JP2003148707A - Fluidized bed device and electric power generating system with fluidized bed device - Google Patents

Fluidized bed device and electric power generating system with fluidized bed device

Info

Publication number
JP2003148707A
JP2003148707A JP2001347734A JP2001347734A JP2003148707A JP 2003148707 A JP2003148707 A JP 2003148707A JP 2001347734 A JP2001347734 A JP 2001347734A JP 2001347734 A JP2001347734 A JP 2001347734A JP 2003148707 A JP2003148707 A JP 2003148707A
Authority
JP
Japan
Prior art keywords
fluidized bed
fluidized
temperature
gas
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001347734A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hokari
信幸 穂刈
Daisuke Okada
大輔 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001347734A priority Critical patent/JP2003148707A/en
Publication of JP2003148707A publication Critical patent/JP2003148707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the bed height of a bed material at the initial packing of the bed material of the fluidized bed device having a fluidized reactor. SOLUTION: A fluidized bed device comprises a fluidized bed vessel 2 which forms a fluidized bed 1 by fluidizing a particulate bed material using a flow gas, a bed material feeding nozzle 5a which feeds a bed material to the body of the fluidized bed vessel 2, a raw material feeding nozzle 6 which feeds raw materials to the body of the fluidized bed vessel 2, a gas feeding nozzle which feeds a flow gas to the bottom of the fluidized bed vessel 2, a secondary raw material nozzle which feeds secondary raw materials reacting with the raw materials to the body of the fluidized bed vessel 2, an discharging nozzle 7 which discharges a gas produced by a reaction from the top of the fluidized bed vessel 2, a dispersing plate 8 installed at the bottom of the bed of the fluidized bed 1 which evenly disperses the flow gas, wherein a plurality of temperature sensors 9a to 9c are installed which detect a temperature at a position higher by a constant height above the top surface of the dispersing plate 8, and a fluidized bed height detecting means 12 which detects the fluidized bed height of the bed material packed on the dispersing plate 8 from the detecting value of the temperature sensors while the flow gas hiving higher temperature than that of the bed material is blown from the gas feeding nozzle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流動層装置に関す
る。
TECHNICAL FIELD The present invention relates to a fluidized bed apparatus.

【0002】[0002]

【従来の技術】従来、流動層装置は、粒子状の流動媒体
を流動化気体で流動化して流動層を形成する流動層反応
器と、流動層反応器に流動媒体を供給する流動媒体供給
機と、流動層反応器に原料を供給する原料供給機と、供
給した原料と反応する副原料を流動層反応器に供給する
副原料供給機と、流動層反応器へ流動化気体を吹き込む
気体供給機と、流動層の層底部に気体供給機から吹き込
んだ気体を均等に流動反応器に吹き込めるように形成し
た分散板とを備えたものが知られている。
2. Description of the Related Art Conventionally, a fluidized bed apparatus comprises a fluidized bed reactor for fluidizing a particulate fluidized medium with a fluidizing gas to form a fluidized bed, and a fluidized medium feeder for supplying the fluidized medium to the fluidized bed reactor. , A raw material supplier for supplying raw materials to the fluidized bed reactor, a sub raw material supplier for supplying auxiliary raw materials that react with the supplied raw materials to the fluidized bed reactor, and a gas supply for blowing fluidized gas to the fluidized bed reactor It is known that the machine is provided with a dispersion plate formed at the bottom of the fluidized bed so that the gas blown from the gas supplier is evenly blown into the fluidized reactor.

【0003】このように構成される流動層装置は、流動
媒体を分散板上に一定の高さまで充填させ、流動層反応
器の底部から吹き込まれる気体で流動化させて流動層を
形成し、流動層に原料と副原料を供給して反応させるも
のである。
In the fluidized bed apparatus constructed as described above, the fluidized medium is filled on the dispersion plate to a certain height and fluidized by the gas blown from the bottom of the fluidized bed reactor to form a fluidized bed. The raw material and the auxiliary raw material are supplied to the layer to be reacted.

【0004】このような流動層反応器は、流動層で化学
反応をさせる反応器や、燃料を燃焼させる燃焼器として
利用されている。一般に、この流動層反応器では、燃料
や反応物質の滞留時間が長く、また、流動層の熱容量が
大きく発生熱を効率良く利用できる。そのため、流動層
反応器は、発電システムや廃棄物処理プラントあるいは
化学プラントなどで主に利用されている。
Such a fluidized bed reactor is used as a reactor for causing a chemical reaction in a fluidized bed or a combustor for burning fuel. Generally, in this fluidized bed reactor, the residence time of fuel and reactants is long, the heat capacity of the fluidized bed is large, and the heat generated can be used efficiently. Therefore, fluidized bed reactors are mainly used in power generation systems, waste treatment plants, chemical plants and the like.

【0005】発電システムに流動層装置を適用した場
合、流動層反応器内の流動媒体の状態、例えば層高や量
などの変動によって発電システムの出力が不安定にな
る。そのため、流動層の層下部と層上部の圧力を計測
し、その差圧から流動層の層高を測り、流動媒体の供給
量等を調整している。
When a fluidized bed apparatus is applied to the power generation system, the output of the power generation system becomes unstable depending on the state of the fluidized medium in the fluidized bed reactor, for example, fluctuations in the bed height and volume. Therefore, the pressures of the lower part and the upper part of the fluidized bed are measured, the bed height of the fluidized bed is measured from the pressure difference, and the supply amount of the fluidized medium is adjusted.

【0006】[0006]

【発明が解決しようとする課題】ところで、流動層の運
転開始時に原料を投入するとき、分散板の上面に流動媒
体がまんべんなく一定の厚みで充填されていることを確
認する必要がある。なぜなら、流動媒体が分散板の全体
に行き渡っていない場合や、分散板の一部に偏って分散
板の一部が露出していると、投入した原料が流動層で分
散されずに露出した板面に落下し、反応熱による焼結や
局所反応による高温で装置が破損する恐れがあるからで
ある。
By the way, when the raw material is charged at the start of the operation of the fluidized bed, it is necessary to confirm that the upper surface of the dispersion plate is uniformly filled with the fluidized medium with a uniform thickness. This is because, if the fluidized medium does not spread all over the dispersion plate, or if part of the dispersion plate is exposed evenly in a part of the dispersion plate, the exposed raw material is not dispersed in the fluidized bed and is exposed. This is because the device may be dropped on the surface and the device may be damaged by sintering due to reaction heat or high temperature due to local reaction.

【0007】しかしながら、流動層装置の運転開始前の
流動媒体の初期充填時において、流動媒体の層高を圧力
損失により測定することは困難である。その第一の理由
は、初期充填時では、装置内の温度が低く気体流速が遅
いため、運転中と運転前では層圧損特性が異なり、正確
な差圧を計測できないからである。第二の理由は、初期
充填時においては、流動媒体が分散板の一部に偏って充
填されるため、水平面の平均値である差圧で層高を判断
することが難しいからである。
However, it is difficult to measure the bed height of the fluidized medium by pressure loss during the initial filling of the fluidized medium before the operation of the fluidized bed apparatus is started. The first reason is that at the time of initial filling, the temperature inside the device is low and the gas flow velocity is slow, so the layer pressure loss characteristics differ during and before operation, and an accurate differential pressure cannot be measured. The second reason is that at the time of initial filling, the fluidized medium is unevenly filled in a part of the dispersion plate, so that it is difficult to determine the bed height by the differential pressure which is the average value of the horizontal plane.

【0008】本発明は、流動層反応器の流動媒体の初期
充填時において、流動媒体の層高さを検出することを課
題とする。
An object of the present invention is to detect the bed height of a fluidized medium at the initial filling of the fluidized medium in a fluidized bed reactor.

【0009】[0009]

【課題を解決するための手段】上記課題は、粒子状の流
動媒体を流動化気体で流動化して流動層を形成する流動
層容器と、該流動層容器の胴部に流動媒体を供給する流
動媒体ノズルと、前記流動層容器の胴部に原料を供給す
る原料ノズルと、前記流動層容器の底部に流動化気体を
吹き込む気体ノズルと、前記流動層容器の胴部に前記原
料と反応する副原料を供給する副原料ノズルと、前記流
動層容器の頂部に反応気体を排出する排出ノズルと、前
記流動層の層底部に流動化気体を均等に容器へ吹き込め
るように形成した分散板とを備えた流動層装置におい
て、前記分散板の上面から一定の高さ位置に複数の温度
センサを設け、前記気体ノズルから前記流動媒体の温度
より高温の流動化気体を吹き込みながら、前記温度セン
サの検出値によって分散板上面に充填された流動媒体の
層高さを検出する流動層高検出手段を設けることで解決
できる。
The above-mentioned object is to provide a fluidized bed container for fluidizing a particulate fluidized medium with a fluidizing gas to form a fluidized bed, and a fluidized bed for supplying the fluidized medium to the body of the fluidized bed container. A medium nozzle, a raw material nozzle that supplies a raw material to the body of the fluidized bed container, a gas nozzle that blows a fluidizing gas to the bottom of the fluidized bed container, and a sub-reactor that reacts with the raw material in the body of the fluidized bed container. An auxiliary material nozzle for supplying a raw material, a discharge nozzle for discharging a reaction gas at the top of the fluidized bed container, and a dispersion plate formed so that the fluidized gas can be uniformly blown into the container at the bottom of the bed of the fluidized bed. In a fluidized bed apparatus provided with a plurality of temperature sensors at a certain height position from the upper surface of the dispersion plate, while detecting the temperature sensor while blowing a fluidized gas having a temperature higher than the temperature of the fluidizing medium from the gas nozzle. By value It can be solved by providing a fluidized bed height detecting means for detecting a bed height of has been fluidized medium filled in the diffusion plate upper surface.

【0010】すなわち、流動媒体の温度は流動化気体よ
りも低いことから流動媒体が温度センサの設置位置に達
したとき、その温度センサの検出値は低下するので、流
動層高さを検出できる。したがって、複数の温度センサ
を適宜配設することで、燃料を供給する前に、分散板上
に流動媒体が一定の高さまで均等に充填されたことを確
認できるため、流動媒体の未充填によって発生する問題
を解決できる。
That is, since the temperature of the fluidized medium is lower than that of the fluidized gas, when the fluidized medium reaches the installation position of the temperature sensor, the detection value of the temperature sensor decreases, so that the fluidized bed height can be detected. Therefore, by appropriately disposing multiple temperature sensors, it is possible to confirm that the fluidized medium is evenly filled to a certain height on the dispersion plate before fuel is supplied. You can solve the problem.

【0011】また、流動層高検出手段の出力信号に基づ
いて、前記流動層装置の運転許可信号を出力することが
好ましい。このようにするにより、分散板上面に充填さ
れた流動層の層高さを検出した後、流動層装置の運転が
許可されるので、安全に運転を開始することができる。
Further, it is preferable that the operation permission signal of the fluidized bed apparatus is output based on the output signal of the fluidized bed height detecting means. By doing so, since the operation of the fluidized bed apparatus is permitted after the bed height of the fluidized bed filled on the upper surface of the dispersion plate is detected, the operation can be safely started.

【0012】本発明を発電システムに適用する場合は、
空気供給機から供給される流動化及び燃焼用空気で流動
層を形成しながら燃料を燃焼する流動層燃焼炉と、該流
動層燃焼炉内に設置された伝熱管を有するボイラと、該
ボイラで発生する蒸気により駆動される蒸気タービン発
電機と、前記流動層燃焼炉から排出される燃焼ガスで駆
動されるガスタービン発電機と、前記流動層の層底部に
設置された空気を均等に前記流動層燃焼炉へ吹き込める
ように形成した分散板とを備え、該分散板上面から一定
の高さ位置に複数の温度センサを設け、該温度センサの
検出値によって分散板上面に充填された流動媒体の層高
さを検出する流動層高検出手段を設ければよい。
When the present invention is applied to a power generation system,
In a fluidized bed combustion furnace that combusts fuel while forming a fluidized bed with fluidizing and combustion air supplied from an air supplier, a boiler having a heat transfer tube installed in the fluidized bed combustion furnace, and the boiler The steam turbine generator driven by the generated steam, the gas turbine generator driven by the combustion gas discharged from the fluidized bed combustion furnace, and the air installed at the bed bottom of the fluidized bed evenly flow A dispersion plate formed so as to be blown into the layer combustion furnace, a plurality of temperature sensors are provided at a constant height position from the upper surface of the dispersion plate, and the fluid medium filled on the upper surface of the dispersion plate according to the detection value of the temperature sensor. A fluidized bed height detecting means for detecting the bed height may be provided.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1は、本発明を適用した加圧式流
動層燃焼装置の一実施形態の系統図を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a system diagram of an embodiment of a pressurized fluidized bed combustion apparatus to which the present invention is applied.

