JP4540272B2 - Fluidized bed equipment - Google Patents

Fluidized bed equipment Download PDF

Info

Publication number
JP4540272B2
JP4540272B2 JP2001251007A JP2001251007A JP4540272B2 JP 4540272 B2 JP4540272 B2 JP 4540272B2 JP 2001251007 A JP2001251007 A JP 2001251007A JP 2001251007 A JP2001251007 A JP 2001251007A JP 4540272 B2 JP4540272 B2 JP 4540272B2
Authority
JP
Japan
Prior art keywords
fluidized bed
measurement end
gas
fluidized
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001251007A
Other languages
Japanese (ja)
Other versions
JP2003065504A (en
Inventor
信幸 穂刈
徹哉 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2001251007A priority Critical patent/JP4540272B2/en
Publication of JP2003065504A publication Critical patent/JP2003065504A/en
Application granted granted Critical
Publication of JP4540272B2 publication Critical patent/JP4540272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は流動層装置に係り、特に、流動層内の状態量の計測部材で、材料疲労の生じないような計測設備に関する。
【0002】
【従来の技術】
流動層は、粒子を積んだ層に空気等の気体を吹き込み、層全体を流動化した状態としたもので、この流動層中に燃料を供給して燃焼させるのが流動層燃焼器あるいは流動層火炉である。
【0003】
流動層燃焼器は、燃料の滞留時間が長く、また熱容量の大きな流動層により発生熱を高効率で利用できるなどの特徴から、発電システム、廃棄物処理プラント、あるいは化学プラントなどに広く利用されている。
【0004】
流動層燃焼器を利用した最新技術の一例として、加圧雰囲気下の流動層内で石炭を燃焼させ、蒸気タービンとガスタービンを同時に駆動する加圧流動層複合発電システムがある。加圧流動層複合発電システムは、加圧流動層ボイラの火炉内で、流動層粒子の層に分散板から空気を供給して流動層とし、この流動層中で燃料を最大10気圧程度の高圧下で燃焼させる。
【0005】
そして、流動層中の伝熱管内で蒸気を発生させて過熱させ、この蒸気で蒸気タービンを駆動する。また、同時に火炉から発生する高温高圧の燃焼排ガスによりガスタービンを駆動する。
【0006】
加圧流動層ボイラの負荷を増加する際、流動層の層高を上げ、伝熱管との接触面積を大きくして伝熱量を増加させるため、流動媒体粒子(BM(Bed Material)と略称す)を火炉へ投入する。また、負荷を減少するときは、流動層を形成する流動媒体粒子を抜き出すことにより、層高を下げて伝熱量を減少させる。
【0007】
一方、従来の常圧流動層燃焼器あるいは反応器では、流動層の層高は1m前後として層高は変えずに、流動、燃焼(あるいは反応)する面積を変えて負荷を変化させていた。商用機規模で、幅5〜10m、流動層高1m程度の寸法の流動層中で燃料を燃焼し、流動および燃焼用の空気を送風するウィンドボックスのセルを増加することにより、流動、燃焼する面積を増加して負荷を上昇させる。層高は常に一定であり、流動層の幅に対して層高は比較的小さい。
【0008】
このような比較的浅い層高で、かつ、一定層高運転をする流動層装置で、層内温度等を計測する計測端を層内に挿入する場合、燃焼炉などの側壁近傍については、側壁に設けた座より計測端を挿入し、層中央部については装置底部、例えば空気分散板に座を設け、垂直に計測端を挿入する等の方法が取られてきた。
【0009】
【発明が解決しようとする課題】
上記の常圧流動層燃焼器に対し、加圧流動層燃焼器のように層高を変化させて負荷を変える流動層装置では、層高が最大4〜5mと深くなる。層上部の層温などを計測する場合、層底部に座を設ける方法では、計測端が長くなりすぎるため、側壁より計測端を挿入する必要がある。
【0010】
しかしながら、計測端を流動層内へ水平に一定の深さまで挿入する場合、壁に至近の計測と異なり、以下のような問題が生じる。すなわち、流動層では、微視的に見て、個々の粒子が気流によって浮き上がった流動化開始状態から、流動用ガス流量を増加していくと、ガスは気泡となって層内を上昇するようになる。
【0011】
この気泡は後ろ(下部)に粒子群(ウェークともいう)を牽引し、これが流動層中での粒子上昇流の原動力となる。気泡が通過した後には、気泡およびウェーク通過後の空間に周囲の粒子が流れ込み、したがって、計測端の位置を気泡が通過すると、気泡に牽引されたウェーク粒子により、計測端は大きな上向き力を加えられる。
【0012】
また、気泡通過後は粒子の下降や水平流により、計測端に、下向きや横向きの力が加えられる。流動層内では気泡がランダムな経路で上昇するため、気泡経路上では上向き、経路外では下向きや横向きの力が加わり、周期的に通過する気泡により、上下方向の繰り返し応力が計測端に加えられる。粒子の衝突による1回の応力は小さくとも、周期的に繰り返し応力が加わった場合、計測端材料に疲労破壊を生じる恐れが大きくなる。
【0013】
