JP3837605B2 - Pressurized fluidized bed combined power generation system and control method thereof - Google Patents

Pressurized fluidized bed combined power generation system and control method thereof Download PDF

Info

Publication number
JP3837605B2
JP3837605B2 JP31476497A JP31476497A JP3837605B2 JP 3837605 B2 JP3837605 B2 JP 3837605B2 JP 31476497 A JP31476497 A JP 31476497A JP 31476497 A JP31476497 A JP 31476497A JP 3837605 B2 JP3837605 B2 JP 3837605B2
Authority
JP
Japan
Prior art keywords
temperature
bed
layer
height
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31476497A
Other languages
Japanese (ja)
Other versions
JPH11148608A (en
Inventor
信幸 穂刈
美雄 佐藤
知彦 宮本
栄二 遠山
恭功 山本
純男 十倉
智 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP31476497A priority Critical patent/JP3837605B2/en
Publication of JPH11148608A publication Critical patent/JPH11148608A/en
Application granted granted Critical
Publication of JP3837605B2 publication Critical patent/JP3837605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧流動層ボイラを備えた複合発電システムに係り、特に流動層の層温又は蒸気温度を、層高操作により制御する加圧流動層複合発電システム及びその制御方法に関する。
【0002】
【従来の技術】
従来の石炭を燃料とする発電システムの1つに、加圧雰囲気の流動層内で石炭を燃焼させ、蒸気タービンとガスタービンとを同時に駆動する加圧流動層複合発電(PFBC)システムがある。図7に加圧流動層複合発電システムの一例を示す。加圧流動層ボイラの火炉28内では、分散板30上の流動媒体粒子の層に燃焼空気ノズル31から空気を供給して流動層34とし、この流動層34中で燃料47を燃焼させる。流動層34中の伝熱管33内で蒸気を発生させ、この蒸気で蒸気タービン52を駆動する。また、同時に火炉28から発生する高温,高圧の燃焼排ガス38によりガスタービン49を駆動する。加圧流動層ボイラの負荷を増加する際は、流動層34の層高を上げて伝熱管33との接触面積を大きくし伝熱量を増加させる。そのため、流動媒体粒子(BM;Bed Material)36を流動媒体容器(BMタンク)35からBM供給ライン45を経て火炉28へ投入する。また、負荷を減少するときは、流動層34を形成する流動媒体粒子36をBM抜き出しライン46からBMタンク35へ抜き出すことにより、層高を下げて接触面積を小さくし伝熱量を減少させる。
【0003】
加圧流動層ボイラでは、蒸気への伝熱量を調節する操作量は、加圧流動層ボイラへの入熱量を調節する燃料供給量と、流動層から伝熱管への伝熱面積を調節する層高である。また、蒸気温度とともに、燃焼状態を良好に保つため層温も制御が必要な状態値となる。燃料供給量を増やすと層温及び蒸気温度が上昇し、燃料供給量を減らすと層温及び蒸気温度は下降する。層高を増加させると層温が下がり蒸気温度が上昇し、層高を減少させると層温が上がり蒸気温度が下降する。
【0004】
従来のPFBCプラントの自動制御技術は、層高操作によって層温を制御する方法と、蒸気温度を制御する方法との2通りの制御方式があるが、図8に例として層温を層高操作によって制御する方法の制御回路を示した。流動層の層高設定値2は負荷指令の関数として決定され、この層高設定値2に対して、層温測定器3で測定された層温測定値と層温設定値との層温偏差5を0とするように修正が加えられた層高目標値9が決定される。層温を一定の温度帯に入るように制御する場合は、温度偏差がある温度幅内ならば層温偏差5を0として扱う不感帯を不感帯設定器6により設定する場合もある。層高操作は層高目標値9と層高測定器10で測定した層高測定値との層高偏差12を0とするように層高操作を行うが、流動媒体粒子を加圧された火炉内へ供給し、あるいは抜き出す層高操作は連続的に行うことが難しいため、偏差が一定値を超えると層高操作指令14を発生し、偏差が一定値以下になると操作を停止するヒステリシス発生器13を用いている。この層高操作指令14に従って、火炉内へ流動媒体粒子を供給する流動媒体供給指令15、又は流動媒体粒子を火炉から抜き出す流動媒体抜き出し指令16が発信され、層高を操作する。図8に示すような制御回路により、層温を、設定した温度あるいは温度帯に制御する。
【0005】
負荷上昇時は層高を増加させる操作を行うが、この時、火炉外のBMタンクに貯蔵されていた温度100℃以下のBMが、850〜900℃の流動層内へ投入されるため、層高操作時には層温が低下し、これに伴い蒸気温度も低下する。加圧流動層複合発電システムの安定運転上、蒸気温度は許容温度範囲内で制御する必要があり、そのためには層高操作時に層温が低下しても層温を一定温度以上に保つ必要がある。1回の層高操作時に投入されるBMの量、すなわち層高操作幅が大きいほど層温の低下幅は大きくなるため、層高操作を開始又は停止する層高偏差の幅(ヒステリシス幅)によって層温低下幅は決まる。通常、試運転データやシミュレーションによって適切な層高操作幅を決定し、制御回路設定値とするが、運転負荷や燃料性状の変化等によりプラントが予測したものと異なる動特性を示す場合がある。
【0006】
図9に加圧流動層ボイラの負荷を上昇させた時の層高目標値と、層高、流動層温及び蒸気温度の測定値の経時変化を示した。ここでは、特性が分かりやすいよう層高による層温制御の回路を活かしていない状態を示している。1回目の層高操作で層温の低下幅が予想を超えて大きくなり、そのまま層温が低い温度帯を推移している。これによって、蒸気温度も大きく低下し許容温度範囲を超えたため、プラントは不安定な運転に陥った。
【0007】
層温が低い温度で推移したのは、層高操作幅が予め設定された値で繰り返し実行されたためである。図10に層高操作と、層温、蒸気温度及びBM操作の状況を並べて示した。従来の制御方法では、層高操作幅は毎回同じであり、層高目標値と層高測定値との偏差が操作開始層高偏差になるとBM供給用空気弁を開き、層高偏差が操作停止層高偏差になるとBM供給用空気弁を閉じる。層高操作幅が大きすぎる(層温低下幅が大きい)場合でも毎回同じ層高操作になるため、その都度、層温は低い温度となる。
【0008】
【発明が解決しようとする課題】
従来の加圧流動層複合発電システムの制御方法にあっては、負荷上昇時は層高を増加させる操作を行うが、1回の層高操作時に投入されるBMの量、すなわち層高操作幅が大きいほど層温の低下幅は大きくなるため、試運転データやシミュレーションによって適切な層高操作幅を決定し、制御回路設定値とするが、運転負荷や燃料性状の変化等によりプラントが予測したものと異なる動特性を示す場合がある。
【0009】