【0014】図1に示すように、加圧式流動層燃焼装置
は、空気供給機(図示せず)から供給される流動化及び
燃焼用の空気で流動層1を形成しながら燃料を燃焼する
流動層燃焼炉2と、流動層燃焼炉2を格納する圧力容器
3と、流動層燃焼炉2の胴部に流動媒体容器4から流動
媒体を供給する流動媒体ノズル5aと、流動層燃焼炉2
の胴部に燃料供給機(図示せず)から燃料を供給する燃
料ノズル6と、流動層燃焼炉2の頂部に燃焼ガスを排出
する排出ノズル7と、流動層1の層底部に空気を均等に
流動層燃焼炉2へ吹き込めるように形成した空気分散板
8とを備えている。また、空気分散板8の上面から一定
の高さ位置の温度を検出する複数の温度センサ9a〜9
cを設けている。これらの温度センサ9a〜9cはそれ
ぞれ温度検出端10a〜10cを備えている。そして、
温度センサの検出値によって空気分散板8の上面に充填
された流動媒体の層高さを検出する流動層高検出手段1
2を設けている。
As shown in FIG. 1, a pressurized fluidized bed combustor is a fluidized bed which combusts fuel while forming a fluidized bed 1 with air for fluidization and combustion supplied from an air supplier (not shown). Bed combustion furnace 2, pressure vessel 3 that houses fluidized bed combustion furnace 2, fluidized medium nozzle 5a that supplies fluidized medium from fluidized medium container 4 to the body of fluidized bed combustion furnace 2, fluidized bed combustion furnace 2
A fuel nozzle 6 for supplying fuel from a fuel feeder (not shown) to the body of the reactor, an exhaust nozzle 7 for discharging combustion gas to the top of the fluidized bed combustion furnace 2, and air to the bottom of the fluidized bed 1 evenly. And an air dispersion plate 8 formed so as to be blown into the fluidized bed combustion furnace 2. Further, a plurality of temperature sensors 9a to 9 for detecting the temperature at a certain height position from the upper surface of the air dispersion plate 8.
c is provided. These temperature sensors 9a to 9c are provided with temperature detecting ends 10a to 10c, respectively. And
Fluidized bed height detecting means 1 for detecting the bed height of the fluidized medium filled on the upper surface of the air dispersion plate 8 based on the detection value of the temperature sensor.
2 is provided.

【0015】図2は、図1で示した流動層燃焼炉2の水
平断面を示す模式図である。図2に示すように、流動層
燃焼炉2は水平断面が長方形の角筒形であり、この長方
形の一方の長辺部に流動媒体ノズル5a、5bが設けら
れている。また、温度検出端10a〜10cが流動媒体
ノズル5a,5bを有した炉壁付近の空気分散板8上に
等間隔で配設され、それに対向する炉壁付近の空気分散
板8上に温度検出端10d〜10fが等間隔で配設され
ている。ここで、流動媒体ノズル5a、5bから供給さ
れる流動媒体は例えば約100℃であり、また、空気分
散板8から吹き込まれる空気の温度は約200℃であ
る。
FIG. 2 is a schematic diagram showing a horizontal cross section of the fluidized bed combustion furnace 2 shown in FIG. As shown in FIG. 2, the fluidized bed combustion furnace 2 has a rectangular cross section with a rectangular horizontal cross section, and fluid medium nozzles 5a and 5b are provided on one long side of the rectangle. Further, the temperature detection ends 10a to 10c are arranged at equal intervals on the air dispersion plate 8 near the furnace wall having the fluidized medium nozzles 5a and 5b, and the temperature detection is performed on the air dispersion plate 8 near the furnace wall opposite to the temperature detection ends 10a to 10c. The ends 10d to 10f are arranged at equal intervals. Here, the fluidized medium supplied from the fluidized medium nozzles 5a, 5b is, for example, about 100 ° C., and the temperature of the air blown from the air dispersion plate 8 is about 200 ° C.

【0016】このように構成される加圧式流動層燃焼装
置の動作を次に説明する。起動時に、流動媒体を流動媒
体ノズル5aから流動層燃焼炉2に初期層高aになるま
で供給する。また、空気分散板8から流動層燃焼炉2に
分散して投入される空気で流動媒体を流動化して流動層
1を形成する。その後、図示していない起動バーナで流
動層1を規定温度以上に予熱した後、燃料である微粉炭
を燃料ノズル6から流動層燃焼炉2へ投入する。そし
て、微粉炭は空気で流動層1を形成しながら燃焼し、発
生した燃焼ガスは流動層燃焼炉2の頂部に設けられた排
出ノズル7から排出される。なお、初期層高aは、燃料
投入前の流動層1の予熱や燃料投入後の昇温時間を短縮
できるような層高(例えば、約1000mm)としてい
る。
Next, the operation of the pressurized fluidized bed combustion apparatus configured as described above will be described. At startup, the fluidized medium is supplied from the fluidized medium nozzle 5a to the fluidized bed combustion furnace 2 until the initial bed height a is reached. Further, the fluidized medium is fluidized by the air that is dispersed from the air dispersion plate 8 into the fluidized bed combustion furnace 2 and is supplied to form the fluidized bed 1. After that, the fluidized bed 1 is preheated to a temperature equal to or higher than a specified temperature by a startup burner (not shown), and then pulverized coal which is a fuel is injected into the fluidized bed combustion furnace 2 from the fuel nozzle 6. Then, the pulverized coal is burned while forming the fluidized bed 1 with air, and the generated combustion gas is discharged from the discharge nozzle 7 provided at the top of the fluidized bed combustion furnace 2. The initial bed height a is set to a bed height (for example, about 1000 mm) that can shorten the preheating of the fluidized bed 1 before fuel injection and the temperature rise time after fuel injection.

【0017】また、加圧式流動層燃焼装置の運転中にお
いて、流動層燃焼炉2の負荷を増加させるためには、流
動媒体と燃料等を流動層燃焼炉2に追加供給して、流動
層1の層高を上げる。一方、負荷を減少させるために
は、流動媒体を流動層燃焼炉2から流動媒体抜き出し管
11を介して流動媒体容器4へ抜き出し、流動層1の層
高を下げる。
Further, in order to increase the load of the fluidized bed combustion furnace 2 during the operation of the pressurized fluidized bed combustion apparatus, a fluidized medium, fuel, etc. are additionally supplied to the fluidized bed combustion furnace 2 and the fluidized bed 1 Raise the height of. On the other hand, in order to reduce the load, the fluidized medium is withdrawn from the fluidized bed combustion furnace 2 into the fluidized medium container 4 via the fluidized medium withdrawal pipe 11, and the bed height of the fluidized bed 1 is lowered.

【0018】このように動作する加圧式流動層燃焼装置
において、燃料を供給する前に、空気分散板8の上面に
充填された流動媒体の層の高さを検出することが必要と
なる。なぜなら、流動媒体が空気分散板8の全体に行き
渡っていない場合や、空気分散板8の一部に偏って空気
分散板8の一部が露出していると、投入した燃料が流動
層1で分散されずに露出した板面に落下し、燃焼による
焼結や局所燃焼による高温で装置が破損するからであ
る。
In the pressurized fluidized bed combustion apparatus which operates as described above, it is necessary to detect the height of the fluidized medium layer filled on the upper surface of the air dispersion plate 8 before supplying the fuel. This is because when the fluidized medium does not reach the entire air dispersion plate 8 or when a part of the air dispersion plate 8 is exposed evenly in a part of the air distribution plate 8, the injected fuel is the fluidized bed 1. This is because they fall onto the exposed plate surface without being dispersed, and the device is damaged by the high temperature due to the sintering due to combustion or the local combustion.

【0019】そこで、本実施形態は、供給される流動化
空気の温度と流動媒体容器4に貯留されている流動媒体
の温度との温度差に着目し、空気分散板3上の温度検出
端10a〜10bの温度変化を利用して、流動媒体の初
期充填時における流動媒体の流動層の高さを検出する。
Therefore, in this embodiment, focusing on the temperature difference between the temperature of the fluidized air supplied and the temperature of the fluidized medium stored in the fluidized medium container 4, the temperature detection end 10a on the air dispersion plate 3 is considered. By utilizing the temperature change of -10b, the height of the fluidized bed of the fluidized medium at the time of the initial filling of the fluidized medium is detected.

【0020】ここで、流動層高検出手段12について詳
細に説明する。図3は、図1で示した流動層燃焼炉の時
間経過に伴う流動媒体の充填状態と温度変化を示してい
る。横軸は時間を表し、縦軸は温度検出端10a〜10
fで計測された温度を表す。
Now, the fluidized bed height detecting means 12 will be described in detail. FIG. 3 shows the filling state of the fluidized medium and the temperature change over time of the fluidized bed combustion furnace shown in FIG. The horizontal axis represents time, and the vertical axis represents the temperature detecting ends 10a-10.
represents the temperature measured at f.

【0021】図3に示すように、流動媒体ノズル5aか
ら流動媒体を流動層燃焼炉2へ供給し始めたとき、時間
で温度検出端10aの温度が約80℃低下してい
る。このことから、時間Tで流動媒体が温度検出端1
0aの計測位置まで充填されたことがわかる。次に、流
動媒体ノズル5bから流動媒体を流動層燃焼炉2へ供給
し始めたとき、時間Tで温度検出端10cの温度が約
50℃低下している。このことから、時間Tで流動媒
体が温度検出端10cの計測位置まで充填されたことが
わかる。この時点では、温度検出端10b、10d〜1
0fの計測位置には流動媒体がまだ存在していない。そ
して、流動媒体ノズル5a、5bから同時に流動媒体を
供給し続けた結果、時間Tで温度検出端10fの温度
と温度検出端10eの温度が低下し、その後、温度検出
端10dの温度と温度検出端10bの温度が順に低下し
た。このことから、時間Tでは、流動媒体が温度検出
端10a,10c,10d,10fの計測位置に充填さ
れており、時間Tでは、空気分散板8の上面全てに流
動媒体が充填されたことがわかる。
As shown in FIG. 3, when the fluidized medium is started to be supplied from the fluidized medium nozzle 5a to the fluidized bed combustion furnace 2, the temperature at the temperature detecting end 10a is lowered by about 80 ° C. at time T 1 . From this, at the time T 1 , the flowing medium changes to the temperature detecting end 1
It can be seen that the measurement position of 0a has been filled. Next, when the fluidized medium is started to be supplied to the fluidized bed combustion furnace 2 from the fluidized medium nozzle 5b, the temperature of the temperature detection end 10c decreases by about 50 ° C. at time T 2 . This proves the fluidized medium at time T 2 has been filled to the measurement position of the temperature detection end 10c. At this point, the temperature detecting ends 10b, 10d-1
The fluidized medium does not yet exist at the measurement position of 0f. Then, as a result of continuously supplying the flowing medium from the flowing medium nozzles 5a and 5b at the same time, the temperature of the temperature detecting end 10f and the temperature of the temperature detecting end 10e decrease at time T 3 , and then the temperature and the temperature of the temperature detecting end 10d. The temperature of the detection end 10b gradually decreased. Therefore, at time T 3, the fluidized medium temperature detecting end 10a, 10c, 10d, are filled to 10f measurement position of the time T 4, the fluidized medium to all the upper surface of the air dispersion plate 8 is filled I understand.

【0022】次に、図4に基づいて、温度検出端の適切
な配設位置について説明する。図4は本発明の温度セン
サの配置を示している。図に示すように、長方形の片方
の長辺部Xには3本の燃料ノズル20a〜20cと、2
本の流動媒体ノズル21a、21bが設置され、対向す
る長辺部Yには3本の燃料ノズル20d〜20fが設置
されている。また、空気分散板24には温度検出端22
a〜22oが配設されている。
Next, with reference to FIG. 4, an appropriate arrangement position of the temperature detecting end will be described. FIG. 4 shows the arrangement of the temperature sensor of the present invention. As shown in the figure, three fuel nozzles 20a to 20c and 2
Two fluidized medium nozzles 21a and 21b are installed, and three fuel nozzles 20d to 20f are installed on the opposite long sides Y. Further, the temperature detecting end 22 is attached to the air dispersion plate 24.
a to 22o are provided.

【0023】この場合において、温度検出端22a〜2
2oの計測位置を、空気分散板8から初期層高(例え
ば、約1000mm)までの高さに位置させている。こ
のようにすることで、計画した初期充填量の範囲で温度
検出端22a〜22oの温度変化を検出できる。
In this case, the temperature detecting ends 22a-2
The measurement position of 2o is located at the height from the air dispersion plate 8 to the initial layer height (for example, about 1000 mm). By doing so, the temperature change of the temperature detecting ends 22a to 22o can be detected within the planned initial filling amount range.

【0024】また、温度検出端22a〜22eと温度検
出端22k〜22oは、空気分散板を中心線Zで左右に
分けた2つの板上にそれぞれ配設されている。このよう
に配設することで、中心線で隔てられた各々の領域に流
動媒体が拡散したことを確認できる。
Further, the temperature detecting ends 22a to 22e and the temperature detecting ends 22k to 22o are respectively arranged on two plates which are divided by the center line Z on the left and right sides of the air dispersion plate. By arranging in this way, it can be confirmed that the fluidized medium has diffused into each of the regions separated by the center line.

【0025】ここで、温度検出端22dは、流動媒体ノ
ズル21bに最も近い炉壁Xからの距離bが、初期流動
層の高さより小さくなる位置に配設している。流動媒体
の安息角は最大45度程度であるから、このように配置
して温度検出端22dの温度変化を検出することで、流
動媒体が壁Xまで拡散して充填したことを確認できる。
Here, the temperature detecting end 22d is arranged at a position where the distance b from the furnace wall X closest to the fluidized medium nozzle 21b is smaller than the height of the initial fluidized bed. Since the angle of repose of the flowing medium is about 45 degrees at the maximum, it is possible to confirm that the flowing medium is diffused and filled up to the wall X by arranging in this way and detecting the temperature change of the temperature detecting end 22d.

【0026】また、温度検出端22nは、流動媒体ノズ
ル21bに最も遠い壁Yからの距離bが、初期流動層の
高さより小さくなる位置に配設している。流動媒体の安
息角は最大45度程度であるから、このように配設して
温度検出端22nの温度変化を検出することで、流動媒
体が壁Yまで拡散して充填したことを確認できる。
The temperature detecting end 22n is arranged at a position where the distance b from the wall Y farthest from the fluidized medium nozzle 21b is smaller than the height of the initial fluidized bed. Since the angle of repose of the flowing medium is about 45 degrees at the maximum, it is possible to confirm that the flowing medium has diffused and filled up to the wall Y by detecting the temperature change of the temperature detecting end 22n by arranging in this way.

【0027】さらに、温度検出端22kは、燃料ノズル
20dからの距離cが、初期流動層の高さより小さくな
る位置に配設している。ここでも、流動媒体の安息角は
最大45度程度であるから、このように配設して温度検
出端22kの温度変化を検出することで、流動媒体が燃
料ノズル20dの箇所に充填したことを確認できる。
Further, the temperature detecting end 22k is arranged at a position where the distance c from the fuel nozzle 20d is smaller than the height of the initial fluidized bed. In this case as well, the angle of repose of the fluid medium is about 45 degrees at the maximum, so that the fluid medium is filled in the fuel nozzle 20d by detecting the temperature change of the temperature detection end 22k by arranging in this way. I can confirm.

【0028】また、温度検出端22f〜22jは、空気
分散板24を中心線Z上に配置している。このように配
設することで、流動媒体ノズル21a、22bから供給
される流動媒体の拡散して充填する過程をより詳しく確
認できる。
Further, the temperature detecting ends 22f to 22j are arranged with the air dispersion plate 24 on the center line Z. By arranging in this way, the process of diffusing and filling the fluidized medium supplied from the fluidized medium nozzles 21a and 22b can be confirmed in more detail.

【0029】さらに、温度検出端22hは、空気分散板
24の中心点Wに配置している。このように配設するこ
とで、空気分散板24の中心点に流動媒体が充填したこ
とを確認できる。
Further, the temperature detecting end 22h is arranged at the center point W of the air dispersion plate 24. By arranging in this way, it can be confirmed that the center of the air dispersion plate 24 is filled with the fluid medium.

【0030】図5に、本発明を適用した複合発電システ
ムの系統図を示す。図示のように、複合発電システム
は、空気供給機30から供給される流動化及び燃焼用空
気で流動層31を形成しながら燃料を燃焼する流動層燃
焼炉と、流動層燃焼炉を格納する圧力容器38と、流動
層燃焼炉内に設置された過熱伝熱管32を有するボイラ
33と、ボイラ33で発生する蒸気により駆動される蒸
気タービン発電機34と、流動層燃焼炉から排出される
燃焼ガスで駆動されるガスタービン発電機35と、流動
層31の層底部に設置された空気を均等に流動層燃焼炉
へ吹き込めるように形成した分散板36とを備え、分散
板36の上面から一定の高さ位置に複数の温度センサ3
7a、37bを配設して、温度センサの検出値によって
空気分散板8の上面に充填された流動媒体の層高さを検
出する流動層高検出手段49を設けている。
FIG. 5 shows a system diagram of a combined power generation system to which the present invention is applied. As shown in the figure, the combined cycle power generation system includes a fluidized bed combustion furnace that combusts fuel while forming a fluidized bed 31 with fluidizing and combustion air supplied from an air supplier 30, and a pressure that stores the fluidized bed combustion furnace. A container 38, a boiler 33 having a superheat transfer tube 32 installed in the fluidized bed combustion furnace, a steam turbine generator 34 driven by steam generated in the boiler 33, and a combustion gas discharged from the fluidized bed combustion furnace. The gas turbine generator 35 driven by the above and a dispersion plate 36 formed so as to uniformly blow air into the fluidized bed combustion furnace installed at the bottom of the fluidized bed 31 are provided from the upper surface of the dispersion plate 36. Multiple temperature sensors 3 at the height of
7a and 37b are provided, and a fluidized bed height detecting means 49 for detecting the bed height of the fluidized medium filled on the upper surface of the air dispersion plate 8 based on the detection value of the temperature sensor is provided.

【0031】このように構成される複合発電システムの
動作を次に説明する。まず、起動時に流動媒体を流動媒
体容器39から流動媒体ノズル40と介して流動層燃焼
炉に供給する。このとき、温度センサ37a、37bの
検出値の変動を流動層高検出手段49で監視して流動媒
体の充填状況を確認している。分散板36上に流動媒体
がまんべんなく均等に充填したことを温度センサ37
a、37bで確認した後、空気供給機30から供給され
る空気を分散板36で流動層燃焼炉に均等に分散して吹
き込み、流動媒体を流動化して流動層31を形成する。
そして、起動バーナ(図示せず)で流動層31を規定温
度以上に予熱した後、燃料例えば微粉炭を燃料ノズル4
1から流動層燃焼炉へ投入する。微粉炭は流動層を形成
しながら燃焼して燃焼ガスを発生する。燃焼ガスはボイ
ラ5の上部に設置された排出口42を通ってサイクロン
43で除塵された後、ガスタービン44に導入されてガ
スタービン発電機35を駆動する。ガスタービン44で
仕事をした燃焼ガスは排熱回収熱交換器45で水と熱交
換され、さらに、脱硝装置46で有害成分を除去されて
煙突47から大気に放出される。一方、排熱回収熱交換
器45で昇温された給水は蒸気伝熱管(図示せず)に通
流する。蒸気伝熱管内の蒸気のみが過熱伝熱管32に通
流して、微粉炭の燃焼熱で過熱されて高温の過熱蒸気と
なり、蒸気タービン48に導入されて蒸気タービン発電
機34を駆動する。蒸気タービン48で仕事をした蒸気
は復水器(図示せず)で復水となり、排熱回収熱交換器
45に供給され、ガスタービン44からの燃焼ガスで予
熱されて、再び蒸気伝熱管に供給される。
The operation of the combined power generation system having the above structure will be described below. First, at startup, the fluidized medium is supplied from the fluidized medium container 39 to the fluidized bed combustion furnace via the fluidized medium nozzle 40. At this time, the fluidized bed height detection means 49 monitors changes in the detection values of the temperature sensors 37a and 37b to confirm the filling state of the fluidized medium. The temperature sensor 37 indicates that the fluid medium is evenly and evenly filled on the dispersion plate 36.
After confirming with a and 37b, the air supplied from the air supplier 30 is evenly dispersed and blown into the fluidized bed combustion furnace by the dispersion plate 36 to fluidize the fluidized medium to form the fluidized bed 31.
Then, after preheating the fluidized bed 31 to a specified temperature or higher with a start burner (not shown), fuel such as pulverized coal is added to the fuel nozzle 4
1 to the fluidized bed combustion furnace. Pulverized coal burns while forming a fluidized bed to generate combustion gas. The combustion gas passes through an exhaust port 42 installed in the upper part of the boiler 5 to remove dust by a cyclone 43, and then is introduced into a gas turbine 44 to drive a gas turbine generator 35. The combustion gas that has worked in the gas turbine 44 is heat-exchanged with water in the exhaust heat recovery heat exchanger 45, the harmful components are removed by the denitration device 46, and the smoke is discharged from the chimney 47 to the atmosphere. On the other hand, the feed water whose temperature has been raised in the exhaust heat recovery heat exchanger 45 flows through a steam heat transfer tube (not shown). Only the steam in the steam heat transfer tube flows through the superheat heat transfer tube 32, is overheated by the combustion heat of the pulverized coal to become high-temperature superheated steam, and is introduced into the steam turbine 48 to drive the steam turbine generator 34. The steam that has worked in the steam turbine 48 becomes condensate in a condenser (not shown), is supplied to the exhaust heat recovery heat exchanger 45, is preheated by the combustion gas from the gas turbine 44, and returns to the steam heat transfer tube again. Supplied.

【0032】このように動作する発電プラントに本発明
を適用することで、微粉炭を投入する前に、分散板36
上に流動媒体が一定の高さまで充填されたことを確認で
きるので、プラントの運転を安全に開始できる。
By applying the present invention to a power plant that operates in this manner, the dispersion plate 36 is added before the addition of pulverized coal.
Since it can be confirmed that the fluidized medium is filled up to a certain height, the plant operation can be safely started.

【0033】以上、実施形態に基づいて本発明を説明し
たが、本発明は加圧式流動層燃焼装置に限定するもので
はない。例えば、流動層中で化学反応をさせる流動層反
応装置にも加圧式流動層燃焼装置と同一の問題点があ
り、その流動層反応装置に本発明を適用することで、流
動媒体の未充填によって発生する反応熱による問題を解
決することができる。
Although the present invention has been described based on the embodiment, the present invention is not limited to the pressurized fluidized bed combustion apparatus. For example, a fluidized bed reactor that causes a chemical reaction in a fluidized bed has the same problems as a pressurized fluidized bed combustor. By applying the present invention to the fluidized bed reactor, it is possible to prevent the fluidized medium from being filled. It is possible to solve the problem caused by the generated heat of reaction.

【0034】図1の本発明を適用した加圧式流動層燃焼
装置は、発電システムの他に廃棄物処理プラントや化学
プラントなどにも利用できることは言うまでもない。ま
た、図1の本発明を適用した流動層燃焼炉は、角筒形の
ものを用いたが、円筒形の流動層燃焼炉にも適用でき
る。図1に示した本実施形態では加圧式流動層装置を用
いて説明したが、本発明はこれに限られるものではな
く、流動層装置にも適用できる。また、図1に示した本
実施形態では流動層1の初期層高を例えば約1000m
mとしたが、流動層1の予熱時間や燃料投入後の昇温時
間が短ければ、これに限定するものではない。また、図
1に示した本実施形態では、微粉炭を燃料としたが、本
発明はこれに限られるものではない。要は、流動層1を
形成しながら燃焼できる燃料であればよい。
It goes without saying that the pressurized fluidized bed combustion apparatus to which the present invention of FIG. 1 is applied can be used in a waste treatment plant, a chemical plant and the like in addition to the power generation system. Further, the fluidized bed combustion furnace to which the present invention of FIG. 1 is applied has a rectangular tubular shape, but can be applied to a cylindrical fluidized bed combustion furnace. Although the present embodiment shown in FIG. 1 has been described using the pressure type fluidized bed apparatus, the present invention is not limited to this and can be applied to a fluidized bed apparatus. Further, in the present embodiment shown in FIG. 1, the initial bed height of the fluidized bed 1 is, for example, about 1000 m.
However, it is not limited to this as long as the preheating time of the fluidized bed 1 and the temperature rising time after fuel injection are short. Further, although pulverized coal is used as the fuel in the present embodiment shown in FIG. 1, the present invention is not limited to this. In short, any fuel can be used as long as it can burn while forming the fluidized bed 1.

【0035】さらに、本実施形態で説明した温度検出端
10a〜10fは、破損を防ぐためにキャップで覆われ
る方がよい。また、図4に示した実施形態では、温度検
出端22a〜22oの配置位置について説明したが、本
発明はこれに限定するものではない。例えば、流動媒体
の安息角に基づいて、温度検出端22a〜22oの配置
位置を適宜変更することもできる。また、本実施形態の
温度検出端の出力を、流動層燃焼装置の運転許可信号を
出力するインターロックを設けることが好ましい。この
ようにすることで、流動層燃焼炉2に燃料を安全に投入
することができる。
Further, it is preferable that the temperature detecting ends 10a to 10f described in this embodiment are covered with a cap in order to prevent damage. Further, in the embodiment shown in FIG. 4, the arrangement positions of the temperature detection ends 22a to 22o have been described, but the present invention is not limited to this. For example, the arrangement positions of the temperature detecting ends 22a to 22o can be appropriately changed based on the angle of repose of the flowing medium. Further, it is preferable to provide an interlock for outputting the output of the temperature detection end of the present embodiment as an operation permission signal of the fluidized bed combustion device. By doing so, the fuel can be safely charged into the fluidized bed combustion furnace 2.

【0036】上述したように、本発明の実施の形態によ
れば、加圧式流動層燃焼装置における流動媒体の初期充
填時において、流動媒体の流動層高を検出することがで
きるため、流動媒体の未充填によって発生する問題を解
決できる。
As described above, according to the embodiment of the present invention, since the fluidized bed height of the fluidized medium can be detected at the time of the initial filling of the fluidized medium in the pressurized fluidized bed combustion apparatus, the fluidized medium height of the fluidized medium can be detected. The problem caused by unfilling can be solved.

【0037】[0037]

【発明の効果】以上述べたとおり、本発明によれば、流
動反応器の流動媒体の初期充填時において、流動媒体の
流動層高を検出することができる。
As described above, according to the present invention, the height of the fluidized bed of the fluidized medium can be detected during the initial filling of the fluidized medium in the fluidized reactor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した加圧式流動層燃焼装置の一実
施形態の系統図を示している。
FIG. 1 shows a system diagram of an embodiment of a pressurized fluidized bed combustion apparatus to which the present invention is applied.

【図2】図1の流動層燃焼炉2の水平断面を示す模式図
である。
FIG. 2 is a schematic view showing a horizontal cross section of the fluidized bed combustion furnace 2 of FIG.

【図3】図1の流動層燃焼炉の時間経過に伴う流動媒体
の充填状態と温度センサの検出温度変化を示す。
3 shows changes in the filling state of a fluidized medium and the temperature detected by a temperature sensor over time in the fluidized bed combustion furnace of FIG.

【図4】本発明の温度センサの配置を説明する図であ
る。
FIG. 4 is a diagram illustrating the arrangement of temperature sensors of the present invention.

【図5】本発明を適用した複合発電システムの系統図を
示している。
FIG. 5 shows a system diagram of a combined power generation system to which the present invention is applied.

【符号の説明】[Explanation of symbols]

2 流動層燃焼炉 8 空気分散板 5a 流動媒体ノズル 9a 温度センサ 12 流動層高検出手段 2 Fluidized bed combustion furnace 8 Air dispersion plate 5a Fluidized medium nozzle 9a Temperature sensor 12 Fluidized bed height detection means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 粒子状の流動媒体を流動化気体で流動化
して流動層を形成する流動層容器と、該流動層容器の胴
部に流動媒体を供給する流動媒体ノズルと、前記流動層
容器の胴部に原料を供給する原料ノズルと、前記流動層
容器の底部に流動化気体を吹き込む気体ノズルと、前記
流動層容器の胴部に前記原料と反応する副原料を供給す
る副原料ノズルと、前記流動層容器の頂部に反応気体を
排出する排出ノズルと、前記流動層の層底部に流動化気
体を均等に容器へ吹き込めるように形成した分散板とを
備えた流動層装置において、前記分散板の上面から一定
の高さ位置の温度を検出する複数の温度センサを設け、
前記気体ノズルから前記流動媒体の温度より高温の流動
化気体を吹き込みながら、前記温度センサの検出値によ
って分散板上面に充填された流動媒体の層高さを検出す
る流動層高検出手段を設けたことを特徴とする流動層装
置。
1. A fluidized bed container for fluidizing a particulate fluidized medium with a fluidizing gas to form a fluidized bed, a fluidized medium nozzle for supplying the fluidized medium to the body of the fluidized bed container, and the fluidized bed container. A raw material nozzle for supplying a raw material to the body of the fluidized bed, a gas nozzle for blowing a fluidizing gas to the bottom of the fluidized bed container, and a sub raw material nozzle for supplying a sub raw material that reacts with the raw material to the body of the fluidized bed container. A fluidized bed apparatus comprising a discharge nozzle for discharging a reaction gas at the top of the fluidized bed container, and a dispersion plate formed so that the fluidized gas is uniformly blown into the container at the bottom of the fluidized bed, Providing a plurality of temperature sensors that detect the temperature at a certain height position from the upper surface of the dispersion plate,
A fluidized bed height detecting means for detecting the bed height of the fluidized medium filled on the upper surface of the dispersion plate by the detection value of the temperature sensor while blowing a fluidized gas having a temperature higher than the temperature of the fluidized medium from the gas nozzle was provided. A fluidized bed apparatus characterized by the above.
【請求項2】 前記流動層高検出手段の出力信号に基づ
いて、前記流動層装置の運転許可信号を出力することを
特徴とする請求項1に記載の流動層装置。
2. The fluidized bed apparatus according to claim 1, wherein an operation permission signal of the fluidized bed apparatus is output based on an output signal of the fluidized bed height detecting means.
【請求項3】 空気供給機から供給される流動化及び燃
焼用空気で流動層を形成しながら燃料を燃焼する流動層
燃焼炉と、該流動層燃焼炉内に設置された伝熱管を有す
るボイラと、該ボイラで発生する蒸気により駆動される
蒸気タービン発電機と、前記流動層燃焼炉から排出され
る燃焼ガスで駆動されるガスタービン発電機と、前記流
動層の層底部に設置された空気を均等に前記流動層燃焼
炉へ吹き込めるように形成した分散板とを備え、該分散
板上面から一定の高さ位置の温度を検出する複数の温度
センサを設け、該温度センサの検出値によって分散板上
面に充填された流動媒体の層高さを検出する流動層高検
出手段を設けたことを特徴とする流動層発電システム。
3. A boiler having a fluidized bed combustion furnace that combusts fuel while forming a fluidized bed with air for fluidization and combustion supplied from an air supply machine, and a heat transfer tube installed in the fluidized bed combustion furnace. A steam turbine generator driven by steam generated in the boiler, a gas turbine generator driven by combustion gas discharged from the fluidized bed combustion furnace, and air installed at the bottom of the fluidized bed And a dispersion plate formed so as to be uniformly blown into the fluidized bed combustion furnace, and a plurality of temperature sensors for detecting the temperature at a constant height position from the upper surface of the dispersion plate are provided, and the temperature sensor detects the temperature. A fluidized bed power generation system comprising fluidized bed height detection means for detecting the bed height of the fluidized medium filled on the upper surface of the dispersion plate.
JP2001347734A 2001-11-13 2001-11-13 Fluidized bed device and electric power generating system with fluidized bed device Pending JP2003148707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001347734A JP2003148707A (en) 2001-11-13 2001-11-13 Fluidized bed device and electric power generating system with fluidized bed device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001347734A JP2003148707A (en) 2001-11-13 2001-11-13 Fluidized bed device and electric power generating system with fluidized bed device

Publications (1)

Publication Number Publication Date
JP2003148707A true JP2003148707A (en) 2003-05-21

Family

ID=19160692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001347734A Pending JP2003148707A (en) 2001-11-13 2001-11-13 Fluidized bed device and electric power generating system with fluidized bed device

Country Status (1)

Country Link
JP (1) JP2003148707A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151480A (en) * 2006-12-20 2008-07-03 Chugoku Electric Power Co Inc:The Boiler facility and control method of feeder for conveying ash to ash treating facility side
WO2010004758A1 (en) * 2008-07-11 2010-01-14 株式会社Ihi Method and device for controlling retention time of fluid medium in fluidized-bed gasification furnace in gasification facility
KR101576180B1 (en) * 2014-04-15 2015-12-09 고등기술연구원연구조합 Fluidized bed reactor with gas distribution plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151480A (en) * 2006-12-20 2008-07-03 Chugoku Electric Power Co Inc:The Boiler facility and control method of feeder for conveying ash to ash treating facility side
WO2010004758A1 (en) * 2008-07-11 2010-01-14 株式会社Ihi Method and device for controlling retention time of fluid medium in fluidized-bed gasification furnace in gasification facility
JP2010018747A (en) * 2008-07-11 2010-01-28 Ihi Corp Method and device for controlling fluidized medium residence time of fluidized-bed gasifying furnace in gasification equipment
AU2009269407B2 (en) * 2008-07-11 2012-07-12 Ihi Corporation Method and device for controlling retention time of fluid medium in fluidized-bed gasification furnace in gasification facility
US8667913B2 (en) 2008-07-11 2014-03-11 Ihi Corporation Method and device for controlling retention time of fluid medium in fluidized-bed gasification furnace in gasification facility
KR101576180B1 (en) * 2014-04-15 2015-12-09 고등기술연구원연구조합 Fluidized bed reactor with gas distribution plate

Similar Documents

Publication Publication Date Title
US4809190A (en) Calorimetry system
EP0247798B1 (en) Fluidised bed reactor and method of operating such a reactor
US4488516A (en) Soot blower system
US10195582B2 (en) Gasification furnace, gasification system, reformer and reforming system
US5375563A (en) Gas-fired, porous matrix, surface combustor-fluid heater
JP2011153819A (en) Oxy-fuel combustion system with closed loop flame temperature control
CN212869719U (en) Steam generating system
US4072130A (en) Apparatus and method for generating steam
US4333909A (en) Fluidized bed boiler utilizing precalcination of acceptors
CN102147106B (en) Recirculating fluidized bed boiler
US5237963A (en) System and method for two-stage combustion in a fluidized bed reactor
US4363292A (en) Fluidized bed reactor
JP2003148707A (en) Fluidized bed device and electric power generating system with fluidized bed device
RU2508503C2 (en) Operating method of bioethanol production unit
GB2126118A (en) Fuel-reforming apparatus
US6789487B2 (en) Fluidized bed incinerator and combustion method in which generation of NOx, CO and dioxine are suppressed
EP0369004B1 (en) Internal circulation type fluidized bed boiler and method of controlling same
US4955190A (en) Method for driving a gas turbine utilizing a hexagonal pressurized fluidized bed reactor
US4854854A (en) Fluidized bed fuel-fired power plant
JP6697312B2 (en) Wet biomass incinerator system and method of operating wet biomass incinerator
KR101413183B1 (en) Waste gas incineration apparatus and method
JP2023108772A (en) Boiler controller, boiler control method and program
EP0289974B1 (en) Power plant for burning a fuel in a fluidized bed of particulate material
HU218508B (en) Fluidized bed with improved nozzle construction
JP7215277B2 (en) How to start a circulating fluidized bed boiler