
することができるので、高い熱効率が得られると期待さ
れている。
[0003] In short, the pressurized fluidized bed boiler is a fluidized bed boiler housed inside a pressure vessel and operated under pressurized conditions, and generates electricity by guiding the generated steam to a steam turbine. In addition, the generated exhaust gas can be used to turn a gas turbine to generate electricity or drive a compressor, so it is expected that high thermal efficiency will be achieved.

【0004】又、低い温度で燃焼ししかも排ガスの滞留
時間が長いので、燃料と共に脱硫剤を供給することによ
り、窒素酸化物の発生量が低減されると期待されている
[0004] Furthermore, since combustion occurs at a low temperature and the residence time of the exhaust gas is long, it is expected that the amount of nitrogen oxides generated will be reduced by supplying a desulfurizing agent together with the fuel.

【0005】更に、高い熱効率が得られるので、装置の
小型化が得られると期待されている。
Furthermore, since high thermal efficiency can be obtained, it is expected that the device can be made smaller.

【0006】以下、現在検討が進められている加圧流動
層ボイラの蒸気温度制御装置の概略を図4・図5を用い
て説明する。
[0006] Hereinafter, an outline of a steam temperature control device for a pressurized fluidized bed boiler, which is currently being studied, will be explained using FIGS. 4 and 5.

【0007】図4中1は圧力容器、2は圧力容器1内部
に収納された流動層ボイラ本体、3は流動層ボイラ本体
2内部に挿入された流動層を形成するためのケイ砂など
のベッド材、4は流動層ボイラ本体2の外部に設けられ
たベッド材3を貯溜するためのベッド材貯蔵タンク、5
は流動層ボイラ本体2とベッド材貯蔵タンク4との間に
設けられたベッド材供給路、6は流動層ボイラ本体2と
ベッド材貯蔵タンク4との間に設けられたベッド材排出
路、7はベッド材供給路5に接続されて圧力容器1内部
のエア圧によってベッド材3をベッド材貯蔵タンク4か
ら流動層ボイラ本体2へ供給するためのベッド材供給用
弁、8はベッド材貯蔵タンク4に接続されてベッド材貯
蔵タンク4内部の圧力を大気に開放することによりベッ
ド材3を流動層ボイラ本体2からベッド材貯蔵タンク4
へ排出するためのベッド材排出用弁である。
In FIG. 4, 1 is a pressure vessel, 2 is a fluidized bed boiler body housed inside the pressure vessel 1, and 3 is a bed of silica sand or the like inserted inside the fluidized bed boiler body 2 for forming a fluidized bed. 4 is a bed material storage tank 5 provided outside the fluidized bed boiler body 2 for storing the bed material 3;
7 is a bed material supply path provided between the fluidized bed boiler main body 2 and the bed material storage tank 4; 6 is a bed material discharge path provided between the fluidized bed boiler main body 2 and the bed material storage tank 4; 8 is a bed material supply valve that is connected to the bed material supply path 5 and supplies the bed material 3 from the bed material storage tank 4 to the fluidized bed boiler main body 2 using the air pressure inside the pressure vessel 1; 8 is a bed material storage tank; 4 and releases the pressure inside the bed material storage tank 4 to the atmosphere, thereby transferring the bed material 3 from the fluidized bed boiler main body 2 to the bed material storage tank 4.
This is a bed material discharge valve for discharging to.

【0008】又、9は流動層ボイラ本体2へ脱硫剤を含
んだスラリ状の微粉炭などの燃料10を供給する燃料供
給路、11は燃料供給路9の途中に設けられた燃料ポン
プ、12は燃料ポンプ11の出側に設けられた燃料弁で
ある。
Further, reference numeral 9 denotes a fuel supply path for supplying a fuel 10 such as slurry-like pulverized coal containing a desulfurizing agent to the fluidized bed boiler main body 2, 11 a fuel pump provided in the middle of the fuel supply path 9, and 12 is a fuel valve provided on the outlet side of the fuel pump 11.

【0009】そして、13は流動層ボイラ本体2で発生
し図示しない脱塵装置で脱塵された排ガス14を排出す
る排ガス流路、15は排ガス流路13の途中に設けられ
たガスタービン、16はガスタービン15の出側に設け
られた煙突、17はガスタービン15に接続された発電
機であり、又、18は流動層ボイラ本体2へエア19を
供給するエア供給路、20はエア供給路18の途中に設
けられ且つ前記ガスタービン15に接続されたコンプレ
ッサである。
Reference numeral 13 denotes an exhaust gas passage for discharging the exhaust gas 14 generated in the fluidized bed boiler main body 2 and removed by a dust removing device (not shown); 15 is a gas turbine provided in the middle of the exhaust gas passage 13; and 16 17 is a generator connected to the gas turbine 15; 18 is an air supply path that supplies air 19 to the fluidized bed boiler main body 2; and 20 is an air supply path. This is a compressor installed in the middle of the passage 18 and connected to the gas turbine 15.

【0010】更に、21は流動層ボイラ本体2にボイラ
水22を供給する給水流路、23は給水流路21の途中
に設けられた給水ポンプ、24は給水ポンプ23の出側
に設けられた給水弁、25は給水流路21に接続され流
動層ボイラ本体2を構成する火炉パス、26は火炉パス
25の出側に接続された過熱器、27は給水流路21の
火炉パス25入側から分岐され、過熱器26入側へボイ
ラ水22をスプレーするためのスプレー流路、28はス
プレー流路27の途中に設けられたスプレー流量調整弁
、29は過熱器26出側と外部の蒸気タービン30とを
接続する蒸気流路、31は蒸気流路29の途中に設けら
れたタービン加減弁、32は蒸気タービン30に接続さ
れた発電機である。
Furthermore, 21 is a water supply channel for supplying boiler water 22 to the fluidized bed boiler main body 2, 23 is a water supply pump provided in the middle of the water supply channel 21, and 24 is provided on the outlet side of the water supply pump 23. A water supply valve, 25 is a furnace path connected to the water supply flow path 21 and constitutes the fluidized bed boiler body 2, 26 is a superheater connected to the outlet side of the furnace path 25, and 27 is an inlet side of the furnace path 25 of the water supply flow path 21. 28 is a spray flow rate adjustment valve provided in the middle of the spray channel 27, and 29 is a spray channel for spraying the boiler water 22 to the inlet side of the superheater 26. 31 is a turbine control valve provided in the middle of the steam flow path 29; and 32 is a generator connected to the steam turbine 30.

【0011】そして、33は流動層ボイラ本体2内部の
ベッド材3の層高34を計測するレベル計、35は火炉
パス出口温度36を検出する火炉パス出口温度センサ、
37は蒸気タービン入口温度38を検出するタービン入
口温度センサである。
33 is a level meter for measuring the layer height 34 of the bed material 3 inside the fluidized bed boiler main body 2; 35 is a furnace pass outlet temperature sensor for detecting the furnace pass outlet temperature 36;
37 is a turbine inlet temperature sensor that detects the steam turbine inlet temperature 38.

【0012】図5中39は外部からの出力指令、40は
出力指令39を層高指令41に変換する関数発生器、4
2は層高指令41とレベル計33で検出した実際の層高
34とを減算して層高偏差43を求める減算器、44は
層高偏差43に基づいてベッド材供給用弁7又はベッド
材排出用弁8の一方に開閉指令45,46を送るハイロ
ーモニターである。
In FIG. 5, 39 is an output command from the outside, 40 is a function generator that converts the output command 39 into a layer height command 41, and 4
2 is a subtracter that subtracts the bed height command 41 and the actual bed height 34 detected by the level meter 33 to obtain the bed height deviation 43; 44 is a bed material supply valve 7 or bed material based on the bed height deviation 43; This is a high-low monitor that sends open/close commands 45, 46 to one side of the discharge valve 8.

【0013】47は出力指令39を給水指令48に変換
する関数発生器、49は火炉パス出口温度センサ35で
検出した実際の火炉パス出口温度36と設定器50に設
定された火炉パス出口設定温度51とを減算して火炉パ
ス出口温度偏差52を求める減算器、53は火炉パス出
口温度偏差52を給水制御信号54とする調節計、55
は給水指令48と給水制御信号54とを加算して給水弁
24へ送る補正給水指令56を求める加算器である。
47 is a function generator that converts the output command 39 into a water supply command 48; 49 is the actual furnace pass outlet temperature 36 detected by the furnace pass outlet temperature sensor 35 and the furnace pass outlet set temperature set in the setting device 50; 51, a subtractor for calculating the furnace pass outlet temperature deviation 52; 53, a controller that uses the furnace pass outlet temperature deviation 52 as the water supply control signal 54; 55;
is an adder that adds the water supply command 48 and the water supply control signal 54 to obtain a corrected water supply command 56 to be sent to the water supply valve 24.

【0014】57はタービン入口温度センサ37で検出
した実際の蒸気タービン入口温度38と設定器58に設
定された蒸気タービン入口設定温度59とを減算して蒸
気タービン入口温度偏差60を求める減算器、61は蒸
気タービン入口温度偏差60をスプレー流量指令62と
してスプレー流量調整弁28へ送る調節計である。
A subtractor 57 calculates a steam turbine inlet temperature deviation 60 by subtracting the actual steam turbine inlet temperature 38 detected by the turbine inlet temperature sensor 37 and the steam turbine inlet set temperature 59 set in the setting device 58; Reference numeral 61 is a controller that sends the steam turbine inlet temperature deviation 60 to the spray flow rate regulating valve 28 as a spray flow rate command 62.

【0015】そして、上記加圧流動層ボイラを運転する
には、先ず、コンプレッサ20で圧縮したエア19を圧
力容器1内部へ供給して圧力容器1内部の圧力を高める
と共に、上記エア19を底部から流動層ボイラ本体2へ
供給して流動層ボイラ本体2内部のベッド材3を流動さ
せる。
To operate the pressurized fluidized bed boiler, first, the air 19 compressed by the compressor 20 is supplied to the inside of the pressure vessel 1 to increase the pressure inside the pressure vessel 1, and the air 19 is pumped to the bottom of the pressure vessel 1. The bed material 3 inside the fluidized bed boiler main body 2 is fluidized by supplying it to the fluidized bed boiler main body 2 from the fluidized bed boiler main body 2.

【0016】次に、燃料ポンプ11を駆動して燃料供給
路9から流動層ボイラ本体2へ脱硫剤を含んだスラリ状
の微粉炭などの燃料10を供給し、流動層ボイラ本体2
内部へ供給されたエア19によって燃料10を燃焼させ
る。
Next, the fuel pump 11 is driven to supply fuel 10 such as slurry-like pulverized coal containing a desulfurizing agent from the fuel supply path 9 to the fluidized bed boiler main body 2.
The fuel 10 is combusted by the air 19 supplied inside.

【0017】流動層ボイラ本体2内部で発生した排ガス
14は、図示しない脱塵装置で脱塵された後、排ガス流
路13から排出され、途中、ガスタービン15に導かれ
てガスタービン15を回転させ、発電機17を駆動して
発電を行うと共に、コンプレッサ20を駆動してエア1
9を圧縮するのに利用される。
The exhaust gas 14 generated inside the fluidized bed boiler main body 2 is removed from dust by a dust removal device (not shown) and then discharged from the exhaust gas passage 13. On the way, the exhaust gas 14 is led to the gas turbine 15 and rotates the gas turbine 15. The generator 17 is driven to generate electricity, and the compressor 20 is driven to generate air 1.
It is used to compress 9.

【0018】一方、燃料10の燃焼により温度の高めら
れた流動層ボイラ本体2内部へは、給水ポンプ23によ
り給水流路21からボイラ水22が供給され、流動層ボ
イラ本体2を構成する火炉パス25に通されることによ
ってボイラ水22が加熱蒸発される。
On the other hand, boiler water 22 is supplied from a water supply passage 21 by a water supply pump 23 to the inside of the fluidized bed boiler main body 2 whose temperature has been increased by the combustion of the fuel 10, and the boiler water 22 is supplied from a water supply passage 21 to the inside of the fluidized bed boiler main body 2 whose temperature has been increased by the combustion of the fuel 10. 25, the boiler water 22 is heated and evaporated.

【0019】蒸発されたボイラ水22は、図示しない気
水分離器で水を分離され、蒸気のみが過熱器26へ導か
れて更に過熱され高温蒸気とされる。
Water is separated from the evaporated boiler water 22 in a steam/water separator (not shown), and only the steam is led to a superheater 26 where it is further superheated and turned into high-temperature steam.

【0020】この際、給水流路21を流れるボイラ水2
2の一部をスプレー流路27を介して過熱器26入口へ
スプレーすることにより、過熱器26へ導入される蒸気
の温度を調整させる。
At this time, the boiler water 2 flowing through the water supply channel 21
The temperature of the steam introduced into the superheater 26 is adjusted by spraying a portion of the steam into the superheater 26 through the spray channel 27.

【0021】過熱器26で過熱された高温蒸気は、蒸気
流路29を通って蒸気タービン30へ導かれ、蒸気ター
ビン30を回転し発電機32を駆動して発電を行わせる
The high-temperature steam superheated by the superheater 26 is led to the steam turbine 30 through the steam flow path 29, rotates the steam turbine 30, and drives the generator 32 to generate electricity.

【0022】尚、ベッド材供給路5に接続されたベッド
材供給用弁7を開くことにより、圧力容器1内部のエア
圧によってベッド材3がベッド材貯蔵タンク4から流動
層ボイラ本体2内部へ供給され、ベッド材貯蔵タンク4
に接続されたベッド材排出用弁8を開いてベッド材貯蔵
タンク4内部の圧力を大気に開放することにより、ベッ
ド材3が流動層ボイラ本体2からベッド材貯蔵タンク4
へ排出されるようになっている。
By opening the bed material supply valve 7 connected to the bed material supply path 5, the bed material 3 is transferred from the bed material storage tank 4 to the inside of the fluidized bed boiler main body 2 by the air pressure inside the pressure vessel 1. Supplied and bed material storage tank 4
By opening the bed material discharge valve 8 connected to the bed material storage tank 4 and releasing the pressure inside the bed material storage tank 4 to the atmosphere, the bed material 3 is discharged from the fluidized bed boiler main body 2 to the bed material storage tank 4.
It is designed to be discharged to

【0023】そして、上記加圧流動層ボイラは以下のよ
うにして制御される。
The pressurized fluidized bed boiler is controlled as follows.

【0024】即ち、ボイラ水22の給水量に関しては、
外部からの出力指令39を関数発生器47で給水指令4
8に変換すると共に、火炉パス出口温度センサ35で検
出した実際の火炉パス出口温度36と設定器50に設定
された火炉パス出口設定温度51とを減算器49で減算
して火炉パス出口温度偏差52を求めて、火炉パス出口
温度偏差52を調節計53で給水制御信号54とし、加
算器55で給水指令48と給水制御信号54とを加算し
て補正給水指令56を求め、補正給水指令56により火
炉パス出口温度36が火炉パス出口設定温度51と等し
い一定の値となるよう給水弁24の開度が制御される。
That is, regarding the amount of water supplied to the boiler water 22,
The function generator 47 converts the output command 39 from the outside into a water supply command 4.
At the same time, the actual furnace pass outlet temperature 36 detected by the furnace pass outlet temperature sensor 35 and the furnace pass outlet set temperature 51 set in the setting device 50 are subtracted by the subtractor 49 to obtain the furnace pass outlet temperature deviation. 52 is determined, the furnace pass outlet temperature deviation 52 is set as the water supply control signal 54 by the controller 53, and the adder 55 adds the water supply command 48 and the water supply control signal 54 to obtain the corrected water supply command 56. Accordingly, the opening degree of the water supply valve 24 is controlled so that the furnace pass outlet temperature 36 becomes a constant value equal to the furnace pass outlet set temperature 51.