従来の層高操作幅は毎回同じであり、層高目標値と層高測定値との偏差が操作開始層高偏差になるとBM供給用空気弁を開き、操作停止層高偏差になるとBM供給用空気弁を閉じる。層高操作幅が大きすぎ、層温低下幅が大きい場合でも毎回同じ層高操作になるため、その都度、層温は低い温度となり温度の復旧に時間が掛る問題がある。
【0010】
本発明の課題は、層高操作後の温度変化量が予め設定した最大許容変化量を超えた際に、1回あたりの層高操作量を小さくするようにした加圧流動層複合発電システム及びその制御方法を提供することにある。
【0011】
【課題を解決するための手段】
前記の課題を達成するため、本発明に係る加圧流動層複合発電システムにあっては、流動層の層高目標値と層高測定値との間の層高偏差が予め設定した最大値以上の際に層高操作を開始し、層高偏差が最小値以下の際に層高操作を停止し、層高操作により層温又は蒸気温度よりなる状態温度を制御して蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムにおいて、層高操作開始時の状態温度と層高操作後の一定時間内の最小状態温度との間又は層高操作後より次回層高操作までの状態温度測定値と状態温度設定値との間の変化量を求める制御回路と、変化量が予め設定した最大許容変化量を超えた際に、層高偏差の最大値又は最小値を変更して1回あたりの層高操作幅を小さくする制御回路とを有する制御装置を備えた。
【0012】
また加圧流動層複合発電システムの第1の制御方法にあっては、流動層の層高目標値と層高測定値との間の層高偏差が予め定めた最大値以上の際に層高操作を開始し、層高偏差が最小値以下の際に層高操作を停止し、層高操作により層温又は蒸気温度よりなる状態温度を制御して蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムの制御方法において、状態温度の測定値の経時変化を記録し、層高操作開始時の状態温度と層高操作後の一定時間内の最小状態温度との温度変化量を求め、温度変化量が予め設定した最大許容変化量を超えた際に、層高偏差の最大値又は最小値を変更して1回あたりの層高操作幅を小さくする構成とした。
【0013】
また第2の制御方法においては、状態温度の測定値の経時変化を記録し、層高操作後より次回層高操作までの状態温度測定値と状態温度設定値との最大偏差を記憶し、最大偏差が予め設定した最大許容変化量を超えた際に、層高偏差の最大値又は最小値を変更して1回あたりの層高操作幅を小さくする構成とした。
【0014】
本発明によれば、層温測定値を経時的に記録し、記録された層温中の最低温度を判別し、この最低温度と層温目標値との偏差が、システム安定運転に必要な予め定めた値を超えた際は、層高操作幅の設定値を変更して層高操作幅を小さくすることにより、運転が安定される。
【0015】
【発明の実施の形態】
本発明の実施の形態を図1を参照しながら説明する。図1に示すように、負荷指令の関数として流動層の層高設定値2が関数発生器1により決定されるステップと、層高設定値2に対して層温測定器3で測定された層温と層温設定値との層温偏差5を0にするように修正が加えられて層高目標値9が決定されるステップと、層高目標値9と層高測定器10で測定した層高測定値との間の層高偏差12を減算器11で計算するステップと、層高偏差12が予め定めた最大値以上の際に層高操作指令14をヒステリシス発生器13より発生し層高操作を開始するステップと、層高偏差12が最小値以下の際に層高操作指令14をヒステリシス発生器13より発生し層高操作を停止するステップと、層高操作指令14に基づく層高操作により層温又は蒸気温度よりなる状態温度を制御するステップとを有し、蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムの制御方法であって、状態温度のうちの例えば層温を層温測定器3で測定した層温測定値の経時変化を層温変化記録装置17に記録するステップと、層高操作開始時の層温測定値と層高操作後の一定時間内の最小層温測定値との間の温度変化量を減算器19で求めるステップと、温度変化量が予め設定した最大許容変化量(温度変化設定値)を超えたことを減算器20で計算するステップと、層高偏差の最大値又は最小値を変更して1回あたりの層高操作量をヒステリシス発生器13により小さく修正するステップとを含む構成である。
【0016】
本発明の他の実施例として、状態温度のうちの蒸気温度についても図2に示すように層温と同様に制御される。
【0017】
つまり流動層の層高操作により層温又は蒸気温度を制御して蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムの制御方法であって、層高操作に伴い層温又は蒸気温度が設定値より低下した際、層温又は蒸気温度の低下を抑制するように層高操作幅を小さく修正して制御するものである。
【0018】
図1に示す制御回路は、層温を層高によって制御する方法を示している。層高設定値2に層温偏差5による修正を加えた層高目標値9と、層高測定器10で測定される実際の層高測定値との偏差をもとにヒステリシスを加えて層高操作を実行する回路は、図8に示す従来技術と同様である。ここで、本実施の形態の制御方法を実施するため、まず層温変化記録装置17に層温測定器3で測定した層温測定値の経時変化を記録する。この記録は過去一定時間幅内の層温測定値を記録してもよい。記録された層温測定値の最低層温を最低値判定18で選択し、この最低層温と層温設定値との間の層温偏差(温度変化量)を減算器19で求める。減算器19から出力される最大層温偏差と温度変化設定値との差を減算器20で計算し、その結果を比例制御器21を通して層高操作幅指令値22として出力する。この回路により、最大層温偏差が温度変化設定値を超える場合は層高操作幅指令値22が小さくなり、逆に最大層温偏差が温度変化設定値より小さい場合は層高操作幅指令値が大きくなる。層高操作幅指令値は、ヒステリシス発生器の層高の操作開始偏差、あるいは操作停止偏差の設定を変更し、層高操作幅指令22に等しい層高操作幅(ヒステリシス幅)となるよう修正する。層高操作幅を小さくするには、層高操作を開始する層高目標値と層高測定値の偏差を小さくする、あるいは層高操作を停止する偏差を大きくする方法がある。
【0019】
図3に本発明の他の実施の形態である制御回路を示す。図1に示す実施の形態では、層温測定値を経時記録し一定時間内の最大層温偏差を判定したのに対し、この他の実施の形態では1回の層高操作から次回の層高操作までの間の最大層高偏差を判定に用いる。層高設定値を層温偏差によって補正した層温目標値になるようにヒステリシスを加えた層高操作を行う点は図1の実施の形態と同じである。層高操作後より次回層高操作の間に測定された層温又は蒸気温度よりなる状態温度測定値と状態温度設定値との間の最大偏差を記憶し、最大偏差が予め設定した最大許容変化量を超えた際に、層高偏差の最大値又は最小値を変更して1回あたりの層高操作量を小さくする構成である。
【0020】
すなわち層高操作後、層温偏差信号5は最大値選択器25を経由して記憶器24に格納される。次の測定時の層温偏差信号5は、前回の記憶器24に格納された値と最大値判定器25で比較され、大なる値が再び記憶器24に格納される。この記録された最大偏差は、減算器20で温度変化設定値と差を取り、比例制御器21を通って層高操作幅指令値22となる。この層高操作幅指令値22によって層高操作幅を修正する点は図1に示す実施の形態と同じである。層高目標値9と層高測定値10との層高偏差12が層高操作開始偏差を超え、層高操作指令14が発信されると、この信号を受けたリセットスイッチ23が記憶器24に格納された最大層温偏差値を消去する。これによって、層高操作から次回操作の間の最大層温偏差によって、層高操作幅を修正することができ、負荷変化中等層高操作毎に運転条件が変わる場合も、毎回操作ごとに層温低下幅を判定して、層高操作幅を修正することが可能になる。この他の実施の形態によれば、1回の層高操作後、次回の操作までの間の層温低下幅の最大値を判定基準とすることにより、負荷変化中のように層高操作機会ごとに運転条件が変わっていく場合にも早い対応が可能となる。
