JP4485900B2 - Gasification combined power generation facility and control method thereof - Google Patents

Gasification combined power generation facility and control method thereof Download PDF

Info

Publication number
JP4485900B2
JP4485900B2 JP2004292847A JP2004292847A JP4485900B2 JP 4485900 B2 JP4485900 B2 JP 4485900B2 JP 2004292847 A JP2004292847 A JP 2004292847A JP 2004292847 A JP2004292847 A JP 2004292847A JP 4485900 B2 JP4485900 B2 JP 4485900B2
Authority
JP
Japan
Prior art keywords
power generation
gasification
facility
fuel gas
combined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004292847A
Other languages
Japanese (ja)
Other versions
JP2006105022A (en
Inventor
道博 刑部
恭寿男 小崎
秀昌 田中
俊介 三嶋
達夫 古迫
和幸 庄村
巧 西須
浩之 宮田
康太郎 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP2004292847A priority Critical patent/JP4485900B2/en
Priority to PCT/JP2005/018371 priority patent/WO2006038629A1/en
Priority to EP05790380.9A priority patent/EP1798385B1/en
Priority to US11/576,636 priority patent/US7877979B2/en
Publication of JP2006105022A publication Critical patent/JP2006105022A/en
Application granted granted Critical
Publication of JP4485900B2 publication Critical patent/JP4485900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Description

本発明は、ガス化設備と複合発電設備とを統合したガス化複合発電設備およびその制御方法に関する。   The present invention relates to a combined gasification power generation facility that integrates a gasification facility and a combined power generation facility, and a control method thereof.

近年、ガス化設備と複合発電設備(ガスタービンとスチームタービンの組み合わせ)とを統合したガス化複合発電設備として、IGCC(Integrated Gasification Combined Cycle)が注目されている。このIGCCでは、ガスタービンの燃料となる残渣油、石炭等の原料に含まれる重金属、硫黄等を合成ガスの製造過程でほぼ除去し、天然ガスと同等のクリーンな燃料ガスとして用いるため、環境負荷を低減できることから、環境にやさしい次世代の発電設備として高く評価されている。
一般に、この種のシステムでは、残渣油、石炭等の原料をガス化炉にてガス化し、その後、ガス処理設備にて有害物質を除去してクリーンな燃料ガスに変換し、この燃料ガスを用いてガスタービンにて発電している。
In recent years, IGCC (Integrated Gasification Combined Cycle) has attracted attention as a combined gasification power generation facility that integrates a gasification facility and a combined power generation facility (a combination of a gas turbine and a steam turbine). This IGCC removes heavy metals, sulfur, etc. contained in raw materials such as residual oil, coal, etc., as fuel for gas turbines during the synthesis gas production process, and uses them as clean fuel gas equivalent to natural gas. It is highly evaluated as a next-generation power generation facility that is environmentally friendly.
In general, in this type of system, raw materials such as residual oil and coal are gasified in a gasification furnace, and then harmful substances are removed and converted into clean fuel gas using a gas treatment facility. Power generation with a gas turbine.

そして、このようなシステムでは、その制御方式として、発電設備側の要求に対して必要な量の燃料ガスを製造すべくガス化炉を制御し、この製造した燃料ガスにガスタービンを追従させるガス化炉リード方式、発電負荷の要求に対して必要な量の発電をさせるべくガスタービンを制御し、このガスタービンの運転に必要な合成ガスをガス化炉から供給させるタービンリード方式があるが、最近では、発電負荷要求の変動に対して俊敏に追従させるべく、ガス化炉リード方式及びタービンリード方式を組み合わせてガス化炉をフィードフォワード制御する協調制御方式が採用されている。   In such a system, as a control method, a gasification furnace is controlled so as to produce a required amount of fuel gas in response to the demand on the power generation facility side, and the gas turbine is made to follow the produced fuel gas. There is a gas turbine lead system, a gas turbine that controls the gas turbine to generate the required amount of power to meet the demand of the power generation load, and supplies the synthesis gas necessary for the operation of this gas turbine from the gasifier, Recently, in order to quickly follow the fluctuations in the power generation load demand, a cooperative control method is adopted in which the gasification furnace lead method and the turbine lead method are combined to perform feedforward control of the gasification furnace.

ここで、協調制御方式について説明する。
図3に示すように、ガス化複合発電設備は、燃料をガス化するガス化プロセス部1と、ガス化プロセス部1からの燃料ガスによりガスタービンにて発電する複合発電プロセス部2とを有している。
また、ガス化プロセス部1への燃料の供給管に設けられた燃料制御弁3には、ガス圧設定器4から設定値が送られるガス化プロセスコントローラ5が接続され、燃料制御弁3は、ガス化プロセスコントローラ5からの制御信号に基づいて制御される。ガス化プロセスコントローラ5は、ガス化プロセス部1におけるガス圧を検出するガス圧力検出器6からの検出信号とガス圧設定器4からの設定値とから制御値を演算し、燃料制御弁3へ制御信号を出力する。
また、複合発電プロセス部2へのガスの供給管に設けられたガス制御弁7には、発電負荷設定器8からの設定値が送られる発電プロセスコントローラ9が接続され、ガス制御弁7は、発電プロセスコントローラ9からの制御信号に基づいて制御される。発電プロセスコントローラ9は、複合発電プロセス部2における発電出力を検出する発電出力検出器10からの検出信号と発電負荷設定器8からの設定値とから制御値を演算し、ガス制御弁7へ制御信号を出力する。
Here, the cooperative control method will be described.
As shown in FIG. 3, the combined gasification power generation facility has a gasification process unit 1 that gasifies fuel and a combined power generation process unit 2 that generates power with a gas turbine using the fuel gas from the gasification process unit 1. is doing.
The fuel control valve 3 provided in the fuel supply pipe to the gasification process unit 1 is connected to a gasification process controller 5 to which a set value is sent from the gas pressure setting device 4, and the fuel control valve 3 is Control is performed based on a control signal from the gasification process controller 5. The gasification process controller 5 calculates a control value from the detection signal from the gas pressure detector 6 that detects the gas pressure in the gasification process unit 1 and the set value from the gas pressure setter 4, and supplies the control value to the fuel control valve 3. Output a control signal.
The gas control valve 7 provided in the gas supply pipe to the combined power generation process unit 2 is connected to a power generation process controller 9 to which a set value from the power generation load setting device 8 is sent. Control is performed based on a control signal from the power generation process controller 9. The power generation process controller 9 calculates a control value from the detection signal from the power generation output detector 10 that detects the power generation output in the combined power generation process unit 2 and the set value from the power generation load setting unit 8, and controls the gas control valve 7. Output a signal.

そして、上記のガス化複合発電設備において、協調制御方式を行う場合は、フィードフォワード演算器11を設け、このフィードフォワード演算器11へ発電負荷設定器8からの設定値を送信し、このフィードフォワード演算器11から燃料制御弁3へフィードフォワード制御信号を送信する。これにより、ガス化プロセス部1への燃料の供給量が、発電負荷要求の変動に対応して増減される。   And in said gasification combined cycle power generation equipment, when performing a cooperative control system, the feedforward calculating unit 11 is provided, the setting value from the power generation load setting unit 8 is transmitted to this feedforward calculating unit 11, and this feedforward calculating unit 11 A feedforward control signal is transmitted from the calculator 11 to the fuel control valve 3. As a result, the amount of fuel supplied to the gasification process unit 1 is increased or decreased in response to fluctuations in the power generation load request.

つまり、この協調制御方式では、ガス化プロセス部1のガス化炉におけるガス化を、発電負荷要求の変動に対して迅速に追従させることが可能である。
なお、この種の制御の先行技術文献としては、以下のものがある。
特開2002−129910号公報 特開平7−234701号公報 特許第2685341号公報 特開平11−210412号公報
That is, in this cooperative control method, the gasification in the gasification furnace of the gasification process unit 1 can be made to follow the fluctuation of the power generation load request quickly.
As prior art documents of this type of control, there are the following.
JP 2002-129910 A JP-A-7-234701 Japanese Patent No. 2685341 JP-A-11-210412

上記のように、フィードフォワード制御を行うと、ガス化プロセス部1のガス化炉におけるガス化を、発電負荷要求の変動に対する追従性を向上させることができるが、ガス化プロセス部1のガス化炉には、無駄時間及び制御の遅れが存在する。したがって、例えば、発電負荷要求の変動が一定以上に大きくなると、特に、無駄時間の存在により燃料ガスの増加の検出が遅れ、その後の燃料ガスの製造量が極端に増減するなどして、発電負荷要求の変動に対する追従性が悪くなってしまう。
具体的には、発電負荷の要求が急に減少した場合、燃料ガスの消費量が減るのに対し供給量は急には減らないので燃料ガスが余剰になる。その際、余剰の燃料ガスの圧力が一定以上になると、フレアスタックから燃料ガスを燃焼して放出するか、予備タンクなどへ放出して圧力の異常上昇を防ぐ対応をする必要がある。フレアスタックから燃料ガスを燃焼放出する場合、単なる経済的な損失だけでなく、新たな環境負荷を発生させる問題点を有することになる。また、予備タンクを設ける場合には設備費やスペースの増加が必要となりコスト増となる。
一方、発電負荷の要求が急に増加し燃料ガスの供給が間に合わずに圧力が一定以下に低下した場合には、タービンの出力は増加せず逆に低下することになる。そして圧力の低下が一定以上となるとタービントリップによる停止信号が出され、発電停止の事態を招くこととなる。
上記の如く発電負荷要求の変動に対する追従性が悪いと、ガス化複合発電設備としての運転信頼性に大きな影響を与えることになり、特に発電停止などにより連続運転ができなくなれば経済的に膨大な損失を蒙ることとなる。
As described above, when the feedforward control is performed, the gasification in the gasification furnace of the gasification process unit 1 can improve the followability to the fluctuation of the power generation load request, but the gasification of the gasification process unit 1 There are dead time and control delays in the furnace. Therefore, for example, when the fluctuation of the power generation load request becomes larger than a certain level, the detection of the increase in fuel gas is delayed due to the existence of dead time, and the production amount of fuel gas thereafter increases or decreases extremely. The followability with respect to the fluctuation of the request becomes worse.
Specifically, when the demand for the power generation load is suddenly reduced, the fuel gas consumption is reduced, whereas the supply amount is not suddenly reduced, so the fuel gas becomes redundant. At that time, if the pressure of the surplus fuel gas exceeds a certain level, it is necessary to combust and release the fuel gas from the flare stack or to discharge it to a spare tank or the like to prevent an abnormal increase in pressure. When the fuel gas is burned and released from the flare stack, it has not only a simple economic loss but also a problem of generating a new environmental load. Further, when a spare tank is provided, an increase in equipment cost and space is required, resulting in an increase in cost.
On the other hand, when the demand for the power generation load suddenly increases and the supply of fuel gas is not in time and the pressure drops below a certain level, the output of the turbine does not increase but decreases. When the pressure drop exceeds a certain level, a stop signal is issued due to the turbine trip, which causes a power generation stoppage.
If the follow-up to fluctuations in the power generation load demand is poor as described above, it will greatly affect the operation reliability of the gasification combined power generation facility, especially if it cannot be operated continuously due to power generation stoppage, etc. You will suffer a loss.

本発明は、上記事情に鑑みてなされたもので、発電負荷要求の変動が大きい場合でも、ガス化設備における燃料ガスの製造量を安定させることができ、発電負荷要求の変動に対する追従性をさらに向上させることが可能なガス化複合発電設備を提供することを目的としている。   The present invention has been made in view of the above circumstances, and even when the fluctuation in power generation load demand is large, the production amount of fuel gas in the gasification facility can be stabilized, and the followability to the fluctuation in power generation load demand is further improved. It aims at providing the gasification combined cycle power generation equipment which can be improved.

本発明のガス化複合発電設備は、ガス化設備と該ガス化設備により製造したガスを燃料とする複合発電設備とを備え、前記ガス化設備にて製造した燃料ガスを用いてガスタービンおよびスチームタービンを回転させることにより前記複合発電設備にて発電を行うガス化複合発電設備であって、前記複合発電設備への発電負荷要求に応じ、前記複合発電設備で必要な量の燃料ガスを前記ガス化設備にて製造させるべく、前記ガス化設備をフィードフォワード制御する制御系を備え、該制御系は、前記ガス化設備に存在する無駄時間及び制御の遅れに基づいて前記複合発電設備への発電負荷要求を遅らせて前記複合発電設備を一定の遅れをもって追従運転させる無駄時間補償回路を備えたことを特徴とする。   A combined gasification power generation facility according to the present invention includes a gasification facility and a combined power generation facility using a gas produced by the gasification facility as a fuel, and a gas turbine and a steam using the fuel gas produced by the gasification facility. A gasification combined power generation facility that generates power in the combined power generation facility by rotating a turbine, wherein a required amount of fuel gas in the combined power generation facility is supplied to the gas in response to a power generation load request to the combined power generation facility. A control system for feed-forward control of the gasification equipment to be produced by the gasification equipment, and the control system generates power to the combined power generation equipment based on dead time and control delay existing in the gasification equipment. A dead time compensation circuit is provided for delaying the load request and causing the combined power generation facility to follow up with a certain delay.

また、本発明は、前記制御系が、さらに前記無駄時間補償回路により追従運転される前記複合発電設備にて必要とされる燃料ガスの流量の変動と実際の燃料ガスの流量の変動との差異に基づいて、前記ガス化設備へ送信されるフィードフォワード制御のための設定値を補正する燃料ガス流量変化量補償回路を備えたことを特徴とする。
さらに、本発明は、前記制御系が、前記ガス化設備における燃料ガスの製造に必要な酸素の供給量を、前記ガス化設備における燃料ガスの製造量の増減に応じて追従させるべく、前記ガス化設備へ酸素を圧縮して送る圧縮機をフィードフォワード制御することを特徴とする。
Further, the present invention provides a difference between the fluctuation in the flow rate of the fuel gas and the fluctuation in the actual flow rate of the fuel gas required in the combined power generation facility in which the control system is further operated by the dead time compensation circuit. And a fuel gas flow rate variation compensation circuit for correcting a set value for feedforward control transmitted to the gasification facility.
Furthermore, the present invention provides the control system in which the gas is supplied so that the supply amount of oxygen necessary for the production of fuel gas in the gasification facility follows the increase or decrease in the production amount of fuel gas in the gasification facility. The feed-forward control is performed on a compressor that compresses and sends oxygen to the gasification equipment.

また、本発明は、前記制御系は、前記ガス化設備における燃料ガスの製造に必要な酸素の供給量を前記ガス化設備における燃料ガスの製造量の増減に応じて追従させるべく、空気から酸素を分離して前記ガス化設備へ供給する空気分離装置をフィードフォワード制御することを特徴とする。   Further, according to the present invention, the control system allows the oxygen to be supplied from the air so that the supply amount of oxygen necessary for the production of the fuel gas in the gasification facility can follow the increase or decrease in the production amount of the fuel gas in the gasification facility. The air separation device that separates the gas and supplies it to the gasification facility is feedforward controlled.

本発明の制御方法は、ガス化設備と該ガス化設備により製造したガスを燃料とする複合発電設備とを備え、前記ガス化設備にて製造した燃料ガスを用いてガスタービンおよびスチームタービンを回転させることにより前記複合発電設備にて発電を行うガス化複合発電設備の制御方法であって、前記複合発電設備への発電負荷要求に応じ、前記複合発電設備で必要な量の燃料ガスを前記ガス化設備にて製造させるべく、前記ガス化設備を構成する機器へ前記燃料ガスの製造量を増減させるフィードフォワード信号を出力する工程と、
前記ガス化設備に存在する無駄時間及び制御の遅れを想定して前記複合発電設備への発電負荷要求を遅らせ、前記複合発電設備を一定の遅れをもって追従運転させるように複合発電設備に疑似信号を出力する工程とを実行することにより、ゼロフレア運転できるように制御することを特徴とする。
また、前記複合発電設備にて必要とされる燃料ガスの流量の変動と実際の燃料ガスの流量の変動との差異に基づいて、前記ガス化設備へ送信されるフィードフォワード制御のための設定値を補正する工程を備えたことを特徴とする。
The control method of the present invention includes a gasification facility and a combined power generation facility that uses a gas produced by the gasification facility as a fuel, and rotates a gas turbine and a steam turbine using the fuel gas produced by the gasification facility. A method for controlling a gasification combined power generation facility that generates electric power in the combined power generation facility, wherein a required amount of fuel gas in the combined power generation facility is supplied to the gas in response to a power generation load request to the combined power generation facility. A step of outputting a feedforward signal for increasing or decreasing the production amount of the fuel gas to the equipment constituting the gasification facility, in order to manufacture the gasification facility;
Assuming dead time and control delay existing in the gasification facility, the generation load request to the combined power generation facility is delayed, and a pseudo signal is sent to the combined power generation facility so that the combined power generation facility is operated with a certain delay. It is characterized by performing control so that zero flare operation can be performed by executing the outputting step.
Further, based on the difference between the fluctuation of the flow rate of the fuel gas required in the combined power generation facility and the fluctuation of the actual flow rate of the fuel gas, a set value for feedforward control transmitted to the gasification facility It is characterized by comprising a step of correcting.

本発明のガス化複合発電設備によれば、ガス化設備に存在する無駄時間及び制御の遅れに基づいて複合発電設備への発電負荷要求を遅らせて複合発電設備を一定の遅れをもって追従運転させる無駄時間補償回路を制御系に設けたので、発電負荷要求の変動が大きい場合にも、ガス化設備を発電負荷要求に応じてフィードフォワード制御するとともに、フィードフォワード制御されるガス化設備に対して、その無駄時間及び制御遅れを考慮して複合発電設備を一定の遅れをもって確実に安定追従させて運転させることができ、発電負荷要求の変動に対する追従性をさらに向上させることができる。特に、発電負荷変動が1分間に3%以下である場合には、余剰ガス吸収のためのバッファとしてのタンクなどの設備を用いることなく、ガス化設備をゼロフレア運転することができる。   According to the gasification combined power generation facility of the present invention, it is a waste that delays the power generation load request to the combined power generation facility based on the dead time and control delay existing in the gasification facility and causes the combined power generation facility to follow-up with a certain delay. Since the time compensation circuit is provided in the control system, even when the fluctuation of the power generation load request is large, the gasification facility is feedforward controlled according to the power generation load request, and for the gasification facility that is feedforward controlled, In consideration of the dead time and control delay, the combined power generation facility can be operated in a stable and stable manner with a certain delay, and the followability to fluctuations in the power generation load request can be further improved. In particular, when the power generation load fluctuation is 3% or less per minute, the gasification facility can be operated with zero flare without using facilities such as a tank as a buffer for absorbing excess gas.

また、本発明によれば、無駄時間補償回路により追従運転される複合発電設備にて必要とされる燃料ガスの流量の変動と実際の燃料ガス流量の変動との差異に基づいて、ガス化設備のフィードフォワード制御のための設定値を補正する燃料ガス流量変化量補償回路を設けたので、ガス化設備からの燃料ガスと複合発電設備にて必要とされる燃料ガスとの流量差を極力抑えることができ、複合発電設備の安定運転を図ることができる。   Further, according to the present invention, the gasification facility is based on the difference between the variation in the flow rate of the fuel gas required in the combined power generation facility that is operated following the dead time compensation circuit and the variation in the actual fuel gas flow rate. Because the fuel gas flow rate variation compensation circuit that corrects the set value for feedforward control of the engine is provided, the flow rate difference between the fuel gas from the gasification facility and the fuel gas required in the combined power generation facility is minimized Therefore, stable operation of the combined power generation facility can be achieved.

また、本発明によれば、制御系が、ガス化設備における燃料ガスの製造に必要な酸素の供給量を、ガス化設備における燃料ガスの製造量の増減に応じて追従させるべく、ガス化設備へ酸素を圧縮して送る圧縮機をフィードフォワード制御するので、ガス化設備への酸素の供給量を、ガス化設備の負荷に応じて安定して供給することができる。   Further, according to the present invention, the control system allows the gasification equipment to follow the supply amount of oxygen necessary for producing the fuel gas in the gasification equipment in accordance with the increase or decrease in the production amount of the fuel gas in the gasification equipment. Since the compressor that feeds compressed oxygen is fed forward, the amount of oxygen supplied to the gasification facility can be stably supplied according to the load of the gasification facility.

さらに、本発明によれば、制御系が、ガス化設備における燃料ガスの製造に必要な酸素の供給量を、ガス化設備における燃料ガスの製造量の増減に応じて空気から酸素を分離させて追従させるべく、空気から酸素を分離する空気分離装置をフィードフォワード制御するので、ガス化設備への酸素の供給量を、ガス化設備の負荷に応じてさらに安定して供給することができる。   Furthermore, according to the present invention, the control system separates oxygen from the air in accordance with an increase or decrease in the amount of fuel gas produced in the gasification facility, according to an increase or decrease in the amount of fuel gas produced in the gasification facility. Since the air separation device that separates oxygen from the air is feedforward controlled to follow, the supply amount of oxygen to the gasification facility can be more stably supplied according to the load of the gasification facility.

以下、本発明を実施するための最良の形態について図面を参照して説明する。
まず、本発明の実施形態が適応される基準となる協調制御方式が適応されたガス化複合発電設備について説明する。
図1は、図3により原理を示した協調制御方式が適用されたガス化複合発電設備のより具体的な構成を示すもので、その構成を本願実施形態との比較例として説明する。
図に示すように、このガス化複合発電設備21は、空気分離装置22、ガス化炉23、ガス処理設備24及び複合発電設備25を備えている。
空気分離装置22は、送り込まれた空気を、酸素と窒素に分離する。この空気分離装置22によって分離された酸素は、酸素圧縮機26により加圧されてガス化炉23へ送られ、窒素は、窒素圧縮機27により加圧されて複合発電設備25へ送られる。
The best mode for carrying out the present invention will be described below with reference to the drawings.
First, a combined gasification power generation facility to which a cooperative control system as a reference to which an embodiment of the present invention is applied will be described.
FIG. 1 shows a more specific configuration of the combined gasification power generation facility to which the cooperative control method whose principle is shown in FIG. 3 is applied, and the configuration will be described as a comparative example with the present embodiment.
As shown in the figure, the combined gasification power generation facility 21 includes an air separation device 22, a gasification furnace 23, a gas processing facility 24, and a combined power generation facility 25.
The air separation device 22 separates the fed air into oxygen and nitrogen. The oxygen separated by the air separation device 22 is pressurized by the oxygen compressor 26 and sent to the gasification furnace 23, and nitrogen is pressurized by the nitrogen compressor 27 and sent to the combined power generation facility 25.

ガス化炉23には、残渣油、石炭などの燃料原料及び複合発電設備25からの蒸気が供給される。そして、このガス化炉23は、酸素、燃料原料及び蒸気から水素及び一酸化炭素を主成分とする粗燃料ガスを製造する。この粗燃料ガスは、ガス処理設備24へ送られ、このガス処理設備24にて、脱塵,脱硫等により精製した燃料ガスとし、この燃料ガスが複合発電設備25へ送られる。   The gasification furnace 23 is supplied with fuel raw materials such as residual oil and coal and steam from the combined power generation facility 25. The gasifier 23 produces a crude fuel gas mainly composed of hydrogen and carbon monoxide from oxygen, a fuel raw material, and steam. The crude fuel gas is sent to the gas processing facility 24, and the fuel gas refined by dedusting, desulfurization, etc. is sent to the gas processing facility 24, and this fuel gas is sent to the combined power generation facility 25.

複合発電設備25は、ガスタービン、スチームタービン及び発電機を備えている。ガスタービンには、窒素圧縮機27からの窒素が混合されて所定の濃度に調整されたガス処理設備24からの燃料ガスが供給される。そして、このガスタービンは、供給される燃料ガスを燃焼させてタービンを回転させる。このガスタービンからの排気は、ボイラへ送られ、ボイラでは、排気熱と燃料の燃焼熱により蒸気を発生させ、その蒸気をスチームタービンに送り込む。これにより、スチームタービンは、供給される蒸気をタービンの回転という運動エネルギに変換する。そして、これらガスタービン及びスチームタービンによって発電機が駆動されて発電が行われる。なお、この複合発電設備25には、図示しない供給ラインから灯油などの補助燃料が供給可能とされており、ガスタービンは、燃料ガスによる運転あるいは補助燃料による運転が可能とされている。   The combined power generation facility 25 includes a gas turbine, a steam turbine, and a generator. The gas turbine is supplied with fuel gas from the gas processing facility 24 mixed with nitrogen from the nitrogen compressor 27 and adjusted to a predetermined concentration. And this gas turbine burns the fuel gas supplied and rotates a turbine. Exhaust gas from the gas turbine is sent to a boiler, where steam is generated by exhaust heat and fuel combustion heat, and the steam is sent to a steam turbine. Thereby, a steam turbine converts the supplied steam into kinetic energy called rotation of the turbine. Then, the generator is driven by these gas turbine and steam turbine to generate electricity. The combined power generation facility 25 can be supplied with auxiliary fuel such as kerosene from a supply line (not shown), and the gas turbine can be operated with fuel gas or with auxiliary fuel.

また、複合発電設備25へ燃料ガスを供給する燃料ガスラインには、フレアスタック28が接続されている。このフレアスタック28は、なんらかの原因により、燃料ガスラインのガス圧が規定圧力以上となった際に、ガスを放出して圧力上昇を抑制することを目的として燃料ガスをフレアリングするものである。
そして、上記ガス化複合発電設備21には、ガス化炉23への燃料原料の供給ライン、酸素の供給ライン及び蒸気の供給ラインに、それぞれ制御弁31、32、33が設けられ、ガス化炉23への燃料原料、酸素及び蒸気の供給量が調節可能とされている。なお、流量制御手段として、制御弁を用いた場合について説明するが、この制御弁に代えて、例えば、燃料供給ポンプ、送風機等の機器の駆動モータの回転数を制御することにより流量を制御する場合を含むものとする。
A flare stack 28 is connected to a fuel gas line that supplies fuel gas to the combined power generation facility 25. The flare stack 28 flares the fuel gas for the purpose of releasing the gas and suppressing the pressure rise when the gas pressure in the fuel gas line exceeds a specified pressure due to some cause.
The gasification combined power generation facility 21 is provided with control valves 31, 32, and 33 on the fuel raw material supply line, the oxygen supply line, and the steam supply line to the gasification furnace 23, respectively. The supply amount of the fuel raw material, oxygen, and steam to 23 can be adjusted. In addition, although the case where a control valve is used as the flow control means will be described, instead of this control valve, for example, the flow rate is controlled by controlling the rotation speed of a drive motor of a device such as a fuel supply pump or a blower. Including cases.

また、複合発電設備25への燃料ガスの供給ライン及び窒素の供給ラインにも、それぞれ制御弁34、36が設けられ、複合発電設備23への燃料ガス及び窒素の供給量が調節可能とされている。
さらに、フレアスタック28につながる燃料ガスの分岐ラインにも制御弁37が設けられ、フレアスタック28への燃料ガスの流量が調節可能とされている。
Control valves 34 and 36 are also provided in the fuel gas supply line and the nitrogen supply line to the combined power generation facility 25, respectively, so that the amount of fuel gas and nitrogen supplied to the combined power generation facility 23 can be adjusted. Yes.
Further, a control valve 37 is also provided in the fuel gas branch line connected to the flare stack 28 so that the flow rate of the fuel gas to the flare stack 28 can be adjusted.

次に、上記ガス化複合発電設備21の制御系について説明する。
このガス化複合発電設備21は、空気分離装置負荷コントローラ41、ガス化炉負荷コントローラ42及び発電負荷コントローラ43を備えている。
空気分離装置負荷コントローラ41は、空気分離装置22へ制御信号を出力して制御する。
ガス化炉負荷コントローラ42は、燃料原料の供給ライン、酸素の供給ライン及び蒸気の供給ラインに設けられた制御弁31、32、33へ制御信号を出力し、これら制御弁31、32、33を制御する。また、ガス化炉負荷コントローラ42は、酸素供給ラインの制御弁32へ送信する制御信号を空気分離装置負荷コントローラ41にも送信する。
Next, the control system of the gasification combined power generation facility 21 will be described.
The combined gasification power generation facility 21 includes an air separation device load controller 41, a gasification furnace load controller 42, and a power generation load controller 43.
The air separation device load controller 41 controls the air separation device 22 by outputting a control signal.
The gasifier load controller 42 outputs a control signal to the control valves 31, 32, 33 provided in the fuel raw material supply line, the oxygen supply line, and the steam supply line, and the control valves 31, 32, 33 are Control. The gasifier load controller 42 also transmits a control signal to be transmitted to the control valve 32 of the oxygen supply line to the air separation device load controller 41.

発電負荷コントローラ43には、発電負荷設定器44から設定値が送信される。また、この発電負荷コントローラ43には、複合発電設備25における発電出力を検出する発電出力検出器45から発電出力の検出データが送信される。発電負荷コントローラ43は、燃料ガス供給ラインの制御弁34及び窒素供給ラインの制御弁36へ制御信号を出力し、これら制御弁34、36を制御する。つまり、発電負荷コントローラ43は、発電出力を被制御変数として複合発電設備25を制御している。
また、この発電負荷コントローラ43は、加算器61、62を介してガス化炉負荷コントローラ42及び窒素圧縮機コントローラ52にも制御信号を出力する。
A set value is transmitted from the power generation load setting device 44 to the power generation load controller 43. Further, the power generation load controller 43 is transmitted with power generation output detection data from a power generation output detector 45 that detects a power generation output in the combined power generation facility 25. The power generation load controller 43 outputs control signals to the control valve 34 of the fuel gas supply line and the control valve 36 of the nitrogen supply line, and controls these control valves 34 and 36. That is, the power generation load controller 43 controls the combined power generation facility 25 using the power generation output as a controlled variable.
The power generation load controller 43 also outputs control signals to the gasifier load controller 42 and the nitrogen compressor controller 52 via the adders 61 and 62.

酸素圧縮機26には、酸素圧縮機コントローラ51が設けられ、この酸素圧縮機コントローラ51には、酸素圧縮機コントローラ設定器53から設定値が送信される。また、酸素圧縮機コントローラ52には、ガス化炉23への酸素の供給ラインにおける圧力または流量を検出する検出器55から検出データが送信される。そして、この酸素圧縮機コントローラ51は、酸素圧縮機コントローラ設定器53からの設定値及び検出器55からの検出データに基づいて、酸素圧縮機26にフィードバック制御信号を出力し、酸素圧縮機26を制御する。これにより、酸素圧縮機26は、下流圧力あるいは流量を被制御変数として制御される。   The oxygen compressor 26 is provided with an oxygen compressor controller 51, and a set value is transmitted to the oxygen compressor controller 51 from an oxygen compressor controller setter 53. Further, detection data is transmitted to the oxygen compressor controller 52 from a detector 55 that detects the pressure or flow rate in the oxygen supply line to the gasifier 23. Then, the oxygen compressor controller 51 outputs a feedback control signal to the oxygen compressor 26 based on the set value from the oxygen compressor controller setter 53 and the detection data from the detector 55, and the oxygen compressor 26 is turned on. Control. Thereby, the oxygen compressor 26 is controlled using the downstream pressure or flow rate as a controlled variable.

窒素圧縮機27には、窒素圧縮機コントローラ52が設けられ、この窒素圧縮機コントローラ52には、窒素圧縮機コントローラ設定器54から設定値が送信される。また、窒素圧縮機コントローラ52には、複合発電設備25への窒素の供給ラインにおける圧力または流量を検出する検出器56から加算器62を介して検出データが送信される。そして、この窒素圧縮機コントローラ52は、窒素圧縮機コントローラ設定器54からの設定値及び検出器56からの検出データと発電負荷コントローラ43からの制御信号との加算値に基づいて、窒素圧縮機27に制御信号を出力し、窒素圧縮機27を制御する。これにより、窒素圧縮機27は、下流圧力あるいは流量を被制御変数として制御される。なお、上記酸素圧縮機26及び窒素圧縮機27の制御は、負荷の状況に応じて圧力制御または流量制御のいずれかに切り換えられるものである。   The nitrogen compressor 27 is provided with a nitrogen compressor controller 52, and a set value is transmitted from the nitrogen compressor controller setting unit 54 to the nitrogen compressor controller 52. Detection data is transmitted to the nitrogen compressor controller 52 from the detector 56 that detects the pressure or flow rate in the supply line of nitrogen to the combined power generation facility 25 via the adder 62. The nitrogen compressor controller 52 is based on the set value from the nitrogen compressor controller setter 54 and the addition value of the detection data from the detector 56 and the control signal from the power generation load controller 43. A control signal is output to control the nitrogen compressor 27. Thereby, the nitrogen compressor 27 is controlled by using the downstream pressure or flow rate as a controlled variable. The control of the oxygen compressor 26 and the nitrogen compressor 27 is switched to either pressure control or flow rate control according to the load condition.

また、複合発電設備25へ燃料ガスを供給する燃料ガスラインには、燃料ガスの圧力を検出するガス圧力検出器57が設けられ、このガス圧力検出器57からの検出データが、ガス化炉用ガス圧力コントローラ58及びフレア用ガス圧力コントローラ59へそれぞれ送信される。
ガス化炉用ガス圧力コントローラ58は、加算器61へ制御信号を出力する。これにより、ガス化炉負荷コントローラ42には、ガス化炉用ガス圧力コントローラ58及び発電負荷コントローラ43からの制御信号が加算器61にて加算されて送信される。つまり、ガス化炉23は、ガス処理設備24の下流側における燃料ガスのガス圧力を被制御変数として制御される。
また、フレア用ガス圧力コントローラ59は、フレアスタック28への分岐ラインの制御弁37へ制御信号を出力し、この制御弁37を制御する。ここで、フレア用ガス圧力コントローラ59は、ガス化炉用ガス圧力コントローラ58よりも圧力設定値が少し高くされている。これにより、通常運転時に、分岐ラインの制御弁37が閉じているが、ガス圧力検出器57の検出値がフレア用ガス圧力コントローラ59の設定値を超えた場合には、分岐ラインの制御弁37が開かれ、フレアスタック28にてフレアリングするようになっている。
The fuel gas line for supplying the fuel gas to the combined power generation facility 25 is provided with a gas pressure detector 57 for detecting the pressure of the fuel gas, and the detection data from the gas pressure detector 57 is used for the gasifier. It is transmitted to the gas pressure controller 58 and the flare gas pressure controller 59, respectively.
The gasifier gas pressure controller 58 outputs a control signal to the adder 61. Thereby, the control signals from the gasifier gas pressure controller 58 and the power generation load controller 43 are added to the gasifier load controller 42 by the adder 61 and transmitted. That is, the gasification furnace 23 is controlled using the gas pressure of the fuel gas on the downstream side of the gas processing facility 24 as a controlled variable.
The flare gas pressure controller 59 outputs a control signal to the control valve 37 on the branch line to the flare stack 28 to control the control valve 37. Here, the pressure setting value of the flare gas pressure controller 59 is slightly higher than that of the gasifier gas pressure controller 58. As a result, the branch line control valve 37 is closed during normal operation. However, if the detected value of the gas pressure detector 57 exceeds the set value of the flare gas pressure controller 59, the branch line control valve 37 is closed. Are opened and flare in the flare stack 28.

そして、上記ガス化複合発電設備21では、発電負荷設定器44からの設定値に基づく発電負荷コントローラ43からの制御信号が、フィードフォワード制御信号として、加算器61を介してガス化炉負荷コントローラ42へ送信される。これにより、ガス化炉負荷コントローラ42は、フィードフォワード制御信号が加算された信号に基づいて、ガス化炉23への燃料原料、酸素及び蒸気の供給ラインの制御弁31、32、33を制御するとともに、空気分離装置負荷コントローラ41へ制御信号を送信して空気分離装置22を制御する。これにより、ガス化炉23及びガス処理設備24による燃料ガスの製造量を、発電負荷要求の一定範囲の変動に対して迅速に追従させることができる。   In the combined gasification power generation facility 21, the control signal from the power generation load controller 43 based on the set value from the power generation load setting device 44 is supplied as a feedforward control signal via the adder 61 to the gasification furnace load controller 42. Sent to. Thereby, the gasifier load controller 42 controls the control valves 31, 32, and 33 of the supply line of the fuel raw material, oxygen, and steam to the gasifier 23 based on the signal to which the feedforward control signal is added. At the same time, a control signal is transmitted to the air separation device load controller 41 to control the air separation device 22. Thereby, the production amount of the fuel gas by the gasification furnace 23 and the gas processing facility 24 can be made to follow rapidly with respect to the fluctuation | variation of the fixed range of electric power generation load request | requirement.

つまり、この比較例における協調制御を適用したガス化複合発電設備21では、ガス化炉23及びガス処理設備24からなるガス化設備における燃料ガスの製造量を、発電負荷要求の変動に対して迅速に追従させることができる。
また、このガス化複合発電設備21では、発電負荷設定器44からの設定値に基づく発電負荷コントローラ43からの制御信号が、フィードフォワード制御信号として、加算器62を介して窒素圧縮機コントローラ52にも送信される。これにより、窒素圧縮機27による複合発電設備25への窒素の供給量が、発電負荷要求の変動に対応して迅速に追従されて増減される。
That is, in the combined gasification power generation facility 21 to which the cooperative control in this comparative example is applied, the production amount of the fuel gas in the gasification facility composed of the gasification furnace 23 and the gas processing facility 24 can be quickly adjusted with respect to fluctuations in the power generation load request. Can be followed.
In this combined gasification power generation facility 21, the control signal from the power generation load controller 43 based on the set value from the power generation load setting device 44 is sent to the nitrogen compressor controller 52 via the adder 62 as a feedforward control signal. Is also sent. Thereby, the supply amount of nitrogen to the combined power generation facility 25 by the nitrogen compressor 27 is quickly followed and increased or decreased in response to fluctuations in the power generation load request.

ここで、上記比較例のガス化複合発電設備21では、発電負荷要求の変動に対応してガス化炉23及びガス処理設備24による燃料ガスの製造量を増減させるフィードフォワード制御を行うが、ガス化炉23及びガス処理設備24による燃料ガスの製造設備には、燃料が前記ガス化設備から発電設備に供給される間に無駄時間及び制御の遅れが存在する。
ここで無駄時間とは、プロセスやシステムに命令(信号)が入力されてから、その結果が全く現れない時間であり、より正確には、図4に示す通りである。
すなわち、(a)に示すように、制御出力(操作変数)が瞬時に立ち上がって出力された場合であっても、一般に被制御変数の挙動は(b)に示すような遅れ特性を持っており、さらに、無駄時間が存在すると、実際の被制御変数の挙動は(c)に示すように多くの遅れを生じることとなる。本発明においては、図4(c)に示すような無駄時間と制御の遅れの両方が存在する場合の補償を実行するものである。
そして、発電負荷要求の変動が大きいと、特に、無駄時間の存在により燃料ガスの増減の検出が遅れ、その後の燃料ガスの製造量が極端に増減するなどして、発電負荷要求の変動に対する追従性が悪くなる。
Here, the combined gasification power generation facility 21 of the comparative example performs feedforward control for increasing or decreasing the amount of fuel gas produced by the gasification furnace 23 and the gas processing facility 24 in response to fluctuations in the power generation load request. In the fuel gas production facility using the gasification furnace 23 and the gas processing facility 24, there is a dead time and a control delay while fuel is supplied from the gasification facility to the power generation facility.
Here, the dead time is a time when no result appears after an instruction (signal) is input to the process or system, and more precisely, as shown in FIG.
That is, as shown in (a), even when the control output (operation variable) rises and is output instantaneously, the behavior of the controlled variable generally has a delay characteristic as shown in (b). Furthermore, if there is a dead time, the actual behavior of the controlled variable will cause many delays as shown in (c). In the present invention, compensation is performed when both dead time and control delay exist as shown in FIG.
And if the fluctuation of the power generation load demand is large, the detection of the increase or decrease of the fuel gas is delayed due to the existence of the dead time, and the production amount of the fuel gas thereafter increases or decreases extremely. Sexuality gets worse.

このため、本実施形態では、図2に示すように、図1の協調制御方式に加えて、上記で説明した無駄時間および制御の遅れを想定して複合発電設備への発電負荷要求を遅延させ、複合発電設備を一定の遅れをもって追従運転させる無駄時間補償回路を備えている。すなわち発電負荷コントローラ43と発電負荷設定器44との間には、ガス化プラント無駄時間補償回路46を設けている。このガス化プラント無駄時間補償回路46は、発電負荷設定器44からの設定値の変化に対する燃料ガスの圧力への影響及びガス圧力コントローラ58の出力の変化に対する燃料ガスの圧力への影響を含む動的モデルを用いたもので、発電負荷設定器44からの設定値に対してガス化炉23及びガス処理設備24などからなるガス化設備における無駄時間を補償するものである。そして、このガス化プラント無駄時間補償回路46により、複合発電設備25は、その運転が意図的に遅らせられ、発電負荷設定器44からの発電負荷の設定値に対して、常にある一定の遅れをもって安定追従する。   For this reason, in this embodiment, as shown in FIG. 2, in addition to the cooperative control method of FIG. 1, the generation load request to the combined power generation facility is delayed assuming the above-described dead time and control delay. In addition, a dead time compensation circuit is provided for causing the combined power generation facility to follow up with a certain delay. That is, a gasification plant dead time compensation circuit 46 is provided between the power generation load controller 43 and the power generation load setting device 44. This gasification plant dead time compensation circuit 46 includes dynamic effects including an influence on the pressure of the fuel gas with respect to a change in the set value from the power generation load setting device 44 and an influence on the pressure of the fuel gas with respect to a change in the output of the gas pressure controller 58. In this example, the dead time in the gasification facility including the gasification furnace 23 and the gas processing facility 24 is compensated for the set value from the power generation load setting device 44. The gasification plant dead time compensation circuit 46 intentionally delays the operation of the combined power generation facility 25, and always has a certain delay with respect to the set value of the power generation load from the power generation load setting device 44. Follows stably.

このように、上記ガス化複合発電設備21によれば、発電負荷要求の変動が大きい場合にも、ガス化炉23及びガス処理設備24などからなるガス化設備を発電負荷要求に応じてフィードフォワード制御するとともに、フィードフォワード制御されるガス化設備に対して、その無駄時間及び制御遅れを考慮して複合発電設備25を一定の遅れをもって確実に安定追従させて運転させることができ、発電負荷要求の変動に対する追従性をさらに向上させることができる。   As described above, according to the gasification combined power generation facility 21, the gasification facility including the gasification furnace 23 and the gas processing facility 24 is fed forward according to the power generation load request even when the variation in the power generation load request is large. The combined power generation facility 25 can be operated in a stable and stable manner with a certain delay in consideration of the dead time and control delay of the gasification facility that is controlled and feedforward controlled. It is possible to further improve the follow-up performance with respect to the fluctuations.

また、上記ガス化複合発電設備21は、ガス化プラント無駄時間補償回路46による発電負荷の設定値の意図的な遅れ及び複合発電設備25にて必要とされる燃料ガスの流量の変動と実際の燃料ガス流量の変動との差異を補償するために、燃料ガス流量変化量補償回路47を備えている。そして、この燃料ガス流量変化量補償回路47は、発電負荷設定器44からガス化炉負荷コントローラ42へ送信される発電負荷の設定値に加算器63にて補正値を加算し、このフィードフォワード制御信号として送信される発電負荷の設定値を補正するようになっている。
このように、ガス化プラント無駄時間補償回路46により追従運転される複合発電設備25にて必要とされる燃料ガスの流量の変動と実際の燃料ガス流量の変動との差異に基づいて、ガス化炉負荷コントローラ42へ送信されるフィードフォワード制御のための設定値を補正する燃料ガス流量変化量補償回路47を設けたので、ガス化炉23及びガス処理設備24などからなるガス化設備からの燃料ガスと複合発電設備25にて必要とされる燃料ガスとの流量差を極力抑えることができ、複合発電設備25の安定運転を図ることができる。
Further, the gasification combined power generation facility 21 has an intentional delay in the set value of the power generation load by the gasification plant dead time compensation circuit 46 and a change in the flow rate of the fuel gas required in the combined power generation facility 25 and the actual value. In order to compensate for the difference from the fluctuation of the fuel gas flow rate, a fuel gas flow rate variation compensation circuit 47 is provided. The fuel gas flow rate change amount compensation circuit 47 adds a correction value to the set value of the power generation load transmitted from the power generation load setting device 44 to the gasifier load controller 42 by the adder 63, and this feedforward control. The set value of the power generation load transmitted as a signal is corrected.
Thus, based on the difference between the fluctuation in the flow rate of the fuel gas required in the combined power generation facility 25 that is operated by the gasification plant dead time compensation circuit 46 and the fluctuation in the actual fuel gas flow rate, the gasification is performed. Since the fuel gas flow rate change compensation circuit 47 for correcting the set value for feedforward control transmitted to the furnace load controller 42 is provided, the fuel from the gasification facility including the gasification furnace 23 and the gas processing facility 24 is provided. The flow rate difference between the gas and the fuel gas required in the combined power generation facility 25 can be suppressed as much as possible, and the combined power generation facility 25 can be stably operated.

また、上記フィードフォワード制御により、発電負荷要求の変動に対応してガス化炉23及びガス処理設備24による燃料ガスの製造量を増減させる場合、燃料ガスに必要となる酸素の供給量も増減させる必要が生じる。
このため、本実施形態では、酸素圧縮機コントローラ51からの制御信号にガス化炉負荷コントローラ42からの制御信号を加算して酸素圧縮機26へ送信する加算器72を設けている。これにより、発電負荷コントローラ43からのフィードフォワード制御信号に基づいて送信されたガス化炉負荷コントローラ42からの制御信号がフィードフォワード信号として酸素圧縮機コントローラ51からの制御信号に加算され、その制御信号にて酸素圧縮機26が制御される。
In addition, when the amount of fuel gas produced by the gasification furnace 23 and the gas processing facility 24 is increased or decreased by the feedforward control in response to fluctuations in the power generation load request, the supply amount of oxygen necessary for the fuel gas is also increased or decreased. Need arises.
For this reason, in the present embodiment, an adder 72 that adds the control signal from the gasifier load controller 42 to the control signal from the oxygen compressor controller 51 and transmits it to the oxygen compressor 26 is provided. Thereby, the control signal from the gasifier load controller 42 transmitted based on the feedforward control signal from the power generation load controller 43 is added to the control signal from the oxygen compressor controller 51 as a feedforward signal, and the control signal The oxygen compressor 26 is controlled.

つまり、ガス化炉23における燃料ガスの製造量の増減に対して酸素圧縮機26を俊敏に制御し、特に、ガス化炉23内の温度変化に大きく影響を与える酸素の供給量を、ガス化炉23及びガス処理設備24からなるガス化設備の負荷に応じて安定して供給することができる。
また、ガス化炉23及びガス処理設備24からなるガス化設備における燃料ガスの製造に必要な酸素の供給量を、ガス化設備における燃料ガスの製造量の増減に応じて空気から酸素を分離させて追従させるべく、空気分離装置22をフィードフォワード制御するので、酸素の供給量を、ガス化炉23及びガス処理設備24からなるガス化設備の負荷に応じてさらに安定して供給することができる。
That is, the oxygen compressor 26 is quickly controlled with respect to the increase or decrease in the amount of fuel gas produced in the gasification furnace 23, and in particular, the oxygen supply amount that greatly affects the temperature change in the gasification furnace 23 is gasified. According to the load of the gasification equipment which consists of the furnace 23 and the gas processing equipment 24, it can supply stably.
Further, the oxygen supply amount necessary for the production of the fuel gas in the gasification facility comprising the gasification furnace 23 and the gas processing facility 24 is separated from the air in accordance with the increase or decrease of the fuel gas production amount in the gasification facility. Since the air separation device 22 is feedforward controlled so as to follow, the supply amount of oxygen can be supplied more stably according to the load of the gasification facility including the gasification furnace 23 and the gas treatment facility 24. .

協調制御方式が適応されたガス化複合発電設備の比較例を説明する回路図である。It is a circuit diagram explaining the comparative example of the gasification combined cycle power generation facility to which the cooperative control system was applied. 実施形態に係るガス化複合発電設備を説明する回路図である。It is a circuit diagram explaining the gasification combined cycle power generation equipment concerning an embodiment. 従来のガス化複合発電設備を説明する回路図である。It is a circuit diagram explaining the conventional gasification combined cycle power generation equipment. 操作変数および被制御変数と無駄時間との関係を示す図である。It is a figure which shows the relationship between an operation variable and a controlled variable, and dead time.

符号の説明Explanation of symbols

21 ガス化複合発電設備
22 空気分離装置
23 ガス化炉(ガス化設備)
24 ガス処理設備(ガス化設備)
25 複合発電設備
26 酸素圧縮機(圧縮機)
42 ガス化炉負荷コントローラ(制御系)
43 発電負荷コントローラ(制御系)
46 ガス化プラント無駄時間補償回路(無駄時間補償回路)
47 燃料ガス流量変化量補償回路

21 Combined gasification power generation facility 22 Air separation device 23 Gasification furnace (gasification facility)
24 Gas processing equipment (gasification equipment)
25 Combined power generation facilities 26 Oxygen compressor (compressor)
42 Gasifier load controller (control system)
43 Power generation load controller (control system)
46 Gasification plant dead time compensation circuit (dead time compensation circuit)
47 Fuel gas flow rate change compensation circuit

Claims (6)

ガス化設備と該ガス化設備により製造したガスを燃料とする複合発電設備とを備え、前記ガス化設備にて製造した燃料ガスを用いてガスタービンおよびスチームタービンを回転させることにより前記複合発電設備にて発電を行うガス化複合発電設備であって、
前記複合発電設備への発電負荷要求に応じ、前記複合発電設備にて必要となる燃料ガスを前記ガス化設備にて製造させるべく、前記ガス化設備をフィードフォワード制御する制御系を備え、
該制御系は、前記ガス化設備に存在する無駄時間及び制御の遅れを想定して前記複合発電設備への発電負荷要求を遅延させ、前記複合発電設備を一定の遅れをもって追従運転させる無駄時間補償回路を備えたことを特徴とするガス化複合発電設備。
A combined power generation facility that uses a gasification facility and a gas produced by the gasification facility as a fuel, and rotates the gas turbine and the steam turbine using the fuel gas produced by the gasification facility; A gasification combined power generation facility that generates power at
In response to a power generation load request to the combined power generation facility, a control system for feedforward control of the gasification facility is provided to produce fuel gas required in the combined power generation facility in the gasification facility,
The control system assumes a dead time existing in the gasification facility and a delay in control, delays a power generation load request to the combined power generation facility, and compensates for a dead time in which the combined power generation facility is operated with a certain delay. A gasification combined power generation facility characterized by comprising a circuit.
前記制御系は、さらに前記無駄時間補償回路により追従運転される前記複合発電設備にて必要とされる燃料ガスの流量の変動と実際の燃料ガスの流量の変動との差異に基づいて、前記ガス化設備へ送信されるフィードフォワード制御のための設定値を補正する燃料ガス流量変化量補償回路を備えたことを特徴とする請求項1に記載のガス化複合発電設備。   The control system further includes the gas based on a difference between a change in the flow rate of the fuel gas required in the combined power generation facility that is operated by the dead time compensation circuit and a change in the actual flow rate of the fuel gas. 2. The combined gasification power generation facility according to claim 1, further comprising a fuel gas flow rate change amount compensation circuit that corrects a set value for feedforward control transmitted to the conversion facility. 前記制御系は、前記ガス化設備における燃料ガスの製造に必要な酸素の供給量を前記ガス化設備における燃料ガスの製造量の増減に応じて追従させるべく、前記ガス化設備へ酸素を圧縮して送る圧縮機をフィードフォワード制御することを特徴とする請求項1または請求項2に記載のガス化複合発電設備。   The control system compresses oxygen to the gasification facility so that the supply amount of oxygen necessary for the production of fuel gas in the gasification facility can follow the increase or decrease in the production amount of fuel gas in the gasification facility. The gasification combined power generation facility according to claim 1 or 2, wherein the compressor to be fed is feedforward controlled. 前記制御系は、前記ガス化設備における燃料ガスの製造に必要な酸素の供給量を前記ガス化設備における燃料ガスの製造量の増減に応じて追従させるべく、空気から酸素を分離して前記ガス化設備へ供給する空気分離装置をフィードフォワード制御することを特徴とする請求項3に記載のガス化複合発電設備。   The control system separates oxygen from air and causes the gas to be supplied in accordance with an increase or decrease in the amount of fuel gas produced in the gasification facility in order to follow the supply amount of oxygen necessary for production of fuel gas in the gasification facility. 4. The combined gasification power generation facility according to claim 3, wherein the air separation device supplied to the gasification facility is feedforward controlled. ガス化設備と該ガス化設備により製造したガスを燃料とする複合発電設備とを備え、前記ガス化設備にて製造した燃料ガスを用いてガスタービンおよびスチームタービンを回転させることにより前記複合発電設備にて発電を行うガス化複合発電設備の制御方法であって、
前記複合発電設備への発電負荷要求に応じ、前記複合発電設備で必要な量の燃料ガスを前記ガス化設備にて製造させるべく、前記ガス化設備を構成する機器へ前記燃料ガスの製造量を増減させるフィードフォワード信号を出力する工程と、
前記ガス化設備に存在する無駄時間及び制御の遅れを想定して前記複合発電設備への発電負荷要求を遅らせ、前記複合発電設備を一定の遅れをもって追従運転させるように複合発電設備に疑似信号を出力する工程と、
を実行することにより、ゼロフレア運転できるように制御することを特徴とするガス化複合発電設備の制御方法。
A combined power generation facility that uses a gasification facility and a gas produced by the gasification facility as a fuel, and rotates the gas turbine and the steam turbine using the fuel gas produced by the gasification facility; A method for controlling a combined gasification power generation facility that generates power at
In response to the power generation load requirement for the combined power generation facility, the amount of fuel gas produced is supplied to the equipment constituting the gasification facility in order to cause the gasification facility to produce the required amount of fuel gas in the combined power generation facility. Outputting a feedforward signal to be increased or decreased;
Assuming dead time and control delay existing in the gasification facility, the generation load request to the combined power generation facility is delayed, and a pseudo signal is sent to the combined power generation facility so that the combined power generation facility is operated with a certain delay. A process of outputting;
The control method of the gasification combined cycle power generation equipment characterized by performing control so that zero flare operation can be performed by performing.
さらに前記複合発電設備にて必要とされる燃料ガスの流量の変動と実際の燃料ガスの流量の変動との差異に基づいて、前記ガス化設備へ送信されるフィードフォワード制御のための設定値を補正する工程を備えた請求項5記載のガス化複合発電設備の制御方法。   Further, based on the difference between the fluctuation in the flow rate of the fuel gas required in the combined power generation facility and the fluctuation in the actual flow rate of the fuel gas, a set value for feedforward control transmitted to the gasification facility is set. The control method of the gasification combined cycle power plant according to claim 5 provided with the process of amending.
JP2004292847A 2004-10-05 2004-10-05 Gasification combined power generation facility and control method thereof Active JP4485900B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004292847A JP4485900B2 (en) 2004-10-05 2004-10-05 Gasification combined power generation facility and control method thereof
PCT/JP2005/018371 WO2006038629A1 (en) 2004-10-05 2005-10-04 Gasifying complex power generation system, control method therefor, fuel gas producing method
EP05790380.9A EP1798385B1 (en) 2004-10-05 2005-10-04 Integrated gasification combined cycle and method of controlling thereof
US11/576,636 US7877979B2 (en) 2004-10-05 2005-10-04 Integrated gasification combined cycle plant, method of controlling the plant, and method of producing fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292847A JP4485900B2 (en) 2004-10-05 2004-10-05 Gasification combined power generation facility and control method thereof

Publications (2)

Publication Number Publication Date
JP2006105022A JP2006105022A (en) 2006-04-20
JP4485900B2 true JP4485900B2 (en) 2010-06-23

Family

ID=36375056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292847A Active JP4485900B2 (en) 2004-10-05 2004-10-05 Gasification combined power generation facility and control method thereof

Country Status (1)

Country Link
JP (1) JP4485900B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990892B1 (en) 2008-05-30 2010-11-01 한국전력공사 Integrated gasification combined cycle power plant
JP6402075B2 (en) * 2015-07-13 2018-10-10 株式会社日立製作所 Coal gasification combined power plant
CN115076601B (en) * 2022-05-10 2024-02-20 潍柴动力股份有限公司 Method, device and system for detecting reliability of residual liquid level of gas tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205340A (en) * 1985-03-08 1986-09-11 Mitsubishi Heavy Ind Ltd Control device of gas turbine
JPH06288262A (en) * 1993-03-31 1994-10-11 Central Res Inst Of Electric Power Ind Operation control method of coal gasification compound generator system
JP2000328073A (en) * 1999-05-17 2000-11-28 Hitachi Ltd Fossil fuel gasification/utilization facility control method, its control equipment, pre-command value generator contituting part of control equipment
JP2002129910A (en) * 2000-10-30 2002-05-09 Toshiba Corp Control equipment of integrated coal gasification combined cycle power generation plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205340A (en) * 1985-03-08 1986-09-11 Mitsubishi Heavy Ind Ltd Control device of gas turbine
JPH06288262A (en) * 1993-03-31 1994-10-11 Central Res Inst Of Electric Power Ind Operation control method of coal gasification compound generator system
JP2000328073A (en) * 1999-05-17 2000-11-28 Hitachi Ltd Fossil fuel gasification/utilization facility control method, its control equipment, pre-command value generator contituting part of control equipment
JP2002129910A (en) * 2000-10-30 2002-05-09 Toshiba Corp Control equipment of integrated coal gasification combined cycle power generation plant

Also Published As

Publication number Publication date
JP2006105022A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4554440B2 (en) Gasification combined power generation facility and control method thereof
US7877979B2 (en) Integrated gasification combined cycle plant, method of controlling the plant, and method of producing fuel gas
JP2008121450A (en) Coal gasification composite power generating system, and its running control method
JP2007211705A (en) Air pressure control device in integrated gasification combined cycle system
WO2013084735A1 (en) Fuel gasification system, control method and control program therefor, and fuel gasification combined power generation system provided with fuel gasification system
JP2015151912A (en) Gas supply apparatus, power generation plant, and power generation plant control method
JP2012052785A (en) Steam supply system, method of controlling the same, and method of supplying steam
JP4485900B2 (en) Gasification combined power generation facility and control method thereof
JP5151921B2 (en) Combined power generation method and apparatus using two-column gasifier
KR101735989B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP4485899B2 (en) Combined gasification power generation facility, control method, fuel gas production method
JP2006090287A (en) Composite power generation system and fuel gas calorific value control method
JP3433968B2 (en) Operation control method of integrated coal gasification combined cycle system
JP2002129910A (en) Control equipment of integrated coal gasification combined cycle power generation plant
JP2017110165A (en) Gasification device, and controller for the gasification device, and gasification composite power generation equipment
JP6033380B2 (en) Coal gasification combined power generation facility
JP6402075B2 (en) Coal gasification combined power plant
JP6400415B2 (en) Gasification combined power generation facility, control device and control method thereof
JP2014101838A (en) Coal gasification combined generation facility
JP2015050162A (en) Gasification fuel cell hybrid power generation system and operational method thereof
JP6301118B2 (en) Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system
JP4981509B2 (en) Combined power plant steam turbine operation control system
JP5615199B2 (en) Combustion device
KR20130134811A (en) Apparatus for controlling gas turbine of integrated gasification combined cycle power plant
JPH0343609A (en) Control of power generation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Ref document number: 4485900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250