JPH05180402A - Bed temperature control device of fluidized bed boiler - Google Patents

Bed temperature control device of fluidized bed boiler

Info

Publication number
JPH05180402A
JPH05180402A JP76892A JP76892A JPH05180402A JP H05180402 A JPH05180402 A JP H05180402A JP 76892 A JP76892 A JP 76892A JP 76892 A JP76892 A JP 76892A JP H05180402 A JPH05180402 A JP H05180402A
Authority
JP
Japan
Prior art keywords
bed
temperature
fuel
flow rate
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP76892A
Other languages
Japanese (ja)
Inventor
Kunihiro Nakajima
邦浩 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP76892A priority Critical patent/JPH05180402A/en
Publication of JPH05180402A publication Critical patent/JPH05180402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to fix the bed temperature of a fluidized bed boiler definitely. CONSTITUTION:An actual bed temperature of a fluidized bed obtained from a bed temperature detector 15 is compared with a desired setting temperature by means of a comparator 17 where a master signal is corrected based on a differential temperature resultant from the comparison and forms a fuel correction section A which directs a fuel supply quantity command and the corrected fuel supply quantity command is compared with an actual fuel flow rate obtained from a fuel flow rate detector 23 by means of a comparator 22. A fuel control section B is installed, which increases and decreases the fuel flow rate, responding to the differential flow rate resultant from the above comparison. This construction makes it possible to maintain a constant bed temperature by increasing and decreasing the fuel flow rate even when the infection or collection of a bed material causes a temporary changes in the bed temperature of the fluidized bed 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ボイラ本体内でベッド
材と燃料とを流動化させて流動層を形成する流動層ボイ
ラに係り、特に流動層の高さを制御する流動層ボイラに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidized bed boiler for fluidizing a bed material and fuel in a boiler body to form a fluidized bed, and more particularly to a fluidized bed boiler for controlling the height of the fluidized bed. Is.

【0002】[0002]

【従来の技術】近年、流動層ボイラとしては、燃料を高
い燃焼効率で燃焼でき、かつコンパクト化、高脱硫率及
びプラント熱効率の向上等を図れる加圧型の流動層ボイ
ラが研究開発されつつある。
2. Description of the Related Art In recent years, as a fluidized bed boiler, a pressurized fluidized bed boiler is being researched and developed which can burn fuel with high combustion efficiency and can be made compact, have a high desulfurization rate, and can improve plant thermal efficiency.

【0003】この流動層ボイラは、図2に示すように、
圧力容器aに収容されたボイラ本体b内に高圧の燃焼空
気を導入し、この燃焼空気により高圧下で燃料例えば粉
状の石炭を灰や石灰石等からなるベッド材と共に流動化
させて燃焼するものであり、流動層c内の燃焼熱の一部
が流動層c内に設けた伝熱管dにより回収され、発生し
た蒸気が蒸気タービンeに供給され、発電機fを駆動す
る。また、ボイラ排ガスは高温高圧下で集塵された後、
ガスタービンgを駆動し、ガスタービンは燃焼用空気コ
ンプレッサーhと発電機iを駆動する。尚、jはエコノ
マイザ,kは煙突である。
This fluidized bed boiler is, as shown in FIG.
High-pressure combustion air is introduced into the boiler main body b housed in the pressure vessel a, and the combustion air is used to fluidize and burn fuel, for example, powdery coal, with bed material made of ash, limestone, etc. under high pressure. That is, a part of the combustion heat in the fluidized bed c is recovered by the heat transfer pipe d provided in the fluidized bed c, and the generated steam is supplied to the steam turbine e to drive the generator f. Also, after the boiler exhaust gas is collected under high temperature and high pressure,
The gas turbine g is driven, and the gas turbine drives the combustion air compressor h and the generator i. Incidentally, j is an economizer and k is a chimney.

【0004】上記圧力容器a内には、ベッド材貯蔵容器
dが設けられ、このベッド材貯蔵容器mにより、負荷に
応じてボイラ本体b内の流動層cの高さが制御されて収
熱が調節されるようになっている。具体的には、ベッド
材貯蔵容器m内の上部を減圧手段nにより減圧すること
により、流動層cからベッド材がベッド材排出管pを介
して貯蔵容器m内に回収貯蔵され、流動層cの高さが低
くなる。一方、ベッド材貯蔵容器m下部のベッド材注入
管(Lバルブ)qに空気を供給することにより貯蔵容器
mのベッド材が流動層cに注入され、流動層cの高さが
高くなる(特開平1−217108号公報)。
A bed material storage container d is provided in the pressure vessel a, and the bed material storage vessel m controls the height of the fluidized bed c in the boiler body b according to the load to collect heat. It is supposed to be adjusted. Specifically, by decompressing the upper portion of the bed material storage container m by the decompression means n, the bed material is recovered and stored from the fluidized bed c into the storage container m via the bed material discharge pipe p, and the fluidized bed c is obtained. Lowers the height. On the other hand, by supplying air to the bed material injection pipe (L valve) q below the bed material storage container m, the bed material of the storage container m is injected into the fluidized bed c, and the height of the fluidized bed c increases ( Kaihei 1-217108).

【0005】[0005]

【発明が解決しようとする課題】ところで、上述の流動
層ボイラにあっては、層内脱硫するために最適な温度範
囲がある。即ち、燃焼反応において窒素酸化物(NOx
ガス)の発生を抑え、更には下流側に付設されるガスタ
ービンgの性能に悪影響を与えないという制約から、層
温は例えば860℃に維持すべきというプラント側から
の要請がある。
By the way, in the above fluidized bed boiler, there is an optimum temperature range for desulfurization in the bed. That is, in the combustion reaction, nitrogen oxides (NOx
There is a demand from the plant side that the layer temperature should be maintained at, for example, 860 ° C. because of the restriction that the generation of gas) is suppressed and the performance of the gas turbine g attached downstream is not adversely affected.

【0006】かかる要請に対し、従来は、マスタ信号つ
まりプラントの出力指令rに基づき、燃料ポンプsの燃
料流量調整と、ベッド材注入管(Lバルブ)qの空気供
給又は供給減圧手段nの減圧操作によるベッド材注入回
収量の調整とを独立に行って、ボイラの出力たる蒸気流
量を制御している。
In response to such a request, conventionally, on the basis of a master signal, that is, a plant output command r, the fuel flow rate of the fuel pump s is adjusted and the air is supplied to the bed material injection pipe (L valve) q or the pressure is reduced by the supply pressure reducing means n. The steam flow rate, which is the output of the boiler, is controlled by performing the adjustment of the bed material injection recovery amount by the operation independently.

【0007】しかし、上記燃料流量とベッド材注入回収
量を直接に制御するだけでは、次のような不都合があ
る。即ち、マスタ信号がプラントの出力増大指令の場
合、これに対応して層高を増やすべくベット材を注入し
たとき、ベット材が冷たいため、プラントの出力指令に
応じて燃料流量を増大しているにも拘らず、一時的に層
温の温度が下がるという問題がある。また、上記燃料流
量とベッド材注入回収量の連動関係は何等かの原因で崩
れることがある。例えば、プラント出力を上げる際に両
者のバランスが崩れていてベッド材が注入されない場合
があり、かかる状態下では燃料だけが増大されるので、
層温が上昇し、本来プラントとして許容できる管等の耐
熱温度を越えてしまうことが考えられる。
However, if the fuel flow rate and the bed material injection / collection amount are directly controlled, the following inconveniences occur. That is, when the master signal is a plant output increase command, when the bed material is injected to increase the bed height correspondingly, the bed material is cold, so the fuel flow rate is increased according to the plant output command. Nevertheless, there is a problem that the layer temperature temporarily drops. Further, the interlocking relationship between the fuel flow rate and the bed material injection and recovery amount may be broken for some reason. For example, when increasing the plant output, the bed material may not be injected due to the imbalance between the two, and under such conditions only the fuel is increased,
It is conceivable that the layer temperature rises and exceeds the heat-resistant temperature of pipes and the like that is originally acceptable as a plant.