【0021】
図3及び図4に本発明の他の実施の形態の制御回路を示す。ここでは、蒸気温度を層高操作によって制御する制御方式に本発明を適用している。図3は、図1の実施の形態と同じ制御回路において、層温の変わりに蒸気温度の偏差を判定基準に用いたものである。図4に示した他の実施の形態は、図2の他の実施の形態と同じ制御回路において、層温の代わりに蒸気温度の偏差を判定基準に用いたものである。
【0022】
つぎに本発明の作用を説明する。層高を1回操作した際、層温低下幅が予想された値を上回った時、次回層高操作では層高操作幅を小さく修正するため、BM投入量が少なくなり、層温低下幅が小さく抑えられる。これにより、蒸気温度がプラント安定運転に必要な許容値を超えて低下することを防止することができる。図5に上記の手段を用いた場合の層温及び蒸気温度の特性を示した。層温及び蒸気温度が許容値を超えて低下する▲1▼の場合に対し、層高操作停止偏差を大きくした▲2▼及び操作開始偏差を小さくした▲3▼の場合では、1回の操作による層温低下幅が小さくなり、蒸気温度も下限許容値内で制御することが可能になっている。
【0023】
本発明によれば、層高操作時の層温又は蒸気温度の異常低下を防止し、プラントの安定運転を保ち、あるいは安定化操作の時間短縮が可能となる。本発明の制御方法を、加圧流動層複合発電システムに適用した場合の、負荷上昇操作時の層高操作と層温又は蒸気温度の変化を図6に示した。1回目の層高操作で層温の低下幅が大きくなったため、層高操作幅を決定するヒステリシス幅が小さく修正され、2回目からは層高操作幅が小さくなっている。これにより、層温の大幅な低下が防ぐことができ、層温又は蒸気温度の大きな乱れはなくなり、層温は徐々に上昇していく。この効果で蒸気温度は許容範囲内で制御することが可能となった。また、負荷上昇に伴って層高が高くなり、同量のBM投入による層温低下幅が小さくなってくるのに伴って、1回の層高操作幅は順次大きくなり、層高目標への追従性も良くなっている。したがってプラント安定条件を保ちつつ、層高を操作することが容易になる。
【0024】
つぎに図1〜図4に示すように、本発明の他の実施の形態として加圧流動層複合発電システムは、前記いずれか一つの加圧流動層複合発電システムの制御方法を用い、層高操作開始時の状態温度測定値と層高操作後の一定時間内の最小状態温度測定値との間又は層高操作後と次回層高操作との間で測定された状態温度測定値と状態温度設定値との間の温度変化量を求める制御回路と、温度変化量が予め設定した最大許容変化量を超えた際に、層高偏差の最大値又は最小値を変更して1回あたりの層高操作量を小さくする制御回路とを有する制御装置を備えた構成とする。この他の実施の形態によっても前記と同様な作用、効果を得ることができる。
【0025】
【発明の効果】
本発明によれば、層高操作に伴い層温又は蒸気温度が設定値より低下した際、層高操作幅を小さく修正するため、層温又は蒸気温度の低下が抑制されるとともに、層高目標への追従性もよくなってシステムの安定条件を保ちつつ、層高を操作することが容易になる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す制御回路の図である。
【図2】本発明の他の実施の形態を示す制御回路の図である。
【図3】本発明の他の実施の形態を示す制御回路の図である。
【図4】本発明の他の実施の形態を示す制御回路の図である。
【図5】本発明を用いた加圧流動層複合発電システムの層高操作を説明する図である。
【図6】本発明を用いた加圧流動層複合発電プラントの運転状態を説明する図である。
【図7】加圧流動層複合発電システムの一例を示す図である。
【図8】従来技術の制御回路の一例を示す図である。
【図9】従来技術の加圧流動層複合発電システムの運転状態を説明する図である。
【図10】従来技術の加圧流動層複合発電システムの層高操作を説明する図である。
【符号の説明】
1 関数発生器
2 層高設定値
3 層温測定器
4 減算器
5 層温偏差信号
6 不感帯設定器
7 比例積分制御器
8 加算器
9 層高目標値
10 層高測定器
11 減算器
12 層高偏差信号
13 ヒステリシス発生器
14 層高操作指令
15 流動媒体供給指令
16 流動媒体抜き出し指令
17 層温変化記録装置
18 最低値判定器
19 減算器
20 減算器
21 比例積分制御器
22 層高操作幅指令値
23 リセットスイッチ
24 記憶器
25 最大値判定器
26 蒸気温度測定器
27 層差圧測定器
28 火炉
29 圧力容器
30 分散板
31 燃焼空気ノズル
32 ウィンドウボックス
33 伝熱管
34 流動層
35 流動媒体容器
36 流動媒体粒子
37 サイクロン
38 燃焼排ガス
39 BM供給用空気弁
40 BM供給用空気
41 BM抜き出し空気弁
42 BM抜き出し空気
43 BM戻し空気弁
44 BM戻し空気
45 BM供給ライン
46 BM抜き出しライン
47 燃料
48 圧縮器
49 ガスタービン
50 空気
51 発電器
52 蒸気タービン
53 煙突
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combined power generation system including a pressurized fluidized bed boiler, and more particularly, to a pressurized fluidized bed combined power generation system that controls the bed temperature or steam temperature of a fluidized bed by a bed height operation and a control method thereof.
[0002]
[Prior art]
One conventional power generation system using coal as a fuel is a pressurized fluidized bed combined power generation (PFBC) system in which coal is burned in a fluidized bed in a pressurized atmosphere and a steam turbine and a gas turbine are driven simultaneously. FIG. 7 shows an example of a pressurized fluidized bed combined power generation system. In a furnace 28 of a pressurized fluidized bed boiler, air is supplied from a combustion air nozzle 31 to a layer of fluidized medium particles on a dispersion plate 30 to form a fluidized bed 34, and fuel 47 is combusted in the fluidized bed 34. Steam is generated in the heat transfer pipe 33 in the fluidized bed 34, and the steam turbine 52 is driven by this steam. At the same time, the gas turbine 49 is driven by the high-temperature and high-pressure combustion exhaust gas 38 generated from the furnace 28. When increasing the load of the pressurized fluidized bed boiler, the bed height of the fluidized bed 34 is increased to increase the contact area with the heat transfer tube 33 and increase the amount of heat transfer. For this purpose, fluid medium particles (BM; Bed Material) 36 are introduced from the fluid medium container (BM tank) 35 into the furnace 28 via the BM supply line 45. Further, when reducing the load, the fluidized medium particles 36 forming the fluidized bed 34 are extracted from the BM extraction line 46 to the BM tank 35, thereby reducing the bed height, reducing the contact area, and reducing the amount of heat transfer.
[0003]
In a pressurized fluidized bed boiler, the amount of operation for adjusting the amount of heat transfer to steam is divided into the fuel supply amount for adjusting the amount of heat input to the pressurized fluidized bed boiler, and the layer for adjusting the heat transfer area from the fluidized bed to the heat transfer tube. Is high. In addition to the steam temperature, the bed temperature also has a state value that needs to be controlled in order to maintain a good combustion state. When the fuel supply amount is increased, the layer temperature and the steam temperature are increased, and when the fuel supply amount is decreased, the layer temperature and the steam temperature are decreased. When the bed height is increased, the bed temperature is lowered and the steam temperature is raised, and when the bed height is reduced, the bed temperature is raised and the steam temperature is lowered.
[0004]
The conventional automatic control technology for the PFBC plant has two control methods, a method for controlling the layer temperature by a layer height operation and a method for controlling the steam temperature. The control circuit of the method controlled by is shown. The bed height setting value 2 of the fluidized bed is determined as a function of the load command, and the bed temperature deviation between the bed temperature measurement value measured by the bed temperature measuring device 3 and the bed temperature setting value with respect to the bed height setting value 2 The layer height target value 9 corrected so that 5 is set to 0 is determined. When the layer temperature is controlled to fall within a certain temperature range, the dead zone setting unit 6 may set a dead zone that treats the layer temperature deviation 5 as 0 if the temperature deviation is within a certain temperature range. In the bed height operation, the bed height operation is performed so that the bed height deviation 12 between the bed height target value 9 and the bed height measurement value measured by the bed height measuring device 10 is zero. Since it is difficult to continuously perform the layer height operation to be supplied into or extracted from, the layer height operation command 14 is generated when the deviation exceeds a certain value, and the operation is stopped when the deviation becomes less than the certain value. 13 is used. In accordance with the bed height operation command 14, a fluid medium supply command 15 for supplying the fluid medium particles into the furnace or a fluid medium extraction command 16 for extracting the fluid medium particles from the furnace is transmitted to operate the bed height. The layer temperature is controlled to a set temperature or temperature zone by a control circuit as shown in FIG.
[0005]
When the load rises, the bed height is increased. At this time, the BM stored in the BM tank outside the furnace is heated to 100 ° C or less into the fluidized bed at 850 to 900 ° C. During high operation, the layer temperature decreases and the steam temperature also decreases. For stable operation of a pressurized fluidized bed combined power generation system, the steam temperature must be controlled within the allowable temperature range. For this purpose, it is necessary to keep the layer temperature above a certain temperature even if the layer temperature decreases during bed height operation. is there. Since the amount of BM introduced at one bed height operation, that is, the bed temperature decrease width increases as the bed height operation width increases, it depends on the width of the bed height deviation (hysteresis width) that starts or stops the bed height operation. The temperature drop is determined. Normally, an appropriate bed height operation width is determined by trial operation data or simulation and set as a control circuit set value. However, there may be a case where dynamic characteristics different from those predicted by the plant may be exhibited due to changes in operation load, fuel properties, and the like.
[0006]
FIG. 9 shows the time-dependent changes in the bed height target value when the load of the pressurized fluidized bed boiler is increased, and the measured values of the bed height, fluidized bed temperature, and steam temperature. Here, the state where the circuit for controlling the layer temperature by the layer height is not utilized is shown so that the characteristics can be easily understood. In the first layer height operation, the decrease range of the layer temperature becomes larger than expected, and the temperature range is low as it is. As a result, the steam temperature also greatly decreased and exceeded the allowable temperature range, and the plant fell into unstable operation.
[0007]
The reason why the layer temperature has changed at a low temperature is that the layer height operation width was repeatedly executed at a preset value. FIG. 10 shows the state of the bed height operation, the bed temperature, the steam temperature, and the BM operation side by side. In the conventional control method, the bed height operation width is the same every time. When the deviation between the bed height target value and the bed height measurement value becomes the operation start layer height deviation, the BM supply air valve is opened and the bed height deviation is stopped. When the height difference is reached, the BM supply air valve is closed. Even when the layer height operation width is too large (the layer temperature decrease width is large), the same layer height operation is performed every time, so that the layer temperature becomes low each time.
[0008]
[Problems to be solved by the invention]
In the control method of the conventional pressurized fluidized bed combined power generation system, the operation is performed to increase the bed height when the load increases, but the amount of BM that is input at the time of one bed height operation, that is, the bed height operation width As the temperature increases, the decrease in the bed temperature increases, so the appropriate bed height operation width is determined by trial operation data and simulation and set as the control circuit set value, but the plant predicts due to changes in the operation load and fuel properties, etc. May show different dynamic characteristics.
[0009]
The conventional bed height operation width is the same every time. When the deviation between the bed height target value and the bed height measurement value becomes the operation start layer height deviation, the BM supply air valve is opened. Close the air valve. Even when the bed height operation width is too large and the bed temperature drop width is large, the same bed height operation is performed every time. Therefore, each time there is a problem that the bed temperature becomes low and it takes time to recover the temperature.
[0010]
An object of the present invention is to provide a pressurized fluidized bed combined power generation system that reduces the bed height operation amount per time when the temperature change amount after the bed height operation exceeds a preset maximum allowable change amount, and It is in providing the control method.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the pressurized fluidized bed combined power generation system according to the present invention, the bed height deviation between the bed height target value and the bed height measurement value of the fluidized bed is not less than a preset maximum value. The bed height operation is started, and the bed height operation is stopped when the bed height deviation is below the minimum value, and the state temperature consisting of the bed temperature or the steam temperature is controlled by the bed height operation to control the steam turbine and the gas turbine. In a pressurized fluidized bed combined power generation system to be driven, measurement of the state temperature between the state temperature at the start of the bed height operation and the minimum state temperature within a certain time after the bed height operation or after the bed height operation until the next bed height operation Control circuit that calculates the amount of change between the value and the state temperature set value, and when the amount of change exceeds the preset maximum allowable change amount, the maximum or minimum value of the layer height deviation is changed per time And a control circuit for reducing the layer height operation width.
[0012]
Further, in the first control method of the pressurized fluidized bed combined power generation system, when the bed height deviation between the bed height target value and the bed height measurement value of the fluidized bed is equal to or greater than a predetermined maximum value, the bed height is increased. Pressurized flow to start the operation, stop the bed height operation when the bed height deviation is below the minimum value, and control the state temperature consisting of the bed temperature or steam temperature by the bed height operation to drive the steam turbine and gas turbine In the control method of the layer combined power generation system, the change over time of the measured value of the state temperature is recorded, and the temperature change amount between the state temperature at the start of the layer height operation and the minimum state temperature within a certain time after the layer height operation is obtained, When the temperature change amount exceeds a preset maximum allowable change amount, the maximum or minimum value of the bed height deviation is changed to reduce the bed height operation width per time.
[0013]
In the second control method, the change over time of the measured value of the state temperature is recorded, and the maximum deviation between the state temperature measured value and the state temperature set value from after the layer height operation to the next layer height operation is stored. When the deviation exceeds a preset maximum allowable variation, the maximum or minimum value of the bed height deviation is changed to reduce the bed height operation width per time.
[0014]
According to the present invention, the layer temperature measurement value is recorded over time, the minimum temperature in the recorded layer temperature is determined, and the deviation between the minimum temperature and the layer temperature target value is determined in advance for system stable operation. When the specified value is exceeded, the set value of the bed height operation width is changed to reduce the bed height operation width, thereby stabilizing the operation.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a step in which the bed height set value 2 of the fluidized bed is determined by the function generator 1 as a function of the load command, and the bed temperature measured by the bed temperature measuring device 3 with respect to the bed height set value 2 is used. A step in which the layer height target value 9 is determined by correcting the layer temperature deviation 5 between the temperature and the layer temperature set value to 0, and the layer height target value 9 and the layer measured by the layer height measuring device 10 A step of calculating the layer height deviation 12 between the height measurement values by the subtractor 11 and a layer height operation command 14 generated from the hysteresis generator 13 when the layer height deviation 12 is equal to or greater than a predetermined maximum value. A step of starting operation, a step of generating a layer height operation command 14 from the hysteresis generator 13 when the layer height deviation 12 is less than a minimum value, and stopping the layer height operation, and a layer height operation based on the layer height operation command 14 To control the state temperature consisting of the layer temperature or the steam temperature by A method for controlling a pressurized fluidized bed combined power generation system that drives a steam turbine and a gas turbine, wherein, for example, a layer temperature of a state temperature is measured by a layer temperature measuring device 3 is measured with a layer temperature measurement value. The step of recording in the temperature change recording device 17 and the step of obtaining by the subtractor 19 the amount of temperature change between the layer temperature measurement value at the start of the layer height operation and the minimum layer temperature measurement value within a certain time after the layer height operation. And a step of calculating by the subtractor 20 that the temperature change amount exceeds a preset maximum allowable change amount (temperature change set value), and changing the maximum value or minimum value of the layer height deviation per time And a step of correcting the bed height manipulated variable smaller by the hysteresis generator 13.
[0016]
As another embodiment of the present invention, the vapor temperature of the state temperature is controlled similarly to the layer temperature as shown in FIG.
[0017]
That is, it is a control method of a pressurized fluidized bed combined power generation system that drives a steam turbine and a gas turbine by controlling the bed temperature or steam temperature by operating the bed height of the fluidized bed. When the temperature falls below the set value, the bed height operation width is corrected to be small so as to suppress the drop in the bed temperature or the steam temperature.
[0018]
The control circuit shown in FIG. 1 shows a method for controlling the layer temperature by the layer height. Based on the deviation between the bed height target value 9 obtained by correcting the bed height set value 2 with the bed temperature deviation 5 and the actual bed height measurement value measured by the bed height measuring device 10, a hysteresis is added to the bed height. The circuit for executing the operation is the same as that of the prior art shown in FIG. Here, in order to carry out the control method of the present embodiment, first, the change with time of the layer temperature measurement value measured by the layer temperature measuring device 3 is recorded in the layer temperature change recording device 17. This recording may record the layer temperature measurement value within the past certain time width. The lowest layer temperature of the recorded layer temperature measurement values is selected by the minimum value determination 18, and the layer temperature deviation (temperature change amount) between the minimum layer temperature and the layer temperature set value is obtained by the subtracter 19. The difference between the maximum bed temperature deviation output from the subtractor 19 and the temperature change set value is calculated by the subtracter 20, and the result is output as the bed height operation width command value 22 through the proportional controller 21. By this circuit, when the maximum bed temperature deviation exceeds the temperature change set value, the bed height operation width command value 22 is reduced. Conversely, when the maximum bed temperature deviation is smaller than the temperature change set value, the bed height operation width command value is growing. The layer height operation width command value is corrected so that the layer height operation width (hysteresis width) is equal to the layer height operation width command 22 by changing the setting of the operation start deviation or operation stop deviation of the layer height of the hysteresis generator. . In order to reduce the bed height operation width, there are methods of reducing the deviation between the bed height target value for starting the bed height operation and the bed height measurement value, or increasing the deviation for stopping the bed height operation.
[0019]
FIG. 3 shows a control circuit according to another embodiment of the present invention. In the embodiment shown in FIG. 1, the measured layer temperature is recorded over time, and the maximum layer temperature deviation within a predetermined time is determined. In the other embodiments, the next layer height is changed from one layer height operation. The maximum layer height deviation until the operation is used for determination. 1 is the same as the embodiment of FIG. 1 in that the layer height operation is performed by adding hysteresis so that the layer height set value becomes the layer temperature target value corrected by the layer temperature deviation. Stores the maximum deviation between the state temperature measurement value and the state temperature set value consisting of the bed temperature or steam temperature measured between the bed height operation and the next bed height operation, and the maximum deviation is the preset maximum allowable change. When the amount is exceeded, the maximum or minimum value of the bed height deviation is changed to reduce the bed height operation amount per time.
[0020]
That is, after the layer height operation, the layer temperature deviation signal 5 is stored in the storage unit 24 via the maximum value selector 25. The layer temperature deviation signal 5 at the time of the next measurement is compared with the value stored in the previous storage unit 24 by the maximum value determination unit 25, and a larger value is stored in the storage unit 24 again. The recorded maximum deviation is subtracted from the temperature change set value by the subtracter 20 and passes through the proportional controller 21 to become the layer height operation width command value 22. The point that the layer height operation width is corrected by the layer height operation width command value 22 is the same as that of the embodiment shown in FIG. When the layer height deviation 12 between the layer height target value 9 and the layer height measurement value 10 exceeds the layer height operation start deviation and the layer height operation command 14 is transmitted, the reset switch 23 that receives this signal is sent to the memory 24. The stored maximum layer temperature deviation value is deleted. As a result, the bed height operation range can be corrected by the maximum bed temperature deviation between the bed height operation and the next operation, and even if the operating conditions change for each bed height operation during load changes, It is possible to correct the layer height operation width by determining the decrease width. According to this other embodiment, by using the maximum value of the decrease in the layer temperature until the next operation after one layer height operation as a criterion, it is possible to operate the layer height operation during a load change. Even if the operating conditions change every time, it is possible to respond quickly.
[0021]
3 and 4 show a control circuit according to another embodiment of the present invention. Here, the present invention is applied to a control method for controlling the steam temperature by the bed height operation. FIG. 3 shows the same control circuit as that of the embodiment of FIG. 1 except that the vapor temperature deviation is used as a criterion for determination instead of the layer temperature. The other embodiment shown in FIG. 4 uses the deviation of the steam temperature as a criterion in place of the layer temperature in the same control circuit as that of the other embodiment of FIG.
[0022]
Next, the operation of the present invention will be described. If the bed temperature drop exceeds the expected value when the bed height is operated once, the bed height operation width will be corrected to be smaller in the next bed height operation, so the amount of BM input will be reduced and the bed temperature drop will be reduced. Can be kept small. Thereby, it can prevent that steam temperature falls exceeding the allowable value required for a plant stable operation. FIG. 5 shows the characteristics of the layer temperature and the steam temperature when the above means is used. In the case of (1) where the bed temperature and steam temperature decrease beyond the allowable values, in the case of (2) where the bed height operation stop deviation is increased and (3) where the operation start deviation is reduced, one operation is performed. As a result, the temperature drop width is reduced, and the steam temperature can be controlled within the lower limit.
[0023]
ADVANTAGE OF THE INVENTION According to this invention, the abnormal fall of the bed temperature or steam temperature at the time of bed height operation can be prevented, the stable operation of a plant can be maintained, or the time of stabilization operation can be shortened. FIG. 6 shows changes in bed height operation and bed temperature or steam temperature during load increase operation when the control method of the present invention is applied to a pressurized fluidized bed combined power generation system. Since the decrease range of the layer temperature is increased by the first layer height operation, the hysteresis width that determines the layer height operation width is corrected to be small, and the layer height operation width is decreased from the second time. As a result, a significant decrease in the layer temperature can be prevented, and there is no significant disturbance in the layer temperature or the steam temperature, and the layer temperature gradually increases. This effect makes it possible to control the steam temperature within an allowable range. In addition, as the load increases, the bed height increases, and as the bed temperature drop due to the same amount of BM input decreases, the bed height operation width increases one by one. Follow-up is also improved. Therefore, it becomes easy to operate the bed height while maintaining the plant stability condition.
[0024]
Next, as shown in FIGS. 1 to 4, as another embodiment of the present invention, a pressurized fluidized bed combined power generation system uses any one of the control methods of the pressurized fluidized bed combined power generation system, State temperature measurement and state temperature measured between the state temperature measurement at the start of the operation and the minimum state temperature measurement within a certain time after the layer height operation or between the layer height operation and the next layer height operation A control circuit that calculates the amount of temperature change between the set values, and when the amount of temperature change exceeds the preset maximum allowable change amount, the maximum or minimum value of the layer height deviation is changed to change the layer per time A control device having a control circuit for reducing a high operation amount is provided. The other operations and effects similar to those described above can also be obtained by other embodiments.
[0025]
【The invention's effect】
According to the present invention, when the bed temperature or the steam temperature is lower than the set value due to the bed height operation, the bed height operation width is corrected to be small. The track height is improved, and it becomes easy to operate the bed height while maintaining the stability condition of the system.
[Brief description of the drawings]
FIG. 1 is a diagram of a control circuit showing an embodiment of the present invention.
FIG. 2 is a diagram of a control circuit showing another embodiment of the present invention.
FIG. 3 is a control circuit diagram showing another embodiment of the present invention.
FIG. 4 is a diagram of a control circuit showing another embodiment of the present invention.
FIG. 5 is a diagram for explaining the layer height operation of the pressurized fluidized bed combined power generation system using the present invention.
FIG. 6 is a diagram illustrating an operating state of a pressurized fluidized bed combined power plant using the present invention.
FIG. 7 is a diagram showing an example of a pressurized fluidized bed combined power generation system.
FIG. 8 is a diagram illustrating an example of a conventional control circuit.
FIG. 9 is a diagram illustrating an operating state of a pressurized fluidized bed combined power generation system according to the prior art.
FIG. 10 is a diagram for explaining the bed height operation of the conventional pressurized fluidized bed combined power generation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Function generator 2 Layer height set value 3 Layer temperature measuring device 4 Subtractor 5 Layer temperature deviation signal 6 Dead zone set device 7 Proportional integral controller 8 Adder 9 Layer height target value 10 Layer height measuring device 11 Subtractor 12 Layer height Deviation signal 13 Hysteresis generator 14 Layer height operation command 15 Fluid medium supply command 16 Fluid medium extraction command 17 Layer temperature change recording device 18 Minimum value determiner 19 Subtractor 20 Subtractor 21 Proportional integral controller 22 Layer height operation width command value 23 reset switch 24 storage unit 25 maximum value determination unit 26 steam temperature measurement unit 27 layer differential pressure measurement unit 28 furnace 29 pressure vessel 30 dispersion plate 31 combustion air nozzle 32 window box 33 heat transfer pipe 34 fluidized bed 35 fluidization medium vessel 36 fluidization medium Particle 37 Cyclone 38 Combustion exhaust gas 39 BM supply air valve 40 BM supply air 41 BM extraction air valve 42 BM extraction air 43 BM return air 44 BM return air 45 BM supply line 46 BM withdrawal line 47 fuel 48 compressor 49 gas turbine 50 air 51 generator 52 steam turbine 53 chimneys

Claims (3)

流動層の層高目標値と層高測定値との間の層高偏差が予め定めた最大値以上の際に層高操作を開始し、前記層高偏差が最小値以下の際に前記層高操作を停止し、該層高操作により層温又は蒸気温度よりなる状態温度を制御して蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムにおいて、層高操作開始時の状態温度と層高操作後の一定時間内の最小状態温度との間又は層高操作後より次回層高操作までの状態温度測定値と状態温度設定値との間の変化量を求める制御回路と、該変化量が予め設定した最大許容変化量を超えた際に、層高偏差の最大値又は最小値を変更して1回あたりの層高操作幅を小さくする制御回路とを有する制御装置を備えたことを特徴とする加圧流動層複合発電システム。The bed height operation is started when the bed height deviation between the bed height target value and the bed height measurement value of the fluidized bed is equal to or greater than a predetermined maximum value, and when the bed height deviation is less than the minimum value, In a pressurized fluidized bed combined power generation system that drives a steam turbine and a gas turbine by controlling the state temperature consisting of the layer temperature or the steam temperature by the layer height operation, the state temperature and the layer at the start of the layer height operation A control circuit for obtaining a change amount between a state temperature measurement value and a state temperature set value between a minimum state temperature within a certain time after a high operation or after a layer height operation until the next layer height operation; and the change amount Provided with a control device having a control circuit for changing the maximum or minimum value of the layer height deviation to reduce the layer height operation width per time when the maximum allowable change amount set in advance is exceeded. A pressurized fluidized bed combined power generation system. 流動層の層高目標値と層高測定値との間の層高偏差が予め設定した最大値以上の際に層高操作を開始し、前記層高偏差が最小値以下の際に前記層高操作を停止し、該層高操作により層温又は蒸気温度よりなる状態温度を制御して蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムの制御方法において、前記状態温度の測定値の経時変化を記録し、層高操作開始時の前記状態温度と層高操作後の一定時間内の最小状態温度との温度変化量を求め、該温度変化量が予め設定した最大許容変化量を超えた際に、前記層高偏差の最大値又は最小値を変更して1回あたりの層高操作幅を小さくすることを特徴とする加圧流動層複合発電システムの制御方法。The bed height operation is started when the bed height deviation between the bed height target value and the bed height measurement value of the fluidized bed is greater than or equal to a preset maximum value, and when the bed height deviation is less than the minimum value, In a control method of a pressurized fluidized bed combined power generation system for driving a steam turbine and a gas turbine by controlling a state temperature consisting of a layer temperature or a steam temperature by stopping the operation and controlling the state temperature, the measured value of the state temperature is Record the change over time, calculate the amount of temperature change between the state temperature at the start of layer height operation and the minimum state temperature within a certain time after layer height operation, and the temperature change amount exceeds the preset maximum allowable change amount A control method for a pressurized fluidized bed combined power generation system, wherein the maximum or minimum value of the bed height deviation is changed to reduce the bed height operation width per cycle. 流動層の層高目標値と層高測定値との間の層高偏差が予め定めた最大値以上の際に層高操作を開始し、前記層高偏差が最小値以下の際に前記層高操作を停止し、該層高操作により層温又は蒸気温度よりなる状態温度を制御して蒸気タービン及びガスタービンを駆動する加圧流動層複合発電システムの制御方法において、前記状態温度の測定値の経時変化を記録し、層高操作後より次回層高操作までの状態温度測定値と状態温度設定値との最大偏差を記憶し、該最大偏差が予め設定した最大許容変化量を超えた際に、前記層高偏差の最大値又は最小値を変更して1回あたりの層高操作幅を小さくすることを特徴とする加圧流動層複合発電システムの制御方法。The bed height operation is started when the bed height deviation between the bed height target value and the bed height measurement value of the fluidized bed is equal to or greater than a predetermined maximum value, and when the bed height deviation is less than the minimum value, In a control method of a pressurized fluidized bed combined power generation system that drives a steam turbine and a gas turbine by controlling a state temperature consisting of a layer temperature or a steam temperature by stopping the operation, and controlling the measured value of the state temperature Record the change over time, store the maximum deviation between the state temperature measurement value and the state temperature setting value after the layer height operation until the next layer height operation, and when the maximum deviation exceeds the preset maximum allowable change amount A method for controlling a pressurized fluidized bed combined power generation system, wherein the maximum or minimum value of the bed height deviation is changed to reduce the bed height operation width per cycle.
JP31476497A 1997-11-17 1997-11-17 Pressurized fluidized bed combined power generation system and control method thereof Expired - Fee Related JP3837605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31476497A JP3837605B2 (en) 1997-11-17 1997-11-17 Pressurized fluidized bed combined power generation system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31476497A JP3837605B2 (en) 1997-11-17 1997-11-17 Pressurized fluidized bed combined power generation system and control method thereof

Publications (2)

Publication Number Publication Date
JPH11148608A JPH11148608A (en) 1999-06-02
JP3837605B2 true JP3837605B2 (en) 2006-10-25

Family

ID=18057309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31476497A Expired - Fee Related JP3837605B2 (en) 1997-11-17 1997-11-17 Pressurized fluidized bed combined power generation system and control method thereof

Country Status (1)

Country Link
JP (1) JP3837605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540272B2 (en) * 2001-08-22 2010-09-08 中国電力株式会社 Fluidized bed equipment

Also Published As

Publication number Publication date
JPH11148608A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP2002286216A (en) Operation method for circulated fluidized bed
JP3837605B2 (en) Pressurized fluidized bed combined power generation system and control method thereof
CN112178616B (en) Coal-fired unit control method considering heat storage space-time distribution
JPH0160721B2 (en)
JP3928104B2 (en) Pressurized fluidized bed combined power generation system and control method and control apparatus therefor
JP3948115B2 (en) Steam turbine operation method for coke dry fire extinguishing equipment
JP3932375B2 (en) Frequency control apparatus and method for thermal power plant
JPH0378521B2 (en)
JP3794074B2 (en) Steam temperature control method and apparatus in pressurized fluidized bed boiler
JPH1114003A (en) Vapor temperature controller of pressurized fluidized bed boiler
JP3826498B2 (en) Method and apparatus for controlling bed temperature during warming bed storage tank of pressurized fluidized bed boiler
WO2022039109A1 (en) Control device, control method, and program
JP4767460B2 (en) Steam supply method by steam accumulator
JP2000257801A (en) Method for controlling process, fluidized bed boiler and method for supplying fuel therefor
JPH07286704A (en) Fluidized-bed temperature controlling method for fluidized-bed burner
JP3680345B2 (en) Steam temperature control method and apparatus for pressurized fluidized bed boiler
JPH06281109A (en) Bed height control method for pressurized fluidized bed type combustion device and bed height control device
JPH06193801A (en) Main pressure controller in circulating fluidized bed boiler
JPH11325416A (en) Method and device for suppressing decrease of bed temperature with increase in bed height of fluidized bed boiler
JP2686343B2 (en) Circulating fluidized bed combustor control method
JPH1114002A (en) Steam temperature controller for pressurized fluidized bed combustion boiler
JPH05180402A (en) Bed temperature control device of fluidized bed boiler
JPH1038201A (en) Control method and apparatus for outlet supply water temperature of gas high pressure supply water heater in exhaust recombustion type combined cycle plant
JPH0949611A (en) Method and device for controlling height of layer in pressurized fluidized bed combustion device
JPH04297701A (en) Steam temperature controller for pressurized fluidized bed boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350