JP2003065504A - Fluidized bed device - Google Patents

Fluidized bed device

Info

Publication number
JP2003065504A
JP2003065504A JP2001251007A JP2001251007A JP2003065504A JP 2003065504 A JP2003065504 A JP 2003065504A JP 2001251007 A JP2001251007 A JP 2001251007A JP 2001251007 A JP2001251007 A JP 2001251007A JP 2003065504 A JP2003065504 A JP 2003065504A
Authority
JP
Japan
Prior art keywords
fluidized bed
measuring end
bed apparatus
measurement end
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001251007A
Other languages
Japanese (ja)
Other versions
JP4540272B2 (en
Inventor
Nobuyuki Hokari
信幸 穂刈
Tetsuya Iwase
徹哉 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001251007A priority Critical patent/JP4540272B2/en
Publication of JP2003065504A publication Critical patent/JP2003065504A/en
Application granted granted Critical
Publication of JP4540272B2 publication Critical patent/JP4540272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent repeated stress acting on a measuring end measuring the state inside the bed of a fluidized bed device, and prevent the fatigue failure of the measuring end. SOLUTION: In the fluidized bed device (a furnace 1), a seat for inserting the measuring end 27 into a fluidized bed 2 is provided on the sidewall of a structure that does not have an air-dispersing plate 3 under the vertical of an inclined wall, for example, and the gas for fluidity. Bubbles do not pass through the location of the measuring end, or a part of the length of the measuring end passes through a bubble-free zone. Thereby, the repeated stress applied on the measuring end at the time when the bubbles pass through is eliminated or reduced, so as to relieve material fatigue.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は流動層装置に係り、
特に、流動層内の状態量の計測部材で、材料疲労の生じ
ないような計測設備に関する。
TECHNICAL FIELD The present invention relates to a fluidized bed apparatus,
In particular, the present invention relates to a measuring device for measuring the state quantity in a fluidized bed so that material fatigue does not occur.

【0002】[0002]

【従来の技術】流動層は、粒子を積んだ層に空気等の気
体を吹き込み、層全体を流動化した状態としたもので、
この流動層中に燃料を供給して燃焼させるのが流動層燃
焼器あるいは流動層火炉である。
2. Description of the Related Art A fluidized bed is a fluidized bed in which a gas such as air is blown into a bed containing particles to fluidize the entire bed.
It is a fluidized bed combustor or a fluidized bed furnace that supplies and burns fuel in the fluidized bed.

【0003】流動層燃焼器は、燃料の滞留時間が長く、
また熱容量の大きな流動層により発生熱を高効率で利用
できるなどの特徴から、発電システム、廃棄物処理プラ
ント、あるいは化学プラントなどに広く利用されてい
る。
A fluidized bed combustor has a long residence time of fuel,
In addition, it is widely used in power generation systems, waste treatment plants, chemical plants, etc. because it has a feature that the heat generated can be used with high efficiency by a fluidized bed with a large heat capacity.

【0004】流動層燃焼器を利用した最新技術の一例と
して、加圧雰囲気下の流動層内で石炭を燃焼させ、蒸気
タービンとガスタービンを同時に駆動する加圧流動層複
合発電システムがある。加圧流動層複合発電システム
は、加圧流動層ボイラの火炉内で、流動層粒子の層に分
散板から空気を供給して流動層とし、この流動層中で燃
料を最大10気圧程度の高圧下で燃焼させる。
As an example of the latest technology utilizing a fluidized bed combustor, there is a pressurized fluidized bed combined cycle power generation system in which coal is burned in a fluidized bed under a pressurized atmosphere to drive a steam turbine and a gas turbine at the same time. In a pressurized fluidized bed combined cycle power generation system, air is supplied from a dispersion plate to a bed of fluidized bed particles in a furnace of a pressurized fluidized bed boiler to form a fluidized bed. Burn down.

【0005】そして、流動層中の伝熱管内で蒸気を発生
させて過熱させ、この蒸気で蒸気タービンを駆動する。
また、同時に火炉から発生する高温高圧の燃焼排ガスに
よりガスタービンを駆動する。
Then, steam is generated and superheated in the heat transfer tube in the fluidized bed, and the steam turbine is driven by this steam.
At the same time, the gas turbine is driven by the combustion exhaust gas of high temperature and high pressure generated from the furnace.

【0006】加圧流動層ボイラの負荷を増加する際、流
動層の層高を上げ、伝熱管との接触面積を大きくして伝
熱量を増加させるため、流動媒体粒子(BM(Bed
Material)と略称す)を火炉へ投入する。ま
た、負荷を減少するときは、流動層を形成する流動媒体
粒子を抜き出すことにより、層高を下げて伝熱量を減少
させる。
When the load of the pressurized fluidized bed boiler is increased, the bed height of the fluidized bed is increased and the contact area with the heat transfer tube is increased to increase the heat transfer amount.
Material) is put into the furnace. When the load is reduced, the fluid medium particles forming the fluidized bed are extracted to lower the bed height and reduce the amount of heat transfer.

【0007】一方、従来の常圧流動層燃焼器あるいは反
応器では、流動層の層高は1m前後として層高は変えず
に、流動、燃焼(あるいは反応)する面積を変えて負荷
を変化させていた。商用機規模で、幅5〜10m、流動
層高1m程度の寸法の流動層中で燃料を燃焼し、流動お
よび燃焼用の空気を送風するウィンドボックスのセルを
増加することにより、流動、燃焼する面積を増加して負
荷を上昇させる。層高は常に一定であり、流動層の幅に
対して層高は比較的小さい。
On the other hand, in the conventional atmospheric fluidized bed combustor or reactor, the bed height of the fluidized bed is set to about 1 m, and the load is changed by changing the area of fluidization or combustion (or reaction) without changing the bed height. Was there. On the scale of a commercial machine, fuel is burned in a fluidized bed having a width of 5 to 10 m and a fluidized bed height of about 1 m, and flow and combustion are performed by increasing the number of cells of a wind box that blows air for fluidization and combustion. Increase the area and increase the load. The bed height is always constant, and the bed height is relatively small with respect to the width of the fluidized bed.

【0008】このような比較的浅い層高で、かつ、一定
層高運転をする流動層装置で、層内温度等を計測する計
測端を層内に挿入する場合、燃焼炉などの側壁近傍につ
いては、側壁に設けた座より計測端を挿入し、層中央部
については装置底部、例えば空気分散板に座を設け、垂
直に計測端を挿入する等の方法が取られてきた。
In a fluidized bed apparatus which operates at such a relatively shallow bed height and a constant bed height, when a measurement end for measuring the temperature in the bed is inserted into the bed, the vicinity of the side wall of the combustion furnace is For example, a method has been adopted in which the measuring end is inserted from a seat provided on the side wall, the seat is provided at the bottom of the apparatus, for example, an air dispersion plate at the center of the layer, and the measuring end is vertically inserted.

【0009】[0009]

【発明が解決しようとする課題】上記の常圧流動層燃焼
器に対し、加圧流動層燃焼器のように層高を変化させて
負荷を変える流動層装置では、層高が最大4〜5mと深
くなる。層上部の層温などを計測する場合、層底部に座
を設ける方法では、計測端が長くなりすぎるため、側壁
より計測端を挿入する必要がある。
In contrast to the above normal pressure fluidized bed combustor, in a fluidized bed apparatus which changes the bed height to change the load like a pressurized fluidized bed combustor, the bed height is 4 to 5 m at maximum. Becomes deeper. In the case of measuring the layer temperature at the upper part of the layer, in the method of providing a seat at the bottom of the layer, the measuring end becomes too long, so it is necessary to insert the measuring end from the side wall.

【0010】しかしながら、計測端を流動層内へ水平に
一定の深さまで挿入する場合、壁に至近の計測と異な
り、以下のような問題が生じる。すなわち、流動層で
は、微視的に見て、個々の粒子が気流によって浮き上が
った流動化開始状態から、流動用ガス流量を増加してい
くと、ガスは気泡となって層内を上昇するようになる。
However, when the measurement end is horizontally inserted into the fluidized bed to a certain depth, unlike the measurement close to the wall, the following problems occur. That is, in the fluidized bed, microscopically, when the flow rate of the flowing gas is increased from the fluidization start state where individual particles are floated by the air flow, the gas becomes bubbles and rises in the bed. become.

【0011】この気泡は後ろ(下部)に粒子群(ウェー
クともいう)を牽引し、これが流動層中での粒子上昇流
の原動力となる。気泡が通過した後には、気泡およびウ
ェーク通過後の空間に周囲の粒子が流れ込み、したがっ
て、計測端の位置を気泡が通過すると、気泡に牽引され
たウェーク粒子により、計測端は大きな上向き力を加え
られる。
The bubbles pull a group of particles (also called a wake) to the rear (lower part), which becomes the driving force for the upward flow of particles in the fluidized bed. After the bubbles pass, surrounding particles flow into the space after passing the bubbles and the wakes.Therefore, when the bubbles pass the position of the measurement end, the wake particles pulled by the bubbles apply a large upward force to the measurement end. To be

【0012】また、気泡通過後は粒子の下降や水平流に
より、計測端に、下向きや横向きの力が加えられる。流
動層内では気泡がランダムな経路で上昇するため、気泡
経路上では上向き、経路外では下向きや横向きの力が加
わり、周期的に通過する気泡により、上下方向の繰り返
し応力が計測端に加えられる。粒子の衝突による1回の
応力は小さくとも、周期的に繰り返し応力が加わった場
合、計測端材料に疲労破壊を生じる恐れが大きくなる。
After passing through the bubbles, a downward force or a lateral force is applied to the measurement end due to the descending particles and the horizontal flow. Since bubbles rise in a random path in the fluidized bed, upward force is applied on the bubble path, downward force and lateral force are applied outside the bubble path, and periodically passing bubbles add repeated vertical stress to the measurement end. . Even if the one-time stress due to the collision of particles is small, if stress is repeatedly applied periodically, the risk of causing fatigue fracture in the material at the measurement end increases.

【0013】燃焼装置や反応装置の計測端で計測される
状態値は、装置制御用の状態値入力として使用されてい
る場合がほとんどであり、計測端の破壊は流動層装置の
運転制御の不能につながる。
The state value measured at the measuring end of the combustion device or the reaction device is almost always used as the state value input for controlling the device, and the destruction of the measuring end makes it impossible to control the operation of the fluidized bed device. Leads to.

【0014】上記のような計測端疲労破壊を防ぐための
手段として、計測端を支持し保護する部材を増設する手
段が考えられる。この方法は、計測端の応力による変形
を十分に抑える固定ができれば、計測端の保護に有効で
ある。しかし、部材固定で十分な強度のある構造を得る
ためには、部材の量(体積)が大きくなる。
As a means for preventing the above fatigue damage at the measuring end, a means for adding a member for supporting and protecting the measuring end can be considered. This method is effective for protecting the measuring end if it can be fixed sufficiently to prevent deformation due to stress at the measuring end. However, in order to obtain a structure having sufficient strength by fixing the members, the amount (volume) of the members becomes large.

【0015】流動層装置の層内には、伝熱管などの必要
な部材がすでに過密に設置されていることも多い。その
層内に挿入する計測端を大きな体積の支持部材で支える
ことは、流動層内の部材の設置密度を大きくし、流動の阻
害や装置の性能低下につながる。したがって、支持部材
による計測端保護では、支持強度増加と良好な流動保持
という相反する結果を両立させる困難さがある。
In many cases, necessary members such as heat transfer tubes are already installed in the bed of the fluidized bed apparatus in an overdense manner. Supporting the measurement end to be inserted into the bed with a large volume of the support member increases the installation density of the members in the fluidized bed, leading to obstruction of the flow and deterioration of the performance of the device. Therefore, the protection of the measurement end by the support member has a difficulty in achieving both the contradictory results of increased support strength and good flow retention.

【0016】本発明の課題は、流動層装置において、層
内状態を計測する計測端に働く繰り返し応力を防止し、
計測端の疲労破壊を防ぎ、状態量を常に正しく計測して
安定した運転を実施できるようにすることである。
An object of the present invention is to prevent repetitive stress acting on the measuring end for measuring the in-layer state in a fluidized bed apparatus,
This is to prevent fatigue damage at the measurement end and to always measure the state quantity correctly so that stable operation can be performed.

【0017】[0017]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、流動媒体の下方から流動用気体を吹き込
んで流動化させた流動層中に、燃料を供給して燃焼ある
いは化学反応を行う流動層装置であって、前記流動層の
温度および/または圧力を検出するための計測端または
サンプリング管を、該流動層中の前記流動用気体が上昇
しない領域に配置したことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a fuel by supplying a fuel into a fluidized bed which is fluidized by injecting a fluidizing gas from below a fluidized medium to perform combustion or chemical reaction. In the fluidized bed apparatus for performing the above, a measuring end or a sampling pipe for detecting the temperature and / or pressure of the fluidized bed is arranged in a region where the fluidizing gas in the fluidized bed does not rise. To do.

【0018】本発明によれば、本発明によれば、鉛直下
方からの流動用気体の上昇流が無いので、計測端やサン
プリング管に衝突する上昇気泡による繰り返し荷重を受
けないので、これらの部材の疲労破壊が防止され、状態
量を常に正しく計測して安定した運転を実施できる。
According to the present invention, according to the present invention, since there is no upward flow of the flow gas from below in the vertical direction, repeated loads due to rising bubbles that collide with the measuring end or the sampling pipe are not applied, and therefore these members are not used. Fatigue damage is prevented, and the state quantity can always be measured correctly for stable operation.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を、図面を参
照して説明する。図1に本発明を適用した流動層燃焼器
の一例を示す。本例は、加圧流動層複合発電システム
(図4)の燃焼器部分に本発明を適用した実施形態を示
している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a fluidized bed combustor to which the present invention is applied. This example shows an embodiment in which the present invention is applied to a combustor portion of a pressurized fluidized bed combined cycle power generation system (Fig. 4).

【0020】本実施形態は、火炉1の側壁を、流動用気
体分散板3の水平断面積より、流動層最上部の水平断面
積の方が大きくなるように傾斜させ、流動用気体の上昇
流が生じない領域に、温度や圧力等の状態量を知るため
の計測端27の検知部を配置した。
In this embodiment, the side wall of the furnace 1 is inclined so that the horizontal cross-sectional area of the uppermost portion of the fluidized bed is larger than the horizontal cross-sectional area of the fluidizing gas dispersion plate 3, and the upward flow of the fluidizing gas is increased. A detection unit of the measuring end 27 for recognizing the state quantities such as temperature and pressure is arranged in a region where the phenomenon does not occur.

【0021】以下、本実施形態をさらに詳しく説明す
る。本例の流動層装置は、圧力容器26に格納された加
圧流動層燃焼器(火炉)1中で、流動層2に燃料17を
投入して燃焼させ、伝熱管4にて水から蒸気を発生させ
て蒸気タービン22を駆動して発電する加圧流動層ボイ
ラである。
The present embodiment will be described in more detail below. In the fluidized bed apparatus of this example, in a pressurized fluidized bed combustor (furnace) 1 stored in a pressure vessel 26, a fuel 17 is charged into a fluidized bed 2 and burned, and steam is generated from water in a heat transfer tube 4. It is a pressurized fluidized bed boiler that generates and drives the steam turbine 22 to generate electricity.

【0022】ボイラ負荷を上昇する際は、BMタンク5
からBM6を火炉1内へ投入し、流動層高を上げ、伝熱
管と流動層の接触面積を大きくすることにより、伝熱量
を増加させる。蒸気と燃料燃焼の状態を制御するため、
層温を温度計測端27によって計測している。温度計測
端27を層内へ挿入するため、火炉1の側壁に座が必要
となる。
When increasing the boiler load, the BM tank 5
The BM6 is charged into the furnace 1 to increase the fluidized bed height and increase the contact area between the heat transfer tube and the fluidized bed to increase the heat transfer amount. To control the state of steam and fuel combustion,
The layer temperature is measured by the temperature measuring end 27. Since the temperature measuring end 27 is inserted into the layer, a seat is required on the side wall of the furnace 1.

【0023】火炉1の側壁は、本例では垂直に対して角
度を持った傾斜壁をなしており、火炉の断面積が上に向
かって広がる構造となっている。温度計測端27を挿入
する座は、この傾斜壁に設けられている。傾斜壁上での
流動層は、鉛直下に空気分散板がないことから気泡が通
過せず、一様な下降流が発生するため、温度計測端27
は繰り返し応力を受けず、材料疲労を生じにくい配置と
なっている。
In this example, the side wall of the furnace 1 is an inclined wall having an angle with respect to the vertical, and the sectional area of the furnace widens upward. The seat into which the temperature measuring end 27 is inserted is provided on this inclined wall. In the fluidized bed on the inclined wall, since there is no air dispersion plate vertically below, air bubbles do not pass through, and a uniform downward flow is generated.
Is not subjected to repeated stress, and is arranged so that material fatigue does not easily occur.

【0024】なお、本例の加圧流動層ボイラは、BM供
給空気10の流量を調整する調整弁9、流動層中のBM
抜き出し空気12の流量を調整する調整弁11、BMタ
ンク5に戻すBM戻し空気14の流量を調整する調整弁
13、および、BM供給ライン15、BM抜き出しライ
ン16などを備えている。
In the pressurized fluidized bed boiler of this example, the adjusting valve 9 for adjusting the flow rate of the BM supply air 10 and the BM in the fluidized bed are used.
An adjustment valve 11 for adjusting the flow rate of the extraction air 12, an adjustment valve 13 for adjusting the flow rate of the BM return air 14 returned to the BM tank 5, a BM supply line 15, a BM extraction line 16 and the like are provided.

【0025】図2に、本発明の他の実施形態を示す。本
例は、図1の例と同様の加圧流動層ボイラのシステム構
成となっている。火炉の側壁構造は図1と異なり、段差
を持って火炉上方の断面積が大きくなる構造を持つ。
FIG. 2 shows another embodiment of the present invention. This example has a system configuration of a pressurized fluidized bed boiler similar to the example of FIG. The side wall structure of the furnace is different from that of FIG. 1 and has a structure in which the cross-sectional area above the furnace becomes large with a step.

【0026】この段差より上の側壁は、鉛直下に空気分
散板を持たない側壁であり、この側壁に温度計測端27
の挿入座を設置している。段差上方の流動層では、気泡
が通過せず、一様な下降流が発生するため、温度計測端
27は繰り返し応力を受けず、材料疲労を生じにくい配
置となっている。
The side wall above the step is a side wall having no air distribution plate vertically below, and the temperature measuring end 27 is formed on this side wall.
The insertion seat is installed. In the fluidized bed above the step, air bubbles do not pass and a uniform downward flow is generated, so that the temperature measurement end 27 is not subjected to repeated stress, and the material fatigue does not occur.

【0027】図3に、本発明のさらに他の実施形態を示
す。本例では、火炉1の側壁は、鉛直下に空気分散板を
持たないような傾斜や段差が設けられていないが、流動
層2内に仕切りが設置されており、この仕切りが遮蔽部
材28となって、分散板からの気泡が上昇しない流動層
区域を形成している。
FIG. 3 shows still another embodiment of the present invention. In this example, the side wall of the furnace 1 is not provided with an inclination or a step which does not have an air dispersion plate vertically below, but a partition is installed in the fluidized bed 2, and this partition serves as the shielding member 28. Thus, a fluidized bed area where bubbles from the dispersion plate do not rise is formed.

【0028】遮蔽部材28の上部の流動層では、図1の
例の傾斜壁上流動層と同じく、一様な下降流が発生す
る。温度計測端27を遮蔽部材28の上部に挿入できる
ような位置に、側壁挿入座を設ける。気泡が通過しない
区域に温度計測端を設置することにより、温度計測端2
7は、繰返し応力を受けず、材料疲労を生じにくい配置
となっている。
In the fluidized bed above the shielding member 28, a uniform downward flow is generated as in the fluidized bed on the inclined wall in the example of FIG. A side wall insertion seat is provided at a position where the temperature measuring end 27 can be inserted into the upper portion of the shielding member 28. By installing the temperature measurement end in the area where bubbles do not pass, the temperature measurement end 2
No. 7 is arranged so that it is not subjected to repeated stress and material fatigue does not easily occur.

【0029】以上説明した実施形態によれば、鉛直下方
からの流動用気体が供給されないので、(1)気泡が通
過せず、(2)一様な粒子下降流が生じる区域が形成さ
れる。このような側壁に計測端を挿入する座を設け、計
測端を水平方向に挿入すると、計測端は、無気泡、下流
区域を横断する形で設置される。
According to the embodiment described above, since the flowing gas is not supplied from below vertically, (1) bubbles do not pass through, and (2) a region where a uniform particle downflow is formed is formed. When a seat for inserting the measurement end is provided on such a side wall and the measurement end is inserted in the horizontal direction, the measurement end is installed in a form that is bubble-free and traverses the downstream area.

【0030】これにより、無気泡、下流区域では、計測
端は上昇する気泡にさらされないため、周期的な繰り返
し応力を受けることが無く、また、流動層中では最も速
度が大きくなる気泡後方のウェーク粒子が衝突すること
はない。したがって、計測端が受ける応力は、下降流に
よる比較的小さな一様の下向き応力のみとなり、材料の
疲労破壊を招く恐れが激減する。
As a result, in the bubble-free, downstream region, the measuring end is not exposed to the rising bubbles, so that it is not subjected to cyclic repetitive stress, and the wake behind the bubbles, which has the highest velocity in the fluidized bed, is obtained. No particles collide. Therefore, the stress received at the measurement end is only a relatively small uniform downward stress due to the downward flow, and the risk of causing fatigue fracture of the material is greatly reduced.

【0031】計測端をより深く挿入した場合は、計測端
の先端が気泡存在域に突き出ることになるが、計測端の
根元から一定の長さは無気泡域にあるため、計測端全体
が気泡域にある従来の設置法に比べて、うける応力は小
さくなり、材料寿命を延ばす効果が得られる。
When the measurement end is inserted deeper, the tip of the measurement end projects into the bubble existence region, but since there is a fixed length from the root of the measurement end in the bubble-free region, the entire measurement end is bubbled. Compared to the conventional installation method in the area, the stress received is smaller and the effect of extending the material life is obtained.

【0032】図4に、本発明が適用される加圧流動層複
合発電システムの構成の一例を示す。加圧流動層ボイラ
の火炉1内では、流動層粒子の層に分散板3から空気を
供給して流動層2とし、この流動層2中で燃料17を最
大10気圧程度の高圧下で燃焼させる。
FIG. 4 shows an example of the structure of a pressurized fluidized bed combined cycle power generation system to which the present invention is applied. In the furnace 1 of the pressurized fluidized bed boiler, air is supplied from the dispersion plate 3 to the bed of fluidized bed particles to form the fluidized bed 2, and the fuel 17 is burned in the fluidized bed 2 under a high pressure of about 10 atm maximum. .

【0033】そして、流動層中の伝熱管4内で蒸気を発
生し過熱させ、この蒸気で蒸気タービン22を駆動す
る。また、同時に火炉1から発生する高温高圧の燃焼排
ガス8によりガスタービン19を駆動する。
Then, steam is generated and superheated in the heat transfer tube 4 in the fluidized bed, and the steam turbine 22 is driven by this steam. At the same time, the gas turbine 19 is driven by the high temperature and high pressure combustion exhaust gas 8 generated from the furnace 1.

【0034】加圧流動層ボイラの負荷を増加する際、流
動層2の層高を上げ、伝熱管4との接触面積を大きくし
て伝熱量を増加させる。そのため、流動媒体粒子(BM
(Bed Material)と略称す)6を、流動媒
体容器(BMタンクともいう)5から、BM供給ライン
15を経て火炉1へ投入する。
When the load of the pressurized fluidized bed boiler is increased, the bed height of the fluidized bed 2 is increased and the contact area with the heat transfer tube 4 is increased to increase the amount of heat transfer. Therefore, fluidized medium particles (BM
(Bed Material) 6 is charged into the furnace 1 from a fluidized medium container (also referred to as BM tank) 5 through a BM supply line 15.

【0035】また、負荷を減少するときは、流動層2を
形成する流動媒体粒子をBM抜き出しライン16からB
Mタンク5へ抜き出すことにより、層高を下げて伝熱量
を減少させる。
When the load is reduced, the fluid medium particles forming the fluidized bed 2 are discharged from the BM withdrawal line 16 to B.
By extracting into the M tank 5, the layer height is lowered and the amount of heat transfer is reduced.

【0036】このように、層高を変化させて負荷を変え
る流動層装置では、層高が最大4〜5mと深くなる。層
上部の層温などを計測する場合、層底部に座を設ける方
法では、計測端が長くなりすぎるため、側壁より計測端
を挿入する必要がある。
As described above, in the fluidized bed apparatus in which the bed height is changed to change the load, the bed height is as deep as 4 to 5 m at maximum. In the case of measuring the layer temperature at the upper part of the layer, in the method of providing a seat at the bottom of the layer, the measuring end becomes too long, so it is necessary to insert the measuring end from the side wall.

【0037】図5に示したように、壁に至近の計測と異
なり、計測端を流動層内へ水平に一定の深さまで挿入す
る場合、以下のような問題が生じる。図6に、流動層側
壁から計測端を挿入した場合の、ガス、粒子流れの模式
図と、計測端が受ける応力の経時変化を示した。流動層
では、微視的に見て、個々の粒子が気流によって浮き上
がった流動化開始状態から、流動用ガス流量を増加して
いくと、ガスは気泡となって層内を上昇するようにな
る。
As shown in FIG. 5, unlike the measurement close to the wall, when the measurement end is horizontally inserted into the fluidized bed to a certain depth, the following problems occur. FIG. 6 shows a schematic diagram of gas and particle flows when the measuring end is inserted from the side wall of the fluidized bed, and a temporal change in stress received by the measuring end. In the fluidized bed, microscopically, when the flow rate of the flow gas is increased from the fluidization start state where individual particles are lifted by the air flow, the gas becomes bubbles and rises in the bed. .

【0038】図7に示したように、気泡は後ろ(下部)
に粒子群(ウェークともいう)を牽引し、これが流動層
中での粒子上昇流の原動力となる。気泡が通過した後に
は、気泡とウェーク通過後の空間に周囲の粒子が流れ込
み、したがって、計測端の位置を気泡が通過すると、気
泡に牽引されたウェーク粒子により、計測端は大きな上
向き力を加えられる。
As shown in FIG. 7, the bubbles are behind (bottom).
A group of particles (also called a wake) is pulled to this, which becomes the driving force for the upward flow of particles in the fluidized bed. After the bubbles pass, the surrounding particles flow into the space after passing the bubbles and the wake.Therefore, when the bubbles pass the position of the measurement end, the wake particles pulled by the bubbles apply a large upward force to the measurement end. To be

【0039】また、気泡通過後は、粒子の下降、水平流
により、下向き、横向きの力が加えられる。流動層内で
は気泡がランダムな経路で上昇するため、気泡経路上で
は上向き、経路外では下向き、横向きの力が加わり、周
期的に通過する気泡により、上下方向の繰り返し応力が
計測端に加えられる。粒子の衝突による1回の応力は小
さくとも、周期的に繰り返し応力が加わった場合、計測
端材料に疲労破壊を生じる恐れが大きくなる。
After passing through the bubbles, downward and lateral forces are applied by the descending particles and horizontal flow. Since bubbles rise in a random path in the fluidized bed, upward force is applied on the bubble path, downward force is applied on the outside of the path, and lateral force is applied. Cyclically passing bubbles apply repeated vertical stress to the measurement end. . Even if the one-time stress due to the collision of particles is small, if stress is repeatedly applied periodically, the risk of causing fatigue fracture in the material at the measurement end increases.

【0040】燃焼装置や反応装置の計測端で計測される
状態値は、装置制御用の状態値入力として使用されてい
る場合がほとんどであり、計測端の破壊は装置の制御不
能につながる。
The state value measured at the measuring end of the combustion device or the reaction device is almost always used as the state value input for controlling the device, and the destruction of the measuring end leads to the inability to control the device.

【0041】上記のような計測端疲労破壊を防ぐための
手段として、計測端を支持し保護する部材を増設する手
段が考えられる。この方法は、計測端の応力による変形
を十分に抑える固定ができれば、計測端の保護に有効で
ある。しかし、部材固定で十分な強度のある構造を得る
ためには、部材の量(体積)が大きくなる。
As a means for preventing the above fatigue damage at the measuring end, a means for adding a member for supporting and protecting the measuring end can be considered. This method is effective for protecting the measuring end if it can be fixed sufficiently to prevent deformation due to stress at the measuring end. However, in order to obtain a structure having sufficient strength by fixing the members, the amount (volume) of the members becomes large.

【0042】図4にも示したように、流動層装置の層内
には、伝熱管などの必要な部材がすでに密に設置されて
いることも多い。その層内に挿入する計測端を大きな体
積の支持部材で支えることは、流動層内の部材の設置密
度を大きくし、流動の阻害や装置の性能低下につなが
る。したがって、支持部材による計測端保護では、支持
強度増加と良好な流動保持という相反する結果を両立さ
せる困難さがある。
As shown in FIG. 4, it is often the case that necessary members such as heat transfer tubes are already densely installed in the bed of the fluidized bed apparatus. Supporting the measurement end to be inserted into the bed with a large volume of the support member increases the installation density of the members in the fluidized bed, leading to obstruction of the flow and deterioration of the performance of the device. Therefore, the protection of the measurement end by the support member has a difficulty in achieving both the contradictory results of increased support strength and good flow retention.

【0043】前述したように、本発明の実施形態によれ
ば、流動層中の上昇気泡のない領域、計測部やサンプリ
ング部を配置できるので、これらの部材が上昇気泡によ
る繰り返し荷重を受けないため、疲労破壊が防止され、
高精度の計測やそれに基づく安定運転を実現できる。
As described above, according to the embodiment of the present invention, since the region in the fluidized bed where there is no rising bubble, the measuring unit and the sampling unit can be arranged, these members do not receive the repeated load due to the rising bubble. , Fatigue damage is prevented,
Highly accurate measurement and stable operation based on it can be realized.

【0044】[0044]

【発明の効果】上述のとおり、本発明によれば、計測端
を設置した流動層燃焼器では、計測端を流動層内へ水平
に挿入した際、計測端が繰り返し応力を受け、材料が疲
労破壊を起こすことを防ぎ、装置の状態量を常に正しく
計測し、安定した運転および制御に有効である。
As described above, according to the present invention, in the fluidized bed combustor having the measuring end installed, when the measuring end is inserted horizontally into the fluidized bed, the measuring end is repeatedly stressed and the material is fatigued. It is effective for stable operation and control by preventing damage and constantly measuring the state quantity of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である流動層燃焼器を示す
構成図である。
FIG. 1 is a configuration diagram showing a fluidized bed combustor which is an embodiment of the present invention.

【図2】本発明の他の実施形態である流動層燃焼器を示
す構成図である。
FIG. 2 is a configuration diagram showing a fluidized bed combustor which is another embodiment of the present invention.

【図3】本発明のさらに他の実施形態である流動層燃焼
器を示す構成図である。
FIG. 3 is a configuration diagram showing a fluidized bed combustor which is still another embodiment of the present invention.

【図4】本発明が適用される加圧流動層複合発電システ
ムの構成図である。
FIG. 4 is a configuration diagram of a pressurized fluidized bed combined cycle power generation system to which the present invention is applied.

【図5】定層高常圧流動層燃焼器と計測端配置の模式図
である。
FIG. 5 is a schematic diagram of a constant bed high atmospheric pressure fluidized bed combustor and arrangement of measurement ends.

【図6】垂直側壁を持つ流動層装置の粒子やガス流れと
計測端が受ける応力を示す図である。
FIG. 6 is a diagram showing the flow of particles and gas in a fluidized bed apparatus having vertical side walls and the stress applied to the measurement end.

【図7】気泡通過時に計測端が受ける粒子衝突と応力を
示す図である。
FIG. 7 is a diagram showing particle collision and stress received by a measurement end when passing a bubble.

【図8】傾斜側壁を持つ流動層装置の粒子やガス流れと
計測端が受ける応力を示す図である。
FIG. 8 is a diagram showing a flow of particles and gas in a fluidized bed apparatus having inclined side walls and stress applied to a measurement end.

【符号の説明】[Explanation of symbols]

1 火炉 2 流動層 3 空気分散板 4 伝熱管 5 BM(流動媒体)タンク 6 流動媒体粒子(BM) 17 燃料 20 空気 26 圧力容器 27 温度計測端 28 遮蔽部材 1 furnace 2 fluidized bed 3 Air dispersion plate 4 heat transfer tubes 5 BM (fluid medium) tank 6 Fluid medium particles (BM) 17 Fuel 20 air 26 Pressure vessel 27 Temperature measurement end 28 Shielding member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流動媒体の下方から流動用気体を吹き込
んで流動化させた流動層中に、燃料を供給して燃焼ある
いは化学反応を行う流動層装置であって、前記流動層の
温度および/または圧力を検出するための計測端または
サンプリング管を、該流動層中の前記流動用気体が上昇
しない領域に配置したことを特徴とする流動層装置。
1. A fluidized bed apparatus for supplying a fuel into a fluidized bed, which is fluidized by blowing a fluidizing gas from below a fluidized medium, to perform combustion or a chemical reaction. Alternatively, a fluidized bed apparatus, wherein a measuring end or a sampling tube for detecting pressure is arranged in a region in the fluidized bed where the fluidizing gas does not rise.
【請求項2】 請求項1に記載の流動層装置において、
前記流動層周囲の構造壁を、前記流動用気体の供給部の
水平断面積より、流動層最上部の水平断面積の方が大き
くなる傾斜壁に形成し、該傾斜壁から前記計測端あるい
は前記サンプリング管を挿入したことを特徴とする流動
層装置。
2. The fluidized bed apparatus according to claim 1,
The structural wall around the fluidized bed is formed into an inclined wall in which the horizontal cross-sectional area of the uppermost part of the fluidized bed is larger than the horizontal cross-sectional area of the supply part for the fluidizing gas, and from the inclined wall, the measurement end or the A fluidized bed apparatus having a sampling tube inserted therein.
【請求項3】 請求項1に記載の流動層装置において、
前記流動層周囲の構造壁に、前記流動用気体の供給部の
水平断面積より、流動層最上部の水平断面積の方が大き
くなる段差部を形成し、該段差部の上方に前記計測端あ
るいは前記サンプリング管を配置したことを特徴とする
流動層装置。
3. The fluidized bed apparatus according to claim 1,
On the structural wall around the fluidized bed, a step portion is formed in which the horizontal cross-sectional area of the uppermost portion of the fluidized bed is larger than the horizontal cross-sectional area of the fluidizing gas supply portion, and the measurement end is provided above the stepped portion. Alternatively, a fluidized bed apparatus in which the sampling tube is arranged.
【請求項4】 請求項1に記載の流動層装置において、
前記流動層内に前記流動用気体の上昇流を遮る遮蔽部材
を設置し、該遮蔽部材の上部に前記計測端あるいは前記
サンプリング管を配置したことを特徴とする流動層装
置。
4. The fluidized bed apparatus according to claim 1,
A fluidized bed apparatus, wherein a shielding member that blocks an ascending flow of the flowing gas is installed in the fluidized bed, and the measurement end or the sampling pipe is arranged above the shielding member.
【請求項5】 請求項1〜4のうちいずれか1項に記載
の流動層装置を備え、前記流動層で発生した熱によって
蒸気を生成し、該蒸気により蒸気タービンを駆動して発
電したり、あるいは、該流動層で発生した燃焼ガスによ
りガスタービンを駆動して発電したりする発電システ
ム。
5. A fluidized bed apparatus according to any one of claims 1 to 4 is provided, wherein steam is generated by heat generated in the fluidized bed and a steam turbine is driven by the steam to generate electricity. Alternatively, a power generation system that drives a gas turbine with the combustion gas generated in the fluidized bed to generate electric power.
JP2001251007A 2001-08-22 2001-08-22 Fluidized bed equipment Expired - Fee Related JP4540272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251007A JP4540272B2 (en) 2001-08-22 2001-08-22 Fluidized bed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251007A JP4540272B2 (en) 2001-08-22 2001-08-22 Fluidized bed equipment

Publications (2)

Publication Number Publication Date
JP2003065504A true JP2003065504A (en) 2003-03-05
JP4540272B2 JP4540272B2 (en) 2010-09-08

Family

ID=19079724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251007A Expired - Fee Related JP4540272B2 (en) 2001-08-22 2001-08-22 Fluidized bed equipment

Country Status (1)

Country Link
JP (1) JP4540272B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102813A (en) * 1979-01-29 1980-08-06 Okawara Mfg Co Ltd Furnace temperature control in fluidized layer type incinerator
JPS6063434A (en) * 1984-08-17 1985-04-11 Babcock Hitachi Kk Measurer for temperature in fluidized bed
JPS6139210U (en) * 1984-08-17 1986-03-12 バブコツク日立株式会社 Fluidized bed combustion equipment
JPH0410242U (en) * 1990-04-26 1992-01-29
JPH11148608A (en) * 1997-11-17 1999-06-02 Hitachi Ltd Pressurized fluidized bed combined power generation system and its control method
JP2000329619A (en) * 1999-05-18 2000-11-30 Idemitsu Kosan Co Ltd Apparatus for measuring temperature of fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102813A (en) * 1979-01-29 1980-08-06 Okawara Mfg Co Ltd Furnace temperature control in fluidized layer type incinerator
JPS6063434A (en) * 1984-08-17 1985-04-11 Babcock Hitachi Kk Measurer for temperature in fluidized bed
JPS6139210U (en) * 1984-08-17 1986-03-12 バブコツク日立株式会社 Fluidized bed combustion equipment
JPH0410242U (en) * 1990-04-26 1992-01-29
JPH11148608A (en) * 1997-11-17 1999-06-02 Hitachi Ltd Pressurized fluidized bed combined power generation system and its control method
JP2000329619A (en) * 1999-05-18 2000-11-30 Idemitsu Kosan Co Ltd Apparatus for measuring temperature of fluid

Also Published As

Publication number Publication date
JP4540272B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
EP0372075B1 (en) Combustion control apparatus for fluidized bed boilers
JP5462214B2 (en) Fluidized bed furnace
RU2536159C2 (en) Feeding of primary oxidiser to oxygen-fuel circulating fluidised bed
EP2031301B1 (en) Control of CFB boiler utilizing accumulated char in bed inventory
Ohnuki et al. An experimental study on developing air-water two-phase flow along a large vertical pipe: effect of air injection method
US5313913A (en) Pressurized internal circulating fluidized-bed boiler
US5060599A (en) Method and reactor for combustion in a fluidized bed
KR102328007B1 (en) Apparatus of generating water vapor and fuel cell system having the apparatus
EP2217856B1 (en) Moving bed heat exchanger for circulating fluidized bed boiler
EP0995065B1 (en) Fluidized bed reactor
US4865540A (en) Air flow measurement device for fluidized bed reactor
AU2010224371B2 (en) Circulating fluidized bed (CFB) with in-furnace secondary air nozzles
JP2003065504A (en) Fluidized bed device
Mirek et al. Air nozzle design criteria for protection against the backflow of solids in CFB boilers
JP4282035B2 (en) Pressurized fluidized bed boiler
JPS62186109A (en) Combustion apparatus with reaction chamber for circulating fluidized bed
JP5748784B2 (en) Fluidized bed reactor equipment
HU218508B (en) Fluidized bed with improved nozzle construction
JP2000161601A (en) Fluidized bed combustion boiler and controller therefor
EP3591291A1 (en) Boiler, ship comprising boiler, and inert gas generation method
CN114877318B (en) Nitrogen oxide removal process system applicable to deep peak shaving of circulating fluidized bed boiler
JP2560897B2 (en) Fluidized bed boiler
JPH07151308A (en) Fluidizing air injector
DIXON et al. Application of CFD in the Sugar Industry
JPH0732311U (en) Air dispersion nozzle for fluidized bed boiler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Ref document number: 4540272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees