JPH1038201A - Control method and apparatus for outlet supply water temperature of gas high pressure supply water heater in exhaust recombustion type combined cycle plant - Google Patents

Control method and apparatus for outlet supply water temperature of gas high pressure supply water heater in exhaust recombustion type combined cycle plant

Info

Publication number
JPH1038201A
JPH1038201A JP19760796A JP19760796A JPH1038201A JP H1038201 A JPH1038201 A JP H1038201A JP 19760796 A JP19760796 A JP 19760796A JP 19760796 A JP19760796 A JP 19760796A JP H1038201 A JPH1038201 A JP H1038201A
Authority
JP
Japan
Prior art keywords
feed water
feedwater
heater
pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19760796A
Other languages
Japanese (ja)
Other versions
JP3845905B2 (en
Inventor
Hisanori Nukumi
寿範 温見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19760796A priority Critical patent/JP3845905B2/en
Publication of JPH1038201A publication Critical patent/JPH1038201A/en
Application granted granted Critical
Publication of JP3845905B2 publication Critical patent/JP3845905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To control water supply temperature at an outlet of a gas high pressure water supply heater by adjusting the flow rate of supply water distributed to a high pressure water supply heater and the gas high pressure water supply heater through the opening adjustment of a flow rate adjusting valve of the high pressure supply water heater. SOLUTION: There is estimated a supply water flow rate corrected value of a high pressure supply water heater based upon an outlet supply water temperature deviation 29 between an outlet supply water temperature set value 25 of a gas high pressure supply water heater and outlet supply water temperature of the gas high pressure supply water heater on the basis of a boiler loading instruction 19. Then, a supply water flow rate correction set value of a high pressure supply water heater is estimated by adding the supply water flow rate correction value to a supply water flow rate set value 27 of the high pressure supply water heater based upon the boiler loading instruction 19 such that a supply water lowest flow rate of line high pressure supply water heater. Hereby, an opening of a flow rate adjusting valve 12 of the supply water heater is adjusted in response to a supply water flow rate deviation 39 between the supply water flow rate correction set value 37 and an actual supply water flow rate 23, and hence the outlet supply water temperature 18 of the gas high pressure supply water heater 11 is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気再燃型コンバ
インドサイクルプラントにおけるガス高圧給水加熱器の
出口給水温度制御方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the outlet feedwater temperature of a high-pressure gas feedwater heater in an exhaust gas reburning combined cycle plant.

【0002】[0002]

【従来の技術】一般に、ボイラによる発電プラントは、
図5に示されるように、ボイラ本体1において燃料の燃
焼を行うと共に、給水ポンプ2によって圧送される給水
を高圧給水加熱器3を介してボイラ本体1へ導き、加熱
して蒸気を発生させ、該蒸気を蒸気タービン4へ供給し
て蒸気タービン発電機5を駆動し発電を行い、該蒸気タ
ービン発電機5を駆動した後の蒸気の一部を前記高圧給
水加熱器3へ導き、前記ボイラ本体1へ供給される給水
を加熱するようになっているが、近年、図5に示される
ような既設のプラントを改造し、図6に示される如く、
熱効率の向上を図った排気再燃型コンバインドサイクル
プラントとする試みが行われている。
2. Description of the Related Art In general, a power plant using a boiler includes:
As shown in FIG. 5, while burning fuel in the boiler main body 1, feed water pumped by the feed water pump 2 is guided to the boiler main body 1 through the high pressure feed water heater 3, and heated to generate steam, The steam is supplied to the steam turbine 4 to drive the steam turbine generator 5 to generate electric power. A part of the steam after driving the steam turbine generator 5 is guided to the high-pressure feed water heater 3, and the boiler body 1 is heated, but in recent years, an existing plant as shown in FIG. 5 has been remodeled, and as shown in FIG.
Attempts have been made to achieve an exhaust gas reburning combined cycle plant with improved thermal efficiency.

【0003】前記排気再燃型コンバインドサイクルプラ
ントは、燃焼器6から送給される燃焼ガスにより駆動さ
れ且つガスタービン発電機7と圧縮機8を駆動するガス
タービン9と、該ガスタービン9からの高温の排ガスを
所要温度まで温度降下させボイラ本体1へ導く風道蒸発
器10と、前記高圧給水加熱器3と並列に設けられ且つ
ボイラ本体1から排出される排ガスによって給水の一部
を加熱するガス高圧給水加熱器11とを追加装備してな
る構成を有している。
[0003] The exhaust gas reburning combined cycle plant is driven by combustion gas supplied from a combustor 6 and drives a gas turbine generator 7 and a compressor 8. And a gas which is provided in parallel with the high-pressure feed water heater 3 and heats a part of the feed water by the exhaust gas discharged from the boiler body 1. The high pressure feed water heater 11 is additionally provided.

【0004】図6に示される排気再燃型コンバインドサ
イクルプラントにおいては、前記燃焼器6に噴射された
燃料が圧縮機8から送給される圧縮空気と混合して燃焼
し、該燃焼器6からの燃焼ガスがガスタービン9へ供給
されて、前記圧縮機8とガスタービン発電機7が駆動さ
れ発電が行われ、該ガスタービン発電機7を駆動した後
のガスタービン9の排ガスが風道蒸発器10において所
要温度まで温度降下されてボイラ本体1へ導かれ、該ボ
イラ本体1において燃料の燃焼用ガスとして燃焼に供さ
れ、更に、前記ボイラ本体1から排出される排ガスがガ
ス高圧給水加熱器11へ導入され、該ガス高圧給水加熱
器11において前記排ガスにより給水の一部が加熱さ
れ、高圧給水加熱器3において蒸気タービン4からの蒸
気によって加熱された給水と合流されて前記ボイラ本体
1へ導かれ、蒸気化されるようになっている。
[0006] In the exhaust reburning combined cycle plant shown in FIG. 6, fuel injected into the combustor 6 mixes with compressed air supplied from a compressor 8 and burns. The combustion gas is supplied to the gas turbine 9, the compressor 8 and the gas turbine generator 7 are driven to generate electric power, and the exhaust gas of the gas turbine 9 after driving the gas turbine generator 7 is discharged from the wind path evaporator. In 10, the temperature is lowered to a required temperature and guided to the boiler main body 1, where the exhaust gas is supplied to the boiler main body 1 for combustion as a fuel combustion gas. The high pressure feed water heater 11 heats a part of the feed water by the exhaust gas, and the high pressure feed water heater 3 heats the feed water by steam from the steam turbine 4. Wherein it is merged with the water supply is guided to the boiler body 1, and is vaporized.

【0005】[0005]

【発明が解決しようとする課題】前述の如き排気再燃型
コンバインドサイクルプラントにおいては、機器構成の
簡略化並びに経済性の面等から、高圧給水加熱器3の一
個の流量調整弁12の開度を適宜調整することにより、
高圧給水加熱器3とガス高圧給水加熱器11へ分配され
る給水の流量を調整し、ガス高圧給水加熱器11の出口
給水温度を制御することが望まれているが、前記ガス高
圧給水加熱器11の出口給水温度を制御するための具体
的な手段は確立されていないのが現状であった。
In the above-described exhaust-refueling combined cycle plant, the opening of one flow control valve 12 of the high-pressure feed water heater 3 is reduced in view of simplification of the equipment configuration and economy. By adjusting appropriately,
It is desired to adjust the flow rate of the feed water distributed to the high-pressure feed water heater 3 and the high-pressure gas feed water heater 11 to control the outlet feed temperature of the high-pressure gas feed water heater 11. At the present time, no specific means for controlling the outlet water temperature of the eleventh outlet has been established.

【0006】本発明は、斯かる実情に鑑み、高圧給水加
熱器3の流量調整弁12の開度調整により、該高圧給水
加熱器3とガス高圧給水加熱器11へ分配される給水の
流量を調整し、ガス高圧給水加熱器11の出口給水温度
を制御し得る排気再燃型コンバインドサイクルプラント
におけるガス高圧給水加熱器の出口給水温度制御方法及
び装置を提供しようとするものである。
In view of this situation, the present invention adjusts the flow rate of the feedwater distributed to the high-pressure feedwater heater 3 and the gas high-pressure feedwater heater 11 by adjusting the opening of the flow control valve 12 of the high-pressure feedwater heater 3. It is an object of the present invention to provide a method and an apparatus for controlling the outlet feedwater temperature of a gas high-pressure feedwater heater in an exhaust gas reburning combined cycle plant that can adjust and control the outlet feedwater temperature of a gas high-pressure feedwater heater 11.

【0007】[0007]

【課題を解決するための手段】本発明は、ガスタービン
9の排ガスをボイラ本体1において燃料の燃焼用ガスと
して使用すると共に、高圧給水加熱器3とガス高圧給水
加熱器11とによりボイラ本体1への給水を加熱するよ
うにした排気再燃型コンバインドサイクルプラントにお
けるガス高圧給水加熱器の出口給水温度制御方法であっ
て、ボイラ負荷指令19に基づくガス高圧給水加熱器1
1の出口給水温度設定値25とガス高圧給水加熱器11
の実際の出口給水温度18との出口給水温度偏差29か
ら高圧給水加熱器3の給水流量補正値を求め、該高圧給
水加熱器3の給水流量補正値を、ボイラ負荷指令19に
基づく高圧給水加熱器3の給水流量設定値27に対し
て、高圧給水加熱器3の給水最低流量が確保されるよう
加えることにより、高圧給水加熱器3の給水流量補正設
定値37を求め、該高圧給水加熱器3の給水流量補正設
定値37と実際の給水流量23との給水流量偏差39に
応じて高圧給水加熱器3の流量調整弁12の開度を調節
し、ガス高圧給水加熱器11の出口給水温度18を制御
することを特徴とする排気再燃型コンバインドサイクル
プラントにおけるガス高圧給水加熱器の出口給水温度制
御方法にかかるものである。
The present invention uses the exhaust gas of a gas turbine 9 as a fuel combustion gas in a boiler body 1 and uses a high-pressure feed water heater 3 and a gas high-pressure feed water heater 11 to heat the boiler body 1. A method for controlling the outlet feed water temperature of a gas high pressure feed water heater in an exhaust gas reburning combined cycle plant configured to heat feed water to a gas, wherein the gas high pressure feed water heater 1 based on a boiler load command 19
Outlet feed water temperature set point 25 and gas high pressure feed water heater 11
From the outlet water temperature deviation 29 from the actual outlet water temperature 18, the feed water flow correction value of the high pressure feed water heater 3 is obtained, and the feed water flow correction value of the high pressure feed water heater 3 is calculated based on the boiler load command 19. The feedwater flow rate correction set value 37 of the high-pressure feedwater heater 3 is obtained by adding the minimum feedwater flow rate of the high-pressure feedwater heater 3 to the feedwater flow rate set value 27 of the high-pressure feedwater heater 3 to obtain the high-pressure feedwater heater. The opening degree of the flow control valve 12 of the high-pressure feed water heater 3 is adjusted according to the feed water flow deviation 39 between the feed water flow correction set value 37 of FIG. The method according to the present invention relates to a method for controlling the outlet feedwater temperature of a high-pressure gas feedwater heater in an exhaust gas reburning combined cycle plant characterized by controlling the temperature of the exhaust gas.

【0008】又、本発明は、ガスタービン9の排ガスを
ボイラ本体1において燃料の燃焼用ガスとして使用する
と共に、高圧給水加熱器3とガス高圧給水加熱器11と
によりボイラ本体1への給水を加熱するようにした排気
再燃型コンバインドサイクルプラントにおけるガス高圧
給水加熱器の出口給水温度制御装置であって、ボイラ負
荷指令19に基づきガス高圧給水加熱器11の出口給水
温度設定値25を出力する関数発生器24と、ボイラ負
荷指令19に基づき高圧給水加熱器3の給水流量設定値
27を出力する関数発生器26と、前記関数発生器24
から出力されるガス高圧給水加熱器11の出口給水温度
設定値25と、ガス高圧給水加熱器11の出口給水温度
18との差を求め、出口給水温度偏差29を出力する減
算器28と、高圧給水加熱器3の給水最低流量設定値3
1と、前記関数発生器26から出力される高圧給水加熱
器3の給水流量設定値27との差を求め、流量設定値偏
差33を出力する減算器32と、前記減算器28から出
力されるガス高圧給水加熱器11の出口給水温度偏差2
9を比例積分処理して高圧給水加熱器3の給水流量補正
値を求め、該高圧給水加熱器3の給水流量補正値が前記
減算器32から出力される流量設定値偏差33より大き
い場合には、前記高圧給水加熱器3の給水流量補正値を
そのまま補正指令35として出力する一方、前記高圧給
水加熱器3の給水流量補正値が前記減算器32から出力
される流量設定値偏差33以下の場合には、該流量設定
値偏差33を補正指令35として出力する低信号制限器
付比例積分調節器34と、前記関数発生器26から出力
される高圧給水加熱器3の給水流量設定値27に対し前
記低信号制限器付比例積分調節器34から出力される補
正指令35を加え、高圧給水加熱器3の給水流量補正設
定値37を出力する加算器36と、前記高圧給水加熱器
3を流れる給水流量23と、前記加算器36から出力さ
れる高圧給水加熱器3の給水流量補正設定値37との差
を求め、高圧給水加熱器3の給水流量偏差39を出力す
る減算器38と、該減算器38から出力される高圧給水
加熱器3の給水流量偏差39を比例積分処理して前記高
圧給水加熱器3の流量調整弁12へ開度指令21を出力
する比例積分調節器40とを備えたことを特徴とする排
気再燃型コンバインドサイクルプラントにおけるガス高
圧給水加熱器の出口給水温度制御装置にかかるものであ
る。
Further, the present invention uses the exhaust gas of the gas turbine 9 as a fuel combustion gas in the boiler main body 1, and supplies water to the boiler main body 1 by the high pressure feed water heater 3 and the gas high pressure feed water heater 11. An outlet feedwater temperature control device of a gas high pressure feedwater heater in an exhaust reburn type combined cycle plant that is heated, and a function of outputting an outlet feedwater temperature set value 25 of the gas high pressure feedwater heater 11 based on a boiler load command 19. A function generator 26 for outputting a feed water flow rate set value 27 of the high-pressure feed water heater 3 based on the boiler load command 19;
A subtractor 28 for calculating a difference between an outlet feedwater temperature set value 25 of the gas high-pressure feedwater heater 11 and an outlet feedwater temperature 18 of the gas high-pressure feedwater heater 11 and outputting an outlet feedwater temperature deviation 29; Set value of minimum feed water flow 3 of feed water heater 3
1 and a difference between a feed water flow rate set value 27 of the high-pressure feed water heater 3 output from the function generator 26 and a subtractor 32 for outputting a flow rate set value deviation 33, and an output from the subtracter 28. Outlet feedwater temperature deviation 2 of gas high pressure feedwater heater 11
9 is proportionally integrated to obtain a feedwater flow correction value of the high-pressure feedwater heater 3. If the feedwater flow correction value of the high-pressure feedwater heater 3 is larger than the flow rate set value deviation 33 output from the subtractor 32, When the correction value of the feedwater flow rate of the high-pressure feedwater heater 3 is output as it is as the correction command 35, the correction value of the feedwater flow rate of the high-pressure feedwater heater 3 is equal to or less than the flow rate set value deviation 33 output from the subtractor 32. The proportional integral controller 34 with a low signal limiter that outputs the flow rate set value deviation 33 as a correction command 35 and the feed water flow rate set value 27 of the high pressure feed water heater 3 output from the function generator 26 An adder 36 for adding a correction command 35 output from the proportional-integral controller 34 with the low-signal limiter and outputting a set value 37 of a feedwater flow rate correction of the high-pressure feedwater heater 3; Flow 23 and a subtractor 38 for obtaining a difference between a feed water flow correction set value 37 of the high pressure feed water heater 3 outputted from the adder 36 and outputting a feed water flow deviation 39 of the high pressure feed water heater 3; A proportional-integral controller 40 for proportionally integrating the feedwater flow rate deviation 39 of the high-pressure feedwater heater 3 output from 38 and outputting the opening degree command 21 to the flow control valve 12 of the high-pressure feedwater heater 3. The present invention relates to an outlet feedwater temperature control device for a gas high-pressure feedwater heater in an exhaust gas reburning combined cycle plant.

【0009】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0010】本発明の排気再燃型コンバインドサイクル
プラントにおけるガス高圧給水加熱器の出口給水温度制
御方法においては、ボイラ負荷指令19に基づくガス高
圧給水加熱器11の出口給水温度設定値25とガス高圧
給水加熱器11の実際の出口給水温度18との出口給水
温度偏差29から高圧給水加熱器3の給水流量補正値が
求められ、該高圧給水加熱器3の給水流量補正値を、ボ
イラ負荷指令19に基づく高圧給水加熱器3の給水流量
設定値27に対して、高圧給水加熱器3の給水最低流量
が確保されるよう加えることにより、高圧給水加熱器3
の給水流量補正設定値37が求められ、該高圧給水加熱
器3の給水流量補正設定値37と実際の給水流量23と
の給水流量偏差39に応じて高圧給水加熱器3の流量調
整弁12の開度が調節され、ガス高圧給水加熱器11の
出口給水温度18が制御される。
In the method of controlling the outlet water temperature of the gas high pressure feed water heater in the exhaust gas reburning combined cycle plant according to the present invention, the outlet water temperature setting value 25 of the gas high pressure feed water heater 11 based on the boiler load command 19 and the gas high pressure feed water A feedwater flow correction value of the high-pressure feedwater heater 3 is determined from an outlet feedwater temperature deviation 29 from the actual outlet feedwater temperature 18 of the heater 11, and the feedwater flow correction value of the high-pressure feedwater heater 3 is converted into a boiler load command 19. The high-pressure feed water heater 3 is added to the feed water flow rate set value 27 of the high-pressure feed water heater 3 so that the minimum feed water flow rate of the high-pressure feed water heater 3 is secured.
The water supply flow rate correction set value 37 of the high pressure water supply heater 3 is obtained, and the flow rate adjustment valve 12 of the high pressure water supply heater 3 is adjusted according to the water supply flow rate deviation 39 between the water supply flow rate correction set value 37 of the high pressure water supply heater 3 and the actual water supply flow rate 23. The opening is adjusted, and the outlet feedwater temperature 18 of the gas high-pressure feedwater heater 11 is controlled.

【0011】又、本発明の排気再燃型コンバインドサイ
クルプラントにおけるガス高圧給水加熱器の出口給水温
度制御装置においては、ボイラ負荷指令19に基づき関
数発生器24においてガス高圧給水加熱器11の出口給
水温度設定値25が求められて減算器28へ出力され、
ボイラ負荷指令19に基づき関数発生器26において高
圧給水加熱器3の給水流量設定値27が求められて減算
器32と加算器36へ出力され、減算器28において前
記関数発生器24から出力されるガス高圧給水加熱器1
1の出口給水温度設定値25と、前記温度検出器17で
検出されたガス高圧給水加熱器11の出口給水温度18
との差が求められ、出口給水温度偏差29が低信号制限
器付比例積分調節器34へ出力され、減算器32におい
て前記高圧給水加熱器3の給水最低流量設定値31と、
前記関数発生器26から出力される高圧給水加熱器3の
給水流量設定値27との差が求められ、流量設定値偏差
33が低信号制限器付比例積分調節器34へ出力され、
該低信号制限器付比例積分調節器34において前記減算
器28から出力されるガス高圧給水加熱器11の出口給
水温度偏差29が比例積分処理されて高圧給水加熱器3
の給水流量補正値が求められ、該高圧給水加熱器3の給
水流量補正値が前記減算器32から出力される流量設定
値偏差33より大きい場合には、前記高圧給水加熱器3
の給水流量補正値がそのまま補正指令35として加算器
36へ出力される一方、前記高圧給水加熱器3の給水流
量補正値が前記減算器32から出力される流量設定値偏
差33以下の場合には、該流量設定値偏差33が補正指
令35として加算器36へ出力され、該加算器36にお
いて前記関数発生器26から出力される高圧給水加熱器
3の給水流量設定値27に対し前記低信号制限器付比例
積分調節器34から出力される補正指令35が加えら
れ、高圧給水加熱器3の給水流量補正設定値37が減算
器38へ出力され、該減算器38において前記減算器2
2から出力される高圧給水加熱器3を流れる給水流量2
3と、前記加算器36から出力される高圧給水加熱器3
の給水流量補正設定値37との差が求められ、高圧給水
加熱器3の給水流量偏差39が比例積分調節器40へ出
力され、該比例積分調節器40において前記減算器38
から出力される高圧給水加熱器3の給水流量偏差39が
比例積分処理されて流量調整弁12へ開度指令21が出
力され、該開度指令21に応じて流量調整弁12の開度
が調節され、高圧給水加熱器3とガス高圧給水加熱器1
1へ分配される給水の流量が調整され、ガス高圧給水加
熱器11の出口給水温度が出口給水温度設定値25とな
るように制御される。
In the control apparatus for controlling the outlet water temperature of the gas high pressure feed water heater in the exhaust gas reburning combined cycle plant according to the present invention, the outlet water temperature of the gas high pressure feed water heater 11 is generated by the function generator 24 based on the boiler load command 19. The set value 25 is obtained and output to the subtracter 28,
Based on the boiler load command 19, a function generator 26 calculates a feedwater flow rate set value 27 of the high-pressure feedwater heater 3, outputs it to a subtractor 32 and an adder 36, and outputs the subtractor 28 from the function generator 24. Gas high pressure feed water heater 1
1 and the outlet water temperature 18 of the gas high-pressure water heater 11 detected by the temperature detector 17.
Is output to a proportional-integral controller 34 with a low-signal limiter, and a subtractor 32 sets a minimum feedwater flow rate setting value 31 of the high-pressure feedwater heater 3 to:
The difference from the feed water flow rate set value 27 of the high pressure feed water heater 3 output from the function generator 26 is obtained, and the flow rate set value deviation 33 is output to the proportional signal integral controller 34 with a low signal limiter.
In the proportional-integral controller 34 with the low signal limiter, the outlet feedwater temperature deviation 29 of the gas high-pressure feedwater heater 11 output from the subtracter 28 is proportionally integrated, and the high-pressure feedwater heater 3 is processed.
If the feedwater flow correction value of the high-pressure feedwater heater 3 is larger than the flow rate set value deviation 33 output from the subtractor 32, the high-pressure feedwater heater 3
Is output to the adder 36 as the correction command 35 as it is, while the feedwater flow correction value of the high-pressure feedwater heater 3 is equal to or less than the flow rate set value deviation 33 output from the subtractor 32. The flow rate set value deviation 33 is output as a correction command 35 to the adder 36, and the adder 36 outputs the low signal limit value for the feed water flow rate set value 27 of the high pressure feed water heater 3 output from the function generator 26. The correction command 35 output from the proportional integral adjuster 34 is added, and the feed water flow rate correction set value 37 of the high-pressure feed water heater 3 is output to the subtractor 38.
Feed water flow 2 flowing through high pressure feed water heater 3 output from 2
3 and the high pressure feed water heater 3 output from the adder 36
Of the feed water flow correction set value 37 is obtained, and the feed water flow deviation 39 of the high-pressure feed water heater 3 is output to the proportional-integral controller 40, where the subtracter 38
Is proportionally integrated and the opening command 21 is output to the flow control valve 12, and the opening of the flow control valve 12 is adjusted according to the opening command 21. High-pressure feed water heater 3 and gas high-pressure feed water heater 1
The flow rate of feed water distributed to 1 is adjusted, and the outlet feed water temperature of the gas high-pressure feed water heater 11 is controlled to be the outlet feed water temperature set value 25.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1〜図4は本発明を実施する形態の一例
であって、図中、図6と同一の符号を付した部分は同一
物を表わしており、13は給水ポンプ2の吐出流量14
を検出する流量検出器、15はガス高圧給水加熱器11
を流れる給水流量16を検出する流量検出器、17はガ
ス高圧給水加熱器11の出口給水温度18を検出する温
度検出器、20は前記流量検出器13で検出された給水
ポンプ2の吐出流量14と、前記流量検出器15で検出
されたガス高圧給水加熱器11を流れる給水流量16
と、前記温度検出器17で検出されたガス高圧給水加熱
器11の出口給水温度18と、ボイラ負荷指令(MW
D)19とに基づき、高圧給水加熱器3の流量調整弁1
2に対して開度指令21を出力する制御器である。
FIGS. 1 to 4 show an embodiment of the present invention, in which the same reference numerals as those in FIG. 6 denote the same parts, and reference numeral 13 denotes a discharge flow rate of the water supply pump 2. 14
15 is a gas high pressure feed water heater 11
A flow detector for detecting a feed water flow rate 16 flowing through the heater, 17 a temperature detector for detecting an outlet feed water temperature 18 of the gas high-pressure feed water heater 11, and 20 a discharge flow rate 14 of the feed water pump 2 detected by the flow detector 13. And a feed water flow 16 flowing through the gas high-pressure feed water heater 11 detected by the flow detector 15.
The outlet water temperature 18 of the gas high-pressure feed water heater 11 detected by the temperature detector 17, and the boiler load command (MW
D) Based on 19, the flow control valve 1 of the high pressure feed water heater 3
2 is a controller that outputs an opening command 21 to the controller 2.

【0014】前記制御器20は、図2に示す如く、前記
流量検出器13で検出された給水ポンプ2の吐出流量1
4と、前記流量検出器15で検出されたガス高圧給水加
熱器11を流れる給水流量16との差を求め、高圧給水
加熱器3を流れる給水流量23を出力する減算器22
と、ボイラ負荷指令19に基づきガス高圧給水加熱器1
1の出口給水温度設定値25を求めて出力する関数発生
器24と、ボイラ負荷指令19に基づき高圧給水加熱器
3の給水流量設定値27を求めて出力する関数発生器2
6と、前記関数発生器24から出力されるガス高圧給水
加熱器11の出口給水温度設定値25と、前記温度検出
器17で検出されたガス高圧給水加熱器11の出口給水
温度18との差を求め、出口給水温度偏差29を出力す
る減算器28と、蒸気タービン4から高圧給水加熱器3
への蒸気抽気前には0[ton/h]を高圧給水加熱器
3の給水最低流量設定値31として出力する(a側に切
り換えられる)一方、蒸気タービン4から高圧給水加熱
器3への蒸気抽気後にはα[ton/h]を高圧給水加
熱器3の給水最低流量設定値31として出力する(b側
に切り換えられる)切換器30と、該切換器30から出
力される高圧給水加熱器3の給水最低流量設定値31
と、前記関数発生器26から出力される高圧給水加熱器
3の給水流量設定値27との差を求め、流量設定値偏差
33を出力する減算器32と、前記減算器28から出力
されるガス高圧給水加熱器11の出口給水温度偏差29
を比例積分処理して高圧給水加熱器3の給水流量補正値
を求め、該高圧給水加熱器3の給水流量補正値が前記減
算器32から出力される流量設定値偏差33より大きい
場合には、前記高圧給水加熱器3の給水流量補正値をそ
のまま補正指令35として出力する一方、前記高圧給水
加熱器3の給水流量補正値が前記減算器32から出力さ
れる流量設定値偏差33以下の場合には、該流量設定値
偏差33を補正指令35として出力する低信号制限器付
比例積分調節器34と、前記関数発生器26から出力さ
れる高圧給水加熱器3の給水流量設定値27に対し前記
低信号制限器付比例積分調節器34から出力される補正
指令35を加え、高圧給水加熱器3の給水流量補正設定
値37を出力する加算器36と、前記減算器22から出
力される高圧給水加熱器3を流れる給水流量23と、前
記加算器36から出力される高圧給水加熱器3の給水流
量補正設定値37との差を求め、高圧給水加熱器3の給
水流量偏差39を出力する減算器38と、該減算器38
から出力される高圧給水加熱器3の給水流量偏差39を
比例積分処理して前記流量調整弁12へ開度指令21を
出力する比例積分調節器40とを備えてなる構成を有し
ている。
As shown in FIG. 2, the controller 20 controls the discharge flow rate 1 of the feed water pump 2 detected by the flow rate detector 13.
4 and the flow rate of the feed water flowing through the high-pressure feed water heater 11 detected by the flow rate detector 15, and a subtracter 22 that outputs a flow rate 23 of the feed water flowing through the high-pressure feed water heater 3.
And the gas high pressure feed water heater 1 based on the boiler load command 19
1 is a function generator 24 for obtaining and outputting an outlet feedwater temperature set value 25, and a function generator 2 for obtaining and outputting a feedwater flow rate set value 27 of the high-pressure feedwater heater 3 based on a boiler load command 19.
6, the difference between the outlet feedwater temperature set value 25 of the gas high-pressure feedwater heater 11 output from the function generator 24 and the outlet feedwater temperature 18 of the gas high-pressure feedwater heater 11 detected by the temperature detector 17. And a subtractor 28 for outputting an outlet feedwater temperature deviation 29, and a high-pressure feedwater heater 3 from the steam turbine 4.
Before the steam extraction to the high pressure feed water heater 3, 0 [ton / h] is output as the minimum feed water flow rate setting value 31 of the high pressure feed water heater 3 (switched to the a side), while the steam from the steam turbine 4 to the high pressure feed water heater 3 is output. After bleeding, a switch 30 that outputs α [ton / h] as the minimum feed water flow rate setting value 31 of the high pressure feed water heater 3 (switched to the b side), and a high pressure feed water heater 3 output from the switch 30 Minimum supply water flow set value 31
And a subtractor 32 that calculates a difference between a set value 27 of the feed water flow rate of the high-pressure feed water heater 3 output from the function generator 26 and outputs a deviation 33 of the set flow value, and a gas output from the subtracter 28. Outlet feedwater temperature deviation 29 of high pressure feedwater heater 11
Is proportionally integrated to obtain a feedwater flow correction value of the high-pressure feedwater heater 3. If the feedwater flow correction value of the high-pressure feedwater heater 3 is larger than the flow set value deviation 33 output from the subtractor 32, When the feedwater flow correction value of the high-pressure feedwater heater 3 is output as it is as the correction command 35, while the feedwater flow correction value of the high-pressure feedwater heater 3 is equal to or less than the flow set value deviation 33 output from the subtractor 32, The proportional integral controller 34 with a low signal limiter that outputs the flow rate set value deviation 33 as a correction command 35 and the feed water flow rate set value 27 of the high pressure feed water heater 3 output from the function generator 26 An adder 36 for adding a correction command 35 output from a proportional-integral controller 34 with a low-signal limiter and outputting a set value 37 of a feedwater flow rate correction of the high-pressure feedwater heater 3, and a high-pressure feedwater output from the subtractor 22. The difference between the feedwater flow rate 23 flowing through the heater 3 and the feedwater flow correction set value 37 of the high-pressure feedwater heater 3 output from the adder 36 is obtained, and a subtraction for outputting a feedwater flow rate deviation 39 of the high-pressure feedwater heater 3 is performed. And the subtractor 38
And a proportional-integral controller 40 for proportionally integrating the feedwater flow rate deviation 39 of the high-pressure feedwater heater 3 and outputting the opening command 21 to the flow control valve 12.

【0015】尚、前記関数発生器24には、図3に示さ
れるような関数F1(x)が入力されており、該関数F1
(x)は、ボイラ負荷指令19の増減に対し略比例させ
てガス高圧給水加熱器11の出口給水温度設定値25を
増減させることを表わしている。
[0015] Incidentally, the function generator 24, the function F 1 (x) as shown in FIG. 3 is input, The function F 1
(X) indicates that the outlet feedwater temperature set value 25 of the gas high-pressure feedwater heater 11 is increased or decreased substantially in proportion to the increase or decrease of the boiler load command 19.

【0016】又、前記関数発生器26には、図4に示さ
れるような関数F2(x)が入力されており、該関数F2
(x)は、ボイラ負荷指令19の増減に対し略比例させ
て高圧給水加熱器3の給水流量設定値27を増減させる
ことを表わしている。
[0016] Also, in the function generator 26, the function F 2 (x) as shown in FIG. 4 is input, the function number F 2
(X) indicates that the feedwater flow rate setting value 27 of the high-pressure feedwater heater 3 is increased / decreased in substantially proportion to the increase / decrease of the boiler load command 19.

【0017】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0018】運転時には、流量検出器13で検出された
給水ポンプ2の吐出流量14と、流量検出器15で検出
されたガス高圧給水加熱器11を流れる給水流量16と
の差が制御器20の減算器22において求められ、高圧
給水加熱器3を流れる給水流量23が減算器38へ出力
され、ボイラ負荷指令19に基づき関数発生器24にお
いてガス高圧給水加熱器11の出口給水温度設定値25
が求められて減算器28へ出力され、ボイラ負荷指令1
9に基づき関数発生器26において高圧給水加熱器3の
給水流量設定値27が求められて減算器32と加算器3
6へ出力され、減算器28において前記関数発生器24
から出力されるガス高圧給水加熱器11の出口給水温度
設定値25と、前記温度検出器17で検出されたガス高
圧給水加熱器11の出口給水温度18との差が求めら
れ、出口給水温度偏差29が低信号制限器付比例積分調
節器34へ出力される。
In operation, the difference between the discharge flow rate 14 of the feed water pump 2 detected by the flow rate detector 13 and the flow rate 16 of the feed water flowing through the gas high-pressure feed water heater 11 detected by the flow rate detector 15 is determined by the controller 20. The feedwater flow rate 23 obtained in the subtractor 22 and flowing through the high-pressure feedwater heater 3 is output to the subtractor 38, and based on the boiler load command 19, the function generator 24 sets the outlet feedwater temperature set value 25 of the gas high-pressure feedwater heater 11.
Is output to the subtractor 28, and the boiler load command 1
9, the function generator 26 calculates the feedwater flow rate setting value 27 of the high-pressure feedwater heater 3, and the subtractor 32 and the adder 3
6 and the function generator 24
The difference between the set value 25 of the outlet feed water temperature of the gas high pressure feed water heater 11 output from the sensor and the outlet feed water temperature 18 of the gas high pressure feed water heater 11 detected by the temperature detector 17 is obtained, and the outlet feed water temperature deviation 29 is output to a proportional-integral controller 34 with a low signal limiter.

【0019】ここで、蒸気タービン4から高圧給水加熱
器3への蒸気抽気前には、切換器30の入力がa側に切
り換えられ、該切換器30から0[ton/h]が高圧
給水加熱器3の給水最低流量設定値31として減算器3
2へ出力され、該減算器32において前記切換器30か
ら出力される高圧給水加熱器3の給水最低流量設定値3
1と、前記関数発生器26から出力される高圧給水加熱
器3の給水流量設定値27との差が求められ、流量設定
値偏差33が低信号制限器付比例積分調節器34へ出力
され、該低信号制限器付比例積分調節器34において前
記減算器28から出力されるガス高圧給水加熱器11の
出口給水温度偏差29が比例積分処理されて高圧給水加
熱器3の給水流量補正値が求められ、該高圧給水加熱器
3の給水流量補正値が前記減算器32から出力される流
量設定値偏差33より大きい場合には、前記高圧給水加
熱器3の給水流量補正値がそのまま補正指令35として
加算器36へ出力される一方、前記高圧給水加熱器3の
給水流量補正値が前記減算器32から出力される流量設
定値偏差33以下の場合には、該流量設定値偏差33が
補正指令35として加算器36へ出力され、該加算器3
6において前記関数発生器26から出力される高圧給水
加熱器3の給水流量設定値27に対し前記低信号制限器
付比例積分調節器34から出力される補正指令35が加
えられ、高圧給水加熱器3の給水流量補正設定値37が
減算器38へ出力され、該減算器38において前記減算
器22から出力される高圧給水加熱器3を流れる給水流
量23と、前記加算器36から出力される高圧給水加熱
器3の給水流量補正設定値37との差が求められ、高圧
給水加熱器3の給水流量偏差39が比例積分調節器40
へ出力され、該比例積分調節器40において前記減算器
38から出力される高圧給水加熱器3の給水流量偏差3
9が比例積分処理されて流量調整弁12へ開度指令21
が出力され、該開度指令21に応じて流量調整弁12の
開度が調節され、高圧給水加熱器3とガス高圧給水加熱
器11へ分配される給水の流量が調整され、ガス高圧給
水加熱器11の出口給水温度が出口給水温度設定値25
となるように制御される。
Before the steam is extracted from the steam turbine 4 to the high-pressure feed water heater 3, the input of the switch 30 is switched to a side, and 0 [ton / h] is switched from the switch 30 to high-pressure feed water heating. Subtractor 3 as the minimum water supply flow rate setting value 31
2 and the set value 3 of the minimum feed water flow rate of the high pressure feed water heater 3 output from the switch 30 in the subtracter 32.
The difference between 1 and the set value 27 of the feed water flow rate of the high-pressure feed water heater 3 output from the function generator 26 is obtained, and the flow rate set value deviation 33 is output to the proportional-integral controller 34 with a low signal limiter. In the proportional-integral controller 34 with the low signal limiter, the outlet feedwater temperature deviation 29 of the gas high-pressure feedwater heater 11 output from the subtractor 28 is proportionally integrated to obtain a feedwater flow correction value of the high-pressure feedwater heater 3. When the feedwater flow rate correction value of the high-pressure feedwater heater 3 is larger than the flow rate set value deviation 33 output from the subtractor 32, the feedwater flow rate correction value of the high-pressure feedwater heater 3 is directly used as the correction command 35. On the other hand, when the correction value of the feed water flow rate of the high-pressure feed water heater 3 is equal to or smaller than the flow rate set value deviation 33 output from the subtractor 32, the flow rate set value deviation 33 is output to the adder 36. age Is output to the adder 36, the adder 3
In 6, a correction command 35 output from the proportional-integral controller 34 with the low-signal limiter is added to the water supply flow rate set value 27 of the high-pressure water heater 3 output from the function generator 26, and the high-pressure water heater 3 is output to the subtractor 38, where the feedwater flow rate 23 flowing from the high-pressure feedwater heater 3 output from the subtractor 22 and the high-pressure output from the adder 36 are output. The difference from the feed water flow rate correction set value 37 of the feed water heater 3 is obtained, and the feed water flow rate deviation 39 of the high pressure feed water heater 3 is calculated by the proportional integral controller 40.
And the feed-in flow rate deviation 3 of the high-pressure feed water heater 3 output from the subtractor 38 in the proportional-integral controller 40.
9 is proportionally integrated and the opening degree command 21 is sent to the flow regulating valve 12.
Is output, the opening degree of the flow control valve 12 is adjusted according to the opening degree command 21, the flow rate of the feed water distributed to the high pressure feed water heater 3 and the gas high pressure feed water heater 11 is adjusted, and the gas high pressure feed water heating is performed. Outlet water temperature of vessel 11 is outlet water temperature set value 25
It is controlled so that

【0020】尚、前記ガス高圧給水加熱器11の実際の
出口給水温度18が非常に高くなり、該ガス高圧給水加
熱器11へ流通させる給水の流量を大幅に増加させる必
要が生じ、前記低信号制限器付比例積分調節器34にお
いて減算器28から出力されるガス高圧給水加熱器11
の出口給水温度偏差29が比例積分処理されて求められ
る高圧給水加熱器3の給水流量補正値が、減算器32か
ら出力される流量設定値偏差33以下となった場合に
は、該流量設定値偏差33が補正指令35として加算器
36へ出力され、該加算器36において前記関数発生器
26から出力される高圧給水加熱器3の給水流量設定値
27に対し前記低信号制限器付比例積分調節器34から
出力される補正指令35が加えられるため、結果的に0
[ton/h]が高圧給水加熱器3の給水流量補正設定
値37として減算器38へ出力されることとなり、流量
調整弁12が全閉とされ、高圧給水加熱器3に対して給
水が全く流通しない状態となるが、このときは蒸気ター
ビン4から高圧給水加熱器3への蒸気抽気前であるた
め、高圧給水加熱器3が熱により損傷を受けたりする心
配はない。
Incidentally, the actual outlet feed water temperature 18 of the gas high-pressure feed water heater 11 becomes very high, and it becomes necessary to greatly increase the flow rate of feed water flowing to the gas high-pressure feed water heater 11, and the low signal Gas high-pressure feed water heater 11 output from subtractor 28 in proportional-integral controller with limiter 34
If the correction value of the feed water flow rate of the high-pressure feed water heater 3 obtained by performing the proportional integration process on the outlet feed water temperature deviation 29 becomes equal to or less than the flow set value deviation 33 output from the subtractor 32, the flow set value The deviation 33 is output as a correction command 35 to an adder 36, and the adder 36 adjusts the proportional-integral adjustment with the low-signal limiter for the feedwater flow rate set value 27 of the high-pressure feedwater heater 3 output from the function generator 26. Since the correction command 35 output from the heater 34 is added, 0
[Ton / h] is output to the subtracter 38 as the feedwater flow rate correction set value 37 of the high-pressure feedwater heater 3, the flow control valve 12 is fully closed, and the feedwater is completely supplied to the high-pressure feedwater heater 3. Although it does not circulate, the steam is not extracted from the steam turbine 4 to the high-pressure feed water heater 3 at this time, so there is no fear that the high-pressure feed water heater 3 is damaged by heat.

【0021】一方、蒸気タービン4から高圧給水加熱器
3への蒸気抽気後には、切換器30の入力がb側に切り
換えられ、該切換器30からα[ton/h]が高圧給
水加熱器3の給水最低流量設定値31として減算器32
へ出力され、該減算器32において前記切換器30から
出力される高圧給水加熱器3の給水最低流量設定値31
と、前記関数発生器26から出力される高圧給水加熱器
3の給水流量設定値27との差が求められ、流量設定値
偏差33が低信号制限器付比例積分調節器34へ出力さ
れ、該低信号制限器付比例積分調節器34において前記
減算器28から出力されるガス高圧給水加熱器11の出
口給水温度偏差29が比例積分処理されて高圧給水加熱
器3の給水流量補正値が求められ、該高圧給水加熱器3
の給水流量補正値が前記減算器32から出力される流量
設定値偏差33より大きい場合には、前記高圧給水加熱
器3の給水流量補正値がそのまま補正指令35として加
算器36へ出力される一方、前記高圧給水加熱器3の給
水流量補正値が前記減算器32から出力される流量設定
値偏差33以下の場合には、該流量設定値偏差33が補
正指令35として加算器36へ出力され、該加算器36
において前記関数発生器26から出力される高圧給水加
熱器3の給水流量設定値27に対し前記低信号制限器付
比例積分調節器34から出力される補正指令35が加え
られ、高圧給水加熱器3の給水流量補正設定値37が減
算器38へ出力され、該減算器38において前記減算器
22から出力される高圧給水加熱器3を流れる給水流量
23と、前記加算器36から出力される高圧給水加熱器
3の給水流量補正設定値37との差が求められ、高圧給
水加熱器3の給水流量偏差39が比例積分調節器40へ
出力され、該比例積分調節器40において前記減算器3
8から出力される高圧給水加熱器3の給水流量偏差39
が比例積分処理されて流量調整弁12へ開度指令21が
出力され、該開度指令21に応じて流量調整弁12の開
度が調節され、高圧給水加熱器3とガス高圧給水加熱器
11へ分配される給水の流量が調整され、ガス高圧給水
加熱器11の出口給水温度が出口給水温度設定値25と
なるように制御される。
On the other hand, after steam extraction from the steam turbine 4 to the high-pressure feed water heater 3, the input of the switch 30 is switched to the b side, and α [ton / h] is changed from the switch 30 to α [ton / h]. Subtracter 32 as the minimum supply flow rate setting value 31
And the minimum feed water flow rate setting value 31 of the high-pressure feed water heater 3 output from the switch 30 in the subtractor 32.
And the feed water flow rate set value 27 of the high-pressure feed water heater 3 output from the function generator 26 is obtained, and a flow rate set value deviation 33 is output to a proportional-integral controller 34 with a low signal limiter. In the proportional-integral controller 34 with the low-signal limiter, the outlet feedwater temperature deviation 29 of the gas high-pressure feedwater heater 11 output from the subtractor 28 is proportionally integrated, and the feedwater flow rate correction value of the high-pressure feedwater heater 3 is obtained. , The high pressure feed water heater 3
Is larger than the flow rate set value deviation 33 output from the subtractor 32, the feed water flow correction value of the high-pressure feed water heater 3 is directly output to the adder 36 as the correction command 35. When the feedwater flow rate correction value of the high-pressure feedwater heater 3 is equal to or less than the flow rate set value deviation 33 output from the subtractor 32, the flow rate set value deviation 33 is output to the adder 36 as a correction command 35, The adder 36
The correction command 35 output from the proportional-integral controller 34 with the low-signal limiter is added to the feed water flow rate set value 27 of the high-pressure feed water heater 3 output from the function generator 26, and the high-pressure feed water heater 3 Is supplied to the subtractor 38, and the feedwater flow rate 23 flowing through the high-pressure feedwater heater 3 output from the subtractor 22 and the high-pressure feedwater output from the adder 36 are output from the subtractor 38. The difference from the feed water flow rate correction set value 37 of the heater 3 is obtained, and the feed water flow rate deviation 39 of the high-pressure feed water heater 3 is output to the proportional-integral controller 40.
Feed water flow rate deviation 39 of the high pressure feed water heater 3 output from 8
Is proportionally integrated, and an opening command 21 is output to the flow control valve 12. The opening of the flow control valve 12 is adjusted in accordance with the opening command 21, and the high-pressure water heater 3 and the gas high-pressure water heater 11 are adjusted. The flow rate of the feedwater distributed to the heater is adjusted, and the outlet feedwater temperature of the gas high-pressure feedwater heater 11 is controlled to be the outlet feedwater temperature set value 25.

【0022】尚、蒸気タービン4から高圧給水加熱器3
への蒸気抽気後に、前記ガス高圧給水加熱器11の実際
の出口給水温度18が非常に高くなり、該ガス高圧給水
加熱器11へ流通させる給水の流量を大幅に増加させる
必要が生じ、前記低信号制限器付比例積分調節器34に
おいて減算器28から出力されるガス高圧給水加熱器1
1の出口給水温度偏差29が比例積分処理されて求めら
れる高圧給水加熱器3の給水流量補正値が、減算器32
から出力される流量設定値偏差33以下となった場合に
は、該流量設定値偏差33が補正指令35として加算器
36へ出力され、該加算器36において前記関数発生器
26から出力される高圧給水加熱器3の給水流量設定値
27に対し前記低信号制限器付比例積分調節器34から
出力される補正指令35が加えられるため、結果的にα
[ton/h]が高圧給水加熱器3の給水流量補正設定
値37として減算器38へ出力されることとなり、流量
調整弁12が全閉とされず、高圧給水加熱器3に対して
α[ton/h]の給水が必ず流通する状態となり、高
圧給水加熱器3の給水最低流量が確保され、高圧給水加
熱器3が熱から保護される形となる。
The high pressure feed water heater 3 from the steam turbine 4
After the steam extraction to the gas high-pressure feedwater heater 11, the actual outlet feedwater temperature 18 of the gas high-pressure feedwater heater 11 becomes very high, and it becomes necessary to greatly increase the flow rate of the feedwater flowing to the gas high-pressure feedwater heater 11, Gas high-pressure feed water heater 1 output from subtractor 28 in proportional-integral controller 34 with signal limiter
1, the feed water flow rate correction value of the high pressure feed water heater 3 obtained by performing the proportional integration process on the outlet feed water temperature deviation 29 is
When the flow rate set value deviation 33 output from the controller becomes equal to or less than 33, the flow rate set value deviation 33 is output to the adder 36 as a correction command 35, and the high voltage output from the function generator 26 in the adder 36 is output. Since the correction command 35 output from the proportional-integral controller 34 with the low-signal limiter is added to the feed water flow rate set value 27 of the feed water heater 3, α
[Ton / h] is output to the subtractor 38 as the feedwater flow rate correction set value 37 of the high-pressure feedwater heater 3, the flow control valve 12 is not fully closed, and α [ ton / h] of water supply always flows, the minimum supply flow rate of the high-pressure water heater 3 is secured, and the high-pressure water heater 3 is protected from heat.

【0023】こうして、高圧給水加熱器3の流量調整弁
12の開度調整により、該高圧給水加熱器3とガス高圧
給水加熱器11へ分配される給水の流量を調整し、ガス
高圧給水加熱器11の出口給水温度を制御し得、更に、
高圧給水加熱器3の給水最低流量を確保して、高圧給水
加熱器3を熱から保護し得る。
In this way, by adjusting the opening of the flow control valve 12 of the high-pressure feed water heater 3, the flow rate of the feed water distributed to the high-pressure feed water heater 3 and the gas high-pressure feed water heater 11 is adjusted. 11 can control the outlet feedwater temperature;
The minimum feedwater flow rate of the high-pressure feedwater heater 3 can be secured to protect the high-pressure feedwater heater 3 from heat.

【0024】尚、本発明の排気再燃型コンバインドサイ
クルプラントにおけるガス高圧給水加熱器の出口給水温
度制御方法及び装置は、上述の図示例にのみ限定される
ものではなく、流量検出器で検出された給水ポンプの吐
出流量と、流量検出器で検出されたガス高圧給水加熱器
11を流れる給水流量との差から、高圧給水加熱器3を
流れる給水流量を求める代りに、高圧給水加熱器3を流
れる給水流量を直接検出するようにしてもよいこと等、
その他、本発明の要旨を逸脱しない範囲内において種々
変更を加え得ることは勿論である。
It should be noted that the method and apparatus for controlling the outlet feedwater temperature of the high-pressure gas feedwater heater in the exhaust gas reburning combined cycle plant of the present invention are not limited to the above-described example, but are detected by the flow rate detector. Instead of obtaining the flow rate of the feedwater flowing through the high-pressure feedwater heater 3 from the difference between the discharge flow rate of the feedwater pump and the flowrate of the feedwater flowing through the gas high-pressure feedwater heater 11 detected by the flow rate detector, the flow rate through the high-pressure feedwater heater 3 is changed. Such that the feedwater flow rate may be directly detected,
In addition, it goes without saying that various changes can be made without departing from the spirit of the present invention.

【0025】[0025]

【発明の効果】以上、説明したように本発明の排気再燃
型コンバインドサイクルプラントにおけるガス高圧給水
加熱器の出口給水温度制御方法及び装置によれば、高圧
給水加熱器3の流量調整弁12の開度調整により、該高
圧給水加熱器3とガス高圧給水加熱器11へ分配される
給水の流量を調整し、ガス高圧給水加熱器11の出口給
水温度を制御し得、更に、高圧給水加熱器3の給水最低
流量を確保して、高圧給水加熱器3を熱から保護し得る
という優れた効果を奏し得る。
As described above, according to the method and the apparatus for controlling the outlet feedwater temperature of the gas high-pressure feedwater heater in the exhaust reburning combined cycle plant according to the present invention, the opening of the flow control valve 12 of the high-pressure feedwater heater 3 is opened. By adjusting the temperature, the flow rate of the feed water distributed to the high-pressure feed water heater 3 and the gas high-pressure feed water heater 11 can be adjusted, the outlet feed temperature of the gas high-pressure feed water heater 11 can be controlled, and the high-pressure feed water heater 3 can be controlled. , The high-pressure feedwater heater 3 can be protected from heat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の全体概要構成図
である。
FIG. 1 is an overall schematic configuration diagram of an example of an embodiment of the present invention.

【図2】本発明を実施する形態の一例における制御器の
詳細を示すブロック図である。
FIG. 2 is a block diagram illustrating details of a controller according to an example of an embodiment of the present invention;

【図3】図2に示す関数発生器24に設定されている関
数を表わす線図である。
FIG. 3 is a diagram showing functions set in a function generator 24 shown in FIG. 2;

【図4】図2に示す関数発生器26に設定されている関
数を表わす線図である。
FIG. 4 is a diagram showing functions set in a function generator 26 shown in FIG. 2;

【図5】従来の一般的なボイラによる発電プラントの一
例の全体概要構成図である。
FIG. 5 is an overall schematic configuration diagram of an example of a conventional power plant using a general boiler.

【図6】近年提案されている排気再燃型コンバインドサ
イクルプラントの一例の全体概要構成図である。
FIG. 6 is an overall schematic configuration diagram of an example of an exhaust gas reburning combined cycle plant proposed in recent years.

【符号の説明】[Explanation of symbols]

1 ボイラ本体 3 高圧給水加熱器 9 ガスタービン 11 ガス高圧給水加熱器 12 流量調整弁 16 給水流量 18 出口給水温度 19 ボイラ負荷指令 20 制御器 21 開度指令 23 給水流量 24 関数発生器 25 出口給水温度設定値 26 関数発生器 27 給水流量設定値 28 減算器 29 出口給水温度偏差 31 給水最低流量設定値 32 減算器 33 流量設定値偏差 34 低信号制限器付比例積分調節器 35 補正指令 36 加算器 37 給水流量補正設定値 38 減算器 39 給水流量偏差 40 比例積分調節器 DESCRIPTION OF SYMBOLS 1 Boiler main body 3 High pressure feed water heater 9 Gas turbine 11 Gas high pressure feed water heater 12 Flow control valve 16 Feed water flow 18 Outlet feed water temperature 19 Boiler load command 20 Controller 21 Opening command 23 Feed water flow 24 Function generator 25 Outlet feed water temperature Set value 26 Function generator 27 Feed water flow set value 28 Subtractor 29 Outlet feed water temperature deviation 31 Minimum feed water flow set value 32 Subtractor 33 Flow rate set value deviation 34 Proportional integration controller with low signal limiter 35 Correction command 36 Adder 37 Water supply flow rate correction set value 38 Subtractor 39 Water supply flow rate deviation 40 Proportional integral controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン(9)の排ガスをボイラ本
体(1)において燃料の燃焼用ガスとして使用すると共
に、高圧給水加熱器(3)とガス高圧給水加熱器(1
1)とによりボイラ本体(1)への給水を加熱するよう
にした排気再燃型コンバインドサイクルプラントにおけ
るガス高圧給水加熱器の出口給水温度制御方法であっ
て、 ボイラ負荷指令(19)に基づくガス高圧給水加熱器
(11)の出口給水温度設定値(25)とガス高圧給水
加熱器(11)の実際の出口給水温度(18)との出口
給水温度偏差(29)から高圧給水加熱器(3)の給水
流量補正値を求め、該高圧給水加熱器(3)の給水流量
補正値を、ボイラ負荷指令(19)に基づく高圧給水加
熱器(3)の給水流量設定値(27)に対して、高圧給
水加熱器(3)の給水最低流量が確保されるよう加える
ことにより、高圧給水加熱器(3)の給水流量補正設定
値(37)を求め、該高圧給水加熱器(3)の給水流量
補正設定値(37)と実際の給水流量(23)との給水
流量偏差(39)に応じて高圧給水加熱器(3)の流量
調整弁(12)の開度を調節し、ガス高圧給水加熱器
(11)の出口給水温度(18)を制御することを特徴
とする排気再燃型コンバインドサイクルプラントにおけ
るガス高圧給水加熱器の出口給水温度制御方法。
An exhaust gas from a gas turbine (9) is used as a fuel combustion gas in a boiler body (1), and a high-pressure feed water heater (3) and a gas high-pressure feed water heater (1) are used.
1) A method for controlling the outlet feedwater temperature of a high-pressure gas feedwater heater in an exhaust gas reburning combined cycle plant, wherein the feedwater to a boiler main body (1) is heated by (1). A high pressure feed water heater (3) is obtained from an outlet feed water temperature deviation (29) between the outlet feed water temperature set value (25) of the feed water heater (11) and the actual outlet feed temperature (18) of the gas high pressure feed water heater (11). Of the high-pressure feed water heater (3), and the feed-water flow correction value of the high-pressure feed water heater (3) based on the boiler load command (19), The feedwater flow rate correction set value (37) of the high-pressure feedwater heater (3) is obtained by adding the minimum feedwater flow rate of the high-pressure feedwater heater (3), and the feedwater flow rate of the high-pressure feedwater heater (3) is determined. Correction setting value (37 ) And the actual feedwater flow rate (23), the opening of the flow control valve (12) of the high-pressure feedwater heater (3) is adjusted in accordance with the feedwater flow deviation (39) of the high-pressure feedwater heater (3). An outlet feedwater temperature control method for a gas high pressure feedwater heater in an exhaust gas reburning combined cycle plant, comprising controlling an outlet feedwater temperature (18).
【請求項2】 ガスタービン(9)の排ガスをボイラ本
体(1)において燃料の燃焼用ガスとして使用すると共
に、高圧給水加熱器(3)とガス高圧給水加熱器(1
1)とによりボイラ本体(1)への給水を加熱するよう
にした排気再燃型コンバインドサイクルプラントにおけ
るガス高圧給水加熱器の出口給水温度制御装置であっ
て、 ボイラ負荷指令(19)に基づきガス高圧給水加熱器
(11)の出口給水温度設定値(25)を出力する関数
発生器(24)と、 ボイラ負荷指令(19)に基づき高圧給水加熱器(3)
の給水流量設定値(27)を出力する関数発生器(2
6)と、 前記関数発生器(24)から出力されるガス高圧給水加
熱器(11)の出口給水温度設定値(25)と、ガス高
圧給水加熱器(11)の出口給水温度(18)との差を
求め、出口給水温度偏差(29)を出力する減算器(2
8)と、 高圧給水加熱器(3)の給水最低流量設定値(31)
と、前記関数発生器(26)から出力される高圧給水加
熱器(3)の給水流量設定値(27)との差を求め、流
量設定値偏差(33)を出力する減算器(32)と、 前記減算器(28)から出力されるガス高圧給水加熱器
(11)の出口給水温度偏差(29)を比例積分処理し
て高圧給水加熱器(3)の給水流量補正値を求め、該高
圧給水加熱器(3)の給水流量補正値が前記減算器(3
2)から出力される流量設定値偏差(33)より大きい
場合には、前記高圧給水加熱器(3)の給水流量補正値
をそのまま補正指令(35)として出力する一方、前記
高圧給水加熱器(3)の給水流量補正値が前記減算器
(32)から出力される流量設定値偏差(33)以下の
場合には、該流量設定値偏差(33)を補正指令(3
5)として出力する低信号制限器付比例積分調節器(3
4)と、 前記関数発生器(26)から出力される高圧給水加熱器
(3)の給水流量設定値(27)に対し前記低信号制限
器付比例積分調節器(34)から出力される補正指令
(35)を加え、高圧給水加熱器(3)の給水流量補正
設定値(37)を出力する加算器(36)と、 前記高圧給水加熱器(3)を流れる給水流量(23)
と、前記加算器(36)から出力される高圧給水加熱器
(3)の給水流量補正設定値(37)との差を求め、高
圧給水加熱器(3)の給水流量偏差(39)を出力する
減算器(38)と、 該減算器(38)から出力される高圧給水加熱器(3)
の給水流量偏差(39)を比例積分処理して前記高圧給
水加熱器(3)の流量調整弁(12)へ開度指令(2
1)を出力する比例積分調節器(40)とを備えたこと
を特徴とする排気再燃型コンバインドサイクルプラント
におけるガス高圧給水加熱器の出口給水温度制御装置。
2. The exhaust gas of a gas turbine (9) is used as fuel combustion gas in a boiler body (1), and a high-pressure feed water heater (3) and a gas high-pressure feed water heater (1) are used.
1) An outlet feedwater temperature control device of a gas high-pressure feedwater heater in an exhaust gas reburning combined cycle plant configured to heat the feedwater to a boiler body (1) by (1), wherein the gas pressure is increased based on a boiler load command (19). A function generator (24) for outputting a set value (25) of outlet feed water temperature of the feed water heater (11), and a high pressure feed water heater (3) based on a boiler load command (19)
Function generator (2) that outputs the set water supply flow rate (27)
6), an outlet feedwater temperature set value (25) of the gas high-pressure feedwater heater (11) output from the function generator (24), and an outlet feedwater temperature (18) of the gas high-pressure feedwater heater (11). Subtractor (2) that calculates the difference between
8), and the minimum feed water flow rate setting value of the high pressure feed water heater (3) (31)
And a subtracter (32) for calculating a difference between a feed water flow set value (27) of the high-pressure feed water heater (3) output from the function generator (26) and outputting a flow set value deviation (33). A proportional integration process is performed on the outlet feedwater temperature deviation (29) of the gas high-pressure feedwater heater (11) output from the subtracter (28) to obtain a feedwater flow rate correction value of the high-pressure feedwater heater (3). The correction value of the feed water flow rate of the feed water heater (3) is calculated by the subtracter (3).
When the flow rate set value deviation (33) output from 2) is larger than the high-pressure feed water heater (3), the correction value (35) is output as it is as the correction command (35), while the high-pressure feed water heater (3) is output. If the water supply flow rate correction value of 3) is equal to or smaller than the flow rate set value deviation (33) output from the subtracter (32), the flow rate set value deviation (33) is corrected by the correction command (3).
5) Proportional integral controller with low signal limiter (3)
4) and a correction output from the proportional-integral controller with low-signal limiter (34) to the feedwater flow rate set value (27) of the high-pressure feedwater heater (3) output from the function generator (26). An adder (36) for adding a command (35) and outputting a set value (37) of a feedwater flow correction of the high-pressure feedwater heater (3); and a feedwater flow (23) flowing through the high-pressure feedwater heater (3).
Of the high-pressure feed water heater (3) output from the adder (36) and the correction value (37) of the high-pressure feed water heater (3), and outputs the feed water flow deviation (39) of the high-pressure feed water heater (3). And a high-pressure feedwater heater (3) output from the subtractor (38).
The feed water flow deviation (39) is proportionally integrated and the opening degree command (2) is sent to the flow control valve (12) of the high pressure feed water heater (3).
An outlet feedwater temperature control device for a gas high-pressure feedwater heater in an exhaust gas reburning combined cycle plant, comprising a proportional-integral controller (40) that outputs 1).
JP19760796A 1996-07-26 1996-07-26 Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant Expired - Fee Related JP3845905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19760796A JP3845905B2 (en) 1996-07-26 1996-07-26 Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19760796A JP3845905B2 (en) 1996-07-26 1996-07-26 Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant

Publications (2)

Publication Number Publication Date
JPH1038201A true JPH1038201A (en) 1998-02-13
JP3845905B2 JP3845905B2 (en) 2006-11-15

Family

ID=16377292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19760796A Expired - Fee Related JP3845905B2 (en) 1996-07-26 1996-07-26 Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant

Country Status (1)

Country Link
JP (1) JP3845905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251670A (en) * 2011-05-31 2012-12-20 Toshiba Corp Power plant and operation method of the same
JP2013246020A (en) * 2012-05-25 2013-12-09 Tlv Co Ltd Drain flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251670A (en) * 2011-05-31 2012-12-20 Toshiba Corp Power plant and operation method of the same
JP2013246020A (en) * 2012-05-25 2013-12-09 Tlv Co Ltd Drain flowmeter

Also Published As

Publication number Publication date
JP3845905B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
CA1190304A (en) Hrsg damper control
JP4885199B2 (en) Gas turbine operation control apparatus and method
CN112334636B (en) Composite power generation facility and method for operating same
KR101818021B1 (en) Method for regulating a short-term power increase of a steam turbine
US4145995A (en) Method of operating a power plant and apparatus therefor
JP4948348B2 (en) Combined cycle power plant
JPH1038201A (en) Control method and apparatus for outlet supply water temperature of gas high pressure supply water heater in exhaust recombustion type combined cycle plant
JP3530344B2 (en) Compressor surging prevention device for pressurized fluidized bed combined cycle system
JP2000111003A (en) Control method of extraction fluctuation boiler
JP3697731B2 (en) Main steam temperature controller in exhaust recombustion combined cycle plant
JP2002168406A (en) Reheat steam temperature controller for boiler
JP3820636B2 (en) Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant
JP4981509B2 (en) Combined power plant steam turbine operation control system
JPH05272361A (en) Load controller of combined-cycle power generating plant
JPH07166814A (en) Starting method for uniaxial combined cycle power generation plant
JPH06123238A (en) Control method of operating circulation type power system
JPH09105503A (en) Method and apparatus for controlling steam temperature of combined cycle plant
JP2004353994A (en) Reheated steam temperature control device and control method
JPH08135405A (en) High pressure turbine bypass steam temperature control method and its device
JPH0252904A (en) Control method of steam temperature and controller
JPH09236202A (en) Apparatus and method for controlling fuel of boiler
JPH05280304A (en) Heat and electricity feeder
JPH0674401A (en) Pressurized fluidized bed boiler composite generating plant, load control method and device thereof
JP2002286202A (en) Boiler vapor temperature control device
JPH0223928Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees