JP2000111003A - Control method of extraction fluctuation boiler - Google Patents

Control method of extraction fluctuation boiler

Info

Publication number
JP2000111003A
JP2000111003A JP10283830A JP28383098A JP2000111003A JP 2000111003 A JP2000111003 A JP 2000111003A JP 10283830 A JP10283830 A JP 10283830A JP 28383098 A JP28383098 A JP 28383098A JP 2000111003 A JP2000111003 A JP 2000111003A
Authority
JP
Japan
Prior art keywords
generator output
boiler
main steam
output
boiler master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10283830A
Other languages
Japanese (ja)
Inventor
Yasuyo Kawamura
耕世 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP10283830A priority Critical patent/JP2000111003A/en
Publication of JP2000111003A publication Critical patent/JP2000111003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of an extraction fluctuation boiler capable of raising load follow-up performance. SOLUTION: A loss generator output 31 based on an extraction flow rate 29 is added to a generator output demand 20 so as to obtain a loss-consideration generator output demand 33, and a boiler master preceding command 21 is derived from the loss consideration generator output demand 33. The boiler master preceding command 21 is added to a boiler master command 18 for eliminating a main steam pressure deviation 14 of a main steam pressure 9 from a main steam pressure set value 13 so as to obtain a boiler master 23, and the travel of a fuel regulating valve 3 is regulated on the basis of the boiler master 23 and the travel of a governor valve 6 of a high pressure turbine 5 is regulated in such a manner as to eliminate a generator output deviation 25 of the generator output 11 from the generator output demand 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抽気変動型ボイラ
の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a bleed-air variable boiler.

【0002】[0002]

【従来の技術】図3は自家発電用の産業ボイラの一例を
表わすものであって、1はボイラ本体、2はボイラ本体
1の火炉、3はボイラ本体1の火炉2へ供給される燃料
の流量を調節するための燃料調節弁、4はボイラ本体1
の過熱器、5は高圧タービン、6は高圧タービン5の入
側に設けられたガバナ弁、7は低圧タービン、8は高圧
タービン5及び低圧タービン7によって駆動される発電
機であり、ボイラ本体1の火炉2へ燃料が供給されて燃
焼が行われ、発生した燃焼ガスの熱により過熱器4で過
熱された主蒸気が高圧タービン5へ導かれ、該高圧ター
ビン5が駆動されて発電機8により発電が行われると共
に、前記高圧タービン5を駆動した後の蒸気は、ボイラ
本体1の再熱器(図示せず)へ導かれ、該再熱器で再熱
された後、低圧タービン7へ導入され、該低圧タービン
7が駆動されて前記発電機8により発電が行われ、前記
低圧タービン7を駆動した後の蒸気は、復水器(図示せ
ず)へ導かれ、該復水器でボイラ給水に戻され、図示し
ていない給水ポンプによりボイラ本体1の節炭器を経て
火炉2へ圧送され、該節炭器と火炉2で加熱され、前記
過熱器4へ送給され循環されるようになっている。
2. Description of the Related Art FIG. 3 shows an example of an industrial boiler for private power generation, wherein 1 is a boiler body, 2 is a furnace of the boiler body 1, and 3 is a fuel supply to the furnace 2 of the boiler body 1. Fuel control valve for adjusting the flow rate, 4 is the boiler body 1
Is a superheater, 5 is a high-pressure turbine, 6 is a governor valve provided on the inlet side of the high-pressure turbine 5, 7 is a low-pressure turbine, 8 is a generator driven by the high-pressure turbine 5 and the low-pressure turbine 7, and the boiler body 1 Is supplied to the furnace 2 to perform combustion, and the main steam superheated by the superheater 4 by the heat of the generated combustion gas is guided to the high-pressure turbine 5. The high-pressure turbine 5 is driven by the generator 8. While power is generated, the steam after driving the high-pressure turbine 5 is guided to a reheater (not shown) of the boiler main body 1, reheated by the reheater, and then introduced into the low-pressure turbine 7. The low-pressure turbine 7 is driven to generate electric power by the generator 8, and the steam after driving the low-pressure turbine 7 is guided to a condenser (not shown), where the steam is boiled. Return to the water supply, water supply not shown Through the economizer of the boiler body 1 is pumped into the furnace 2 is heated by the nodal economizer and furnace 2, is fed to the superheater 4 is adapted to be circulated by.

【0003】又、前述の如きボイラの制御系は、通常、
主蒸気圧力9を検出する圧力検出器10と、発電機出力
11を検出する出力検出器12と、前記圧力検出器10
で検出された主蒸気圧力9と主蒸気圧力設定値13との
差を求め、主蒸気圧力偏差14を出力する減算器15
と、該減算器15から出力される主蒸気圧力偏差14に
対して負荷によるゲイン補正を行い、補正主蒸気圧力偏
差16を出力するゲイン補正器17と、該ゲイン補正器
17から出力される補正主蒸気圧力偏差16を比例積分
微分処理し、該補正主蒸気圧力偏差16をなくすための
ボイラマスタ指令18を出力する比例積分微分調節器1
9と、発電機出力要求20に基づきボイラマスタ先行指
令21を求めて出力する第一関数発生器22と、前記比
例積分微分調節器19から出力されるボイラマスタ指令
18に対し前記第一関数発生器22から出力されるボイ
ラマスタ先行指令21を加えてボイラマスタ23を求
め、該ボイラマスタ23に基づく燃料調節弁3の開度指
令を燃料調節弁3へ出力する加算器24と、発電機出力
要求20と前記出力検出器12で検出された発電機出力
11との差を求め、発電機出力偏差25を出力する減算
器26と、該減算器26から出力される発電機出力偏差
25を比例積分微分処理し、該発電機出力偏差25をな
くすためのガバナ開度指令27をガバナ弁6へ出力する
比例積分微分調節器28とを備えてなる構成を有してい
る。
The control system of a boiler as described above is usually
A pressure detector 10 for detecting the main steam pressure 9; an output detector 12 for detecting the generator output 11;
Subtracter 15 for obtaining the difference between the main steam pressure 9 and the main steam pressure set value 13 detected in the above step, and outputting a main steam pressure deviation 14
And a gain corrector 17 for performing gain correction by a load on the main steam pressure deviation 14 output from the subtractor 15 and outputting a corrected main steam pressure deviation 16, and a correction output from the gain corrector 17. Proportional-integral / differential controller 1 for performing a proportional-integral-differential process on main steam pressure deviation 16 and outputting a boiler master command 18 for eliminating the corrected main steam pressure deviation 16
9, a first function generator 22 for obtaining and outputting a boiler master advance command 21 based on a generator output request 20, and a first function generator 22 for the boiler master command 18 output from the proportional-integral / differential controller 19. A boiler master 23 is obtained by adding the boiler master advance command 21 output from the boiler master, and an adder 24 that outputs an opening degree command of the fuel control valve 3 based on the boiler master 23 to the fuel control valve 3; A difference from the generator output 11 detected by the detector 12 is obtained, and a subtracter 26 that outputs a generator output deviation 25, and a generator output deviation 25 that is output from the subtracter 26 are subjected to proportional integral differentiation processing, It has a configuration including a proportional-integral-differential adjuster 28 that outputs a governor opening degree command 27 for eliminating the generator output deviation 25 to the governor valve 6.

【0004】前記第一関数発生器22には、図4に示さ
れる如く、発電機出力要求20の増減に対しボイラマス
タ先行指令21を略比例させる形で増減させるような関
数が入力されている。
As shown in FIG. 4, a function for increasing or decreasing the boiler master advance command 21 in proportion to an increase or decrease of the generator output request 20 is input to the first function generator 22.

【0005】これにより、ボイラの運転時には、圧力検
出器10によって主蒸気圧力9が検出されると共に、出
力検出器12によって発電機出力11が検出され、前記
圧力検出器10で検出された主蒸気圧力9と主蒸気圧力
設定値13との差が減算器15において求められ、主蒸
気圧力偏差14がゲイン補正器17へ出力され、該ゲイ
ン補正器17において前記減算器15から出力される主
蒸気圧力偏差14に対して負荷によるゲイン補正が行わ
れ、補正主蒸気圧力偏差16が比例積分微分調節器19
へ出力され、該比例積分微分調節器19において前記ゲ
イン補正器17から出力される補正主蒸気圧力偏差16
が比例積分微分処理され、該補正主蒸気圧力偏差16を
なくすためのボイラマスタ指令18が加算器24へ出力
される一方、第一関数発生器22において発電機出力要
求20に基づきボイラマスタ先行指令21が求められて
前記加算器24へ出力され、該加算器24において前記
比例積分微分調節器19から出力されるボイラマスタ指
令18に対し前記第一関数発生器22から出力されるボ
イラマスタ先行指令21が加えられてボイラマスタ23
が求められ、該ボイラマスタ23に基づく燃料調節弁3
の開度指令が燃料調節弁3へ出力され、該燃料調節弁3
の開度が調節され、ボイラ本体1の火炉2へ供給される
燃料流量が調節され、これと同時に、発電機出力要求2
0と前記出力検出器12で検出された発電機出力11と
の差が減算器26において求められ、発電機出力偏差2
5が比例積分微分調節器28へ出力され、該比例積分微
分調節器28において前記減算器26から出力される発
電機出力偏差25が比例積分微分処理され、該発電機出
力偏差25をなくすためのガバナ開度指令27がガバナ
弁6へ出力され、該ガバナ弁6の開度が調節され、高圧
タービン5へ導かれる主蒸気流量が調節されるようにな
っている。
During operation of the boiler, the main steam pressure 9 is detected by the pressure detector 10, the generator output 11 is detected by the output detector 12, and the main steam pressure detected by the pressure detector 10 is detected. The difference between the pressure 9 and the main steam pressure set value 13 is obtained in the subtractor 15, the main steam pressure deviation 14 is output to the gain corrector 17, and the main steam output from the subtractor 15 in the gain corrector 17. The pressure deviation 14 is subjected to gain correction by a load, and the corrected main steam pressure deviation 16 is calculated by a proportional-integral-differential controller 19.
And the corrected main steam pressure deviation 16 output from the gain corrector 17 in the proportional-integral-derivative adjuster 19.
Is subjected to a proportional-integral-differential process, and a boiler master command 18 for eliminating the corrected main steam pressure deviation 16 is output to an adder 24, while a boiler master advance command 21 is generated in a first function generator 22 based on a generator output request 20. It is obtained and output to the adder 24. In the adder 24, the boiler master advance command 21 output from the first function generator 22 is added to the boiler master command 18 output from the proportional-integral-derivative controller 19. Boiler master 23
And the fuel control valve 3 based on the boiler master 23
Is output to the fuel control valve 3 and the fuel control valve 3
Of the fuel supply to the furnace 2 of the boiler body 1 is adjusted.
The difference between 0 and the generator output 11 detected by the output detector 12 is obtained by a subtractor 26, and the generator output deviation 2
5 is output to the proportional-integral-derivative adjuster 28, and the generator-output deviation 25 output from the subtracter 26 is subjected to proportional-integral-differential processing in the proportional-integral-differential adjuster 28 to eliminate the generator output deviation 25. The governor opening command 27 is output to the governor valve 6, the opening of the governor valve 6 is adjusted, and the flow rate of the main steam guided to the high-pressure turbine 5 is adjusted.

【0006】[0006]

【発明が解決しようとする課題】前述の如きボイラの制
御は、一般に、APC制御(Automatic Pl
ant Control)と呼ばれ、発電機出力要求2
0を先行要素としていることからボイラの負荷追従性が
よく、近年においてはボイラの制御の主流となってい
る。
The control of a boiler as described above is generally performed by APC control (Automatic Pl).
Ant Control), and generator output request 2
Since 0 is the leading element, the load following capability of the boiler is good, and in recent years, it has become the mainstream of boiler control.

【0007】しかしながら、図3において仮想線で示さ
れるように、過熱器4から高圧タービン5へ導入される
主蒸気の一部を必要に応じて工場等へ抽気するようにし
た、いわゆる抽気変動型ボイラの場合には、ボイラ本体
1の過熱器4から吐き出される主蒸気が高圧タービン5
へ全量飲み込まれるわけではないため、発電機出力要求
20を先行要素とするだけでは、制御がうまくいかなく
なる。
However, as shown by the phantom line in FIG. 3, a so-called bleeding variation type in which part of the main steam introduced from the superheater 4 to the high-pressure turbine 5 is bled to a factory or the like as necessary. In the case of a boiler, the main steam discharged from the superheater 4 of the boiler body 1 is supplied to a high-pressure turbine 5.
Since the whole amount is not swallowed, the control will not be successful if only the generator output request 20 is set as the leading element.

【0008】このため、従来の抽気変動型ボイラにおい
ては、主蒸気流量を先行要素としたABC制御(Aut
omatic Boiler Control)が一般
に用いられているが、発電機出力要求20を先行要素と
するのに比べてボイラの負荷追従性が悪いという欠点を
有していた。
For this reason, in a conventional bleed-air fluctuation type boiler, the ABC control (Auto
Although the O.M.O.M.Boiler Control is generally used, it has a disadvantage that the load following capability of the boiler is poor as compared with the case where the generator output request 20 is used as a preceding element.

【0009】本発明は、斯かる実情に鑑み、負荷追従性
の向上を図り得る抽気変動型ボイラの制御方法を提供し
ようとするものである。
The present invention has been made in view of the above circumstances, and has as its object to provide a method of controlling a bleed-fluctuation-type boiler capable of improving load following ability.

【0010】[0010]

【課題を解決するための手段】本発明は、過熱器からタ
ービンへ導入される主蒸気の一部を抽気するようにした
抽気変動型ボイラの制御方法であって、発電機出力要求
に対し抽気流量に基づく損失発電機出力を加算し、損失
考慮発電機出力要求を求め、該損失考慮発電機出力要求
に基づきボイラマスタ先行指令を求め、主蒸気圧力と主
蒸気圧力設定値との主蒸気圧力偏差をなくすためのボイ
ラマスタ指令に対し前記ボイラマスタ先行指令を加えて
ボイラマスタを求め、該ボイラマスタに基づいて燃料調
節弁の開度を調節すると共に、発電機出力要求と発電機
出力との発電機出力偏差をなくすようタービンのガバナ
弁の開度を調節することを特徴とする抽気変動型ボイラ
の制御方法にかかるものである。
SUMMARY OF THE INVENTION The present invention relates to a method of controlling a bleed-air variable boiler in which a part of main steam introduced from a superheater to a turbine is bleed, and the bleed air is controlled in response to a generator output request. The loss generator output based on the flow rate is added to obtain a loss-considered generator output request, a boiler master advance command is determined based on the loss-considered generator output request, and the main steam pressure deviation between the main steam pressure and the main steam pressure set value. A boiler master is obtained by adding the boiler master advance command to the boiler master command for eliminating the boiler master, the opening degree of the fuel control valve is adjusted based on the boiler master, and the generator output deviation between the generator output request and the generator output is calculated. The present invention relates to a method for controlling a bleed-fluctuation-type boiler, which comprises adjusting the opening of a governor valve of a turbine so as to eliminate it.

【0011】上記手段によれば、以下のような作用が得
られる。
According to the above means, the following effects can be obtained.

【0012】ボイラの運転時には、発電機出力要求に対
し抽気流量に基づく損失発電機出力が加算され、損失考
慮発電機出力要求が求められ、該損失考慮発電機出力要
求に基づきボイラマスタ先行指令が求められ、主蒸気圧
力と主蒸気圧力設定値との主蒸気圧力偏差をなくすため
のボイラマスタ指令に対し前記ボイラマスタ先行指令が
加えられてボイラマスタが求められ、該ボイラマスタに
基づいて燃料調節弁の開度が調節されると共に、発電機
出力要求と発電機出力との発電機出力偏差をなくすよう
タービンのガバナ弁の開度が調節される。
During the operation of the boiler, the loss generator output based on the bleed air flow is added to the generator output request to obtain a loss-considering generator output request, and a boiler master advance command is determined based on the loss-considering generator output request. The boiler master advance command is added to the boiler master command for eliminating the main steam pressure deviation between the main steam pressure and the set value of the main steam pressure to obtain a boiler master, and the opening of the fuel control valve is determined based on the boiler master. At the same time, the opening of the governor valve of the turbine is adjusted so as to eliminate the generator output deviation between the generator output demand and the generator output.

【0013】この結果、過熱器から高圧タービンへ導入
される主蒸気の一部が必要に応じて工場等へ抽気された
場合には、その損失分が発電機出力要求に上乗せされる
形で、先行要素として用いられることとなり、制御が適
正に行われると共に、ボイラの負荷追従性もよくなる。
As a result, when a part of the main steam introduced from the superheater to the high-pressure turbine is bled to a factory or the like as necessary, the loss is added to the generator output demand, It is used as a preceding element, so that the control is properly performed and the load followability of the boiler is improved.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明を実施する形態の一例であっ
て、図中、図3と同一の符号を付した部分は同一物を表
わしており、基本的な構成は図3に示す従来のものと同
様であるが、本図示例の特徴とするところは、図1に示
す如く、過熱器4から高圧タービン5へ導入される主蒸
気の一部を必要に応じて工場等へ抽気するようにした抽
気変動型ボイラにおいて、抽気流量29を検出する流量
検出器30と、該流量検出器30で検出された抽気流量
29に基づき損失発電機出力31を求めて出力する第二
関数発生器32と、発電機出力要求20に対し前記第二
関数発生器32から出力される損失発電機出力31を加
算し、損失考慮発電機出力要求33を求めて第一関数発
生器22へ出力する加算器34とを追加装備した点にあ
る。
FIG. 1 shows an example of an embodiment of the present invention. In FIG. 1, the portions denoted by the same reference numerals as those in FIG. 3 represent the same components, and the basic configuration is the same as that of the conventional device shown in FIG. It is the same as that shown in FIG. 1 except that a part of the main steam introduced from the superheater 4 to the high-pressure turbine 5 is bled to a factory or the like as necessary, as shown in FIG. A flow rate detector 30 for detecting the flow rate 29 of the extracted air, and a second function generator 32 for obtaining and outputting the loss generator output 31 based on the flow rate 29 of the extracted air detected by the flow rate detector 30 And an adder that adds the loss generator output 31 output from the second function generator 32 to the generator output request 20 to obtain a loss-considered generator output request 33 and outputs it to the first function generator 22. 34 is additionally provided.

【0016】前記第二関数発生器32には、図2に示す
如く、抽気流量29の増減に対し損失発電機出力31を
略比例させる形で増減させるような関数が入力されてい
る。
As shown in FIG. 2, a function for increasing or decreasing the loss generator output 31 in proportion to an increase or decrease in the bleed air flow rate 29 is input to the second function generator 32.

【0017】尚、前記第一関数発生器22においては、
加算器34から出力される損失考慮発電機出力要求33
に基づいてボイラマスタ先行指令21が求められる形と
なるが、該第一関数発生器22に入力されている関数
は、図4に示されるものと全く同じである。
In the first function generator 22,
Loss-considered generator output request 33 output from adder 34
, The boiler master advance command 21 is obtained, but the function input to the first function generator 22 is exactly the same as that shown in FIG.

【0018】次に、上記図示例の作動を説明する。Next, the operation of the illustrated example will be described.

【0019】ボイラの運転時には、圧力検出器10によ
って主蒸気圧力9が検出されると共に、出力検出器12
によって発電機出力11が検出され、更に、流量検出器
30によって抽気流量29が検出される。
During operation of the boiler, the main steam pressure 9 is detected by the pressure detector 10 and the output detector 12 is operated.
Thus, the generator output 11 is detected, and the flow rate detector 30 detects the bleed flow rate 29.

【0020】前記圧力検出器10で検出された主蒸気圧
力9と主蒸気圧力設定値13との差が減算器15におい
て求められ、主蒸気圧力偏差14がゲイン補正器17へ
出力され、該ゲイン補正器17において前記減算器15
から出力される主蒸気圧力偏差14に対して負荷による
ゲイン補正が行われ、補正主蒸気圧力偏差16が比例積
分微分調節器19へ出力され、該比例積分微分調節器1
9において前記ゲイン補正器17から出力される補正主
蒸気圧力偏差16が比例積分微分処理され、該補正主蒸
気圧力偏差16をなくすためのボイラマスタ指令18が
加算器24へ出力される一方、第二関数発生器32にお
いて前記流量検出器30で検出された抽気流量29に基
づき損失発電機出力31が求められて加算器34へ出力
され、該加算器34において発電機出力要求20に対し
前記第二関数発生器32から出力される損失発電機出力
31が加算され、損失考慮発電機出力要求33が求めら
れて第一関数発生器22へ出力され、該第一関数発生器
22において前記加算器34から出力される損失考慮発
電機出力要求33に基づきボイラマスタ先行指令21が
求められて前記加算器24へ出力され、該加算器24に
おいて前記比例積分微分調節器19から出力されるボイ
ラマスタ指令18に対し前記第一関数発生器22から出
力されるボイラマスタ先行指令21が加えられてボイラ
マスタ23が求められ、該ボイラマスタ23に基づく燃
料調節弁3の開度指令が燃料調節弁3へ出力され、該燃
料調節弁3の開度が調節され、ボイラ本体1の火炉2へ
供給される燃料流量が調節され、これと同時に、発電機
出力要求20と前記出力検出器12で検出された発電機
出力11との差が減算器26において求められ、発電機
出力偏差25が比例積分微分調節器28へ出力され、該
比例積分微分調節器28において前記減算器26から出
力される発電機出力偏差25が比例積分微分処理され、
該発電機出力偏差25をなくすためのガバナ開度指令2
7がガバナ弁6へ出力され、該ガバナ弁6の開度が調節
され、高圧タービン5へ導かれる主蒸気流量が調節され
る。
A difference between the main steam pressure 9 detected by the pressure detector 10 and the main steam pressure set value 13 is obtained by a subtractor 15, and a main steam pressure deviation 14 is output to a gain corrector 17, and the gain is calculated. In the corrector 17, the subtractor 15
The gain correction by the load is performed on the main steam pressure deviation 14 output from the controller, the corrected main steam pressure deviation 16 is output to the proportional-integral-differential controller 19, and the proportional-integral-differential controller 1
In 9, the corrected main steam pressure deviation 16 output from the gain corrector 17 is subjected to a proportional integral differentiation process, and a boiler master command 18 for eliminating the corrected main steam pressure deviation 16 is output to the adder 24. A loss generator output 31 is obtained in a function generator 32 based on the bleed air flow rate 29 detected by the flow rate detector 30 and is output to an adder 34. The loss generator output 31 output from the function generator 32 is added, a loss-considered generator output request 33 is obtained and output to the first function generator 22, and the adder 34 is output from the first function generator 22. A boiler master advance command 21 is obtained based on a loss-considered generator output request 33 output from the controller and is output to the adder 24, where the proportional product is calculated. A boiler master advance command 21 output from the first function generator 22 is added to a boiler master command 18 output from the differential controller 19 to obtain a boiler master 23, and the opening degree of the fuel control valve 3 based on the boiler master 23 is determined. A command is output to the fuel control valve 3, the opening of the fuel control valve 3 is adjusted, the fuel flow supplied to the furnace 2 of the boiler body 1 is adjusted, and at the same time, a generator output request 20 and the output A difference from the generator output 11 detected by the detector 12 is obtained in a subtractor 26, and a generator output deviation 25 is output to a proportional-integral-differential adjuster 28, where the subtracter 26 , The generator output deviation 25 output from
Governor opening degree command 2 for eliminating the generator output deviation 25
7 is output to the governor valve 6, the opening of the governor valve 6 is adjusted, and the flow rate of the main steam guided to the high-pressure turbine 5 is adjusted.

【0021】この結果、過熱器4から高圧タービン5へ
導入される主蒸気の一部が必要に応じて工場等へ抽気さ
れた場合には、その損失分が発電機出力要求20に上乗
せされる形で、先行要素として用いられることとなり、
制御が適正に行われると共に、ボイラの負荷追従性もよ
くなる。
As a result, when a part of the main steam introduced from the superheater 4 to the high-pressure turbine 5 is bled to a factory or the like as required, the loss is added to the generator output demand 20. In the form, will be used as a leading element,
The control is properly performed, and the load followability of the boiler is improved.

【0022】こうして、負荷追従性の向上を図り得る。Thus, the load followability can be improved.

【0023】尚、本発明の抽気変動型ボイラの制御方法
は、上述の図示例にのみ限定されるものではなく、本発
明の要旨を逸脱しない範囲内において種々変更を加え得
ることは勿論である。
It should be noted that the method of controlling the bleed-air fluctuation type boiler of the present invention is not limited to the above-described illustrated example, and it is needless to say that various changes can be made without departing from the gist of the present invention. .

【0024】[0024]

【発明の効果】以上、説明したように本発明の抽気変動
型ボイラの制御方法によれば、負荷追従性の向上を図り
得るという優れた効果を奏し得る。
As described above, according to the method of controlling a bleed-air fluctuation type boiler of the present invention, an excellent effect that load followability can be improved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する形態の一例の概要構成図であ
る。
FIG. 1 is a schematic configuration diagram of an example of an embodiment of the present invention.

【図2】図1に示す第二関数発生器に入力された関数を
表わす線図である。
FIG. 2 is a diagram showing a function input to a second function generator shown in FIG. 1;

【図3】従来例の概要構成図である。FIG. 3 is a schematic configuration diagram of a conventional example.

【図4】図1及び図3に示す第一関数発生器に入力され
た関数を表わす線図である。
FIG. 4 is a diagram showing a function input to a first function generator shown in FIGS. 1 and 3;

【符号の説明】[Explanation of symbols]

1 ボイラ本体 3 燃料調節弁 4 過熱器 5 高圧タービン(タービン) 6 ガバナ弁 8 発電機 9 主蒸気圧力 11 発電機出力 13 主蒸気圧力設定値 14 主蒸気圧力偏差 18 ボイラマスタ指令 20 発電機出力要求 21 ボイラマスタ先行指令 23 ボイラマスタ 25 発電機出力偏差 27 ガバナ開度指令 29 抽気流量 31 損失発電機出力 33 損失考慮発電機出力要求 DESCRIPTION OF SYMBOLS 1 Boiler main body 3 Fuel control valve 4 Superheater 5 High-pressure turbine (turbine) 6 Governor valve 8 Generator 9 Main steam pressure 11 Generator output 13 Main steam pressure set value 14 Main steam pressure deviation 18 Boiler master command 20 Generator output request 21 Boiler master advance command 23 Boiler master 25 Generator output deviation 27 Governor opening command 29 Bleed flow 31 Loss generator output 33 Loss generator output request

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 過熱器からタービンへ導入される主蒸気
の一部を抽気するようにした抽気変動型ボイラの制御方
法であって、 発電機出力要求に対し抽気流量に基づく損失発電機出力
を加算し、損失考慮発電機出力要求を求め、該損失考慮
発電機出力要求に基づきボイラマスタ先行指令を求め、
主蒸気圧力と主蒸気圧力設定値との主蒸気圧力偏差をな
くすためのボイラマスタ指令に対し前記ボイラマスタ先
行指令を加えてボイラマスタを求め、該ボイラマスタに
基づいて燃料調節弁の開度を調節すると共に、発電機出
力要求と発電機出力との発電機出力偏差をなくすようタ
ービンのガバナ弁の開度を調節することを特徴とする抽
気変動型ボイラの制御方法。
1. A method for controlling a bleed-fluctuation type boiler in which a part of main steam introduced from a superheater to a turbine is bleeding, wherein a loss generator output based on a bleed flow is responded to a generator output request. Addition, obtain a loss-considered generator output request, obtain a boiler master advance command based on the loss-considered generator output request,
A boiler master preceding command is added to a boiler master command for eliminating a main steam pressure deviation between a main steam pressure and a main steam pressure set value to obtain a boiler master, and the opening of the fuel control valve is adjusted based on the boiler master, A method for controlling a bleed-air fluctuation type boiler, comprising adjusting an opening of a governor valve of a turbine so as to eliminate a generator output deviation between a generator output request and a generator output.
JP10283830A 1998-10-06 1998-10-06 Control method of extraction fluctuation boiler Pending JP2000111003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10283830A JP2000111003A (en) 1998-10-06 1998-10-06 Control method of extraction fluctuation boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10283830A JP2000111003A (en) 1998-10-06 1998-10-06 Control method of extraction fluctuation boiler

Publications (1)

Publication Number Publication Date
JP2000111003A true JP2000111003A (en) 2000-04-18

Family

ID=17670719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10283830A Pending JP2000111003A (en) 1998-10-06 1998-10-06 Control method of extraction fluctuation boiler

Country Status (1)

Country Link
JP (1) JP2000111003A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827793B2 (en) 2007-03-30 2010-11-09 The Tokyo Electric Power Company, Incorporated Power generation system
JP2011117358A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for controlling heat power plant
JP2012052785A (en) * 2010-08-05 2012-03-15 Nippon Steel Corp Steam supply system, method of controlling the same, and method of supplying steam
JP2012215340A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Steam supply system and steam supply method
JP2013130340A (en) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd Control system and control method for coal burning thermal power plant with co2 recovery device
JP2013170755A (en) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp Method of operating steam supply facility
JP2017194312A (en) * 2016-04-19 2017-10-26 日立Geニュークリア・エナジー株式会社 Output control apparatus and method for nuclear power plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827793B2 (en) 2007-03-30 2010-11-09 The Tokyo Electric Power Company, Incorporated Power generation system
JP2011117358A (en) * 2009-12-03 2011-06-16 Toshiba Corp Apparatus and method for controlling heat power plant
JP2012052785A (en) * 2010-08-05 2012-03-15 Nippon Steel Corp Steam supply system, method of controlling the same, and method of supplying steam
JP2012215340A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Steam supply system and steam supply method
JP2013130340A (en) * 2011-12-22 2013-07-04 Mitsubishi Heavy Ind Ltd Control system and control method for coal burning thermal power plant with co2 recovery device
JP2013170755A (en) * 2012-02-21 2013-09-02 Nippon Steel & Sumitomo Metal Corp Method of operating steam supply facility
JP2017194312A (en) * 2016-04-19 2017-10-26 日立Geニュークリア・エナジー株式会社 Output control apparatus and method for nuclear power plant

Similar Documents

Publication Publication Date Title
US20140165565A1 (en) Steam turbine plant and driving method thereof
JP2000111003A (en) Control method of extraction fluctuation boiler
US10697369B2 (en) Method for shutting down a gas turbine and a steam turbine of a combined cycle power plant at the same time
JPH08200601A (en) Fluidized bed power plant, controller thereof and controlling method therefor
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP2002168406A (en) Reheat steam temperature controller for boiler
JP6775070B1 (en) Power plant control device, power plant, and power plant control method
JP2000248904A (en) Output control method for thermal power plant
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JPH05340205A (en) Controller for combined power generation plant
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant
JPS61184306A (en) Steam-turbine reheater heating-steam pressure controller
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JPH04116204A (en) Overshoot preventive circuit for controlling turbine bypass desuperheating
JP2618419B2 (en) Steam turbine start-up method and single-shaft combined plant
JPH0932510A (en) Combined power generation plant control device
JP2000314504A (en) Controller and control method of reheat steam temperature for heavy oil/orimulsion boiler
JPS63290302A (en) Automatic controller for boiler plant
JPH11351512A (en) Reheat steam temperature controller for boiler
JPS63138102A (en) Desuperheating control method for turbine bypass
JP2004353994A (en) Reheated steam temperature control device and control method
JP2002181305A (en) Control device for flow rate of boiler-feed water
JP2002147711A (en) Reheat steam temperature controller for boiler
JPH04103902A (en) Method and device for controlling feedwater to boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318