【0008】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、実際の層温を考
慮にいれて、より確実に層温を一定化し得る流動層ボイ
ラの制御装置を提供することにある。
Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to provide a fluidized bed boiler capable of more reliably stabilizing the bed temperature in consideration of the actual bed temperature. It is to provide a control device.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、ボイラ本体内でベッド材と燃料とを流動
化させて流動層を形成し、マスタ信号に応じ、流動層の
高さを貯蔵容器からのベッド材の注入及び貯蔵容器への
回収により制御する流動層ボイラにおいて、層温検出器
から得られる流動層の温度を所望の設定層温と比較し、
その温度差でマスタ信号を補正して燃料供給量指令とす
る温度補正部と、この補正された燃料供給量指令に対し
燃料流量検出器から得られる実際の燃料流量を比較し、
その流量差に応じて燃料流量を増減させる燃料制御部と
を設けた構成のものである。
In order to achieve the above object, the present invention forms a fluidized bed by fluidizing bed material and fuel in a boiler main body, and raises the fluidized bed height according to a master signal. In a fluidized bed boiler that controls the temperature by injecting the bed material from the storage container and collecting the bed material in the storage container, the temperature of the fluidized bed obtained from the bed temperature detector is compared with a desired set bed temperature,
A temperature correction unit that corrects the master signal with the temperature difference to make the fuel supply amount command, and compares the actual fuel flow rate obtained from the fuel flow rate detector with respect to the corrected fuel supply amount command,
A fuel control unit that increases or decreases the fuel flow rate according to the flow rate difference is provided.

【0010】[0010]

【作用】ベッド材の注入又は回収により流動層の層温が
一時的に変化すると、温度補正部において、所望の設定
層温に対する温度差として検出され、この温度差でマス
タ信号が補正され、補正された燃料供給量指令が出力さ
れる。この補正された燃料供給量指令は、燃料制御部に
おいて、実際の燃料流量と比較され、その差に応じて燃
料流量が増減される。この結果、ベッド材の注入又は回
収により流動層の層温が一時的に変化しても、その変化
を補うように燃料流量が増減されるため、層温は一定に
維持される。
When the bed temperature of the fluidized bed is temporarily changed by injecting or collecting the bed material, it is detected as a temperature difference with respect to the desired set bed temperature by the temperature correction unit, and the master signal is corrected by this temperature difference and corrected. The specified fuel supply amount command is output. The corrected fuel supply amount command is compared with the actual fuel flow rate in the fuel control unit, and the fuel flow rate is increased or decreased according to the difference. As a result, even if the bed temperature of the fluidized bed temporarily changes due to the injection or recovery of the bed material, the fuel flow rate is increased or decreased to compensate for the change, so the bed temperature is maintained constant.

【0011】[0011]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0012】図1において、1は圧力容器2内に収容さ
れているボイラ本体を示し、そのボイラ本体内下部の空
気分散板3上に、灰や石灰石又はドロマイト等からなる
ベッド材と、粒状の石炭等の燃料とが供給される。この
うち燃料は燃料ポンプ4により燃料供給管5を介して供
給される。
In FIG. 1, reference numeral 1 denotes a boiler main body housed in a pressure vessel 2, and a bed material made of ash, limestone, dolomite or the like and a granular material are provided on an air dispersion plate 3 in the lower part of the boiler main body. Fuel such as coal is supplied. Of these, the fuel is supplied by the fuel pump 4 through the fuel supply pipe 5.

【0013】圧力容器2には、空気供給管6が接続さ
れ、この空気供給管6からの高圧の空気が空気分散板3
を介してボイラ本体1内に流入し、空気分散板3上でベ
ッド材と燃料とを高温高圧下で流動化して流動層7が形
成されるようになっている。
An air supply pipe 6 is connected to the pressure vessel 2, and high-pressure air from the air supply pipe 6 is supplied to the air dispersion plate 3.
Through which the bed material and fuel are fluidized on the air dispersion plate 3 under high temperature and high pressure to form a fluidized bed 7.

【0014】圧力容器2内には、負荷に応じて流動層7
の高さを制御するためのベッド材貯蔵容器8がボイラ本
体1に並設され、その上部は、ベッド材排出管9を介し
て流動層7と接続されると共に、容器8内のガス分を排
出して容器8内を減圧するための減圧装置10a及び調
節弁10bを備えたガス排出管11に接続されている。
また、貯蔵容器8の下部は、ほぼ直角にL字状に形成さ
れたベッド材管(Lバルブ)12を介してボイラ本体1
の流動層7の下方に接続され、全体としてほぼU字状に
連結されている。ベッド材管12のL字状の角部は、調
節弁13を有する空気搬送管14により圧力容器2と接
続されており、負荷上昇時、圧力容器2内の空気の一部
がベッド材管12に供給されて、貯蔵容器8内のベッド
材が流動層7に注入されるようになっている。
In the pressure vessel 2, a fluidized bed 7 is provided depending on the load.
A bed material storage container 8 for controlling the height of the gas is stored in the boiler main body 1 in parallel, and the upper portion of the bed material storage container 8 is connected to the fluidized bed 7 via a bed material discharge pipe 9 and the gas content in the container 8 is It is connected to a gas discharge pipe 11 equipped with a pressure reducing device 10a for discharging and reducing the pressure inside the container 8 and a control valve 10b.
Further, the lower portion of the storage container 8 is connected to the boiler body 1 via a bed material pipe (L valve) 12 formed in an L shape at a substantially right angle.
Is connected below the fluidized bed 7 and is connected in a substantially U-shape as a whole. The L-shaped corner portion of the bed material pipe 12 is connected to the pressure vessel 2 by an air carrying pipe 14 having a control valve 13, and when the load rises, a part of the air in the pressure vessel 2 is connected to the bed material pipe 12. And the bed material in the storage container 8 is supplied to the fluidized bed 7.

【0015】上記調節弁10b及び調節弁13は、プラ
ントのマスタ信号19の内容、つまりプラント出力又は
負荷に対応する層高の指示値に応じ、プラント出力を増
加すべきときはベット材を注入して流動層7の層高を高
くし、減少させるべきときはベット材を少なくして層高
を低くするように制御される。この場合、対応するボイ
ラ蒸気量を得るために、プラントの出力に見合った燃料
流量とする必要がある。但し、燃料ポンプ4から供給す
る燃料流量をマスタ信号19に応じて直接に調整する
と、ベット材の注入又は回収による一時的な層温変動を
カバーできず、層温が一定にならない。即ち、層高を増
やすためにベット材を注入したとき、注入されたベット
材により層温が低下する。また、回収による層高下降時
には、投入燃料に対しベッド材が少なくなるので、層温
が上昇する。そこで、次に述べる制御装置により、層温
の実際温度が一定になるように燃料流量を制御すること
により、結果的にそのプラントの出力制御する。
The control valve 10b and the control valve 13 inject bed material when the plant output should be increased according to the content of the master signal 19 of the plant, that is, the value of the bed height corresponding to the plant output or load. Therefore, the bed height of the fluidized bed 7 is increased, and when the bed height is to be decreased, the bed material is reduced and the bed height is decreased. In this case, in order to obtain the corresponding boiler steam amount, it is necessary to make the fuel flow rate suitable for the output of the plant. However, if the fuel flow rate supplied from the fuel pump 4 is directly adjusted according to the master signal 19, it is not possible to cover a temporary fluctuation of the bed temperature due to the injection or recovery of the bed material, and the bed temperature is not constant. That is, when the bed material is injected to increase the bed height, the bed temperature is lowered by the injected bed material. Further, when the bed height is lowered due to the recovery, the bed material is less than the input fuel, so the bed temperature rises. Therefore, the control device described below controls the fuel flow rate so that the actual bed temperature is constant, and as a result, the output of the plant is controlled.

【0016】制御装置は、層温の実際温度を検出するた
めの層温検出器15と、供給される実際の燃料を検出す
る燃料流量検出器23を有する。この実施例では、層温
検出器15は上記ボイラ本体1の流動層7の層温を検出
する複数の熱電対からなり、流動層7の平均温度を検出
する。一方、燃料流量検出器23は、燃料供給管5のス
ラリ流量を検出する。
The controller has a bed temperature detector 15 for detecting the actual bed temperature, and a fuel flow rate detector 23 for detecting the actual fuel supplied. In this embodiment, the bed temperature detector 15 is composed of a plurality of thermocouples for detecting the bed temperature of the fluidized bed 7 of the boiler body 1, and detects the average temperature of the fluidized bed 7. On the other hand, the fuel flow rate detector 23 detects the slurry flow rate of the fuel supply pipe 5.

【0017】制御装置は2つの部分からなる。一つは、
層温検出器15から得られる流動層7の実際の層温を所
望の設定層温、例えば860℃と比較し、その比較結果
の温度差でマスタ信号19を補正して燃料供給量指令と
する温度補正部Aであり、層温検出器15、温度設定器
16、比較器17、PI(比例積分)制御部18及び加
算部21から構成される。他の一つは、この補正された
燃料供給量指令に対し燃料流量検出器23から得られる
実際の燃料流量を比較し、その比較結果たる流量差に応
じて燃料流量を増減させる燃料制御部Bであり、燃料流
量検出器23、比較器22、PI制御部24、自動/手
動切換部25及びインバータ26から構成される。
The control unit consists of two parts. one,
The actual bed temperature of the fluidized bed 7 obtained from the bed temperature detector 15 is compared with a desired set bed temperature, for example, 860 ° C., and the master signal 19 is corrected by the temperature difference of the comparison result to give a fuel supply amount command. The temperature correction unit A includes a bed temperature detector 15, a temperature setting unit 16, a comparator 17, a PI (proportional integral) control unit 18, and an addition unit 21. The other one is a fuel control unit B that compares the corrected fuel supply amount command with the actual fuel flow rate obtained from the fuel flow rate detector 23 and increases or decreases the fuel flow rate according to the flow rate difference as a result of the comparison. The fuel flow rate detector 23, the comparator 22, the PI control unit 24, the automatic / manual switching unit 25, and the inverter 26.

【0018】層温検出器15で検出された層温は比較器
17に導かれ、ここで温度設定器16で設定される所望
の設定層温(860℃)と比較され、その温度差信号が
出力される。この温度差信号は、PI制御部18を経
て、加算部21に入る。このPI制御部18に得られる
信号は、時間に比例する直線関数に上記温度降下変化が
乗った信号である。加算部21には、関数発生器20に
より、プラントのマスタ信号を時間に比例する直線関数
に変換した信号が入力されており、この信号に上記PI
制御部18からの信号が加算される。従って、加算部2
1には、実際の流動層7の層温を加味して補正した後の
燃料供給量指令(目標値)が得られる。
The bed temperature detected by the bed temperature detector 15 is led to a comparator 17, where it is compared with a desired set bed temperature (860 ° C.) set by the temperature setter 16, and the temperature difference signal is compared. Is output. This temperature difference signal enters the adder 21 via the PI controller 18. The signal obtained by the PI controller 18 is a signal obtained by multiplying the temperature drop change by a linear function proportional to time. A signal obtained by converting the master signal of the plant into a linear function proportional to time by the function generator 20 is input to the addition unit 21, and the PI is added to the signal.
The signals from the control unit 18 are added. Therefore, the addition unit 2
In 1, the fuel supply amount command (target value) after being corrected by taking into consideration the actual bed temperature of the fluidized bed 7 is obtained.

【0019】上記加算部21からの補正後の燃料供給量
指令は、比較器22により、燃料流量検出器23から検
出される実際の燃料供給流量と比較され、その差分(流
量差)が出力される。この差分は、上述のベッド材の注
入及び回収時において、仮にマスタ信号に応じて燃料流
量を操作したとすると供給燃料の増減調整量が不足する
ような場合に現れることになる。この供給燃料の増減調
整量の不足信号である差分は、PI制御部24及び自動
/手動切換部25を経て、燃料供給ポンプ4の駆動イン
バータ26に加えられる。この結果、燃料供給ポンプ4
は、供給燃料の増減調整量の不足を補うように、その運
転速度が可変される。かくして、層温はベッド材の注入
及び回収が行われても一定に維持される。
The corrected fuel supply amount command from the adder 21 is compared with the actual fuel supply flow amount detected by the fuel flow amount detector 23 by the comparator 22, and the difference (flow amount difference) is output. It This difference appears when the fuel flow rate is manipulated in response to the master signal during the above-described injection and recovery of the bed material, and the amount of increase / decrease adjustment of the supplied fuel is insufficient. The difference, which is the shortage signal of the increase / decrease adjustment amount of the supplied fuel, is added to the drive inverter 26 of the fuel supply pump 4 via the PI control unit 24 and the automatic / manual switching unit 25. As a result, the fuel supply pump 4
Has its operating speed varied so as to compensate for the shortage of the increase / decrease adjustment amount of the supplied fuel. Thus, the bed temperature is kept constant even when the bed material is injected and collected.

【0020】また、上記構成によれば、燃料流量とベッ
ド材注入排出量の連動関係が何等かの原因で崩れて、例
えばベッド材が注入されない場合でも燃料だけが増大す
るという不都合が回避される。
Further, according to the above configuration, the inconvenience that the interlocking relationship between the fuel flow rate and the bed material injection / discharge amount is broken for some reason and only the fuel increases even if the bed material is not injected is avoided. ..

【0021】[0021]

【発明の効果】以上要するに本発明は、流動層の層温の
変化を検出しマスタ信号を補正された燃料供給量指令と
する温度補正部と、この補正された燃料供給量指令と実
際の燃料流量との差に応じて燃料流量が増減させる燃料
制御部とを設けた構成であるため、ベッド材の注入又は
回収その他の原因により流動層の層温が一時的に変化し
ても、その変化を補うように燃料流量が増減され、層温
が一定に維持される。
In summary, according to the present invention, the temperature correction unit for detecting the change in the bed temperature of the fluidized bed and setting the master signal as the corrected fuel supply amount command, the corrected fuel supply amount command and the actual fuel are provided. Even if the bed temperature of the fluidized bed temporarily changes due to other factors such as injection or recovery of bed material, the change occurs because the fuel control unit that increases or decreases the fuel flow rate according to the difference with the flow rate is provided. The fuel flow rate is increased / decreased to compensate for the above, and the bed temperature is maintained constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来研究開発されつつある流動層ボイラを示す
構成図である。
FIG. 2 is a configuration diagram showing a fluidized bed boiler that has been conventionally researched and developed.

【符号の説明】[Explanation of symbols]

1 ボイラ本体 2 圧力容器 3 空気分散板 4 燃料ポンプ 5 燃料供給管 6 空気供給管 7 流動層 8 ベッド材貯蔵容器 9 ベッド材排出管 10a 減圧装置 10b 調節弁 11 ガス排出管 12 ベッド材管 13 調節弁 14 空気搬送管 15 層温検出器 16 温度設定器 17 比較器 18 PI制御部 19 プラントのマスタ信号 20 関数発生器 21 加算部 22 比較器 23 燃料流量検出器 24 PI制御部 25 自動/手動切換部 26 インバータ A 温度補正部 B 燃料制御部 1 Boiler Main Body 2 Pressure Vessel 3 Air Dispersion Plate 4 Fuel Pump 5 Fuel Supply Pipe 6 Air Supply Pipe 7 Fluidized Bed 8 Bed Material Storage Container 9 Bed Material Discharge Pipe 10a Pressure Reducer 10b Control Valve 11 Gas Discharge Pipe 12 Bed Material Pipe 13 Adjustment Valve 14 Air carrier pipe 15 Layer temperature detector 16 Temperature setter 17 Comparator 18 PI control section 19 Plant master signal 20 Function generator 21 Addition section 22 Comparator 23 Fuel flow rate detector 24 PI control section 25 Automatic / manual switching Part 26 Inverter A Temperature correction part B Fuel control part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ本体内でベッド材と燃料とを流動
化させて流動層を形成し、マスタ信号に応じ、流動層の
高さを貯蔵容器からのベッド材の注入及び貯蔵容器への
回収により制御する流動層ボイラにおいて、層温検出器
から得られる流動層の温度を所望の設定層温と比較し、
その温度差でマスタ信号を補正して燃料供給量指令とす
る温度補正部と、この補正された燃料供給量指令に対し
燃料流量検出器から得られる実際の燃料流量を比較し、
その流量差に応じて燃料流量を増減させる燃料制御部と
を設けたことを特徴とする流動層ボイラの層温制御装
置。
1. A bed material and fuel are fluidized in a boiler body to form a fluidized bed, and the height of the fluidized bed is injected from a storage container to the bed and recovered to the storage container according to a master signal. In the fluidized bed boiler controlled by, the temperature of the fluidized bed obtained from the bed temperature detector is compared with a desired set bed temperature,
A temperature correction unit that corrects the master signal with the temperature difference to make the fuel supply amount command, and compares the actual fuel flow rate obtained from the fuel flow rate detector with respect to the corrected fuel supply amount command,
A bed temperature control device for a fluidized bed boiler, comprising: a fuel control unit that increases or decreases the fuel flow rate according to the difference in flow rate.
JP76892A 1992-01-07 1992-01-07 Bed temperature control device of fluidized bed boiler Pending JPH05180402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP76892A JPH05180402A (en) 1992-01-07 1992-01-07 Bed temperature control device of fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP76892A JPH05180402A (en) 1992-01-07 1992-01-07 Bed temperature control device of fluidized bed boiler

Publications (1)

Publication Number Publication Date
JPH05180402A true JPH05180402A (en) 1993-07-23

Family

ID=11482879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP76892A Pending JPH05180402A (en) 1992-01-07 1992-01-07 Bed temperature control device of fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH05180402A (en)

Similar Documents

Publication Publication Date Title
US5626085A (en) Control of staged combustion, low NOx firing systems with single or multiple levels of overfire air
US6199366B1 (en) Gas turbine
US4541572A (en) Pulverizing, drying and transporting system for injecting a pulverized fuel into a blast furnace
JP2000502134A (en) Gasifiers and power plants
US6212872B1 (en) Pressurized fluidized-bed combined cycle power generation system
US5375409A (en) Pressurized fluidized bed combined gas turbine and steam turbine power plant with steam injection
JPH05180402A (en) Bed temperature control device of fluidized bed boiler
JP5151921B2 (en) Combined power generation method and apparatus using two-column gasifier
JPH05180414A (en) Bed temperature control method for fluidized bed boiler
JPH07198111A (en) Combustor inside temperature control method for circulating fluidized bed boiler
JP2675704B2 (en) Pressurized fluidized bed boiler
JP3928104B2 (en) Pressurized fluidized bed combined power generation system and control method and control apparatus therefor
JP3837605B2 (en) Pressurized fluidized bed combined power generation system and control method thereof
JP2560005Y2 (en) Pressurized fluidized bed boiler
JPH06281108A (en) Method for mixed combustion of low calorific value gas/in circulation fludized bed type boiler
JPH10332109A (en) Method and equipment for controlling air flow rate of pressurized fluidized bed boiler
JP3513918B2 (en) Fluidized bed boiler
JPH1114003A (en) Vapor temperature controller of pressurized fluidized bed boiler
US6293087B2 (en) Pressurized fluidized bed combined electricity generation system
JP3680345B2 (en) Steam temperature control method and apparatus for pressurized fluidized bed boiler
JPH04297701A (en) Steam temperature controller for pressurized fluidized bed boiler
JPH04350401A (en) Fluidized bed boiler and its operating method
JPH05231613A (en) Pressurized fluidized bed boiler
JPH0343609A (en) Control of power generation plant
JPH04252825A (en) Pressure fluidized bed boiler combined power generation system