【0025】又、過熱器26入口へのスプレー量に関し
ては、タービン入口温度センサ37で検出した実際の蒸
気タービン入口温度38と設定器58に設定された蒸気
タービン入口設定温度59とを減算器57で減算して蒸
気タービン入口温度偏差60を求め、蒸気タービン入口
温度偏差60を調節計61でスプレー流量指令62とし
、スプレー流量指令62に基づいて蒸気タービン入口温
度38が蒸気タービン入口設定温度59と等しい一定の
値となるようスプレー流量調整弁28の開度が制御され
る。
Regarding the spray amount to the inlet of the superheater 26, the actual steam turbine inlet temperature 38 detected by the turbine inlet temperature sensor 37 and the steam turbine inlet set temperature 59 set in the setting device 58 are subtracted by the subtractor 57. The steam turbine inlet temperature deviation 60 is determined by the controller 61 as the spray flow rate command 62, and based on the spray flow rate command 62, the steam turbine inlet temperature 38 is set to the steam turbine inlet set temperature 59. The opening degree of the spray flow rate adjustment valve 28 is controlled so that the spray flow rate adjustment valve 28 has an equal constant value.

【0026】尚、火炉パス出口温度36が一定値となる
ように給水量を制御しているのは、スプレーによる蒸気
タービン入口温度38に対する調整能力が低いため、蒸
気タービン30よりも前段の火炉パス25出口における
火炉パス出口温度36を給水量の制御によって一定値と
することにより給水量で蒸気タービン入口温度38をお
おまかに調整させ、スプレーを蒸気タービン入口温度3
8の微調整用とするためである。
The reason why the water supply amount is controlled so that the furnace pass outlet temperature 36 is a constant value is because the ability to adjust the steam turbine inlet temperature 38 by spraying is low. By keeping the furnace pass outlet temperature 36 at the outlet 25 at a constant value by controlling the amount of water supplied, the steam turbine inlet temperature 38 is roughly adjusted by the amount of water supplied, and the spray is adjusted to the temperature 38 at the steam turbine inlet.
This is for fine adjustment of 8.

【0027】流動層ボイラ本体2内部のベッド材3の層
高に関しては、出力指令39を関数発生器40で層高指
令41に変換し、層高指令41とレベル計33で検出し
た実際の層高34とを減算器42で減算して層高偏差4
3を求め、層高偏差43に基づいてハイローモニター4
4で開閉指令45又は46を求め、開閉指令45又は4
6に基づいて流動層ボイラ本体2内部のベッド材3の層
高34が出力指令39に応じたレベルとなるようベッド
材供給用弁7又はベッド材排出用弁8の一方が開閉され
る。
Regarding the bed height of the bed material 3 inside the fluidized bed boiler main body 2, the output command 39 is converted into a bed height command 41 by a function generator 40, and the bed height command 41 and the actual bed height detected by the level meter 33 are converted into a bed height command 41. The height 34 is subtracted by the subtractor 42 to obtain the layer height deviation 4.
3 and high/low monitor 4 based on the layer height deviation 43.
4 to find the opening/closing command 45 or 46, and the opening/closing command 45 or 4
6, either the bed material supply valve 7 or the bed material discharge valve 8 is opened or closed so that the bed height 34 of the bed material 3 inside the fluidized bed boiler main body 2 is at a level corresponding to the output command 39.

【0028】[0028]

【発明が解決しようとする課題】しかしながら、上記加
圧流動層ボイラの蒸気温度制御装置には、以下のような
問題があった。
[Problems to be Solved by the Invention] However, the steam temperature control device for the pressurized fluidized bed boiler has the following problems.

【0029】即ち、出力指令39が変化した場合、出力
指令39に応じた発電量を確保するために、発生する蒸
気量ひいては給水量を変化させる必要があるにも拘らず
、給水量を火炉パス出口温度36を一定とするための制
御に利用していることにより、火炉パス出口温度36に
対する制御が妨げとなって出力指令39の変化に給水量
を追随させることができず(図5の制御回路によれば、
出力指令39が変化した場合、減算器49や調節計53
等の系統が火炉パス出口温度36を一定に保つように機
能して出力指令39が変化しても給水量を変化させない
ようにしてしまう)、従って、出力指令39に対する発
電量の追随性が悪くなる。
That is, when the output command 39 changes, in order to secure the amount of power generated according to the output command 39, it is necessary to change the amount of steam generated and also the amount of water supply. Since the outlet temperature 36 is used for control to keep it constant, the control over the furnace path outlet temperature 36 is hindered, and the water supply amount cannot follow the change in the output command 39 (the control shown in FIG. 5). According to the circuit,
When the output command 39 changes, the subtractor 49 and controller 53
(The system functions to keep the furnace pass outlet temperature 36 constant and prevents the water supply amount from changing even if the output command 39 changes), so the follow-up of the amount of power generation to the output command 39 is poor. Become.

【0030】本発明は、上述の実情に鑑み、出力指令3
9に対する発電量の追随性を向上し得るようにした加圧
流動層ボイラの蒸気温度制御装置を提供することを目的
とするものである。
In view of the above-mentioned circumstances, the present invention provides an output command 3
It is an object of the present invention to provide a steam temperature control device for a pressurized fluidized bed boiler that is capable of improving followability of the amount of power generation relative to No. 9.

【0031】[0031]

【課題を解決するための手段】本発明は、圧力容器1に
収納された流動層ボイラ本体2と、流動層ボイラ本体2
に付設されたベッド材貯蔵タンク4から流動層ボイラ本
体2に対してベッド材3を給排するためのベッド材供給
用弁7及びベッド材排出用弁8と、流動層ボイラ本体2
内部のベッド材3の層高34を検出するレベル計33と
、流動層ボイラ本体2の火炉パス25へボイラ水22を
供給する給水弁24とを備え、火炉パス25出側に接続
された過熱器26と外部の蒸気タービン30との間に設
けられて蒸気タービン入口温度38を検出するタービン
入口温度センサ37とを備え、又、外部の出力指令39
から直接給水弁24へ送る給水指令48を求める関数発
生器47とを備え、更に、タービン入口温度センサ37
で検出した実際の蒸気タービン入口温度38と設定器5
8に設定された蒸気タービン入口設定温度59とを減算
して蒸気タービン入口温度偏差60を求める減算器57
と、蒸気タービン入口温度偏差60を層高制御信号63
とする調節計64と、出力指令39を層高指令41に変
換する関数発生器40と、層高指令41と層高制御信号
63とを加算して補正層高指令65を求める加算器66
と、補正層高指令65とレベル計33で検出した実際の
層高34とを減算して層高偏差43を求める減算器42
と、層高偏差43に基づいてベッド材供給用弁7又はベ
ッド材排出用弁8の一方を開閉する開閉指令45又は4
6を求めるハイローモニター44とを備えたことを特徴
とする加圧流動層ボイラの蒸気温度制御装置にかかるも
のである。
[Means for Solving the Problems] The present invention provides a fluidized bed boiler main body 2 housed in a pressure vessel 1, and a fluidized bed boiler main body 2 housed in a pressure vessel 1.
A bed material supply valve 7 and a bed material discharge valve 8 for supplying and discharging bed material 3 from a bed material storage tank 4 attached to the fluidized bed boiler main body 2 to the fluidized bed boiler main body 2.
A superheater connected to the outlet side of the furnace path 25, which is equipped with a level meter 33 that detects the bed height 34 of the bed material 3 inside, and a water supply valve 24 that supplies boiler water 22 to the furnace path 25 of the fluidized bed boiler body 2. A turbine inlet temperature sensor 37 is provided between the steam turbine 26 and the external steam turbine 30 to detect the steam turbine inlet temperature 38.
and a function generator 47 for determining a water supply command 48 to be sent directly to the water supply valve 24 from the turbine inlet temperature sensor 37.
The actual steam turbine inlet temperature 38 detected by the setting device 5
A subtractor 57 that obtains a steam turbine inlet temperature deviation 60 by subtracting the steam turbine inlet temperature deviation 60 from the steam turbine inlet set temperature 59 set to 8.
, the steam turbine inlet temperature deviation 60 is determined by the layer height control signal 63.
a controller 64 that converts the output command 39 into a bed height command 41, an adder 66 that adds the bed height command 41 and the bed height control signal 63 to obtain a corrected bed height command 65.
A subtractor 42 subtracts the corrected layer height command 65 from the actual layer height 34 detected by the level meter 33 to obtain the layer height deviation 43.
and an opening/closing command 45 or 4 to open or close one of the bed material supply valve 7 or the bed material discharge valve 8 based on the bed height deviation 43.
This invention relates to a steam temperature control device for a pressurized fluidized bed boiler, characterized in that it is equipped with a high/low monitor 44 for determining the temperature of 6.

【0032】[0032]

【作用】本発明の作用は以下の通りである。[Action] The action of the present invention is as follows.

【0033】ボイラ水22の給水量に関しては、外部か
らの出力指令39を関数発生器47で給水指令48に変
換し、該給水指令48を直接給水弁24へ送ることによ
り、出力指令39に応じて給水弁24の開度を制御する
Regarding the amount of water supplied to the boiler water 22, the output command 39 from the outside is converted into a water supply command 48 by a function generator 47, and the water supply command 48 is sent directly to the water supply valve 24, so that the amount of water supplied to the boiler water 22 is determined according to the output command 39. to control the opening degree of the water supply valve 24.

【0034】これにより、給水指令48の変化に応じて
給水量ひいては蒸気量を直ちに変化させることができる
ので、出力指令39に対する発電量の追随性を良好とす
ることができる。
[0034] Thereby, the amount of water supply and thus the amount of steam can be immediately changed in response to a change in the water supply command 48, so that the amount of power generation can follow the output command 39 well.

【0035】そして、蒸気タービン30入側の蒸気温度
は、流動層ボイラ本体2内部のベッド材3の層高で制御
する。即ち、出力指令39を関数発生器40で層高指令
41に変換すると共に、タービン入口温度センサ37で
検出した実際の蒸気タービン入口温度38と設定器58
に設定された蒸気タービン入口設定温度59とを減算器
57で減算して蒸気タービン入口温度偏差60を求め、
蒸気タービン入口温度偏差60を調節計64で層高制御
信号63とし、層高指令41と層高制御信号63とを加
算器66で加算して補正層高指令65を求めて減算器4
2へ送り、補正層高指令65とレベル計33で検出した
実際の層高34とを減算器42で減算して層高偏差43
を求め、層高偏差43に基づいてハイローモニター44
で開閉指令45又は46を求め、開閉指令45又は46
に基づいて流動層ボイラ本体2内部のベッド材3の層高
34が出力指令39に応じたレベルを層高制御信号63
で補正したレベルとなるようベッド材供給用弁7又はベ
ッド材排出用弁8の一方を開閉する。
The steam temperature on the inlet side of the steam turbine 30 is controlled by the height of the bed material 3 inside the fluidized bed boiler main body 2. That is, the output command 39 is converted into a layer height command 41 by the function generator 40, and the actual steam turbine inlet temperature 38 detected by the turbine inlet temperature sensor 37 and the setting device 58 are
A steam turbine inlet temperature deviation 60 is obtained by subtracting the steam turbine inlet set temperature 59 set at a subtracter 57,
The steam turbine inlet temperature deviation 60 is set as a bed height control signal 63 by the controller 64, and the bed height command 41 and the bed height control signal 63 are added by an adder 66 to obtain a corrected bed height command 65, which is sent to the subtractor 4.
2, the corrected layer height command 65 and the actual layer height 34 detected by the level meter 33 are subtracted by the subtractor 42 to obtain the layer height deviation 43.
is determined, and the high-low monitor 44 is calculated based on the layer height deviation 43.
Find the opening/closing command 45 or 46 with
Based on this, the bed height 34 of the bed material 3 inside the fluidized bed boiler main body 2 is set to a level corresponding to the output command 39 by the bed height control signal 63.
Either the bed material supply valve 7 or the bed material discharge valve 8 is opened or closed so that the corrected level is achieved.

【0036】[0036]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0037】図1〜図3は、本発明の一実施例である。FIGS. 1 to 3 show one embodiment of the present invention.

【0038】又、図中、加圧流動層ボイラの蒸気温度制
御装置の基本構成や各構成部分の詳細の中には、図4・
図5に示すものと同様のものが含まれているため、同一
の構成部分については同一の符号を付すことにより説明
を省略するものとし、以下、本発明に特有の構成につい
てのみ説明して行く。
In addition, in the figure, the basic configuration and details of each component of the steam temperature control device for a pressurized fluidized bed boiler are shown in FIG.
Since the same components as those shown in FIG. 5 are included, the same components will be given the same reference numerals and the explanation will be omitted.Hereinafter, only the configuration unique to the present invention will be explained. .

【0039】関数発生器47で発生された給水指令48
を直接給水弁24へ送るようにする。
Water supply command 48 generated by function generator 47
is sent directly to the water supply valve 24.

【0040】又、蒸気タービン入口温度偏差60を層高
制御信号63とする調節計64を設け、関数発生器40
で発生された層高指令41と層高制御信号63とを加算
して補正層高指令65を求め減算器42へ送る加算器6
6を設ける。
Further, a controller 64 is provided which uses the steam turbine inlet temperature deviation 60 as a layer height control signal 63, and the function generator 40
An adder 6 adds the floor height command 41 generated in and the floor height control signal 63 to obtain a corrected floor height command 65 and sends it to the subtracter 42.
6 will be provided.

【0041】次に、作動について説明する。Next, the operation will be explained.

【0042】加圧流動層ボイラを運転する過程について
は図4と同様なので説明を省略する。
The process of operating the pressurized fluidized bed boiler is the same as that shown in FIG. 4, so the explanation will be omitted.

【0043】本発明では、上記加圧流動層ボイラは以下
のようにして制御される。
In the present invention, the pressurized fluidized bed boiler is controlled as follows.

【0044】即ち、ボイラ水22の給水量に関しては、
外部からの出力指令39を関数発生器47で給水指令4
8に変換し、該給水指令48を直接給水弁24へ送るこ
とにより、出力指令39に応じて給水弁24の開度を制
御する。
That is, regarding the amount of water supplied to the boiler water 22,
The function generator 47 converts the output command 39 from the outside into a water supply command 4.
8 and sends the water supply command 48 directly to the water supply valve 24, thereby controlling the opening degree of the water supply valve 24 according to the output command 39.

【0045】これにより、給水指令48の変化に応じて
給水量ひいては蒸気量を直ちに変化させることができる
ので、出力指令39に対する発電量の追随性を良好とす
ることができる。
[0045] As a result, the amount of water supply and thus the amount of steam can be immediately changed in response to a change in the water supply command 48, so that the amount of power generation can follow the output command 39 well.

【0046】そして、蒸気タービン30入側の蒸気温度
は、流動層ボイラ本体2内部のベッド材3の層高で制御
する。即ち、出力指令39を関数発生器40で層高指令
41に変換すると共に、タービン入口温度センサ37で
検出した実際の蒸気タービン入口温度38と設定器58
に設定された蒸気タービン入口設定温度59とを減算器
57で減算して蒸気タービン入口温度偏差60を求め、
蒸気タービン入口温度偏差60を調節計64で層高制御
信号63とし、層高指令41と層高制御信号63とを加
算器66で加算して補正層高指令65を求めて減算器4
2へ送り、補正層高指令65とレベル計33で検出した
実際の層高34とを減算器42で減算して層高偏差43
を求め、層高偏差43に基づいてハイローモニター44
で開閉指令45又は46を求め、開閉指令45又は46
に基づいて流動層ボイラ本体2内部のベッド材3の層高
34が出力指令39に応じたレベルを層高制御信号63
で補正したレベルとなるようベッド材供給用弁7又はベ
ッド材排出用弁8の一方を開閉する。
The steam temperature on the inlet side of the steam turbine 30 is controlled by the bed height of the bed material 3 inside the fluidized bed boiler main body 2. That is, the output command 39 is converted into a layer height command 41 by the function generator 40, and the actual steam turbine inlet temperature 38 detected by the turbine inlet temperature sensor 37 and the setting device 58 are
A steam turbine inlet temperature deviation 60 is obtained by subtracting the steam turbine inlet set temperature 59 set to by a subtractor 57,
The steam turbine inlet temperature deviation 60 is set as the bed height control signal 63 by the controller 64, and the bed height command 41 and the bed height control signal 63 are added by the adder 66 to obtain the corrected bed height command 65, which is sent to the subtracter 4.
2, the corrected layer height command 65 and the actual layer height 34 detected by the level meter 33 are subtracted by the subtractor 42 to obtain the layer height deviation 43.
is determined, and the high-low monitor 44 is calculated based on the layer height deviation 43.
Find the opening/closing command 45 or 46 with
Based on this, the bed height 34 of the bed material 3 inside the fluidized bed boiler main body 2 is set to a level corresponding to the output command 39 by the bed height control signal 63.
Either the bed material supply valve 7 or the bed material discharge valve 8 is opened or closed so that the corrected level is achieved.

【0047】図3は蒸気タービン入口温度と層高との関
係を表わすグラフであり、該グラフによれば両者に比例
関係があることがわかるので、蒸気タービン入口温度3
8を高めたい時には流動層ボイラ本体2内部のベッド材
3の層高34を高くし、反対に、蒸気タービン入口温度
38を低くしたい時には流動層ボイラ本体2内部のベッ
ド材3の層高34を低くすることにより、蒸気タービン
入口温度38を制御できることが分かる。
FIG. 3 is a graph showing the relationship between the steam turbine inlet temperature and the layer height. According to the graph, it can be seen that there is a proportional relationship between the two, so that the steam turbine inlet temperature 3
8, the bed height 34 of the bed material 3 inside the fluidized bed boiler main body 2 is increased, and conversely, when the steam turbine inlet temperature 38 is desired to be lowered, the bed height 34 of the bed material 3 inside the fluidized bed boiler main body 2 is increased. It can be seen that by lowering the temperature, the steam turbine inlet temperature 38 can be controlled.

【0048】尚、ボイラ本体2内部の燃焼温度は図示し
ない制御装置により一定に制御されている。又、過熱器
26入口へのスプレー量に関しては、図5と同様に制御
するが、ベッド材3の層高34によって蒸気タービン入
口温度38を高精度で制御することができるので、スプ
レー制御を行う必要性が減少され、よって調節計61を
一般的な比例積分調節計から比例調節計に代えて、温度
偏差が出た時に一定量だけスプレーする程度の補助的な
構成とすることが可能となる。
Incidentally, the combustion temperature inside the boiler main body 2 is controlled to be constant by a control device (not shown). Furthermore, the amount of spray to the inlet of the superheater 26 is controlled in the same manner as shown in FIG. The need for the controller 61 is reduced, and the controller 61 can be replaced with a proportional controller instead of a general proportional-integral controller, making it possible to use an auxiliary configuration that sprays only a certain amount when a temperature deviation occurs. .

【0049】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、本発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
加圧流動層ボイラにおいて出力指令に対する発電量の追
随性を高めることができるという優れた効果を奏し得る
[Effects of the Invention] As explained above, according to the present invention,
In a pressurized fluidized bed boiler, an excellent effect can be achieved in that the followability of the amount of power generation to the output command can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における加圧流動層ボイラの
概略全体図である。
FIG. 1 is a schematic overall view of a pressurized fluidized bed boiler in one embodiment of the present invention.

【図2】図1の加圧流動層ボイラの蒸気温度制御装置の
制御回路図である。
FIG. 2 is a control circuit diagram of a steam temperature control device for the pressurized fluidized bed boiler in FIG. 1;

【図3】蒸気タービン入口温度と層高との関係を表わす
グラフである。
FIG. 3 is a graph showing the relationship between steam turbine inlet temperature and layer height.

【図4】現在検討されている加圧流動層ボイラの概略全
体図である。
FIG. 4 is a schematic overall view of a pressurized fluidized bed boiler currently under consideration.

【図5】図4の加圧流動層ボイラの蒸気温度制御装置の
制御回路図である。
FIG. 5 is a control circuit diagram of the steam temperature control device of the pressurized fluidized bed boiler in FIG. 4;

【符号の説明】[Explanation of symbols]

1          圧力容器 2          流動層ボイラ本体3     
     ベッド材 4          ベッド材貯蔵タンク7    
      ベッド材供給用弁8          
ベッド材排出用弁22        ボイラ水 24        給水弁 25        火炉パス 26        過熱器 30        蒸気タービン 33        レベル計 34        層高 37        タービン入口温度センサ38  
      蒸気タービン入口温度39       
 出力指令 40        関数発生器 41        層高指令 42        減算器 43        層高偏差 44        ハイローモニター45,46  
関数発生器 48        給水指令 57        減算器 58        設定器 59        蒸気タービン入口設定温度60 
       蒸気タービン入口温度偏差63    
    層高制御信号 64        調節計 65        補正層高指令 66        加算器
1 Pressure vessel 2 Fluidized bed boiler main body 3
Bed material 4 Bed material storage tank 7
Bed material supply valve 8
Bed material discharge valve 22 Boiler water 24 Water supply valve 25 Furnace path 26 Superheater 30 Steam turbine 33 Level meter 34 Bed height 37 Turbine inlet temperature sensor 38
Steam turbine inlet temperature 39
Output command 40 Function generator 41 Layer height command 42 Subtractor 43 Layer height deviation 44 Hi-low monitor 45, 46
Function generator 48 Water supply command 57 Subtractor 58 Setter 59 Steam turbine inlet set temperature 60
Steam turbine inlet temperature deviation 63
Layer height control signal 64 Controller 65 Correction layer height command 66 Adder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  圧力容器1に収納された流動層ボイラ
本体2と、流動層ボイラ本体2に付設されたベッド材貯
蔵タンク4から流動層ボイラ本体2に対してベッド材3
を給排するためのベッド材供給用弁7及びベッド材排出
用弁8と、流動層ボイラ本体2内部のベッド材3の層高
34を検出するレベル計33と、流動層ボイラ本体2の
火炉パス25へボイラ水22を供給する給水弁24とを
備え、火炉パス25出側に接続された過熱器26と外部
の蒸気タービン30との間に設けられて蒸気タービン入
口温度38を検出するタービン入口温度センサ37とを
備え、又、外部の出力指令39から直接給水弁24へ送
る給水指令48を求める関数発生器47とを備え、更に
、タービン入口温度センサ37で検出した実際の蒸気タ
ービン入口温度38と設定器58に設定された蒸気ター
ビン入口設定温度59とを減算して蒸気タービン入口温
度偏差60を求める減算器57と、蒸気タービン入口温
度偏差60を層高制御信号63とする調節計64と、出
力指令39を層高指令41に変換する関数発生器40と
、層高指令41と層高制御信号63とを加算して補正層
高指令65を求める加算器66と、補正層高指令65と
レベル計33で検出した実際の層高34とを減算して層
高偏差43を求める減算器42と、層高偏差43に基づ
いてベッド材供給用弁7又はベッド材排出用弁8の一方
を開閉する開閉指令45又は46を求めるハイローモニ
ター44とを備えたことを特徴とする加圧流動層ボイラ
の蒸気温度制御装置。
1. A fluidized bed boiler main body 2 housed in a pressure vessel 1 and a bed material 3 from a bed material storage tank 4 attached to the fluidized bed boiler main body 2 to the fluidized bed boiler main body 2.
a bed material supply valve 7 and a bed material discharge valve 8 for supplying and discharging bed material, a level meter 33 for detecting the bed height 34 of the bed material 3 inside the fluidized bed boiler main body 2, and a furnace of the fluidized bed boiler main body 2. A turbine that is equipped with a water supply valve 24 that supplies boiler water 22 to a path 25, and is provided between a superheater 26 connected to the outlet side of the furnace path 25 and an external steam turbine 30 to detect a steam turbine inlet temperature 38. It also includes a function generator 47 that determines a water supply command 48 to be sent directly to the water supply valve 24 from an external output command 39, and further comprises a function generator 47 that calculates a water supply command 48 to be sent directly to the water supply valve 24 from an external output command 39. a subtractor 57 that obtains a steam turbine inlet temperature deviation 60 by subtracting the temperature 38 and a steam turbine inlet set temperature 59 set in a setting device 58; and a controller that uses the steam turbine inlet temperature deviation 60 as a layer height control signal 63. 64, a function generator 40 for converting the output command 39 into a bed height command 41, an adder 66 for adding the bed height command 41 and the bed height control signal 63 to obtain a corrected bed height command 65, and a correction bed height command 64; A subtractor 42 that calculates a bed height deviation 43 by subtracting the command 65 and the actual bed height 34 detected by the level meter 33, and a bed material supply valve 7 or a bed material discharge valve 8 based on the bed height deviation 43. 1. A steam temperature control device for a pressurized fluidized bed boiler, comprising: a high-low monitor 44 that obtains an opening/closing command 45 or 46 to open or close one of the boilers.
JP8620791A 1991-03-26 1991-03-26 Steam temperature controller for pressurized fluidized bed boiler Pending JPH04297701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8620791A JPH04297701A (en) 1991-03-26 1991-03-26 Steam temperature controller for pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8620791A JPH04297701A (en) 1991-03-26 1991-03-26 Steam temperature controller for pressurized fluidized bed boiler

Publications (1)

Publication Number Publication Date
JPH04297701A true JPH04297701A (en) 1992-10-21

Family

ID=13880333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8620791A Pending JPH04297701A (en) 1991-03-26 1991-03-26 Steam temperature controller for pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH04297701A (en)

Similar Documents

Publication Publication Date Title
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JPH04297701A (en) Steam temperature controller for pressurized fluidized bed boiler
JPH04306401A (en) Steam temperature controller of boiler with pressurized and fluidized bed
JP4287940B2 (en) Pressurized fluidized bed boiler apparatus and control method thereof
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP3928104B2 (en) Pressurized fluidized bed combined power generation system and control method and control apparatus therefor
WO2022039109A1 (en) Control device, control method, and program
JP3794074B2 (en) Steam temperature control method and apparatus in pressurized fluidized bed boiler
JP2675704B2 (en) Pressurized fluidized bed boiler
JP3219294B2 (en) Fluidized bed boiler
JP2554492Y2 (en) Control device for pressurized fluidized bed boiler
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JP3820636B2 (en) Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant
JP3837605B2 (en) Pressurized fluidized bed combined power generation system and control method thereof
JPS61145322A (en) Control device in combined cycle plant for producing coal gas
JPS6291608A (en) Control device for power plant
JP3680345B2 (en) Steam temperature control method and apparatus for pressurized fluidized bed boiler
JP3199893B2 (en) Pressurized fluidized bed combustion plant
JPH1114003A (en) Vapor temperature controller of pressurized fluidized bed boiler
JPH05180402A (en) Bed temperature control device of fluidized bed boiler
JPH10332109A (en) Method and equipment for controlling air flow rate of pressurized fluidized bed boiler
JPH0633797A (en) Generating equipment
JPS63217111A (en) Boiler-superheater metal-temperature automatic controller
JPH0626602A (en) Control device for pressurized fluidized bed type boiler