JP2012052785A - Steam supply system, method of controlling the same, and method of supplying steam - Google Patents

Steam supply system, method of controlling the same, and method of supplying steam Download PDF

Info

Publication number
JP2012052785A
JP2012052785A JP2011152172A JP2011152172A JP2012052785A JP 2012052785 A JP2012052785 A JP 2012052785A JP 2011152172 A JP2011152172 A JP 2011152172A JP 2011152172 A JP2011152172 A JP 2011152172A JP 2012052785 A JP2012052785 A JP 2012052785A
Authority
JP
Japan
Prior art keywords
steam
factory
boiler
pipe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011152172A
Other languages
Japanese (ja)
Other versions
JP5659973B2 (en
Inventor
Junichi Takamura
純一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011152172A priority Critical patent/JP5659973B2/en
Publication of JP2012052785A publication Critical patent/JP2012052785A/en
Application granted granted Critical
Publication of JP5659973B2 publication Critical patent/JP5659973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent increase of facility costs and running costs, to suppress fluctuation of a main steam pressure, and to suppress change of a power generation amount of a turbine generator, in supplying process steam from a boiler turbine power generating facilities to factory facilities.SOLUTION: In this steam supply system 5 having a steam supplying system 3 for supplying the process steam from the boiler turbine power generating facilities 1 to the factory facilities 2, and a control device 4, or a method of controlling the same and a method of supplying steam, the steam supplying system 3 includes a bleed pipe 40 for branching and extracting part of the steam generated from a boiler 10, an accumulator 42 for storing the steam extracted from the bleed pipe 40 and reduced in its temperature and pressure, and a factory steam pipe 43 for supplying the stored steam to the factory facilities 2 as the process steam, and the control device 4 implements control for replenishment by calculating a necessary fuel charging amount to the boiler 10 on the basis of the pressure, temperature and flow rate of the process steam flowing in the factory steam pipe 43, and adding the same to fuel charging command.

Description

本発明は、電力と蒸気の供給を同時に行うボイラタービン発電設備から工場設備へプロセス用蒸気の供給を行う蒸気供給システム及びその制御方法、または、電力と蒸気の供給を同時に行うボイラタービン発電設備から工場設備へプロセス用蒸気の供給方法に関するものである。   The present invention relates to a steam supply system and a control method for supplying process steam from a boiler turbine power generation facility that supplies power and steam simultaneously to a factory facility, or a boiler turbine power generation facility that supplies power and steam simultaneously. The present invention relates to a method for supplying process steam to factory equipment.

従来、例えば製鉄所などの工場設備内に設置されるボイラタービン発電設備は、タービン発電機で発電した電力を工場設備に供給すると共に、ボイラで発生した蒸気やタービンからの抽気蒸気を工場設備で使用するプロセス用蒸気として分岐して供給する。   Conventionally, for example, a boiler turbine power generation facility installed in a factory facility such as a steel mill supplies the factory facility with the electric power generated by the turbine generator, and the steam generated from the boiler or the extracted steam from the turbine is supplied to the factory facility. It is branched and supplied as process steam for use.

工場設備に供給されるプロセス用蒸気は、需要側の要求に応じて適宜供給量が制御されるが、蒸気発生源であるボイラの負荷変化率は一般に数%/分であるのに対して、需要側での蒸気消費量の変化率はボイラの負荷変化率を上回る場合が多い。この場合、ボイラの負荷を変化させるのみでは、需要側の蒸気消費量の変化率に追従することができない。   The amount of process steam supplied to factory equipment is appropriately controlled according to demands, but the load change rate of the boiler, which is the steam generation source, is generally several percent / minute, The rate of change in steam consumption on the demand side often exceeds the rate of change in boiler load. In this case, the change rate of the steam consumption on the demand side cannot be followed only by changing the load of the boiler.

この需要側の急激な蒸気消費量の変化に対応する方法の一例として、例えば特許文献1には、図8に示すようなボイラタービン発電設備を含む蒸気供給システム100において、タービン101からの抽気蒸気を工場設備102へ送気する工場蒸気管103から、急激な蒸気消費量の変化に対応する所定量の蒸気をバイパス弁104を介して復水器105へ常時放出しておき、例えば需要側である工場設備102での蒸気消費量が急激に増加したときに、バイパス弁104から復水器105へ放出する蒸気量を減少させることにより、蒸気消費量の変化率がボイラ106の負荷変化率を上回る場合においても、送気配管103から工場設備102へ所望の送気を行う方法が提案されている。   As an example of a method for dealing with this rapid change in steam consumption on the demand side, for example, Patent Document 1 discloses a steam extracted from a turbine 101 in a steam supply system 100 including a boiler turbine power generation facility as shown in FIG. A predetermined amount of steam corresponding to a sudden change in steam consumption is constantly discharged from the factory steam pipe 103 that supplies air to the factory equipment 102 to the condenser 105 via the bypass valve 104, for example, on the demand side. By reducing the amount of steam released from the bypass valve 104 to the condenser 105 when the amount of steam consumed at a certain factory facility 102 increases sharply, the rate of change in steam consumption will change the rate of change in load on the boiler 106. Even in such a case, a method of performing desired air supply from the air supply pipe 103 to the factory equipment 102 has been proposed.

また、例えば特許文献2には、ボイラ主蒸気系統の一部を抽気する際に、当該抽気を行うことによりタービン発電機での発電量が変化することを抑制するために、抽気流量によるタービン発電機での発電量の減少分を求め、当該減少分をボイラへの燃料投入量の指令値(ボイラマスタ)に上乗せする先行制御を行うことが提案されている。   Further, for example, in Patent Document 2, when extracting a part of a boiler main steam system, in order to suppress a change in the amount of power generated by a turbine generator by performing the extraction, turbine power generation by an extraction flow rate is performed. It has been proposed to perform a prior control in which a reduction amount of the power generation amount at the machine is obtained and the reduction amount is added to a command value (boiler master) of the fuel input amount to the boiler.

特開平11−343814号公報Japanese Patent Laid-Open No. 11-343814 特開平12−111003号公報Japanese Patent Application Laid-Open No. 12-11003

しかしながら、特許文献1の方法では、復水器105に常時放出されている蒸気は発電に用いられることがなくエネルギーロスとなるため、ボイラタービン発電設備の発電効率が低下すると共に、ランニングコストも増加する。   However, in the method of Patent Document 1, since steam that is constantly discharged to the condenser 105 is not used for power generation and causes energy loss, the power generation efficiency of the boiler turbine power generation facility decreases and the running cost also increases. To do.

また、特許文献2の方法については、ボイラは燃料を投入してから実際にボイラから蒸気が発生するまでの時定数が大きいため、需要側での蒸気消費量の変化が大きい場合、ボイラへの燃料投入量の指令値を増加させても直ちに圧力の減少分を補うことができず、その結果、抽気により主蒸気系統の圧力変動が変動し、この圧力変動に伴うボイラのドラムレベルの低下により、ボイラがトリップに至るおそれがある。また、ボイラがトリップを免れたとしても、主蒸気系統の圧力変動によりタービン発電機での発電量が変化し送電系統に外乱を与えることとなるので、工場設備全体としての安定操業に支障をきたす。   In addition, regarding the method of Patent Document 2, since the boiler has a large time constant from when fuel is supplied until steam is actually generated from the boiler, when the change in steam consumption on the demand side is large, Even if the command value for fuel input is increased, the decrease in pressure cannot be compensated immediately.As a result, the fluctuation in the pressure of the main steam system fluctuates due to extraction, and the drum level of the boiler is reduced due to this pressure fluctuation. There is a risk that the boiler will trip. In addition, even if the boiler escapes from tripping, the amount of power generated by the turbine generator changes due to pressure fluctuations in the main steam system, causing disturbance to the power transmission system, which hinders stable operation of the plant equipment as a whole. .

通常、ボイラタービン発電設備の場合、蒸気圧の変動量は基準設定圧力の±8kg/cm2以内にとどめなければならないため、途中で分岐して蒸気を他の設備に供給することは、安定発電の観点からは好ましくないものと考えられていた。   Normally, in the case of boiler turbine power generation equipment, the fluctuation amount of the steam pressure must be kept within ± 8kg / cm2 of the standard set pressure. Therefore, branching on the way and supplying steam to other equipment From the point of view, it was considered undesirable.

本発明はかかる点に鑑みてなされたものであり、ボイラタービン発電設備から工場設備へプロセス用蒸気を分岐して供給するにあたり、設備コストやランニングコストの増加を回避し、ボイラから発生する圧力の変動を抑制するとともに、タービン発電機の発電量の変化を抑制することを目的としている。   The present invention has been made in view of the above points, and when branching and supplying process steam from a boiler turbine power generation facility to factory facilities, an increase in facility cost and running cost is avoided, and pressure generated from the boiler is reduced. It aims at suppressing the change of the electric power generation amount of a turbine generator while suppressing a fluctuation | variation.

発明者らは、ボイラタービン発電設備から工場設備へプロセス用蒸気を分岐して供給するにあたり、分岐した蒸気とほぼ同等の蒸気をボイラが製造できるように、分岐した蒸気と同等の熱量を当該ボイラ燃料投入指令に加算することで分岐による蒸気圧の低下を回避できることを発見した。本発明は、この点に着目したものであり、ボイラタービン発電設備から工場設備へプロセス用蒸気を供給する蒸気供給系統と制御装置を有する蒸気供給システムであって、前記発電設備は、投入された燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備え、前記蒸気供給系統は、前記ボイラから発生した蒸気の一部を分岐して取り出す抽気管と、前記抽気管により取り出された蒸気を減温減圧する弁体と、前記減温減圧された蒸気を貯留するアキュームレータと、前記アキュームレータに貯留された蒸気をプロセス用蒸気として前記工場設備へ供給する工場蒸気管と、前記工場蒸気管に設けられた、当該工場蒸気管を流れるプロセス用蒸気の流量を検出する流量検出機構とを備え、前記制御装置は、前記工場蒸気管を流れるプロセス用蒸気の流量に基づいて、前記工場蒸気管から工場設備へ供給されたプロセス用蒸気の熱量を算出し、当該算出された熱量を前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算して補填する制御部を備えていることを特徴としている。   When the process steam is branched and supplied from the boiler turbine power generation facility to the factory facility, the inventors supply the same amount of heat as the branched steam so that the boiler can produce steam substantially equivalent to the branched steam. It was discovered that a drop in vapor pressure due to branching can be avoided by adding to the fuel input command. The present invention focuses on this point, and is a steam supply system having a steam supply system and a control device for supplying process steam from boiler turbine power generation equipment to factory equipment, and the power generation equipment is turned on. The steam supply system, comprising: a boiler that burns fuel to generate steam; a turbine that converts thermal energy of steam generated in the boiler into rotational energy; and a generator that converts rotational energy of the turbine into electric power. Is a bleed pipe for branching out a part of the steam generated from the boiler, a valve body for reducing the temperature of the steam taken out by the bleed pipe, an accumulator for storing the temperature-depressurized steam, A factory steam pipe for supplying the steam stored in the accumulator as process steam to the factory equipment, and provided in the factory steam pipe, A flow rate detection mechanism for detecting a flow rate of the process steam flowing through the factory steam pipe, and the control device supplies the factory steam pipe to the factory equipment based on the flow rate of the process steam flowing through the factory steam pipe. It is characterized by having a control unit that calculates the amount of heat of the process steam that has been added and compensates the calculated amount of heat as a required fuel input amount to the boiler by adding it to the fuel input command to the boiler .

本発明によれば、ボイラから発生した蒸気の一部を分岐して取り出す抽気管と、当該取り出された蒸気を貯留するアキュームレータを有しているので、アキュームレータがバッファとして機能し、アキュームレータの許容量の範囲で抽気管を介して蒸気を分岐して取り出すことなく工場蒸気管へのプロセス用蒸気を供給することができる。換言すれば、抽気管から分岐して取り出す蒸気を増減させなくてもその増減に係わりなく工場蒸気管へのプロセス用蒸気の供給を継続することができる。そして、流量検出機構によって、当該工場蒸気管を流れるプロセス用蒸気の流量をそれぞれ検出する。この検出されたプロセス用蒸気の流量に基づいて、制御部により、工場蒸気管を介してアキュームレータから工場設備へ供給されたプロセス用蒸気の熱量を算出し、当該算出された熱量をボイラへの必要燃料投入量として燃料投入指令に加算することで、抽気管から蒸気を分岐して取り出す前に予めボイラからの蒸気の発生量を増加させておくことができる。これにより、アキュームレータの内圧が低下した際に、ボイラから発生した蒸気の一部から取り出してアキュームレータの内圧を回復させるためにアキュームレータに供給しても、ボイラから発生する蒸気の圧力が低下することがない。結局、本発明によれば、工場設備へプロセス用蒸気を供給するにあたりボイラから発生する蒸気の圧力変動を抑制し、例えばボイラのドラムレベルの低下によりボイラがトリップすることを防止することができる。また、ボイラから発生する蒸気の圧力変動及びタービンへ流入する蒸気の量の変動が抑制されることで、発電機における発電量の変動も抑制される。このため、例えば発電機による発電量の変化により、送電系統へ外乱を与えることを防止できる。   According to the present invention, since it has the extraction pipe for branching out a part of the steam generated from the boiler and the accumulator for storing the extracted steam, the accumulator functions as a buffer, and the accumulator allowable amount In this range, it is possible to supply the process steam to the factory steam pipe without branching out the steam through the extraction pipe. In other words, the supply of the process steam to the factory steam pipe can be continued regardless of the increase or decrease without increasing or decreasing the steam taken out from the extraction pipe. Then, the flow rate of the process steam flowing through the factory steam pipe is detected by the flow rate detection mechanism. Based on the detected flow rate of the process steam, the control unit calculates the heat amount of the process steam supplied from the accumulator to the factory equipment through the factory steam pipe, and the calculated heat amount is necessary for the boiler. By adding the fuel input amount to the fuel input command, the amount of steam generated from the boiler can be increased in advance before the steam is branched out from the extraction pipe. As a result, when the internal pressure of the accumulator decreases, the steam pressure generated from the boiler may decrease even if the accumulator is supplied to recover the internal pressure of the accumulator by taking out a part of the steam generated from the boiler. Absent. Ultimately, according to the present invention, it is possible to suppress the pressure fluctuation of the steam generated from the boiler when supplying the process steam to the factory equipment, and to prevent the boiler from tripping due to, for example, a decrease in the boiler drum level. Moreover, the fluctuation | variation of the electric power generation amount in a generator is also suppressed by suppressing the fluctuation | variation of the pressure of the steam generated from a boiler, and the fluctuation | variation of the quantity of the steam which flows into a turbine. For this reason, it can prevent giving a disturbance to a power transmission system, for example by change of the electric power generation amount by a generator.

前記工場蒸気管には、当該工場蒸気管を流れるプロセス用蒸気の圧力及び温度を検出する圧力検出機構及び温度検出機構がさらに設けられ、前記制御部は、前記工場蒸気管を流れるプロセス用蒸気の圧力、温度及び流量に基づいて、前記工場蒸気管から工場設備へ供給されたプロセス用蒸気の熱量を算出してもよい。   The factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure and temperature of the process steam flowing through the factory steam pipe, and the controller is configured to detect the process steam flowing through the factory steam pipe. Based on the pressure, temperature, and flow rate, the amount of heat of process steam supplied from the factory steam pipe to the factory equipment may be calculated.

前記制御部は、前記抽気管により前記ボイラから発生した蒸気の一部を分岐して取り出す際に、前記弁体の上流側の圧力を一定に保つように当該弁体の開度を調整してもよい。   The control unit adjusts the opening degree of the valve body so as to keep the pressure upstream of the valve body constant when a part of the steam generated from the boiler is branched and taken out by the extraction pipe. Also good.

発明者らは、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が前記工場蒸気管に接続されている場合には、当該他の蒸気源から得られる蒸気熱量分を差し引いた必要燃料投入量を当該ボイラに燃料投入指令しなければならないことを見出した。かかる場合、前記工場蒸気管には、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が接続されており、前記他の工場蒸気管は、当該他の工場蒸気管を流れる蒸気の流量を検出する流量検出機構を備え、前記制御部は、前記他の工場蒸気管を流れる蒸気の流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算してもよい。   The inventors subtracted the amount of steam heat obtained from the other steam source when another factory steam pipe connected to the other steam source other than the boiler is connected to the factory steam pipe. It was found that the required fuel input amount must be commanded to the boiler. In such a case, the factory steam pipe is connected to another factory steam pipe connected to a steam source other than the boiler, and the other factory steam pipe is a steam flowing through the other factory steam pipe. A flow rate detection mechanism for detecting a flow rate of the steam, and the control unit calculates a heat amount of the steam flowing through the other factory steam pipe based on a flow rate of the steam flowing through the other factory steam pipe, and the calculated heat amount May be added to the fuel injection command to the boiler as a required fuel input amount to the boiler.

前記他の工場蒸気管には、当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構、温度検出機構がさらに設けられ、前記制御部は、前記他の工場蒸気管を流れる蒸気の圧力、温度及び流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算してもよい。   The other factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe, respectively, and the control unit is configured to control the other factory steam pipe. Calculate the amount of heat of the steam flowing through the other factory steam tube based on the pressure, temperature and flow rate of the steam flowing through the pipe, and subtract the calculated amount of heat from the calculated amount of heat of the process steam. The required fuel input amount to the boiler may be added to the fuel input command to the boiler.

別な観点による本発明は、ボイラタービン発電設備から工場設備へプロセス用蒸気を供給する蒸気供給系統を有する蒸気供給システムの制御方法であって、前記発電設備は、投入された燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備え、前記蒸気供給系統は、前記ボイラから発生した蒸気の一部を分岐して取り出す抽気管と、前記抽気管により取り出された蒸気を減温減圧する弁体と、前記減温減圧された蒸気を貯留するアキュームレータと、前記アキュームレータに貯留された蒸気をプロセス用蒸気として前記工場設備へ供給する工場蒸気管と、前記工場蒸気管に設けられた、当該工場蒸気管を流れるプロセス用蒸気の流量を検出する流量検出機構とを備え、当該測定されたプロセス用蒸気の流量に基づいて、前記アキュームレータから工場設備へ供給されたプロセス用蒸気の有する熱量を算出し、当該算出された熱量を前記ボイラへの必要燃料投入熱量として当該ボイラへの燃料投入指令に加算して補填することを特徴としている。   Another aspect of the present invention is a method for controlling a steam supply system having a steam supply system for supplying process steam from a boiler turbine power generation facility to factory facilities, wherein the power generation facility combusts injected fuel. A boiler that generates steam; a turbine that converts thermal energy of the steam generated in the boiler into rotational energy; and a generator that converts rotational energy of the turbine into electric power, and the steam supply system includes: A bleed pipe for branching out part of the generated steam, a valve body for reducing and depressurizing the steam taken out by the bleed pipe, an accumulator for storing the depressurized and depressurized steam, and being stored in the accumulator A steam pipe for supplying the steam as process steam to the factory equipment, and the factory steam pipe provided in the factory steam pipe A flow rate detection mechanism that detects the flow rate of the flowing process steam, and calculates the amount of heat of the process steam supplied from the accumulator to the factory equipment based on the measured flow rate of the process steam. The amount of heat generated is supplemented by adding to the fuel injection command to the boiler as the required fuel input heat amount to the boiler.

前記前記工場蒸気管には、当該工場蒸気管を流れるプロセス用蒸気の圧力及び温度を検出する圧力検出機構及び温度検出機構がさらに設けられ、前記工場蒸気管を流れるプロセス用蒸気の圧力、温度及び流量に基づいて、前記工場蒸気管から工場設備へ供給されたプロセス用蒸気の熱量を算出してもよい。   The factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure and temperature of the process steam flowing through the factory steam pipe, and the pressure, temperature and the process steam flowing through the factory steam pipe are Based on the flow rate, the amount of heat of the process steam supplied from the factory steam pipe to the factory equipment may be calculated.

前記抽気管により前記ボイラから発生した蒸気の一部を分岐して取り出す際に、前記弁体の上流側の圧力を一定に保つように当該弁体の開度を調整してもよい。   When part of the steam generated from the boiler is branched out by the extraction pipe, the opening degree of the valve body may be adjusted so as to keep the pressure upstream of the valve body constant.

前記工場蒸気管には、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が接続されており、前記他の工場蒸気管は、当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構、温度検出機構及び流量検出機構と、を備え、前記他の工場蒸気管を流れる蒸気の圧力、温度及び流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算してもよい。   The factory steam pipe is connected to another factory steam pipe connected to a steam source other than the boiler, and the other factory steam pipe is a pressure of steam flowing through the other factory steam pipe, A steam that flows through the other factory steam pipe based on the pressure, temperature, and flow rate of the steam that flows through the other factory steam pipe. The remaining amount of heat obtained by subtracting the calculated amount of heat from the calculated amount of heat of the process steam is added to the fuel input command to the boiler as the required amount of fuel input to the boiler. Good.

前記他の工場蒸気管には、当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構、温度検出機構がさらに設けられ、前記他の工場蒸気管を流れる蒸気の圧力、温度及び流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算してもよい。   The other factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe, respectively. Calculate the calorific value of the steam flowing through the other factory steam pipes based on the pressure, temperature, and flow rate, and subtract the calculated calorific value from the calorific value of the calculated process steam to give the remaining calorific value to the boiler. The required fuel input amount may be added to the fuel input command to the boiler.

さらに別な観点による本発明は、投入された燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備えた発電設備から、工場設備へプロセス用蒸気を供給する蒸気供給方法であって、前記ボイラから発生した蒸気の一部を分岐して取り出し、前記取り出された蒸気を減温減圧し、前記減温減圧された蒸気を貯留し、前記貯留された蒸気をプロセス用蒸気として工場蒸気管を経て前記工場設備へ供給し、前記工場蒸気管を流れるプロセス用蒸気の流量を測定し、当該測定されたプロセス用蒸気の流量に基づいて、工場設備へ供給されたプロセス用蒸気の有する熱量を算出し、当該算出された熱量分を補填する燃料量を当該ボイラへ投入することを特徴としている。   According to another aspect of the present invention, there is provided a boiler that burns input fuel to generate steam, a turbine that converts thermal energy of steam generated in the boiler into rotational energy, and rotational energy of the turbine as electric power. A steam supply method for supplying process steam from a power generation facility equipped with a generator to be converted to factory equipment, branching out and extracting a part of the steam generated from the boiler, and reducing the extracted steam The temperature-depressurized and depressurized steam is stored, the stored steam is supplied as process steam to the factory equipment through the factory steam pipe, and the flow rate of the process steam flowing through the factory steam pipe is measured. Then, based on the measured flow rate of the process steam, the amount of heat of the process steam supplied to the factory equipment is calculated, and the calculated amount of heat is compensated. The amount of fuel is characterized by introducing into the boiler.

前記工場蒸気管を流れるプロセス用蒸気の圧力及び温度をさらに測定し、工場設備へ供給されたプロセス用蒸気の有する熱量を、測定された圧力、温度及び流量に基づいて算出してもよい。   The pressure and temperature of the process steam flowing through the factory steam pipe may be further measured, and the amount of heat of the process steam supplied to the factory equipment may be calculated based on the measured pressure, temperature, and flow rate.

前記ボイラから発生した蒸気の一部を分岐して取り出す際に、前記ボイラから発生した蒸気の圧力を一定に保つように蒸気の取り出し量を調整してもよい。 When part of the steam generated from the boiler is branched and taken out, the amount of steam taken out may be adjusted so that the pressure of the steam generated from the boiler is kept constant.

前記工場蒸気管には、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が接続されており、前記他の工場蒸気管を流れるプロセス用蒸気の流量を測定し、当該測定されたプロセス用蒸気の流量に基づいて、当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量分を補填する燃料量を前記ボイラへ投入してもよい。   The factory steam pipe is connected to another factory steam pipe connected to a steam source other than the boiler, and the flow rate of the process steam flowing through the other factory steam pipe is measured. Based on the flow rate of the process steam, the heat quantity of the steam flowing through the other factory steam pipe is calculated, and the remaining heat quantity obtained by subtracting the calculated heat quantity from the calculated heat quantity of the process steam is compensated. A fuel amount may be charged into the boiler.

当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量を測定し、当該測定されたプロセス用蒸気の圧力、温度及び流量に基づいて、当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量分を補填する燃料量を前記ボイラへ投入してもよい。   Measure the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe, and calculate the heat quantity of the steam flowing through the other factory steam pipe based on the measured pressure, temperature and flow rate of the process steam. A fuel amount that compensates for the remaining heat amount obtained by subtracting the calculated heat amount from the calculated heat amount of the process steam may be input to the boiler.

本発明によれば、ボイラタービン発電設備から工場設備へプロセス用蒸気を分岐して供給するにあたり、分岐によるボイラからの蒸気圧の変動を防止し、安定してタービン発電機に供給することで、安定したタービン発電を実現することができるという顕著な効果を奏する。また、蒸気の分岐も特別な設備を要せず、低コストで分岐工事を実現できるという顕著な効果を奏する。   According to the present invention, when the process steam is branched and supplied from the boiler turbine power generation facility to the factory facility, the steam pressure fluctuation from the boiler due to the branch is prevented and stably supplied to the turbine generator. There is a remarkable effect that stable turbine power generation can be realized. In addition, the branching of the steam does not require special equipment, and there is a remarkable effect that the branching construction can be realized at a low cost.

本実施の形態にかかるボイラタービン発電設備を含む蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the steam supply system containing the boiler turbine power generation equipment concerning this embodiment. 他の実施の形態にかかるボイラタービン発電設備を含む蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the steam supply system containing the boiler turbine power generation equipment concerning other embodiments. 他の実施の形態にかかるボイラタービン発電設備を含む蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the steam supply system containing the boiler turbine power generation equipment concerning other embodiments. 他の実施の形態にかかるボイラタービン発電設備を含む蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the steam supply system containing the boiler turbine power generation equipment concerning other embodiments. 他の実施の形態にかかるボイラタービン発電設備を含む蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the steam supply system containing the boiler turbine power generation equipment concerning other embodiments. 他の実施の形態にかかる蒸気供給システムのブロック図である。It is a block diagram of the steam supply system concerning other embodiments. 他の実施の形態にかかる蒸気供給システムのブロック図である。It is a block diagram of the steam supply system concerning other embodiments. 従来の蒸気供給システムの構成を示すプロセスフロー図である。It is a process flow figure showing the composition of the conventional steam supply system.

以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる、ボイラタービン発電設備1、工場設備2、ボイラタービン発電設備1から工場設備2で用いられるプロセス用の蒸気を供給する、蒸気供給系統3及び制御装置4からなる蒸気供給システム5の構成を示すプロセスフロー図である。なお、本実施の形態にいては、ボイラタービン発電設備1に用いる燃料として石炭を用いた場合について説明するが、ボイラタービン発電設備1に用いる燃料は石炭に限定されるものではなく、例えば原油やC重油、あるいはLNGや副生ガスといった他の燃料を用いた場合においても適用可能である。   Embodiments of the present invention will be described below. FIG. 1 shows a steam supply system 3 and a control device 4 that supply steam for a process used in the factory equipment 2 from the boiler turbine power generation equipment 1, the factory equipment 2, and the boiler turbine power generation equipment 1 according to the present embodiment. It is a process flowchart which shows the structure of the vapor | steam supply system 5 which becomes. In addition, in this Embodiment, although the case where coal is used as a fuel used for the boiler turbine power generation equipment 1 is demonstrated, the fuel used for the boiler turbine power generation equipment 1 is not limited to coal, for example, crude oil or The present invention can also be applied in the case of using C heavy oil, or other fuel such as LNG or by-product gas.

ボイラタービン発電設備1は、投入された燃料を燃焼させて蒸気を発生させるボイラ10と、ボイラ10に燃料を供給する燃料供給設備11と、ボイラ10から発生した高温高圧の過熱蒸気である主蒸気の熱エネルギーを回転エネルギーに変換するタービン12と、タービン12の回転エネルギーを電力に変換する発電機13と、ボイラ10で発生した主蒸気をタービン12に導入する主蒸気管14と、タービン12で仕事をしてエンタルピが低下した蒸気を水に戻し復水として貯留する復水器15と、ボイラ10と復水器15とを接続する給水管16と、給水管16に設けられ、復水器15に貯留された復水をボイラ10に給水する給水ポンプ17と、給水ポンプ17による給水量を制御する給水制御弁18と、を有している。なお、本実施の形態においては、ボイラ10は、例えば蒸発器としてのドラム(図示せず)を有する循環型ボイラであり、タービン12は、流入した蒸気の全量が復水器15により回収される場合について説明する。   The boiler turbine power generation facility 1 includes a boiler 10 that burns input fuel to generate steam, a fuel supply facility 11 that supplies fuel to the boiler 10, and main steam that is high-temperature and high-pressure superheated steam generated from the boiler 10. A turbine 12 that converts the thermal energy of the turbine 12 into rotational energy, a generator 13 that converts the rotational energy of the turbine 12 into electric power, a main steam pipe 14 that introduces main steam generated in the boiler 10 into the turbine 12, and a turbine 12. A condenser 15 for returning the steam with reduced enthalpy after work to the water and storing it as condensate, a water supply pipe 16 connecting the boiler 10 and the condenser 15, and a water supply pipe 16 are provided. The water supply pump 17 which supplies the boiler 10 with the condensate stored in 15 and the water supply control valve 18 which controls the amount of water supplied by the water supply pump 17 are provided. In the present embodiment, the boiler 10 is, for example, a circulation boiler having a drum (not shown) as an evaporator, and the turbine 12 collects the entire amount of steam that has flowed in by the condenser 15. The case will be described.

燃料供給設備11は、ボイラ10に投入する燃料としての石炭を貯蔵する石炭バンカ20と、石炭を粉砕して微粉化する微粉炭機22と、制御装置4からの燃料投入指令に基づき、石炭バンカ20から微粉炭機22に石炭を投入する給炭機21を備えている。微粉炭機22で粉砕されて微粉化した石炭は、図示しない一次通風機から微粉炭機22に通風される一次燃焼用空気に随伴してボイラ10に供給され、ボイラ10内で燃焼される。   The fuel supply facility 11 includes a coal bunker 20 that stores coal as fuel to be input to the boiler 10, a pulverized coal machine 22 that pulverizes and pulverizes coal, and a fuel input command from the control device 4. A coal feeder 21 for feeding coal from 20 to the pulverized coal machine 22 is provided. Coal that has been pulverized and pulverized by the pulverized coal machine 22 is supplied to the boiler 10 along with primary combustion air that is ventilated from a primary ventilator (not shown) to the pulverized coal machine 22 and burned in the boiler 10.

主蒸気管14には、ボイラで発生した主蒸気の圧力を検出する圧力検出機構30と、タービン13に導入する主蒸気の流量を制御する主蒸気加減弁31が設けられている。圧力検出機構30は制御装置4に電気的に接続されており、当該圧力検出機構30で検出された圧力は制御装置4に入力される。   The main steam pipe 14 is provided with a pressure detection mechanism 30 that detects the pressure of the main steam generated in the boiler, and a main steam control valve 31 that controls the flow rate of the main steam introduced into the turbine 13. The pressure detection mechanism 30 is electrically connected to the control device 4, and the pressure detected by the pressure detection mechanism 30 is input to the control device 4.

工場設備2で用いられるプロセス用の蒸気をボイラタービン発電設備1から供給する蒸気供給系統3は、主蒸気管14を流れる主蒸気の一部を分岐して取り出す抽気管40と、抽気管40により取り出された抽気蒸気を減温減圧する弁体である減温減圧弁41と、減温減圧弁41により減温減圧された蒸気を熱水に変換して貯留するアキュームレータ42と、当該アキュームレータに貯留された蒸気を、工場設備2で用いられるプロセス用蒸気として工場設備2に供給する工場蒸気管43と、を有している。   A steam supply system 3 for supplying process steam used in the factory equipment 2 from the boiler turbine power generation equipment 1 includes a bleed pipe 40 for branching out a part of the main steam flowing through the main steam pipe 14, and a bleed pipe 40. A temperature reducing pressure reducing valve 41 which is a valve body for reducing the temperature and pressure of the extracted extracted steam, an accumulator 42 for converting the steam depressurized and depressurized by the temperature reducing pressure reducing valve 41 into hot water, and storing in the accumulator And a factory steam pipe 43 that supplies the generated steam to the factory equipment 2 as process steam used in the factory equipment 2.

抽気管40は、主蒸気管14における圧力検出機構30の下流側であって、主蒸気加減弁31の上流側の所定の位置に接続されている。減温減圧弁41は、制御装置4の、後述する蒸気供給系統制御部73により制御される   The extraction pipe 40 is connected to a predetermined position on the main steam pipe 14 downstream of the pressure detection mechanism 30 and upstream of the main steam control valve 31. The temperature reducing pressure reducing valve 41 is controlled by a steam supply system control unit 73 described later of the control device 4.

工場蒸気管43には、アキュームレータ42に貯留された蒸気の、工場設備2への供給量を制御する流量制御弁44が設けられている。アキュームレータ42は、工場設備2へのプロセス用蒸気の供給の際に、例えば工場設備2での蒸気消費量が変動し、それにより抽気管40の圧力が変動することで流量制御弁44が開閉操作を繰り返すことを防止するためのバッファとして機能し、その容量は、工場設備2側の需要やボイラタービン発電設備1の能力に応じて適宜決定される。また、工場蒸気管43における流量制御弁44の下流の位置には、工場蒸気管43の内部を流れるプロセス用蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構45、温度検出機構46及び流量検出機構47が設けられている。各検出機構は後述の蒸気供給系統制御部73に電気的に接続されており、各検出機構での検出結果が蒸気供給系統制御部73に入力される。   The factory steam pipe 43 is provided with a flow rate control valve 44 that controls the supply amount of the steam stored in the accumulator 42 to the factory equipment 2. The accumulator 42 opens and closes the flow control valve 44 when, for example, the steam consumption in the factory equipment 2 fluctuates and the pressure of the extraction pipe 40 fluctuates when supplying the process steam to the factory equipment 2. It functions as a buffer for preventing repetition, and its capacity is appropriately determined according to the demand on the factory facility 2 side and the capacity of the boiler turbine power generation facility 1. Further, at a position downstream of the flow rate control valve 44 in the factory steam pipe 43, a pressure detection mechanism 45, a temperature detection mechanism 46 and a flow rate for detecting the pressure, temperature and flow rate of the process steam flowing inside the factory steam pipe 43, respectively. A detection mechanism 47 is provided. Each detection mechanism is electrically connected to a later-described steam supply system control unit 73, and the detection result of each detection mechanism is input to the steam supply system control unit 73.

制御装置4は、ボイラ10への燃料投入量を制御する燃料系統制御部70と、ボイラ10への給水量を制御する給水系統制御部71と、発電機13の出力を制御するタービン発電機制御部72と、抽気管40と減温減圧弁41による主蒸気管14からの主蒸気の取り出しを制御する蒸気供給系統制御部73を有している。   The control device 4 includes a fuel system control unit 70 that controls the amount of fuel input to the boiler 10, a water supply system control unit 71 that controls the amount of water supplied to the boiler 10, and a turbine generator control that controls the output of the generator 13. And a steam supply system control unit 73 that controls the extraction of the main steam from the main steam pipe 14 by the extraction pipe 40 and the temperature reducing pressure reducing valve 41.

燃料系統制御部70は、給炭機21を制御して微粉炭機22への石炭の供給量を調節することにより、ボイラ10への燃料投入量の制御を行う。給水系統制御部71は、給水制御弁18の開度を調整することによりボイラ10への給水量の制御を行う。タービン発電機制御部72は、主蒸気加減弁31の開度を調整してタービン12への蒸気流入量を制御することで発電機出力の制御を行う。そして、ボイラタービン発電設備1の運転時には、これら燃料系統制御部70、給水系統制御部71及びタービン発電機制御部72により、発電機13での電力量及び主蒸気管14の圧力を所定の値に一定制御する、いわゆるボイラタービン協調制御モードによる制御が行われる。   The fuel system control unit 70 controls the fuel supply amount to the boiler 10 by controlling the coal feeder 21 and adjusting the amount of coal supplied to the pulverized coal machine 22. The water supply system control unit 71 controls the amount of water supplied to the boiler 10 by adjusting the opening of the water supply control valve 18. The turbine generator control unit 72 controls the generator output by adjusting the opening of the main steam control valve 31 and controlling the amount of steam flowing into the turbine 12. During operation of the boiler turbine power generation facility 1, the fuel system control unit 70, the water supply system control unit 71, and the turbine generator control unit 72 set the electric energy in the generator 13 and the pressure of the main steam pipe 14 to a predetermined value. Thus, control is performed in a so-called boiler turbine cooperative control mode in which constant control is performed.

具体的には、タービン発電機制御部72には、所定の圧力及び温度の蒸気条件において、所定の発電量が得られる蒸気流量を確保するための主蒸気加減弁31の開度が予め設定されており、当該主蒸気加減弁31の開度がこの設定に基づいて調整される。給水系統制御部71は、所定の発電量を得るために必要なボイラ10からの発生蒸気量に見合った給水をボイラ10に行うため、給水制御弁18の開度を調整すると共に、燃料系統制御部70は、ボイラ10へ供給された給水を所定の温度まで過熱するために必要な燃料投入量を算出して給炭機21の制御を行う。これにより、タービン12へ流入させる主蒸気流量に見合った量の蒸気をボイラ10から発生させ、発電機13での発電電力を所定の値に一定制御しつつ、主蒸気管14内の主蒸気の圧力も所定の値に一定制御される。   Specifically, the turbine generator control unit 72 is preset with an opening degree of the main steam control valve 31 for securing a steam flow rate at which a predetermined power generation amount is obtained under a steam condition of a predetermined pressure and temperature. The opening degree of the main steam control valve 31 is adjusted based on this setting. The water supply system control unit 71 adjusts the opening of the water supply control valve 18 and controls the fuel system in order to supply the boiler 10 with water corresponding to the amount of steam generated from the boiler 10 necessary for obtaining a predetermined power generation amount. The unit 70 controls the coal feeder 21 by calculating the amount of fuel input required to superheat the feed water supplied to the boiler 10 to a predetermined temperature. As a result, an amount of steam commensurate with the flow rate of the main steam flowing into the turbine 12 is generated from the boiler 10, and the generated steam in the main steam pipe 14 is constantly controlled to a predetermined value at the power generated by the generator 13. The pressure is also controlled to a predetermined value.

蒸気供給系統制御部73は、工場設備2へのプロセス用蒸気の供給を制御する流量制御弁44の制御と、流量制御弁44によるプロセス用蒸気の供給と並行して行われる抽気管40と減温減圧弁41の制御を行う。かかる場合、減温減圧弁41の制御にあたっては、主蒸気管14からの主蒸気の取り出しの際に、発電機13による発電の出力への影響及び減温減圧弁41の上流側の圧力への影響を最小限に抑える制御を行うことが望ましい。なお、減温減圧弁41の上流側の圧力とは、具体的には主蒸気管14に設けられた圧力検出機構30により検出される主蒸気の圧力である。   The steam supply system control unit 73 controls the flow rate control valve 44 that controls the supply of process steam to the factory equipment 2 and reduces the extraction pipe 40 that is performed in parallel with the process steam supply by the flow rate control valve 44. The temperature reducing valve 41 is controlled. In this case, in controlling the temperature reducing pressure reducing valve 41, when the main steam is taken out from the main steam pipe 14, the influence on the output of power generation by the generator 13 and the pressure on the upstream side of the temperature reducing pressure reducing valve 41 are controlled. It is desirable to perform control that minimizes the impact. The pressure on the upstream side of the temperature reducing pressure reducing valve 41 is specifically the pressure of the main steam detected by the pressure detection mechanism 30 provided in the main steam pipe 14.

蒸気供給系統制御部73における制御について詳述する。抽気管40と減温減圧弁41により主蒸気管14から主蒸気の一部を分岐して取り出すと、抽気管40から主蒸気が取り出される分だけ主蒸気管14の主蒸気の圧力が低下する。主蒸気の圧力が低下すると、タービン12に流入する蒸気の圧力も低下し、タービン12における熱落差も減少するため、タービン12で発生する回転エネルギーが減少し、それにより発電機13での発電出力も低下する。この場合、ボイラタービン協調制御モードにより制御される主蒸気加減弁31の開度は、発電機13の出力を一定に維持するように開方向に調整され、その一方で、燃料系統制御部70及び給水系統制御部71は、主蒸気管14の圧力を回復させるように燃料投入量及び給水量を増加させるが、ボイラ10は時定数が大きく、燃料投入後に直ちに蒸気の発生量を増加させることはできない。したがって、燃料投入量と給水量の制御だけでは主蒸気管14の圧力の低下に追従することができない。   The control in the steam supply system control unit 73 will be described in detail. When a part of the main steam is branched and extracted from the main steam pipe 14 by the extraction pipe 40 and the temperature reducing pressure reducing valve 41, the pressure of the main steam in the main steam pipe 14 is reduced by the amount that the main steam is extracted from the extraction pipe 40. . When the main steam pressure is reduced, the pressure of the steam flowing into the turbine 12 is also reduced, and the heat drop in the turbine 12 is also reduced, so that the rotational energy generated in the turbine 12 is reduced, whereby the power generation output of the generator 13 is reduced. Also decreases. In this case, the opening degree of the main steam control valve 31 controlled in the boiler turbine cooperative control mode is adjusted in the opening direction so as to keep the output of the generator 13 constant, while the fuel system control unit 70 and The water supply system control unit 71 increases the amount of fuel input and the amount of water supplied so that the pressure of the main steam pipe 14 is recovered. However, the boiler 10 has a large time constant, and the amount of steam generated immediately after the fuel input is increased. Can not. Therefore, it is impossible to follow the pressure drop of the main steam pipe 14 only by controlling the fuel input amount and the water supply amount.

仮に、この発電機13での発電量の低下を抑制するためには、例えば特許文献1に開示されるように、予めボイラ10からの蒸気発生量を増加させておけばよいものと考えられた。しかし、抽気管40から取り出される蒸気の最大量分を常に前もってボイラ10で余計に発生させることは非常にロスが大きい。そこで、主蒸気管内の蒸気圧と温度が工場で一般に使われるプロセス用蒸気に比べて非常に高く、アキュームレータ42があればこれに一時、貯留させておくことがおくことができることに着目した。また、アキュームレータ42に蒸気を一時的に貯留することにより、抽気管40から取り出される主蒸気の量に見合った量の燃料と給水を、抽気管40から主蒸気が取り出されて発電機13の出力が低下する前に、換言すればアキュームレータ42から工場設備2に対して蒸気の供給が開始された直後に予めボイラ10に供給し、それによりボイラ10からの蒸気発生量を増加させれば、発電機13の出力を低下させることなく抽気管40からの主蒸気の取り出しを行うことができることに着目した。   Temporarily, in order to suppress the fall of the electric power generation amount by this generator 13, it was thought that it should just increase the steam generation amount from the boiler 10 previously, for example as disclosed by patent document 1. FIG. . However, it is very lossy to always generate the maximum amount of steam taken out from the extraction pipe 40 in the boiler 10 in advance. Therefore, attention was paid to the fact that the steam pressure and temperature in the main steam pipe are very high as compared with process steam generally used in factories, and if there is an accumulator 42, it can be temporarily stored. Further, by temporarily storing steam in the accumulator 42, fuel and water supply in an amount corresponding to the amount of main steam extracted from the extraction pipe 40 are extracted from the extraction pipe 40, and the output of the generator 13 is extracted. If the steam is supplied to the boiler 10 in advance immediately after the supply of steam from the accumulator 42 to the factory equipment 2 is started, and the amount of steam generated from the boiler 10 is increased thereby, It was noted that the main steam can be taken out from the extraction pipe 40 without reducing the output of the machine 13.

以下、蒸気供給系統制御部73により、抽気管40から取り出される主蒸気の量に見合った量の蒸気をボイラ10で発生させるために必要な燃料投入量(以下、「必要燃料投入量」という)を求める方法について説明する。   Hereinafter, the fuel supply amount required to cause the boiler 10 to generate an amount of steam commensurate with the amount of main steam taken out from the extraction pipe 40 by the steam supply system control unit 73 (hereinafter referred to as “necessary fuel input amount”). A method for obtaining the value will be described.

抽気管40を介して主蒸気管14から取り出された蒸気の全量が工場設備2にプロセス用の蒸気に供給されるとすると、工場蒸気管43を流れて工場設備2に供給されるプロセス用蒸気の有する熱量と、主蒸気量14から取り出された主蒸気の有する熱量とは等しくなる。なお、ここでは、配管等から外部へ放散される熱量や、減温減圧弁41において用いられる減温用に外部から持ち込まれるスプレ水の熱量は、プロセス用蒸気の熱量と比較して十分小さいため、無視して考えるものとする。   Assuming that the total amount of steam taken out from the main steam pipe 14 via the extraction pipe 40 is supplied to the factory equipment 2 as process steam, the process steam supplied to the factory equipment 2 through the factory steam pipe 43. The amount of heat of the main steam and the amount of heat of the main steam extracted from the main steam amount 14 are equal. Here, the amount of heat dissipated to the outside from piping or the like, and the amount of heat of spray water brought in from outside for temperature reduction used in the temperature reducing pressure reducing valve 41 are sufficiently smaller than the amount of heat of process steam. I will ignore it.

工場蒸気管43を流れる蒸気の有する熱量は、当該工場蒸気管43を流れる蒸気の流量と比エンタルピとの積として求めることができる。そして、蒸気の比エンタルピは、当該比エンタルピを蒸気の圧力と蒸気の温度との関数として表した、いわゆる蒸気線図より求めることができる。そして、蒸気供給系統制御部73には、この蒸気線図があらかじめデータとして記憶されており、当該蒸気供給系統制御部73は、工場蒸気管43に設けられた圧力検出機構45及び温度検出機構46で検出された圧力及び温度に基づき工場蒸気管43を流れる蒸気の比エンタルピを求める。次いでこの比エンタルピと流量検出機構47で検出された流量との積から、工場蒸気管43を流れる蒸気の有する熱量が算出される。そして、工場設備2に供給される量の蒸気をボイラ10で発生させるための必要燃料投入量は、工場蒸気管43を流れる蒸気の有する熱量にボイラ効率を乗じることにより求められる。   The amount of heat of the steam flowing through the factory steam pipe 43 can be obtained as the product of the flow rate of the steam flowing through the factory steam pipe 43 and the specific enthalpy. The specific enthalpy of steam can be obtained from a so-called steam diagram representing the specific enthalpy as a function of the pressure of steam and the temperature of steam. The steam supply system control unit 73 stores the steam diagram as data in advance, and the steam supply system control unit 73 includes a pressure detection mechanism 45 and a temperature detection mechanism 46 provided in the factory steam pipe 43. The specific enthalpy of the steam flowing through the factory steam pipe 43 is obtained on the basis of the pressure and temperature detected in step 1. Next, from the product of the specific enthalpy and the flow rate detected by the flow rate detection mechanism 47, the amount of heat of the steam flowing through the factory steam pipe 43 is calculated. The required fuel input amount for generating the amount of steam supplied to the factory equipment 2 in the boiler 10 is obtained by multiplying the amount of heat of the steam flowing through the factory steam pipe 43 by the boiler efficiency.

そして、蒸気供給系統制御部73により求められた必要燃料投入量は、工場設備2へのプロセス用蒸気の供給を行っていない状態における燃料制御部70の燃料投入指令に加算される。これにより、発電機13での発電量の低下に見合う量の蒸気をボイラ10から発生させることができる。なお、燃料制御部70による燃料流量の制御に伴い、ボイラ10への給水流量も併せて制御する必要があるが、当該給水流量は給水系統制御部71により行われる。   The required fuel input amount obtained by the steam supply system control unit 73 is added to the fuel input command of the fuel control unit 70 when the process steam is not supplied to the factory facility 2. Thereby, an amount of steam commensurate with a decrease in the amount of power generated by the generator 13 can be generated from the boiler 10. In addition, along with the control of the fuel flow rate by the fuel control unit 70, it is necessary to control the feed water flow rate to the boiler 10 as well, but the feed water flow rate is performed by the feed water system control unit 71.

そして、必要燃料投入量が加算された量の燃料がボイラ10に投入されると、ボイラ10からの蒸気発生量が増加し、主蒸気管14の圧力が上昇する。この際、蒸気供給系統制御部73により、主蒸気管14の圧力を一定に保つように減温減圧弁41の開度が調整され、この開操作された減温減圧弁41を介して主蒸気管14からアキュームレータ42へ蒸気が供給される。   When the amount of fuel added to the required amount of fuel is added to the boiler 10, the amount of steam generated from the boiler 10 increases and the pressure in the main steam pipe 14 increases. At this time, the opening of the temperature reducing pressure reducing valve 41 is adjusted by the steam supply system control unit 73 so as to keep the pressure of the main steam pipe 14 constant, and the main steam passes through the temperature reducing pressure reducing valve 41 opened. Steam is supplied from the tube 14 to the accumulator 42.

本実施の形態にかかる蒸気供給システム5は以上のように構成されており、次にこのボイラタービン発電設備1から工場設備2へプロセス用蒸気を供給する際の蒸気供給システム5の制御方法について説明する。   The steam supply system 5 according to the present embodiment is configured as described above. Next, a method for controlling the steam supply system 5 when supplying process steam from the boiler turbine power generation facility 1 to the factory facility 2 will be described. To do.

ボイラタービン発電設備1がボイラタービン協調制御モードにより主蒸気管14の圧力及び発電機13の出力を一定に制御している状態で、プロセス用蒸気の需要先である工場設備2において、プロセス用蒸気の使用が開始されると、流量制御弁44が開操作され、アキュームレータ42に貯留されていた熱水が工場蒸気管43にプロセス用蒸気として供給される。   In the state where the boiler turbine power generation facility 1 is constantly controlling the pressure of the main steam pipe 14 and the output of the generator 13 in the boiler turbine cooperative control mode, the process steam is supplied to the factory facility 2 where the process steam is demanded. Is started, the flow control valve 44 is opened, and the hot water stored in the accumulator 42 is supplied to the factory steam pipe 43 as process steam.

蒸気供給系統制御部73により流量制御弁44が開操作され、アキュームレータ42に貯留されていた熱水が工場蒸気管43にプロセス用蒸気として供給されると、アキュームレータ42内の内圧が低下するものの、アキュームレータ42に熱水として貯留された蒸気がバッファとして機能するため、主蒸気管14から抽気管40を介して、アキュームレータの許容量の範囲で主蒸気を分岐して取り出すことなく工場蒸気管43へのプロセス用蒸気の供給を継続することができる。それと並行して、工場蒸気管43にプロセス用蒸気が供給されることにより、各検出機構45、46、47により圧力、温度及び流量が検出され、蒸気供給系統制御部73により工場蒸気管43を流れる蒸気の有する熱量が算出される。そして、この算出された熱量に基づいて蒸気供給系統制御部73は、必要燃料投入量を燃料系統制御部の燃料投入指令に加算して補填し、ボイラ10への燃料投入量を増加させる。これにより、ボイラ10からの主蒸気の発生量が増加し、主蒸気管14の圧力が徐々に上昇し始める。   When the steam supply system control unit 73 opens the flow control valve 44 and the hot water stored in the accumulator 42 is supplied as process steam to the factory steam pipe 43, the internal pressure in the accumulator 42 decreases. Since the steam stored as hot water in the accumulator 42 functions as a buffer, the main steam is supplied from the main steam pipe 14 through the extraction pipe 40 to the factory steam pipe 43 without branching and taking out the main steam within the allowable range of the accumulator. The process steam supply can be continued. At the same time, when the process steam is supplied to the factory steam pipe 43, the detection mechanism 45, 46, 47 detects the pressure, temperature, and flow rate, and the steam supply system control unit 73 connects the factory steam pipe 43. The amount of heat that the flowing steam has is calculated. Then, based on the calculated heat amount, the steam supply system control unit 73 adds the required fuel input amount to the fuel input command of the fuel system control unit to compensate, and increases the fuel input amount to the boiler 10. Thereby, the generation amount of the main steam from the boiler 10 increases, and the pressure of the main steam pipe 14 begins to gradually increase.

次いで、主蒸気管14に設けられた圧力検出機構30により主蒸気管14のわずかな圧力上昇が検出されると、ボイラタービン制御部73はボイラタービン協調制御モードによる制御を維持したまま、抽気管40の減温減圧弁43を開操作し、抽気管40を介して主蒸気管14から蒸気を系外に抽出する。換言すれば、圧力が低下したアキュームレータ42に蒸気を供給し、主蒸気管14の圧力上昇を抑制する制御を行う。また、これにより、アキュームレータ42の内圧も回復する。   Next, when a slight pressure increase in the main steam pipe 14 is detected by the pressure detection mechanism 30 provided in the main steam pipe 14, the boiler turbine control unit 73 maintains the control in the boiler turbine cooperative control mode, and the extraction pipe The temperature reduction pressure reducing valve 43 is opened, and steam is extracted from the main steam pipe 14 through the extraction pipe 40 to the outside of the system. In other words, steam is supplied to the accumulator 42 whose pressure has been reduced, and control is performed to suppress an increase in pressure in the main steam pipe 14. As a result, the internal pressure of the accumulator 42 is also recovered.

この際、燃料投入指令に加算された必要燃料投入量により増加したボイラ10からの発生蒸気量の増加分は、工場蒸気管43を介して工場設備2で消費される蒸気の量に等しい。このため、減温減圧弁41の開度が適切に調整されることにより、主蒸気管14の圧力は、工場設備2側でプロセス用蒸気が消費されていない場合の圧力と同じ圧力に維持され、アキュームレータ42の内圧は一旦下がったとしても元の圧力に回復する。また、ボイラ10からの発生蒸気量の増加分の全量が抽気管40から抽気されるため、蒸気加減弁31を介してタービン12に導入される主蒸気の量も一定に維持される。これにより、発電機13での発電電力の変動も抑制される。   At this time, the increase in the amount of steam generated from the boiler 10 increased by the required fuel input amount added to the fuel input command is equal to the amount of steam consumed by the factory equipment 2 via the factory steam pipe 43. For this reason, by appropriately adjusting the opening degree of the temperature reducing pressure reducing valve 41, the pressure of the main steam pipe 14 is maintained at the same pressure as the pressure when the process steam is not consumed on the factory facility 2 side. Even if the internal pressure of the accumulator 42 is once lowered, it is restored to the original pressure. Further, since the entire amount of the increase in the amount of steam generated from the boiler 10 is extracted from the extraction pipe 40, the amount of main steam introduced into the turbine 12 through the steam control valve 31 is also maintained constant. Thereby, the fluctuation | variation of the electric power generated with the generator 13 is also suppressed.

以上の実施の形態によれば、ボイラ10から発生した蒸気の一部を分岐して取り出す抽気管40と、当該取り出された蒸気を貯留するアキュームレータ42を有しているので、アキュームレータ42がバッファとして機能し、アキュームレータの許容量の範囲で主蒸気管14から抽気管40を介して主蒸気を分岐して取り出すことなく工場蒸気管43へのプロセス用蒸気の供給することができる。換言すれば、抽気管40から分岐して取り出す蒸気を増減させなくてもその増減に係わりなく工場蒸気管へのプロセス用蒸気の供給を継続することができる。そして、蒸気供給系統制御部73により、工場蒸気管43を介してアキュームレータ42から工場設備2へ供給されたプロセス用蒸気の熱量を算出し、当該算出された熱量をボイラ10への必要燃料投入量として燃料系統制御部70の燃料投入指令に加算することで、ボイラ10の主蒸気管14から抽気管40に蒸気を分岐して取り出す前に予めボイラ10からの蒸気の発生量を増加させておくことができる。これにより、アキュームレータ42の内圧が低下した際に、アキュームレータ42の内圧を回復させるための量の蒸気を主蒸気管14から取り出しても、主蒸気管14の圧力が低下することがない。結局、本発明によれば、工場設備2へプロセス用蒸気を供給するにあたり主蒸気管14の圧力変動を抑制し、例えばボイラ10のドラムレベルの低下によりボイラ10がトリップすることを防止することができる。また、主蒸気管14の圧力変動及びタービン12へ流入する主蒸気の量の変動が抑制されることで、発電機13における発電量の変動も抑制される。このため、例えば発電機13による発電量の変化により送電系統へ外乱を与えることを防止できる。   According to the above embodiment, since it has the extraction pipe | tube 40 which branches and takes out part of the vapor | steam generated from the boiler 10, and the accumulator 42 which stores the said taken-out vapor | steam, the accumulator 42 serves as a buffer. The steam for processing can be supplied to the factory steam pipe 43 without branching and taking out the main steam from the main steam pipe 14 via the extraction pipe 40 within the range of the allowable amount of the accumulator. In other words, the supply of process steam to the factory steam pipe can be continued regardless of the increase / decrease without increasing / decreasing the steam taken out from the extraction pipe 40. Then, the steam supply system controller 73 calculates the amount of heat of the process steam supplied from the accumulator 42 to the factory facility 2 via the factory steam pipe 43, and the calculated amount of heat is input to the boiler 10 as the required fuel. As a result, the amount of steam generated from the boiler 10 is increased in advance before the steam is branched out from the main steam pipe 14 of the boiler 10 to the extraction pipe 40. be able to. As a result, when the internal pressure of the accumulator 42 decreases, even if an amount of steam for recovering the internal pressure of the accumulator 42 is taken out from the main steam pipe 14, the pressure of the main steam pipe 14 does not decrease. Ultimately, according to the present invention, when supplying the process steam to the factory equipment 2, the pressure fluctuation of the main steam pipe 14 is suppressed, and for example, the boiler 10 is prevented from tripping due to a decrease in the drum level of the boiler 10. it can. Moreover, the fluctuation | variation of the electric power generation amount in the generator 13 is also suppressed by suppressing the fluctuation | variation of the pressure of the main steam pipe 14, and the fluctuation | variation of the quantity of the main steam which flows into the turbine 12. FIG. For this reason, it can prevent giving a disturbance to a power transmission system by the change of the electric power generation amount by the generator 13, for example.

また、従来は、ボイラタービン発電設備から工場設備へプロセス用蒸気の供給を行う方法として、例えばタービンの中圧段から抽気を行う型式の、いわゆる抽気タービンを用い、タービンから抽気した蒸気を供給する方法が用いられる場合もあるが、抽気タービンを用いた場合にタービンから抽気を行うと、タービンの発電出力が低下するのみならず、タービン効率も低下し、ボイラタービン発電設備の発電効率も低下することとなっていた。タービンは、一般に通常運転点において最高効率を得られるように設計され、抽気を行う場合は通常運転点を外れた点で運転されるためである。この点、以上の実施の形態によれば、工場設備2へプロセス用蒸気を供給するにあたり、タービン12からの抽気は不要であるため、タービン12を常に最高効率点で運転することができる。特に、タービン12からの抽気を考慮する必要がないため、タービン12を必要最小限の容量とすることができ、これにより、復水器15や主蒸気加減弁31といったタービン12に付帯する設備の設置費用も抑えることができる。   Conventionally, as a method of supplying process steam from boiler turbine power generation equipment to factory equipment, for example, a so-called extraction turbine of a type that performs extraction from the intermediate pressure stage of the turbine is used to supply the extracted steam from the turbine. Although the method may be used, if the extraction turbine is used to extract air from the turbine, not only the power generation output of the turbine but also the turbine efficiency is reduced and the power generation efficiency of the boiler turbine power generation equipment is also reduced. It was supposed to be. This is because the turbine is generally designed so as to obtain the highest efficiency at the normal operation point, and is operated at a point outside the normal operation point when performing bleed. In this regard, according to the above embodiment, since the extraction of the steam from the turbine 12 is not necessary when supplying the process steam to the factory equipment 2, the turbine 12 can always be operated at the highest efficiency point. In particular, since it is not necessary to consider the bleed air from the turbine 12, the turbine 12 can be set to the minimum capacity, and thus the facilities attached to the turbine 12 such as the condenser 15 and the main steam control valve 31 can be reduced. Installation costs can also be reduced.

なお、以上の実施の形態においては、ボイラタービン発電設備1から工場設備2に対してプロセス用蒸気の供給を行った場合について説明したが、製鉄所のような設備においては、通常、蒸気源としてボイラ等が複数設けられている場合が多い。具体的には、例えば図2示すように、ボイラ10以外の他の蒸気源80に接続された他の工場蒸気管としての蒸気供給管81が工場蒸気管43に接続され、工場設備2へのプロセス用蒸気の供給は、工場蒸気管43を介して他の蒸気源80とボイラ10とにより行われる。蒸気供給管81は、工場蒸気管43に設けられた流量制御弁44の下流側であって、各検出機構45、46、47の下流側に接続されている。   In the above embodiment, the case where the steam for process is supplied from the boiler turbine power generation facility 1 to the factory facility 2 has been described. In many cases, a plurality of boilers are provided. Specifically, for example, as shown in FIG. 2, a steam supply pipe 81 as another factory steam pipe connected to a steam source 80 other than the boiler 10 is connected to the factory steam pipe 43, and is connected to the factory equipment 2. The process steam is supplied by the other steam source 80 and the boiler 10 through the factory steam pipe 43. The steam supply pipe 81 is connected to the downstream side of the flow rate control valve 44 provided in the factory steam pipe 43 and downstream of the detection mechanisms 45, 46 and 47.

蒸気供給管81には工場蒸気管43への蒸気供給量を制御する流量制御弁82が設けられている。蒸気供給管81における流量制御弁82の下流の位置には、当該蒸気供給管81を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構83、温度検出機構84及び流量検出機構85が設けられている。各検出機構は蒸気供給系統制御部73に電気的に接続されており、各検出機構での検出結果が蒸気供給系統制御部73に入力される。かかる場合、蒸気供給管81に設けられた流量制御弁82は、例えば蒸気供給管81を流れる蒸気の流量が所望の値となるように一定に制御し、工場蒸気管43の流量制御弁44は、工場設備2への供給量が所望の値となるように、工場蒸気管43の圧力又は流量を一定に制御する。   The steam supply pipe 81 is provided with a flow rate control valve 82 that controls the amount of steam supplied to the factory steam pipe 43. At a position downstream of the flow rate control valve 82 in the steam supply pipe 81, a pressure detection mechanism 83, a temperature detection mechanism 84, and a flow rate detection mechanism 85 that detect the pressure, temperature, and flow rate of the steam that flows through the steam supply pipe 81 are provided. It has been. Each detection mechanism is electrically connected to the steam supply system control unit 73, and the detection result of each detection mechanism is input to the steam supply system control unit 73. In such a case, the flow rate control valve 82 provided in the steam supply pipe 81 controls the flow rate of the steam flowing through the steam supply pipe 81 to be a desired value, for example, and the flow rate control valve 44 of the factory steam pipe 43 is The pressure or flow rate of the factory steam pipe 43 is controlled to be constant so that the supply amount to the factory equipment 2 becomes a desired value.

図2に示されるように、工場蒸気管43に他の蒸気源80からの蒸気供給管81が接続されている場合は、他の蒸気源80から工場蒸気管43へ供給される蒸気量が変動すると工場蒸気管43の圧力が変動する。その結果、アキュームレータ42から工場蒸気管43へ流れる蒸気量も変動する。かかる場合においては、蒸気供給管81の各検出機構83、84、85での検出結果に基づき蒸気供給管81を流れる蒸気の有する熱量を算出し、工場蒸気管43を流れるプロセス用蒸気の有する熱量、換言すれば、各検出機構45、46、47の検出結果から算出した熱量から差し引くことで、当該差分の熱量をアキュームレータ42から工場蒸気管43へ流れる蒸気の有する熱量として求めることができる。   As shown in FIG. 2, when the steam supply pipe 81 from another steam source 80 is connected to the factory steam pipe 43, the amount of steam supplied from the other steam source 80 to the factory steam pipe 43 varies. Then, the pressure of the factory steam pipe 43 fluctuates. As a result, the amount of steam flowing from the accumulator 42 to the factory steam pipe 43 also varies. In such a case, the heat amount of the steam flowing through the steam supply pipe 81 is calculated based on the detection results of the detection mechanisms 83, 84, 85 of the steam supply pipe 81, and the heat amount of the process steam flowing through the factory steam pipe 43 is calculated. In other words, by subtracting from the amount of heat calculated from the detection results of the detection mechanisms 45, 46, 47, the difference amount of heat can be obtained as the amount of heat of the steam flowing from the accumulator 42 to the factory steam pipe 43.

図2に示される蒸気供給システム5における上述の制御の内容を概念的に表すと、図6に示されるブロック図のようになる。図6における実線の矢印は蒸気の流れ、点線の矢印は制御用の信号の流れをそれぞれ示している。図6に示すように、ボイラ10には燃料投入指令201が入力され、ボイラ10から発生した蒸気はタービン12へ流入する。そして、アキュームレータ42から工場設備2への蒸気供給が開始されると、各検出機構45、46、47により圧力、温度及び流量が検出され、蒸気供給系統制御部73により工場蒸気管43を流れる蒸気の有する熱量が算出される。一方、他の蒸気源80からも工場設備2に対して蒸気が供給されると、各検出機構83、84、85により圧力、温度及び流量が検出され、蒸気供給管81を流れる蒸気の有する熱量が算出される。   The content of the above-described control in the steam supply system 5 shown in FIG. 2 is conceptually expressed as a block diagram shown in FIG. In FIG. 6, the solid arrow indicates the flow of steam, and the dotted arrow indicates the flow of control signal. As shown in FIG. 6, a fuel input command 201 is input to the boiler 10, and steam generated from the boiler 10 flows into the turbine 12. When the steam supply from the accumulator 42 to the factory facility 2 is started, the pressure, temperature, and flow rate are detected by the detection mechanisms 45, 46, 47, and the steam flowing through the factory steam pipe 43 by the steam supply system control unit 73. The amount of heat possessed by is calculated. On the other hand, when steam is supplied from the other steam sources 80 to the factory equipment 2, the pressure, temperature, and flow rate are detected by the detection mechanisms 83, 84, 85, and the amount of heat that the steam flowing through the steam supply pipe 81 has. Is calculated.

次いで、工場蒸気管43を流れる蒸気の有する熱量から蒸気供給管81を流れる蒸気の有する熱量を減算し、この熱量の差分をボイラ10への必要燃料投入量として燃料投入指令201に加算する。これにより、予めボイラ10からの蒸気の発生量を増加させることができる。そして、ボイラ10からの蒸気量の増加に伴い減温減圧弁41の開度を調整することにより、主蒸気管14の圧力変動が抑制されると共に、主蒸気を分岐して取り出し、アキュームレータ42に供給することができる。したがって本発明によれば、ボイラ10以外の他の蒸気源80の運転状態に左右されず、ボイラタービン発電設備1を安定的に運転することができる。   Next, the heat quantity of the steam flowing through the steam supply pipe 81 is subtracted from the heat quantity of the steam flowing through the factory steam pipe 43, and the difference between the heat quantities is added to the fuel injection command 201 as the required fuel input quantity to the boiler 10. Thereby, the generation amount of the steam from the boiler 10 can be increased in advance. Then, by adjusting the opening degree of the temperature reducing pressure reducing valve 41 as the amount of steam from the boiler 10 increases, the pressure fluctuation of the main steam pipe 14 is suppressed, and the main steam is branched and taken out to the accumulator 42. Can be supplied. Therefore, according to the present invention, the boiler turbine power generation facility 1 can be stably operated regardless of the operation state of the steam source 80 other than the boiler 10.

特に、工場設備2への蒸気の供給については他の蒸気源80によりまかなっており、ボイラタービン発電設備1が既設の設備として存在しているものの、当該ボイラタービン発電設備と工場設備2との間に蒸気を供給する設備が設けられていない場合、即ち、図4に示すフロー図において、蒸気供給系統3が存在しない場合においては、当該既設のボイラタービン発電設備1に蒸気供給系統3を追加で設置し、既設の制御装置により上述の制御装置4の制御を行うように、既設の制御装置の制御回路の一部を改造すれば足りるので、特別な設備を要せず、蒸気を分岐して供給するための分岐工事を低コストで実現できる。   In particular, the supply of steam to the factory equipment 2 is covered by another steam source 80, and the boiler turbine power generation equipment 1 exists as an existing equipment, but between the boiler turbine power generation equipment and the factory equipment 2 4 is not provided with a facility for supplying steam, that is, when the steam supply system 3 does not exist in the flow chart shown in FIG. 4, the steam supply system 3 is added to the existing boiler turbine power generation facility 1. It is only necessary to modify a part of the control circuit of the existing control device so that the control device 4 is controlled by the existing control device, so that no special equipment is required and the steam is branched. Branch work for supply can be realized at low cost.

なお、工場設備2への蒸気供給源として、ボイラ10以外の他の蒸気源80が設けられ、複数の蒸気供給源から工場設備2へプロセス用蒸気を供給する場合、工場蒸気管43廻りの系統は図2に示す実施の形態の一例に限定されるものではない。例えば図3に示すように、工場蒸気管43と蒸気供給管81に対して蒸気母管90が共通に設けられ、工場設備2へのプロセス用蒸気の供給を、この蒸気母管90を介して行うようにしてもよい。かかる場合、蒸気母管90は、例えば図3に示すように、工場蒸気管43の流量制御弁44の下流であって、且つ各検出機構45、46、47の上流側に設けられる。また、蒸気母管90には圧力検出機構91が設けられ、流量制御弁44は、例えば蒸気母管90の圧力を設定値の範囲内に収まるように制御する。かかる場合においても、各検出機構45、46、47での検出結果から算出された熱量から、各検出機構83、84、85での検出結果から算出された熱量を差し引くことで、ボイラ10への必要燃料投入量に相当する熱量を求めることができる。なお、他の蒸気源80が複数設けられている場合においては、各検出機構45、46、47での検出結果から算出された熱量から、複数の他の蒸気源80毎に蒸気供給管81を流れる蒸気の熱量をそれぞれ差し引けば、同様に、ボイラ10への必要燃料投入量に相当する熱量が求められる。   When a steam source 80 other than the boiler 10 is provided as a steam supply source to the factory equipment 2 and process steam is supplied from the plurality of steam supply sources to the factory equipment 2, a system around the factory steam pipe 43 is provided. Is not limited to the example of the embodiment shown in FIG. For example, as shown in FIG. 3, a steam mother pipe 90 is provided in common with the factory steam pipe 43 and the steam supply pipe 81, and the supply of process steam to the factory equipment 2 is performed via the steam mother pipe 90. You may make it perform. In this case, the steam mother pipe 90 is provided downstream of the flow rate control valve 44 of the factory steam pipe 43 and upstream of the detection mechanisms 45, 46, 47, for example, as shown in FIG. 3. Further, the steam mother pipe 90 is provided with a pressure detection mechanism 91, and the flow rate control valve 44 controls the pressure of the steam mother pipe 90, for example, to be within a set value range. Even in such a case, the amount of heat calculated from the detection results of the detection mechanisms 83, 84, 85 is subtracted from the amount of heat calculated from the detection results of the detection mechanisms 45, 46, 47. The amount of heat corresponding to the required fuel input can be determined. When a plurality of other steam sources 80 are provided, the steam supply pipe 81 is provided for each of the plurality of other steam sources 80 based on the amount of heat calculated from the detection results of the detection mechanisms 45, 46, 47. Similarly, by subtracting the amount of heat of the flowing steam, the amount of heat corresponding to the required amount of fuel input to the boiler 10 is obtained.

また、図2及び図3のように、他の蒸気源80が設けられている場合、蒸気供給管81は、例えば図4、図5に示すように、アキュームレータ42の上流側の抽気管40に接続されていてもよい。かかる場合、蒸気供給システム5における制御の内容は図7に示されるブロック図のようになる。図7に示すように、各検出機構83、84、85がアキュームレータ42の上流に位置する点が図6の場合と異なるのみであり、他の制御の内容は図6の場合と同様なので説明を省略する。   2 and 3, when another steam source 80 is provided, the steam supply pipe 81 is connected to the bleed pipe 40 upstream of the accumulator 42, for example, as shown in FIGS. It may be connected. In this case, the content of control in the steam supply system 5 is as shown in the block diagram of FIG. As shown in FIG. 7, only the point that each detection mechanism 83, 84, 85 is located upstream of the accumulator 42 is different from the case of FIG. 6, and the contents of other controls are the same as those of FIG. Omitted.

なお、以上の実施の形態においては、各検出機構により検出した圧力、温度、流量に基づいて工場蒸気管43を介してアキュームレータ42から工場設備2へ供給されたプロセス用蒸気の熱量を算出したが、例えばアキュームレータ42から工場設備2へ供給されたプロセス用蒸気の流量のみにより当該蒸気の有する熱量を算出してもよい。この場合、プロセス用蒸気として供給された蒸気のエンタルピを、主蒸気管14を流れる蒸気のエンタルピと等しいものとして当該プロセス用蒸気の有する熱量を算出する。かかる場合、スプレ水の流量分だけプロセス用蒸気の有する熱量が多めに算出されるが、減温減圧弁41において減温用に用いられるスプレ水の流量は、プロセス用蒸気の流量の1〜2割程度であるので、燃料投入量増加による主蒸気管14の圧力上昇は軽微なものに抑えることができる。   In the above embodiment, the calorific value of the process steam supplied from the accumulator 42 to the factory equipment 2 via the factory steam pipe 43 is calculated based on the pressure, temperature, and flow rate detected by each detection mechanism. For example, the amount of heat of the steam may be calculated only from the flow rate of the process steam supplied from the accumulator 42 to the factory facility 2. In this case, the amount of heat of the process steam is calculated assuming that the enthalpy of the steam supplied as the process steam is equal to the enthalpy of the steam flowing through the main steam pipe 14. In such a case, the amount of heat of the process steam is calculated to be larger than the spray water flow rate, but the flow rate of the spray water used for temperature reduction in the temperature reducing pressure reducing valve 41 is 1-2 of the flow rate of the process steam. Therefore, the increase in the pressure of the main steam pipe 14 due to the increase in the amount of fuel input can be suppressed to a slight level.

なお、以上の実施の形態においては、工場設備2においてプロセス用蒸気の使用が開始された場合について説明したが、本発明は当然ながら工場設備2においてプロセス用蒸気を使用している状態において、工場設備2における蒸気消費量が急激に変化した場合においても適用できる。かかる場合、蒸気供給系統制御部73により、工場設備2へ供給されているプロセス用蒸気の熱量が常時監視され、当該熱量が急激に変化した場合、即ち蒸気消費量が急激に変化した場合に、急激に変化する前の熱量と変化後の熱量との差分が求められ、その差分の熱量がボイラ10への必要燃料投入量として燃料系統制御部70の燃料投入指令に加算される。   In the above embodiment, the case where the use of the process steam is started in the factory equipment 2 has been described, but the present invention naturally includes the factory steam 2 in the state where the process steam is used. The present invention can also be applied when the steam consumption in the facility 2 changes abruptly. In such a case, the steam supply system control unit 73 constantly monitors the amount of heat of the process steam supplied to the factory facility 2, and when the amount of heat changes abruptly, that is, when the amount of steam consumption changes abruptly, The difference between the amount of heat before the sudden change and the amount of heat after the change is obtained, and the difference amount of heat is added to the fuel input command of the fuel system control unit 70 as the required amount of fuel input to the boiler 10.

なお、以上の実施の形態においては、アキュームレータ42をプロセス用蒸気のバッファとして用いたが、例えば減温減圧弁41の下流の抽気管40の径をバッファとして機能する程度に大きくし、アキュームレータ42の代わりに用いてもよい。   In the above embodiment, the accumulator 42 is used as a buffer for process steam. However, for example, the diameter of the extraction pipe 40 downstream of the temperature reducing pressure reducing valve 41 is increased to function as a buffer. It may be used instead.

また、以上の実施の形態においては、工場蒸気管43に設けられた流量検出機構47により検出した流量に基づき蒸気供給系統制御部73において、工場蒸気管43から供給されるプロセス用蒸気の熱量の算出を行ったが、この熱量の算出を行うための流量の検出は、例えば、抽気管40に他の流量検出機構を設けることにより行ってもよい。   In the above embodiment, the steam supply system control unit 73 determines the amount of heat of the process steam supplied from the factory steam pipe 43 based on the flow rate detected by the flow rate detection mechanism 47 provided in the factory steam pipe 43. Although the calculation is performed, the detection of the flow rate for calculating the amount of heat may be performed by providing another flow rate detection mechanism in the extraction pipe 40, for example.

本発明は、ボイラタービン発電設備から工場設備へプロセス用蒸気を供給する際に有用である。   The present invention is useful when supplying process steam from boiler turbine power generation equipment to factory equipment.

1 ボイラタービン発電設備
2 工場設備
3 蒸気供給系統
4 制御装置
5 蒸気供給システム
10 ボイラ
11 燃料供給設備
12 タービン
13 発電機
14 主蒸気管
15 復水器
16 給水管
17 給水ポンプ
18 給水制御弁
20 石炭バンカ
21 給炭機
22 微粉炭機
30 圧力検出機構
31 主蒸気加減弁
40 抽気管
41 減温減圧弁
42 アキュームレータ
43 工場蒸気管
44 流量制御弁
45 圧力検出機構
46 温度検出機構
47 流量検出機構
70 燃料系統制御部
71 給水系統制御部
72 タービン発電機制御部
73 蒸気供給系統制御部
80 他の蒸気源
81 蒸気供給管
82 流量制御弁
83 圧力検出機構
84 温度検出機構
85 流量検出機構
90 蒸気母管
91 圧力検出機構
201 基本熱量投入指令
202 熱量投入指令
DESCRIPTION OF SYMBOLS 1 Boiler turbine power generation equipment 2 Factory equipment 3 Steam supply system 4 Control apparatus 5 Steam supply system 10 Boiler 11 Fuel supply equipment 12 Turbine 13 Generator 14 Main steam pipe 15 Condenser 16 Water supply pipe 17 Water supply pump 18 Water supply control valve 20 Coal Bunker 21 Coal feeder 22 Pulverized coal machine 30 Pressure detection mechanism 31 Main steam control valve 40 Extraction pipe 41 Temperature reduction pressure regulator 42 Accumulator 43 Factory steam pipe 44 Flow control valve 45 Pressure detection mechanism 46 Temperature detection mechanism 47 Flow detection mechanism 70 Fuel System control unit 71 Water supply system control unit 72 Turbine generator control unit 73 Steam supply system control unit 80 Other steam source 81 Steam supply pipe 82 Flow rate control valve 83 Pressure detection mechanism 84 Temperature detection mechanism 85 Flow rate detection mechanism 90 Steam main pipe 91 Pressure detection mechanism 201 Basic heat input command 202 Heat input command

Claims (15)

ボイラタービン発電設備から工場設備へプロセス用蒸気を供給する蒸気供給系統と制御装置を有する蒸気供給システムであって、
前記発電設備は、投入された燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備え、
前記蒸気供給系統は、前記ボイラから発生した蒸気の一部を分岐して取り出す抽気管と、前記抽気管により取り出された蒸気を減温減圧する弁体と、前記減温減圧された蒸気を貯留するアキュームレータと、前記アキュームレータに貯留された蒸気をプロセス用蒸気として前記工場設備へ供給する工場蒸気管と、前記工場蒸気管に設けられた、当該工場蒸気管を流れるプロセス用蒸気の流量を検出する流量検出機構とを備え、
前記制御装置は、前記工場蒸気管を流れるプロセス用蒸気の流量に基づいて、前記工場蒸気管から工場設備へ供給されたプロセス用蒸気の熱量を算出し、当該算出された熱量を前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算して補填する制御部を備えていることを特徴とする、蒸気供給システム。
A steam supply system having a steam supply system and a control device for supplying process steam from boiler turbine power generation equipment to factory equipment,
The power generation facility includes a boiler that generates steam by burning injected fuel, a turbine that converts thermal energy of the steam generated in the boiler into rotational energy, and a generator that converts rotational energy of the turbine into electric power. And
The steam supply system stores an extraction pipe for branching out a part of the steam generated from the boiler, a valve body for reducing and depressurizing the steam extracted by the extraction pipe, and storing the reduced and reduced steam. An accumulator, a factory steam pipe for supplying the steam stored in the accumulator as process steam to the factory equipment, and a flow rate of the process steam flowing through the factory steam pipe provided in the factory steam pipe A flow rate detection mechanism,
The control device calculates a heat amount of the process steam supplied from the factory steam pipe to the factory equipment based on a flow rate of the process steam flowing through the factory steam pipe, and the calculated heat amount is supplied to the boiler. A steam supply system comprising a control unit that compensates by adding to a fuel input command to the boiler as a required fuel input amount.
前記前記工場蒸気管には、当該工場蒸気管を流れるプロセス用蒸気の圧力及び温度を検出する圧力検出機構及び温度検出機構がさらに設けられ、
前記制御部は、前記工場蒸気管を流れるプロセス用蒸気の圧力、温度及び流量に基づいて、前記工場蒸気管から工場設備へ供給されたプロセス用蒸気の熱量を算出することを特徴とする、請求項1に記載の蒸気供給システム。
The factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure and temperature of the process steam flowing through the factory steam pipe,
The control unit calculates the amount of heat of the process steam supplied from the factory steam pipe to the factory equipment based on the pressure, temperature, and flow rate of the process steam flowing through the factory steam pipe. Item 2. The steam supply system according to Item 1.
前記制御部は、前記抽気管により前記ボイラから発生した蒸気の一部を分岐して取り出す際に、前記弁体の上流側の圧力を一定に保つように当該弁体の開度を調整することを特徴とする、請求項1または2のいずれか1項に記載の蒸気供給システム。 The controller adjusts the opening degree of the valve body so as to keep the pressure upstream of the valve body constant when a part of the steam generated from the boiler is branched and taken out by the extraction pipe. The steam supply system according to any one of claims 1 and 2, characterized by: 前記工場蒸気管には、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が接続されており、
前記他の工場蒸気管は、当該他の工場蒸気管を流れる蒸気の流量を検出する流量検出機構を備え、
前記制御部は、前記他の工場蒸気管を流れる蒸気の流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算することを特徴とする、請求項1ないし3のいずれか1項に記載の蒸気供給システム。
The factory steam pipe is connected to another factory steam pipe connected to a steam source other than the boiler,
The other factory steam pipe includes a flow rate detection mechanism for detecting the flow rate of the steam flowing through the other factory steam pipe.
The control unit calculates the amount of heat of the steam flowing through the other factory steam pipe based on the flow rate of the steam flowing through the other factory steam pipe, and calculates the calculated amount of heat from the calculated amount of heat of the process steam. The steam supply system according to any one of claims 1 to 3, wherein the remaining heat amount subtracted is added to a fuel injection command to the boiler as a required fuel input amount to the boiler.
前記他の工場蒸気管には、当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構、温度検出機構がさらに設けられ、
前記制御部は、前記他の工場蒸気管を流れる蒸気の圧力、温度及び流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算することを特徴とする、請求項4に記載の蒸気供給システム。
The other factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe,
The control unit calculates the amount of heat of the steam flowing through the other factory steam pipe based on the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe, and uses the calculated heat amount for the calculated process. The steam supply system according to claim 4, wherein the remaining heat amount subtracted from the heat amount of the steam is added to a fuel injection command to the boiler as a required fuel input amount to the boiler.
ボイラタービン発電設備から工場設備へプロセス用蒸気を供給する蒸気供給系統を有する蒸気供給システムの制御方法であって、
前記発電設備は、投入された燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機とを備え、
前記蒸気供給系統は、前記ボイラから発生した蒸気の一部を分岐して取り出す抽気管と、前記抽気管により取り出された蒸気を減温減圧する弁体と、前記減温減圧された蒸気を貯留するアキュームレータと、前記アキュームレータに貯留された蒸気をプロセス用蒸気として前記工場設備へ供給する工場蒸気管と、前記工場蒸気管に設けられた、当該工場蒸気管を流れるプロセス用蒸気の流量を検出する流量検出機構とを備え、
当該測定されたプロセス用蒸気の流量に基づいて、前記アキュームレータから工場設備へ供給されたプロセス用蒸気の有する熱量を算出し、
当該算出された熱量を前記ボイラへの必要燃料投入熱量として当該ボイラへの燃料投入指令に加算して補填することを特徴とする、蒸気供給システムの制御方法。
A control method for a steam supply system having a steam supply system for supplying process steam from a boiler turbine power generation facility to factory equipment,
The power generation facility includes a boiler that generates steam by burning injected fuel, a turbine that converts thermal energy of the steam generated in the boiler into rotational energy, and a generator that converts rotational energy of the turbine into electric power. And
The steam supply system stores an extraction pipe for branching out a part of the steam generated from the boiler, a valve body for reducing and depressurizing the steam extracted by the extraction pipe, and storing the reduced and reduced steam. An accumulator, a factory steam pipe for supplying the steam stored in the accumulator as process steam to the factory equipment, and a flow rate of the process steam flowing through the factory steam pipe provided in the factory steam pipe A flow rate detection mechanism,
Based on the measured flow rate of the process steam, the amount of heat of the process steam supplied from the accumulator to the factory equipment is calculated,
A control method for a steam supply system, wherein the calculated heat quantity is supplemented by adding to a fuel injection command to the boiler as a required fuel input heat quantity to the boiler.
前記前記工場蒸気管には、当該工場蒸気管を流れるプロセス用蒸気の圧力及び温度を検出する圧力検出機構及び温度検出機構がさらに設けられ、
前記工場蒸気管を流れるプロセス用蒸気の圧力、温度及び流量に基づいて、前記工場蒸気管から工場設備へ供給されたプロセス用蒸気の熱量を算出することを特徴とする、請求項6に記載の蒸気供給システムの制御方法。
The factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure and temperature of the process steam flowing through the factory steam pipe,
The calorific value of the process steam supplied from the factory steam pipe to the factory equipment is calculated based on the pressure, temperature, and flow rate of the process steam flowing through the factory steam pipe. Control method of steam supply system.
前記抽気管により前記ボイラから発生した蒸気の一部を分岐して取り出す際に、前記弁体の上流側の圧力を一定に保つように当該弁体の開度を調整することを特徴とする、請求項6または7のいずれか1項に記載の蒸気供給システムの制御方法。 When the part of the steam generated from the boiler is branched and taken out by the extraction pipe, the opening degree of the valve body is adjusted so as to keep the pressure upstream of the valve body constant, The method for controlling a steam supply system according to any one of claims 6 and 7. 前記工場蒸気管には、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が接続されており、
前記他の工場蒸気管は、当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構、温度検出機構及び流量検出機構と、を備え、
前記他の工場蒸気管を流れる蒸気の圧力、温度及び流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算することを特徴とする、請求項6ないし8のいずれか1項に記載の蒸気供給システムの制御方法。
The factory steam pipe is connected to another factory steam pipe connected to a steam source other than the boiler,
The other factory steam pipe is provided with a pressure detection mechanism, a temperature detection mechanism and a flow rate detection mechanism for detecting the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe,
Calculate the heat quantity of the steam flowing through the other factory steam pipe based on the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe, and subtract the calculated heat quantity from the calculated heat quantity of the process steam. The method for controlling a steam supply system according to any one of claims 6 to 8, wherein the remaining heat amount is added as a required fuel input amount to the boiler to a fuel input command to the boiler. .
前記他の工場蒸気管には、当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量をそれぞれ検出する圧力検出機構、温度検出機構がさらに設けられ、
前記他の工場蒸気管を流れる蒸気の圧力、温度及び流量に基づいて当該他の工場蒸気管を流れる蒸気の熱量を算出し、当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量を、前記ボイラへの必要燃料投入量として当該ボイラへの燃料投入指令に加算することを特徴とする、請求項9に記載の蒸気供給システムの制御方法。
The other factory steam pipe is further provided with a pressure detection mechanism and a temperature detection mechanism for detecting the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe,
Calculate the heat quantity of the steam flowing through the other factory steam pipe based on the pressure, temperature and flow rate of the steam flowing through the other factory steam pipe, and subtract the calculated heat quantity from the calculated heat quantity of the process steam. The method for controlling a steam supply system according to claim 9, wherein the remaining heat amount is added to a fuel injection command to the boiler as a required fuel input amount to the boiler.
投入された燃料を燃焼させて蒸気を発生させるボイラと、前記ボイラで発生した蒸気の熱エネルギーを回転エネルギーに変換するタービンと、前記タービンの回転エネルギーを電力に変換する発電機と、を備えた発電設備から、工場設備へプロセス用蒸気を供給する蒸気供給方法であって、
前記ボイラから発生した蒸気の一部を分岐して取り出し、
前記取り出された蒸気を減温減圧し、
前記減温減圧された蒸気を貯留し、
前記貯留された蒸気をプロセス用蒸気として工場蒸気管を経て前記工場設備へ供給し、
前記工場蒸気管を流れるプロセス用蒸気の流量を測定し、当該測定されたプロセス用蒸気の流量に基づいて、
工場設備へ供給されたプロセス用蒸気の有する熱量を算出し、当該算出された熱量分を補填する燃料量を当該ボイラへ投入することを特徴とする、蒸気供給方法。
A boiler that generates steam by burning injected fuel, a turbine that converts thermal energy of the steam generated in the boiler into rotational energy, and a generator that converts rotational energy of the turbine into electric power. A steam supply method for supplying process steam from power generation equipment to factory equipment,
A part of the steam generated from the boiler is branched and taken out,
The steam taken out is depressurized and depressurized,
Storing the depressurized steam,
Supply the stored steam as process steam to the factory equipment via a factory steam pipe,
Measure the flow rate of process steam flowing through the factory steam pipe, and based on the measured flow rate of process steam,
A steam supply method characterized by calculating the amount of heat of process steam supplied to a factory facility, and charging the boiler with a fuel amount to compensate for the calculated amount of heat.
前記工場蒸気管を流れるプロセス用蒸気の圧力及び温度をさらに測定し、工場設備へ供給されたプロセス用蒸気の有する熱量を、測定された圧力、温度及び流量に基づいて算出することを特徴とする、請求項11に記載の蒸気供給方法。 Further measuring the pressure and temperature of the process steam flowing through the factory steam pipe, and calculating the amount of heat of the process steam supplied to the factory equipment based on the measured pressure, temperature and flow rate. The steam supply method according to claim 11. 前記ボイラから発生した蒸気の一部を分岐して取り出す際に、前記ボイラから発生した蒸気の圧力を一定に保つように蒸気の取り出し量を調整することを特徴とする、請求項11または請求項12のいずれか1項に記載の蒸気供給方法。 The steam extraction amount is adjusted so that the pressure of the steam generated from the boiler is kept constant when a part of the steam generated from the boiler is branched and extracted. 13. The steam supply method according to any one of 12 above. 前記工場蒸気管には、前記ボイラ以外の他の蒸気源に接続された他の工場蒸気管が接続されており、
前記他の工場蒸気管を流れるプロセス用蒸気の流量を測定し、
当該測定されたプロセス用蒸気の流量に基づいて、当該他の工場蒸気管を流れる蒸気の熱量を算出し、
当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量分を補填する燃料量を前記ボイラへ投入することを特徴とする、請求項11ないし13のいずれか1項に記載の蒸気供給方法。
The factory steam pipe is connected to another factory steam pipe connected to a steam source other than the boiler,
Measuring the flow rate of process steam flowing through the other factory steam pipes;
Based on the measured flow rate of process steam, calculate the amount of heat of steam flowing through the other factory steam pipe,
14. The fuel according to claim 11, wherein a fuel amount that makes up the remaining heat amount obtained by subtracting the calculated heat amount from the calculated heat amount of the process steam is introduced into the boiler. The steam supply method described.
当該他の工場蒸気管を流れる蒸気の圧力、温度及び流量を測定し、
当該測定されたプロセス用蒸気の圧力、温度及び流量に基づいて、当該他の工場蒸気管を流れる蒸気の熱量を算出し、
当該算出された熱量を前記算出されたプロセス用蒸気の熱量から差し引いた残りの熱量分を補填する燃料量を前記ボイラへ投入することを特徴とする、請求項14に記載の蒸気供給方法。
Measure the pressure, temperature and flow rate of the steam flowing through the other factory steam pipes,
Based on the measured pressure, temperature and flow rate of the process steam, calculate the heat quantity of the steam flowing through the other factory steam pipe,
The steam supply method according to claim 14, wherein a fuel amount that compensates for a remaining heat amount obtained by subtracting the calculated heat amount from the calculated heat amount of the process steam is supplied to the boiler.
JP2011152172A 2010-08-05 2011-07-08 Steam supply system, control method therefor, and steam supply method Active JP5659973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152172A JP5659973B2 (en) 2010-08-05 2011-07-08 Steam supply system, control method therefor, and steam supply method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010176040 2010-08-05
JP2010176040 2010-08-05
JP2011152172A JP5659973B2 (en) 2010-08-05 2011-07-08 Steam supply system, control method therefor, and steam supply method

Publications (2)

Publication Number Publication Date
JP2012052785A true JP2012052785A (en) 2012-03-15
JP5659973B2 JP5659973B2 (en) 2015-01-28

Family

ID=45906293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152172A Active JP5659973B2 (en) 2010-08-05 2011-07-08 Steam supply system, control method therefor, and steam supply method

Country Status (1)

Country Link
JP (1) JP5659973B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104334969A (en) * 2012-05-04 2015-02-04 艾罗创新公司 Control system for allocating steam flow through elements
KR20160082370A (en) * 2014-12-26 2016-07-08 재단법인 포항산업과학연구원 Waste heat recovery apparatus for combustion furnace and method thereof
KR101898237B1 (en) * 2016-12-21 2018-10-04 주식회사 포스코 Apparatus for measuring mass flow rate and apparatus for generating power including the same
JP2021032191A (en) * 2019-08-28 2021-03-01 三菱パワー株式会社 Hot water storage power generation system and method for operating hot water storage power generation system
CN113819400A (en) * 2021-07-30 2021-12-21 西安西热节能技术有限公司 Multi-source integrated automatic switching combined steam supply system and method
CN115749985A (en) * 2022-11-11 2023-03-07 东方电气集团东方汽轮机有限公司 Seasonal parameter-varying operation method for back-extraction type steam turbine
JP2023517635A (en) * 2020-03-10 2023-04-26 アルファ-ラヴァル・コーポレート・アーベー Boiler and how to operate the boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724808U (en) * 1980-07-19 1982-02-09
JPS602481B2 (en) * 1980-04-14 1985-01-22 進栄株式会社 steam boiler equipment
JPS61250404A (en) * 1985-04-25 1986-11-07 進栄株式会社 Method and device for controlling boiler system with steam turbine for power generation
JPH0212402Y2 (en) * 1982-11-10 1990-04-09
JPH0212401Y2 (en) * 1982-11-10 1990-04-09
JPH0241441Y2 (en) * 1983-11-28 1990-11-05
JP2527151B2 (en) * 1989-10-23 1996-08-21 株式会社タクマ Steam boiler equipment
JPH10231708A (en) * 1997-02-19 1998-09-02 Nippon Steel Corp Combustion control method in coal-fired thermal power generating plant
JP2000111003A (en) * 1998-10-06 2000-04-18 Ishikawajima Harima Heavy Ind Co Ltd Control method of extraction fluctuation boiler
JP2008145005A (en) * 2006-12-07 2008-06-26 Samson Co Ltd Steam supply equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602481B2 (en) * 1980-04-14 1985-01-22 進栄株式会社 steam boiler equipment
JPS5724808U (en) * 1980-07-19 1982-02-09
JPH0212402Y2 (en) * 1982-11-10 1990-04-09
JPH0212401Y2 (en) * 1982-11-10 1990-04-09
JPH0241441Y2 (en) * 1983-11-28 1990-11-05
JPS61250404A (en) * 1985-04-25 1986-11-07 進栄株式会社 Method and device for controlling boiler system with steam turbine for power generation
JP2527151B2 (en) * 1989-10-23 1996-08-21 株式会社タクマ Steam boiler equipment
JPH10231708A (en) * 1997-02-19 1998-09-02 Nippon Steel Corp Combustion control method in coal-fired thermal power generating plant
JP2000111003A (en) * 1998-10-06 2000-04-18 Ishikawajima Harima Heavy Ind Co Ltd Control method of extraction fluctuation boiler
JP2008145005A (en) * 2006-12-07 2008-06-26 Samson Co Ltd Steam supply equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104334969A (en) * 2012-05-04 2015-02-04 艾罗创新公司 Control system for allocating steam flow through elements
US10012380B2 (en) 2012-05-04 2018-07-03 Enero Inventions Inc Control system for allocating steam flow through elements
KR20160082370A (en) * 2014-12-26 2016-07-08 재단법인 포항산업과학연구원 Waste heat recovery apparatus for combustion furnace and method thereof
KR101690384B1 (en) * 2014-12-26 2016-12-28 재단법인 포항산업과학연구원 Waste heat recovery apparatus for combustion furnace and method thereof
KR101898237B1 (en) * 2016-12-21 2018-10-04 주식회사 포스코 Apparatus for measuring mass flow rate and apparatus for generating power including the same
JP2021032191A (en) * 2019-08-28 2021-03-01 三菱パワー株式会社 Hot water storage power generation system and method for operating hot water storage power generation system
JP7183130B2 (en) 2019-08-28 2022-12-05 三菱重工業株式会社 HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
JP2023517635A (en) * 2020-03-10 2023-04-26 アルファ-ラヴァル・コーポレート・アーベー Boiler and how to operate the boiler
JP7453405B2 (en) 2020-03-10 2024-03-19 アルファ-ラヴァル・コーポレート・アーベー Boilers and how to operate them
CN113819400A (en) * 2021-07-30 2021-12-21 西安西热节能技术有限公司 Multi-source integrated automatic switching combined steam supply system and method
CN113819400B (en) * 2021-07-30 2023-04-25 西安西热节能技术有限公司 Multi-source integrated automatic switching combined steam supply system and method
CN115749985A (en) * 2022-11-11 2023-03-07 东方电气集团东方汽轮机有限公司 Seasonal parameter-varying operation method for back-extraction type steam turbine

Also Published As

Publication number Publication date
JP5659973B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5659973B2 (en) Steam supply system, control method therefor, and steam supply method
JP5727951B2 (en) Steam supply system and method for controlling steam supply system
KR101401135B1 (en) Methods and apparatus for electric power grid frequency stabilization
JP5595595B2 (en) Method of operating a combined gas / steam turbine facility, gas / steam turbine facility for implementing this method, and corresponding regulator
JP5970368B2 (en) Boiler control device
JP2007162689A (en) Apparatus for electric power grid frequency stabilization
US8887747B2 (en) System and method for drum level control
US7877979B2 (en) Integrated gasification combined cycle plant, method of controlling the plant, and method of producing fuel gas
JP2007211705A (en) Air pressure control device in integrated gasification combined cycle system
US10185332B2 (en) System and method for drum level control with transient compensation
JP5772644B2 (en) Steam pressure control method
JP4898409B2 (en) Steam supply equipment
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP5792087B2 (en) Steam supply system and control method thereof
JP7183130B2 (en) HOT WATER STORAGE GENERATION SYSTEM AND HOT WATER STORAGE GENERATION SYSTEM OPERATION METHOD
JP6520317B2 (en) Control method at blast furnace blow-through in blast furnace gas-fired power generation facility
JP4485900B2 (en) Gasification combined power generation facility and control method thereof
JP5804748B2 (en) Steam supply system and steam supply method
JP2008292119A (en) Power generator
JP2010121461A (en) Combined power generating method and device using twin tower gasification device
JP3971646B2 (en) Replenishment steam control method
KR102704840B1 (en) Control device of power plant, power plant and control method of power plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
WO2022039109A1 (en) Control device, control method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350