燃焼装置や反応装置の計測端で計測される状態値は、装置制御用の状態値入力として使用されている場合がほとんどであり、計測端の破壊は流動層装置の運転制御の不能につながる。
【0014】
上記のような計測端疲労破壊を防ぐための手段として、計測端を支持し保護する部材を増設する手段が考えられる。この方法は、計測端の応力による変形を十分に抑える固定ができれば、計測端の保護に有効である。しかし、部材固定で十分な強度のある構造を得るためには、部材の量(体積)が大きくなる。
【0015】
流動層装置の層内には、伝熱管などの必要な部材がすでに過密に設置されていることも多い。その層内に挿入する計測端を大きな体積の支持部材で支えることは、流動層内の部材の設置密度を大きくし、流動の阻害や装置の性能低下につながる。したがって、支持部材による計測端保護では、支持強度増加と良好な流動保持という相反する結果を両立させる困難さがある。
【0016】
本発明の課題は、流動層装置において、層内状態を計測する計測端に働く繰り返し応力を防止し、計測端の疲労破壊を防ぎ、状態量を常に正しく計測して安定した運転を実施できるようにすることである。
【0017】
【課題を解決するための手段】
上記課題を解決するために、本発明は、流動媒体の下方から流動用気体を吹き込んで流動化させた流動層中に、燃料を供給して燃焼あるいは化学反応を行う流動層装置であって、前記流動層の温度および/または圧力を検出するための計測端またはサンプリング管を、該流動層中の前記流動用気体が上昇しない領域に配置したことを特徴とするものである。
【0018】
本発明によれば、本発明によれば、鉛直下方からの流動用気体の上昇流が無いので、計測端やサンプリング管に衝突する上昇気泡による繰り返し荷重を受けないので、これらの部材の疲労破壊が防止され、状態量を常に正しく計測して安定した運転を実施できる。
【0019】
【発明の実施の形態】
本発明の実施の形態を、図面を参照して説明する。図1に本発明を適用した流動層燃焼器の一例を示す。本例は、加圧流動層複合発電システム(図4)の燃焼器部分に本発明を適用した実施形態を示している。
【0020】
本実施形態は、火炉1の側壁を、流動用気体分散板3の水平断面積より、流動層最上部の水平断面積の方が大きくなるように傾斜させ、流動用気体の上昇流が生じない領域に、温度や圧力等の状態量を知るための計測端27の検知部を配置した。
【0021】
以下、本実施形態をさらに詳しく説明する。本例の流動層装置は、圧力容器26に格納された加圧流動層燃焼器(火炉)1中で、流動層2に燃料17を投入して燃焼させ、伝熱管4にて水から蒸気を発生させて蒸気タービン22を駆動して発電する加圧流動層ボイラである。
【0022】
ボイラ負荷を上昇する際は、BMタンク5からBM6を火炉1内へ投入し、流動層高を上げ、伝熱管と流動層の接触面積を大きくすることにより、伝熱量を増加させる。蒸気と燃料燃焼の状態を制御するため、層温を温度計測端27によって計測している。温度計測端27を層内へ挿入するため、火炉1の側壁に座が必要となる。
【0023】
火炉1の側壁は、本例では垂直に対して角度を持った傾斜壁をなしており、火炉の断面積が上に向かって広がる構造となっている。温度計測端27を挿入する座は、この傾斜壁に設けられている。傾斜壁上での流動層は、鉛直下に空気分散板がないことから気泡が通過せず、一様な下降流が発生するため、温度計測端27は繰り返し応力を受けず、材料疲労を生じにくい配置となっている。
【0024】
なお、本例の加圧流動層ボイラは、BM供給空気10の流量を調整する調整弁9、流動層中のBM抜き出し空気12の流量を調整する調整弁11、BMタンク5に戻すBM戻し空気14の流量を調整する調整弁13、および、BM供給ライン15、BM抜き出しライン16などを備えている。
【0025】
図2に、本発明の他の実施形態を示す。本例は、図1の例と同様の加圧流動層ボイラのシステム構成となっている。火炉の側壁構造は図1と異なり、段差を持って火炉上方の断面積が大きくなる構造を持つ。
【0026】
この段差より上の側壁は、鉛直下に空気分散板を持たない側壁であり、この側壁に温度計測端27の挿入座を設置している。段差上方の流動層では、気泡が通過せず、一様な下降流が発生するため、温度計測端27は繰り返し応力を受けず、材料疲労を生じにくい配置となっている。
【0027】
図3に、本発明のさらに他の実施形態を示す。本例では、火炉1の側壁は、鉛直下に空気分散板を持たないような傾斜や段差が設けられていないが、流動層2内に仕切りが設置されており、この仕切りが遮蔽部材28となって、分散板からの気泡が上昇しない流動層区域を形成している。
【0028】
遮蔽部材28の上部の流動層では、図1の例の傾斜壁上流動層と同じく、一様な下降流が発生する。温度計測端27を遮蔽部材28の上部に挿入できるような位置に、側壁挿入座を設ける。気泡が通過しない区域に温度計測端を設置することにより、温度計測端27は、繰返し応力を受けず、材料疲労を生じにくい配置となっている。
【0029】
以上説明した実施形態によれば、鉛直下方からの流動用気体が供給されないので、(1)気泡が通過せず、(2)一様な粒子下降流が生じる区域が形成される。このような側壁に計測端を挿入する座を設け、計測端を水平方向に挿入すると、計測端は、無気泡、下流区域を横断する形で設置される。
【0030】
これにより、無気泡、下流区域では、計測端は上昇する気泡にさらされないため、周期的な繰り返し応力を受けることが無く、また、流動層中では最も速度が大きくなる気泡後方のウェーク粒子が衝突することはない。したがって、計測端が受ける応力は、下降流による比較的小さな一様の下向き応力のみとなり、材料の疲労破壊を招く恐れが激減する。
【0031】
計測端をより深く挿入した場合は、計測端の先端が気泡存在域に突き出ることになるが、計測端の根元から一定の長さは無気泡域にあるため、計測端全体が気泡域にある従来の設置法に比べて、うける応力は小さくなり、材料寿命を延ばす効果が得られる。
【0032】
図4に、本発明が適用される加圧流動層複合発電システムの構成の一例を示す。加圧流動層ボイラの火炉1内では、流動層粒子の層に分散板3から空気を供給して流動層2とし、この流動層2中で燃料17を最大10気圧程度の高圧下で燃焼させる。
【0033】
そして、流動層中の伝熱管4内で蒸気を発生し過熱させ、この蒸気で蒸気タービン22を駆動する。また、同時に火炉1から発生する高温高圧の燃焼排ガス8によりガスタービン19を駆動する。
【0034】
加圧流動層ボイラの負荷を増加する際、流動層2の層高を上げ、伝熱管4との接触面積を大きくして伝熱量を増加させる。そのため、流動媒体粒子(BM(Bed Material)と略称す)6を、流動媒体容器(BMタンクともいう)5から、BM供給ライン15を経て火炉1へ投入する。
【0035】
また、負荷を減少するときは、流動層2を形成する流動媒体粒子をBM抜き出しライン16からBMタンク5へ抜き出すことにより、層高を下げて伝熱量を減少させる。
【0036】
このように、層高を変化させて負荷を変える流動層装置では、層高が最大4〜5mと深くなる。層上部の層温などを計測する場合、層底部に座を設ける方法では、計測端が長くなりすぎるため、側壁より計測端を挿入する必要がある。
【0037】
図5に示したように、壁に至近の計測と異なり、計測端を流動層内へ水平に一定の深さまで挿入する場合、以下のような問題が生じる。図6に、流動層側壁から計測端を挿入した場合の、ガス、粒子流れの模式図と、計測端が受ける応力の経時変化を示した。流動層では、微視的に見て、個々の粒子が気流によって浮き上がった流動化開始状態から、流動用ガス流量を増加していくと、ガスは気泡となって層内を上昇するようになる。
【0038】
図7に示したように、気泡は後ろ(下部)に粒子群(ウェークともいう)を牽引し、これが流動層中での粒子上昇流の原動力となる。気泡が通過した後には、気泡とウェーク通過後の空間に周囲の粒子が流れ込み、したがって、計測端の位置を気泡が通過すると、気泡に牽引されたウェーク粒子により、計測端は大きな上向き力を加えられる。
【0039】
また、気泡通過後は、粒子の下降、水平流により、下向き、横向きの力が加えられる。流動層内では気泡がランダムな経路で上昇するため、気泡経路上では上向き、経路外では下向き、横向きの力が加わり、周期的に通過する気泡により、上下方向の繰り返し応力が計測端に加えられる。粒子の衝突による1回の応力は小さくとも、周期的に繰り返し応力が加わった場合、計測端材料に疲労破壊を生じる恐れが大きくなる。
【0040】
燃焼装置や反応装置の計測端で計測される状態値は、装置制御用の状態値入力として使用されている場合がほとんどであり、計測端の破壊は装置の制御不能につながる。
【0041】
上記のような計測端疲労破壊を防ぐための手段として、計測端を支持し保護する部材を増設する手段が考えられる。この方法は、計測端の応力による変形を十分に抑える固定ができれば、計測端の保護に有効である。しかし、部材固定で十分な強度のある構造を得るためには、部材の量(体積)が大きくなる。
【0042】
図4にも示したように、流動層装置の層内には、伝熱管などの必要な部材がすでに密に設置されていることも多い。その層内に挿入する計測端を大きな体積の支持部材で支えることは、流動層内の部材の設置密度を大きくし、流動の阻害や装置の性能低下につながる。したがって、支持部材による計測端保護では、支持強度増加と良好な流動保持という相反する結果を両立させる困難さがある。
【0043】
前述したように、本発明の実施形態によれば、流動層中の上昇気泡のない領域、計測部やサンプリング部を配置できるので、これらの部材が上昇気泡による繰り返し荷重を受けないため、疲労破壊が防止され、高精度の計測やそれに基づく安定運転を実現できる。
【0044】
【発明の効果】
上述のとおり、本発明によれば、計測端を設置した流動層燃焼器では、計測端を流動層内へ水平に挿入した際、計測端が繰り返し応力を受け、材料が疲労破壊を起こすことを防ぎ、装置の状態量を常に正しく計測し、安定した運転および制御に有効である。
【図面の簡単な説明】
【図1】本発明の一実施形態である流動層燃焼器を示す構成図である。
【図2】本発明の他の実施形態である流動層燃焼器を示す構成図である。
【図3】本発明のさらに他の実施形態である流動層燃焼器を示す構成図である。
【図4】本発明が適用される加圧流動層複合発電システムの構成図である。
【図5】定層高常圧流動層燃焼器と計測端配置の模式図である。
【図6】垂直側壁を持つ流動層装置の粒子やガス流れと計測端が受ける応力を示す図である。
【図7】気泡通過時に計測端が受ける粒子衝突と応力を示す図である。
【図8】傾斜側壁を持つ流動層装置の粒子やガス流れと計測端が受ける応力を示す図である。
【符号の説明】
1 火炉
2 流動層
3 空気分散板
4 伝熱管
5 BM(流動媒体)タンク
6 流動媒体粒子(BM)
17 燃料
20 空気
26 圧力容器
27 温度計測端
28 遮蔽部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluidized bed apparatus, and more particularly to a measuring facility that does not cause material fatigue with a measuring member for a state quantity in a fluidized bed.
[0002]
[Prior art]
In a fluidized bed, a gas such as air is blown into a layer in which particles are stacked, and the entire layer is fluidized. Fuel is supplied into the fluidized bed and burned. It is a furnace.
[0003]
Fluidized bed combustors are widely used in power generation systems, waste treatment plants, chemical plants, etc. because of the long residence time of fuel and the ability to use generated heat with high efficiency by using a fluidized bed with a large heat capacity. Yes.
[0004]
As an example of the latest technology using a fluidized bed combustor, there is a pressurized fluidized bed combined power generation system in which coal is burned in a fluidized bed under a pressurized atmosphere and a steam turbine and a gas turbine are driven simultaneously. In a pressurized fluidized bed combined power generation system, air is supplied from a dispersion plate to a fluidized bed particle layer in a furnace of a pressurized fluidized bed boiler to form a fluidized bed. Burn below.
[0005]
Then, steam is generated and heated in the heat transfer tube in the fluidized bed, and the steam turbine is driven by this steam. At the same time, the gas turbine is driven by high-temperature and high-pressure combustion exhaust gas generated from the furnace.
[0006]
When increasing the load of a pressurized fluidized bed boiler, fluidized bed particles (abbreviated as BM (Bed Material)) are used to increase the bed height of the fluidized bed and increase the amount of heat transfer by increasing the contact area with the heat transfer tube. Into the furnace. Further, when reducing the load, the fluidized medium particles forming the fluidized bed are extracted to lower the bed height and reduce the amount of heat transfer.
[0007]
On the other hand, in the conventional normal pressure fluidized bed combustor or reactor, the bed height of the fluidized bed is about 1 m, and the load is changed by changing the area of fluidization and combustion (or reaction) without changing the bed height. Combustion of fuel in a fluidized bed of 5 to 10m width and fluidized bed height of about 1m on a commercial machine scale, and fluidizing and burning by increasing the number of windbox cells for blowing and flowing air for combustion. Increase the load by increasing the area. The bed height is always constant and the bed height is relatively small with respect to the width of the fluidized bed.
[0008]
In such a fluidized bed apparatus that operates at a relatively shallow bed height and a constant bed height, when the measurement end for measuring the temperature in the bed is inserted into the bed, the side wall in the vicinity of the combustion furnace, etc. For example, a measuring end is inserted from a seat provided in the base, a seat is provided at the bottom of the apparatus, for example, an air dispersion plate, and a measuring end is inserted vertically at the center of the layer.
[0009]
[Problems to be solved by the invention]
In the fluidized bed apparatus in which the load is changed by changing the bed height as in the pressurized fluidized bed combustor as compared with the normal pressure fluidized bed combustor, the bed height becomes deep at a maximum of 4 to 5 m. When measuring the layer temperature at the top of the layer, the method of providing a seat at the bottom of the layer requires the measurement end to be inserted from the side wall because the measurement end becomes too long.
[0010]
However, when the measurement end is inserted horizontally into the fluidized bed to a certain depth, the following problems arise, unlike the measurement close to the wall. That is, in the fluidized bed, when viewed from the microscopic level, when the flow rate of the flowing gas is increased from the fluidization start state in which the individual particles are lifted by the air flow, the gas becomes bubbles and rises in the layer. become.
[0011]
This bubble pulls a particle group (also called a wake) behind (lower part), and this becomes the driving force of the particle upward flow in the fluidized bed. After the bubble has passed, the surrounding particles flow into the space after the bubble and wake, so when the bubble passes through the position of the measurement end, the measurement end applies a large upward force due to the wake particles pulled by the bubble. It is done.
[0012]
In addition, downward force or lateral force is applied to the measurement end by the particle descending or horizontal flow after passing through the bubble. Since bubbles rise in a random path in the fluidized bed, upward and downward forces are applied on the bubble path, and downward and lateral forces are applied outside the path. Repeated vertical stress is applied to the measurement edge by periodically passing bubbles. . Even if the single stress due to particle collision is small, if repeated stress is applied periodically, the risk of fatigue failure in the measurement end material increases.
[0013]
In most cases, the state value measured at the measurement end of the combustion apparatus or the reaction apparatus is used as a state value input for apparatus control, and the destruction of the measurement end leads to the inability to control the operation of the fluidized bed apparatus.
[0014]
As means for preventing the measurement end fatigue failure as described above, means for adding a member for supporting and protecting the measurement end can be considered. This method is effective for protecting the measurement end if it can be fixed to sufficiently suppress deformation due to stress at the measurement end. However, in order to obtain a structure having sufficient strength by fixing the member, the amount (volume) of the member is increased.
[0015]
In a fluidized bed apparatus, necessary members such as heat transfer tubes are often already densely installed. Supporting the measurement end to be inserted into the bed with a large-volume support member increases the installation density of the members in the fluidized bed, which leads to inhibition of flow and performance degradation of the apparatus. Therefore, in the measurement end protection by the support member, there is a difficulty in achieving both conflicting results of increased support strength and good flow retention.
[0016]
The problem of the present invention is that in a fluidized bed apparatus, it is possible to prevent repetitive stress acting on the measurement end for measuring the in-bed state, prevent fatigue failure at the measurement end, and always carry out stable operation by correctly measuring the state quantity. Is to do.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is a fluidized bed apparatus for supplying a fuel into a fluidized bed that is fluidized by blowing a fluidizing gas from below the fluidized medium to perform combustion or a chemical reaction, A measuring end or a sampling pipe for detecting the temperature and / or pressure of the fluidized bed is arranged in a region where the fluidizing gas in the fluidized bed does not rise.
[0018]
According to the present invention, according to the present invention, since there is no upward flow of the flowing gas from below vertically, it is not subjected to repeated loads due to rising bubbles colliding with the measurement end or the sampling tube, so that fatigue failure of these members Is prevented, and the state quantity can always be measured correctly and stable operation can be carried out.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a fluidized bed combustor to which the present invention is applied. This example shows an embodiment in which the present invention is applied to a combustor portion of a pressurized fluidized bed combined power generation system (FIG. 4).
[0020]
In this embodiment, the side wall of the furnace 1 is inclined so that the horizontal cross-sectional area of the uppermost part of the fluidized bed is larger than the horizontal cross-sectional area of the gas dispersion plate 3 for flow, and the upward flow of the gas for flow does not occur. In the region, a detection unit of the measurement end 27 for knowing state quantities such as temperature and pressure is arranged.
[0021]
Hereinafter, this embodiment will be described in more detail. In the fluidized bed apparatus of this example, in a pressurized fluidized bed combustor (furnace) 1 stored in a pressure vessel 26, fuel 17 is injected into the fluidized bed 2 and burned. This is a pressurized fluidized bed boiler that generates power by driving the steam turbine 22.
[0022]
When raising the boiler load, the amount of heat transfer is increased by charging BM 6 from the BM tank 5 into the furnace 1, increasing the fluidized bed height, and increasing the contact area between the heat transfer tube and the fluidized bed. In order to control the state of steam and fuel combustion, the bed temperature is measured by the temperature measuring end 27. In order to insert the temperature measuring end 27 into the layer, a seat is required on the side wall of the furnace 1.
[0023]
In this example, the side wall of the furnace 1 is an inclined wall having an angle with respect to the vertical, and the cross-sectional area of the furnace is widened upward. A seat for inserting the temperature measuring end 27 is provided on the inclined wall. In the fluidized bed on the inclined wall, since there is no air dispersion plate vertically, bubbles do not pass through and a uniform downward flow is generated. Therefore, the temperature measuring end 27 is not repeatedly subjected to stress and causes material fatigue. It is a difficult arrangement.
[0024]
The pressurized fluidized bed boiler of this example includes an adjustment valve 9 that adjusts the flow rate of the BM supply air 10, an adjustment valve 11 that adjusts the flow rate of the BM extraction air 12 in the fluidized bed, and BM return air that is returned to the BM tank 5. 14 is provided with an adjustment valve 13 for adjusting the flow rate of 14, a BM supply line 15, a BM extraction line 16, and the like.
[0025]
FIG. 2 shows another embodiment of the present invention. This example has a system configuration of a pressurized fluidized bed boiler similar to the example of FIG. Unlike the structure shown in FIG. 1, the side wall structure of the furnace has a structure in which the cross-sectional area above the furnace is large with a step.
[0026]
The side wall above the step is a side wall that does not have an air dispersion plate vertically below, and an insertion seat for the temperature measurement end 27 is installed on the side wall. In the fluidized bed above the level difference, bubbles do not pass and a uniform downward flow is generated. Therefore, the temperature measurement end 27 is not repeatedly subjected to stress, and is less likely to cause material fatigue.
[0027]
FIG. 3 shows still another embodiment of the present invention. In this example, the side wall of the furnace 1 is not provided with an inclination or a step that does not have an air dispersion plate vertically below, but a partition is installed in the fluidized bed 2, and this partition is separated from the shielding member 28. Thus, a fluidized bed area is formed in which bubbles from the dispersion plate do not rise.
[0028]
In the fluidized bed above the shielding member 28, a uniform downward flow is generated as in the fluidized bed on the inclined wall in the example of FIG. A side wall insertion seat is provided at a position where the temperature measuring end 27 can be inserted into the upper part of the shielding member 28. By installing the temperature measuring end in the area where the bubbles do not pass, the temperature measuring end 27 is not subjected to repeated stress and is less likely to cause material fatigue.
[0029]
According to the embodiment described above, since the gas for flow from the vertically lower side is not supplied, (1) bubbles do not pass and (2) an area where uniform particle downward flow is generated is formed. When a seat for inserting the measurement end is provided on such a side wall and the measurement end is inserted in the horizontal direction, the measurement end is installed in a form that is bubble-free and crosses the downstream area.
[0030]
As a result, in the bubble-free and downstream area, the measurement end is not exposed to the rising bubbles, so that it does not receive cyclical repetitive stress, and the wake particles behind the bubbles that collide most rapidly in the fluidized bed collide. Never do. Therefore, the stress applied to the measurement end is only a relatively small uniform downward stress due to the downward flow, and the risk of causing fatigue failure of the material is greatly reduced.
[0031]
When the measurement end is inserted deeper, the tip of the measurement end protrudes into the bubble presence area, but since the fixed length from the base of the measurement end is in the bubble-free area, the entire measurement end is in the bubble area. Compared with the conventional installation method, the stress received is reduced, and the effect of extending the material life can be obtained.
[0032]
FIG. 4 shows an example of the configuration of a pressurized fluidized bed combined power generation system to which the present invention is applied. In the furnace 1 of the pressurized fluidized bed boiler, air is supplied to the fluidized bed particle layer from the dispersion plate 3 to form the fluidized bed 2, and the fuel 17 is burned in the fluidized bed 2 at a maximum pressure of about 10 atm. .
[0033]
Then, steam is generated and heated in the heat transfer pipe 4 in the fluidized bed, and the steam turbine 22 is driven by this steam. At the same time, the gas turbine 19 is driven by the high-temperature and high-pressure combustion exhaust gas 8 generated from the furnace 1.
[0034]
When increasing the load of the pressurized fluidized bed boiler, the bed height of the fluidized bed 2 is increased, the contact area with the heat transfer tube 4 is increased, and the amount of heat transfer is increased. Therefore, fluid medium particles (abbreviated as BM (Bed Material)) 6 are introduced from the fluid medium container (also referred to as BM tank) 5 into the furnace 1 through the BM supply line 15.
[0035]
When reducing the load, the fluidized medium particles forming the fluidized bed 2 are extracted from the BM extraction line 16 to the BM tank 5 to lower the bed height and reduce the amount of heat transfer.
[0036]
Thus, in a fluidized bed apparatus that changes the load by changing the bed height, the bed height becomes as deep as 4 to 5 m at maximum. When measuring the layer temperature at the top of the layer, the method of providing a seat at the bottom of the layer requires the measurement end to be inserted from the side wall because the measurement end becomes too long.
[0037]
As shown in FIG. 5, unlike the measurement close to the wall, when the measurement end is horizontally inserted into the fluidized bed to a certain depth, the following problems occur. FIG. 6 shows a schematic diagram of gas and particle flow when the measurement end is inserted from the fluidized bed side wall, and the change with time of the stress applied to the measurement end. Microscopically, in the fluidized bed, when the flow gas flow rate is increased from the fluidization start state where individual particles are lifted by the air flow, the gas becomes bubbles and rises in the layer. .
[0038]
As shown in FIG. 7, the bubbles pull the particle group (also called wake) backward (lower part), and this becomes the driving force of the particle upward flow in the fluidized bed. After the bubble has passed, the surrounding particles flow into the space after the bubble and the wake, so when the bubble passes through the position of the measurement end, the measurement end applies a large upward force to the measurement end due to the wake particles pulled by the bubble. It is done.
[0039]
Further, after passing through the bubbles, downward and lateral forces are applied by the descending particles and horizontal flow. Since bubbles rise in a random path in the fluidized bed, upward force is applied on the bubble path, downward force is applied on the outside of the path, and lateral force is applied. Repeated stress in the vertical direction is applied to the measurement edge by the periodically passing bubbles. . Even if the single stress due to particle collision is small, if repeated stress is applied periodically, the risk of fatigue failure in the measurement end material increases.
[0040]
In most cases, the state value measured at the measurement end of the combustion apparatus or the reaction apparatus is used as a state value input for apparatus control, and the destruction of the measurement end leads to the inability to control the apparatus.
[0041]
As means for preventing the measurement end fatigue failure as described above, means for adding a member for supporting and protecting the measurement end can be considered. This method is effective for protecting the measurement end if it can be fixed to sufficiently suppress deformation due to stress at the measurement end. However, in order to obtain a structure having sufficient strength by fixing the member, the amount (volume) of the member is increased.
[0042]
As shown in FIG. 4, necessary members such as heat transfer tubes are often densely installed in the bed of the fluidized bed apparatus. Supporting the measurement end to be inserted into the bed with a large-volume support member increases the installation density of the members in the fluidized bed, which leads to inhibition of flow and performance degradation of the apparatus. Therefore, in the measurement end protection by the support member, there is a difficulty in achieving both conflicting results of increased support strength and good flow retention.
[0043]
As described above, according to the embodiment of the present invention, the region without the rising bubbles in the fluidized bed, the measurement unit and the sampling unit can be arranged, so that these members are not subjected to repeated loads due to the rising bubbles, so that the fatigue failure Can be prevented, and high-precision measurement and stable operation based on it can be realized.
[0044]
【The invention's effect】
As described above, according to the present invention, in the fluidized bed combustor having the measurement end, when the measurement end is inserted horizontally into the fluidized bed, the measurement end is repeatedly subjected to stress, and the material is subject to fatigue failure. This is effective for stable operation and control by preventing and always measuring the state quantity of the device correctly.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a fluidized bed combustor which is an embodiment of the present invention.
FIG. 2 is a configuration diagram showing a fluidized bed combustor which is another embodiment of the present invention.
FIG. 3 is a configuration diagram showing a fluidized bed combustor which is still another embodiment of the present invention.
FIG. 4 is a configuration diagram of a pressurized fluidized bed combined power generation system to which the present invention is applied.
FIG. 5 is a schematic view of a constant bed high normal pressure fluidized bed combustor and a measurement end arrangement.
FIG. 6 is a diagram showing particles and gas flow of a fluidized bed apparatus having a vertical side wall and stress applied to a measurement end.
FIG. 7 is a diagram showing particle collision and stress experienced by a measurement end when a bubble passes.
FIG. 8 is a diagram showing particles and gas flow of a fluidized bed apparatus having an inclined side wall and stress applied to a measurement end.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace 2 Fluidized bed 3 Air dispersion plate 4 Heat transfer tube 5 BM (fluid medium) tank 6 Fluid medium particle (BM)
17 Fuel 20 Air 26 Pressure vessel 27 Temperature measurement end 28 Shielding member

Claims (2)

流動媒体の下方から流動用気体を吹き込んで流動化させた流動層中に、燃料を供給して燃焼あるいは化学反応を行う流動層装置であって、前記流動層周囲の構造壁に、前記流動用気体の供給部の水平断面積より、流動層最上部の水平断面積の方が大きくなる段差部を形成し、該段差部の上方の前記流動層中の前記流動用気体が上昇しない領域に、前記流動層の温度および/または圧力を検出するための計測端またはサンプリング管を配置したことを特徴とする流動層装置。  A fluidized bed apparatus that performs combustion or chemical reaction by supplying fuel into a fluidized bed that is fluidized by blowing a fluidizing gas from below the fluidized medium. In the region where the horizontal cross-sectional area of the uppermost part of the fluidized bed is larger than the horizontal cross-sectional area of the gas supply part, the flow gas in the fluidized bed above the step part does not rise. A fluidized bed apparatus comprising a measuring end or a sampling pipe for detecting the temperature and / or pressure of the fluidized bed. 請求項に記載の流動層装置を備え、前記流動層で発生した熱によって蒸気を生成し、該蒸気により蒸気タービンを駆動して発電したり、あるいは、該流動層で発生した燃焼ガスによりガスタービンを駆動して発電したりする発電システム。A fluidized bed apparatus according to claim 1 , wherein steam is generated by heat generated in the fluidized bed, and a steam turbine is driven by the steam to generate electric power, or gas is generated by combustion gas generated in the fluidized bed. A power generation system that generates power by driving a turbine.
JP2001251007A 2001-08-22 2001-08-22 Fluidized bed equipment Expired - Fee Related JP4540272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251007A JP4540272B2 (en) 2001-08-22 2001-08-22 Fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251007A JP4540272B2 (en) 2001-08-22 2001-08-22 Fluidized bed equipment

Publications (2)

Publication Number Publication Date
JP2003065504A JP2003065504A (en) 2003-03-05
JP4540272B2 true JP4540272B2 (en) 2010-09-08

Family

ID=19079724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251007A Expired - Fee Related JP4540272B2 (en) 2001-08-22 2001-08-22 Fluidized bed equipment

Country Status (1)

Country Link
JP (1) JP4540272B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410242U (en) * 1990-04-26 1992-01-29
JP2000329619A (en) * 1999-05-18 2000-11-30 Idemitsu Kosan Co Ltd Apparatus for measuring temperature of fluid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102813A (en) * 1979-01-29 1980-08-06 Okawara Mfg Co Ltd Furnace temperature control in fluidized layer type incinerator
JPS6139210U (en) * 1984-08-17 1986-03-12 バブコツク日立株式会社 Fluidized bed combustion equipment
JPS6063434A (en) * 1984-08-17 1985-04-11 Babcock Hitachi Kk Measurer for temperature in fluidized bed
JP3837605B2 (en) * 1997-11-17 2006-10-25 株式会社日立製作所 Pressurized fluidized bed combined power generation system and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410242U (en) * 1990-04-26 1992-01-29
JP2000329619A (en) * 1999-05-18 2000-11-30 Idemitsu Kosan Co Ltd Apparatus for measuring temperature of fluid

Also Published As

Publication number Publication date
JP2003065504A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
EP1847773B1 (en) Integrated fluidized bed ash cooler
EP0230309B1 (en) Fluidised bed boiler and method for controlling it
KR101768717B1 (en) Primary oxidant feed to oxy-fired circulating fluidized bed
EP2031301B1 (en) Control of CFB boiler utilizing accumulated char in bed inventory
PL176988B1 (en) Method of and apparatus for starting a circulating fluidized bed system
CA2290978C (en) Fluidized bed reactor
JP4540272B2 (en) Fluidized bed equipment
JP2009079835A (en) Boiler device and remodeling method of boiler device
EP1213534A2 (en) Fluidized bed incinerator and combustion method in which generation of NOx, CO and dioxine are suppressed
KR102472119B1 (en) Apparatus of generating water vapor and fuel cell system having the apparatus
JP5748784B2 (en) Fluidized bed reactor equipment
JP2717507B2 (en) Fluid bed combustion apparatus with improved pressure seal and method of combustion using the apparatus
EP0028458A2 (en) Fluidised-bed boilers
CN111492177B (en) Boiler
JP4282035B2 (en) Pressurized fluidized bed boiler
JPS62186109A (en) Combustion apparatus with reaction chamber for circulating fluidized bed
JP3085836B2 (en) Air injector for fluidization
US6681722B1 (en) Floored impact-type solids separator using downward expanding separator elements
JPH0235889B2 (en)
JP2560897B2 (en) Fluidized bed boiler
JP4117961B2 (en) Fluidized bed boiler equipment
JP2003148707A (en) Fluidized bed device and electric power generating system with fluidized bed device
JP2001027401A (en) Fluidized bed combustion boiler
JPH09229312A (en) Fluidized bed boiler
Goidich et al. The pressurized combustor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Ref document number: 4540272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees