KR100990892B1 - Integrated gasification combined cycle power plant - Google Patents

Integrated gasification combined cycle power plant Download PDF

Info

Publication number
KR100990892B1
KR100990892B1 KR20080051187A KR20080051187A KR100990892B1 KR 100990892 B1 KR100990892 B1 KR 100990892B1 KR 20080051187 A KR20080051187 A KR 20080051187A KR 20080051187 A KR20080051187 A KR 20080051187A KR 100990892 B1 KR100990892 B1 KR 100990892B1
Authority
KR
South Korea
Prior art keywords
gas
fuel
gas turbine
control unit
coal
Prior art date
Application number
KR20080051187A
Other languages
Korean (ko)
Other versions
KR20090124784A (en
Inventor
이민철
안달홍
주용진
서석빈
박원식
서혜경
정재화
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR20080051187A priority Critical patent/KR100990892B1/en
Publication of KR20090124784A publication Critical patent/KR20090124784A/en
Application granted granted Critical
Publication of KR100990892B1 publication Critical patent/KR100990892B1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PURPOSE: A carbonic gas complex generating plant is provided to reduce the contaminant because the consumption of the fuel is reduced and the optimum combustion condition is formed by controlling the amount of the dilute nitrogen and the secondary fuel and controlling combustion oscillation by monitoring NOx generation rate. CONSTITUTION: A carbonic gas complex generating plant is composed of a gas generating unit, a steam generating unit, and a fuel control unit. The carbonic gas generated in a gasifier(110) is supplied to a gas turbine burner(140) by passing by a heat exchanger(120) and a gas refiner(130). The gas generating unit is operated by the operation of a gas turbine(150). The steam generated in the gasifier is supplied to the gas turbine through a heat recovery boiler(170). A fuel control unit(200) analyzes combustion oscillation measurement data sensed in a kinetic pressure sensor(202) and controls the flow rate, composition, and temperature of the carbonic gas. The kinetic pressure sensor is mounted on the gas turbine burner. When computing the total fuel injection rate injected to the gas turbine burner, the fuel control unit identically keeps the total input amount before and after putting the second fuel. The fuel control unit controls the flow rate, composition and temperature of the mixed gas. The fuel control unit controls the amount of the dilute nitrogen inserted in the gas turbine.

Description

석탄가스화 복합발전 플랜트{Integrated gasification combined cycle power plant}Integrated gasification combined cycle power plant}

본 발명은 석탄가스화 복합발전 플랜트에 관한 것으로, 특히 실시간으로 연소진단을 하여 연료주입량을 최적화할 수 있도록 한 석탄가스와 복합발전 플랜트에 관한 것이다.The present invention relates to a coal gasification combined cycle plant, and more particularly, to a coal gas and a combined cycle power plant to optimize the fuel injection amount by the combustion diagnosis in real time.

일반적으로, 석탄가스화 복합발전(Integrated Gasification Combined Cycle, 이하, IGCC라 한다) 기술은 석탄을 가스화(Gasification)하고, 그 석탄가스를 정제한 후 이 정제된 석탄가스를 연료로 복합발전하는 청정 석탄이용 기술이다.In general, the Integrated Gasification Combined Cycle (IGCC) technology uses clean coal to gasify coal, purify the coal gas, and then combine the refined coal gas with fuel. Technology.

현재, 세계 많은 연구기관에서는 에너지 자원의 고갈 문제와 환경문제를 해결하기 위해 다양한 청정연료의 개발을 위해 노력하고 있다. 특히 한정적 자원의 문제를 극복하기 위해 신ㆍ재생에너지 분야의 개발을 전세계적으로 추진 중이고, 그 중 IGCC 기술도 신ㆍ재생에너지 분야에 속한다.Currently, many research institutes around the world are working to develop various clean fuels to solve the problem of depletion of energy resources and environmental problems. In particular, in order to overcome the problem of limited resources, the development of new and renewable energy fields is being promoted worldwide, and among them, IGCC technology belongs to the new and renewable energy fields.

종래에는 석탄을 이용한 발전에는 대부분 미분탄 보일러 발전기술이 적용되 었으나, 근래 지구온난화 문제를 해결하기 위해 탄소배출 저감기술이 접목된 다양한 IGCC 기술이 개발되고 있다. Conventionally, pulverized coal boiler power generation technology has been applied to coal-fired power generation. However, various IGCC technologies have been developed that combine carbon emission reduction technology to solve the global warming problem.

국내에서는 최초로 2006년 12월부터 300MW급 IGCC 실증플랜트를 건설하기 위한 사업이 추진되어, 2012년 건설, 2014년까지 완공 및 시운전을 완료하여 정상화할 계획에 있다.The first project in Korea to build a 300MW IGCC demonstration plant has been promoted since December 2006, and is planned to be completed in 2012 and completed in 2014, and normalized.

한편, 해외 IGCC 실증플랜트는 현재 미국의 와바쉬(Wabash), 템파(Tampa)에 있고, 네덜란드의 부게넘(Buggenum)에 있으며, 스페인의 푸에르토야노(Puertollano)에 4개의 250MW급의 대형 플랜트가 운영 중에 있다.Overseas IGCC demonstration plants are currently located in Wabash, Tampa, USA, in Bugenum, the Netherlands, and four large 250MW-scale plants are operated in Puertollano, Spain. There is.

향후에는 지구온난화 문제 해결을 위해 IGCC 플랜트에 탄소포획 및 저장시스템(Carbon Capture and Storage System, CCS)을 추가한 퓨처젠 프로젝트(Future Gen Project)와 관련하여 수많은 석탄가스화 복합발전 플랜트가 건설될 예정이다. In the future, a number of coal gasification combined cycle plants will be built in conjunction with the Future Gen Project, which adds a carbon capture and storage system (CCS) to the IGCC plant to address global warming. .

그러나 현존하는 석탄가스화 플랜트는 잦은 고장정지로 인해 이용율이 80%이하로 낮고, 이를 개선하기 위한 많은 연구가 진행 중이다.However, existing coal gasification plants have a low utilization rate of less than 80% due to frequent breakdowns, and a lot of researches are underway to improve them.

한편, 한국특허출원 2007-35482호(이하, 특허문헌이라 한다)에서 파쇄된 석탄가루를 석탄가스화기 내에 분사하여 1200℃ 이상의 고온에서 탄소 개질반응에 의하여 합성가스를 생성하고, 석탄 속에 있는 슬래그를 1300℃ 이하에서 고체상태로 포집하는 IGCC 기술이 개시되어 있다. 다만, 상기 특허문헌에서는 혼합연료를 주입하는 기술과 연료주입량 자체를 제어하는 기술은 개시되어 있지 않다. 따라서, 상기 특허문헌의 기술은 연료소모량을 개선하는데 어려움이 있고, 범용적인 IGCC 플랜트로 이용되는데 한계가 있었다.Meanwhile, coal powder crushed in Korean Patent Application No. 2007-35482 (hereinafter referred to as a patent document) is injected into a coal gasifier to generate a synthesis gas by a carbon reforming reaction at a high temperature of 1200 ° C. or higher, and slag in coal An IGCC technique for capturing in the solid state below 1300 ° C. is disclosed. However, the patent document does not disclose a technique for injecting a mixed fuel and a technique for controlling the fuel injection amount itself. Therefore, the technique of the patent document is difficult to improve the fuel consumption, there was a limit to use as a general purpose IGCC plant.

본 발명의 목적은 상술한 문제점을 해소하기 위하여 안출된 것으로, 가스발전부에서 사용되는 전제연료인 혼합가스의 조성, 온도, 발열량을 제어하여 연료소모량을 줄여서 최적 연소조건을 도출할 수 있으며, 발전연료를 다변화시켜 범용적으로 활용할 수 있도록 한 석탄가스화 복합발전 플랜트를 제공하는데 있다. An object of the present invention is to solve the above problems, to control the composition, temperature, heat generation amount of the mixed gas, which is the premise fuel used in the gas power generation unit can reduce the fuel consumption to derive the optimum combustion conditions, It is to provide a coal gasification combined cycle power plant that can diversify fuel and use it universally.

상기한 목적을 달성하기 위한 본 발명은, 가스화기에서 생성되는 석탄가스가 열교환기와 가스정제기를 거쳐서 가스터빈연소기에 공급되고 연소되어, 가스터빈이 구동됨에 따라 발전되는 가스발전부와, 상기 가스화기에서 생성되는 증기가 배열회수보일러를 거쳐 증기터빈에 공급되어 발전되는 증기발전부 및, 상기 가스터빈연소기에 장착된 동압센서에서 감지한 연소진동 측정데이터를 분석하여 연료의 조성 및 온도를 제어하는 연료제어부를 포함한다.In order to achieve the above object, the present invention provides a gas generator unit in which coal gas generated in a gasifier is supplied to a gas turbine combustor through a heat exchanger and a gas purifier and combusted to generate electricity as the gas turbine is driven. Steam generated from the steam generator is supplied to the steam turbine through the heat recovery boiler and the combustion vibration measurement data detected by the dynamic pressure sensor mounted on the gas turbine combustor to control the composition and temperature of the fuel It includes a control unit.

상기 열교환기에서 상기 가스터빈연소기로 1차연료인 석탄가스를 공급하는 1차공급관에, 2차연료인 천연가스 또는 액화석유가스를 공급하는 2차공급관이 연결되어, 석탄가스 또는 혼합1,2차연료인 혼합가스가 상기 가스터빈연소기로 선택적으로 공급되도록 되어 있다.A secondary supply pipe for supplying natural gas or liquefied petroleum gas as a secondary fuel is connected to a primary supply pipe for supplying coal gas, which is a primary fuel, to the gas turbine burner in the heat exchanger. The mixed gas which is the secondary fuel is selectively supplied to the gas turbine combustor.

또한, 상기 연료제어부는 상기 가스터빈연소기 내부의 연소진동과 연소 후 배기가스의 조성을 실시간으로 모니터링하여 상기 석탄가스 또는 상기 혼합가스의 유량, 조성 및 온도를 제어하는 것이 바람직하다.In addition, the fuel control unit preferably controls the flow rate, composition and temperature of the coal gas or the mixed gas by monitoring in real time the combustion vibration and the composition of the exhaust gas after combustion in the gas turbine burner.

또한, 상기 연료제어부는 상기 가스터빈연소기로 주입하는 전체의 연료주입량을 산정할 때, 2차연료 투입전 총입열량과 2차연료 투입후 총입열량이 동일하게 하는 것이 바람직하다.In addition, when the fuel control unit calculates the total fuel injection amount injected into the gas turbine combustor, the total heat input amount before the secondary fuel input and the total heat input amount after the secondary fuel input are preferably the same.

또한, 상기 연료제어부는 상기 혼합가스의 유량, 조성 및 온도를 제어하면서, 상기 가스터빈에 주입되는 희석질소의 양을 제어하는 것이 바람직하다.In addition, the fuel control unit preferably controls the amount of dilute nitrogen injected into the gas turbine, while controlling the flow rate, composition and temperature of the mixed gas.

본 발명에 따른 석탄가스화 복합발전 플랜트에 의하면, 기존의 IGCC플랜트에 적용할 경우 고장, 유지보수로 인한 정지횟수를 줄임으로써 플랜트의 이용율을 높이고 안정적인 운행을 할 수 있게 된다.According to the coal gasification combined cycle plant according to the present invention, when applied to the existing IGCC plant it is possible to increase the utilization rate and stable operation of the plant by reducing the number of stops due to failure, maintenance.

또한, 연료의 소모량을 줄이면서 최적 연소조건을 도출하여 NOx 등 오염물질을 저감할 수 있게 되고, 발전연료를 다변화하여 플랜트에 범용적으로 활용할 수 있게 된다.In addition, it is possible to reduce the consumption of fuel to reduce the pollutants such as NOx by deriving the optimum combustion conditions, it is possible to diversify the power generation fuel to be used universally in the plant.

도 1은 본 발명에 따른 석탄가스화 복합발전 플랜트를 도시한 개략도이고, 도 2는 본 발명에 따른 석탄가스화 복합발전 플랜트에서 연료가 제어되는 순서도이다.1 is a schematic view showing a coal gasification combined cycle power plant according to the present invention, Figure 2 is a flow chart that the fuel is controlled in the coal gasification combined cycle power plant according to the present invention.

본 발명에 따른 석탄가스와 복합발전 플랜트는 도 1에 도시된 바와 같이, 가스터빈(150)이 구동되어 발전되는 가스발전부와, 증기터빈(180)이 구동되어 발전되는 증기발전부 및 상기 가스발전부의 연료를 제어하는 연료제어부(200)를 포함한다.Coal gas and the combined cycle plant according to the present invention, as shown in Figure 1, the gas power generation unit is driven by the gas turbine 150 is driven, the steam power generation unit is driven by the steam turbine 180 is generated and the gas It includes a fuel control unit 200 for controlling the fuel of the power generation unit.

상기 가스발전부는 가스화기(110), 열교환기(120), 가스정제기(130), 가스터빈연소기(140), 가스터빈(150), 발전기(160)를 포함한다. 즉 가스발전부는 가스화기(110)에서 생성되는 석탄가스가 열교환기(120)와 가스정제기(130)를 거쳐서 가스터빈연소기(140)에 공급되고 연소되어, 가스터빈(150)과 발전기(160)가 차례로 구동되어 발전된다.The gas power generation unit includes a gasifier 110, a heat exchanger 120, a gas purifier 130, a gas turbine burner 140, a gas turbine 150, and a generator 160. That is, the gas power generation unit is supplied with the coal gas generated in the gasifier 110 through the heat exchanger 120 and the gas purifier 130 to the gas turbine burner 140 and burned, the gas turbine 150 and the generator 160 Are driven in order to generate power.

상기 가스화기(110)에는 석탄(111)과 산소(112)가 공급되어 1차연료인 석탄가스가 생성된다. 상기 가스화기(110)에서 생성된 석탄가스는 열교환기(120)를 거쳐서 가스정제기(130)에서 정제되어 1차공급관(132)을 통하여 상기 가스터빈연소기(140)로 공급된다. The gasifier 110 is supplied with coal 111 and oxygen 112 to generate coal gas as the primary fuel. The coal gas generated in the gasifier 110 is purified by the gas purifier 130 via the heat exchanger 120 and supplied to the gas turbine burner 140 through the primary supply pipe 132.

상기 1차공급관(132)은 2차연료가 공급되는 2차공급관(142)과 연결되어 있다. 여기서, 2차연료는 가스발전부에 사용되는 전체 연료인 혼합가스의 온도 및 조성을 변화시키기 위해서는 기동용 혹은 백업(Back up)용으로 구비된 천연가스, 액화석유가스로 사용할 수 있다.The primary supply pipe 132 is connected to the secondary supply pipe 142 to which the secondary fuel is supplied. Here, the secondary fuel may be used as natural gas or liquefied petroleum gas provided for starting or backing up in order to change the temperature and composition of the mixed gas which is the entire fuel used in the gas power generation unit.

따라서, 상기 가스터빈연소기(140)에 1차연료인 석탄가스를 공급하거나, 1차연료와 2차연료가 혼합된 혼합가스를 공급하도록 되어 있다. 상기 1,2차공급관(132,142)에는 1,2차연료의 양을 조절하는 유량제어밸브(134,144)와 1,2차원료의 온도를 계측하는 온도계측기(136,146)가 설치되어 있다. 한편, 상기 가스터빈연소기(140)의 입구쪽 상기 1차공급관(132)에 별도의 원료온도계측기(138)가 설치되어 있다. Accordingly, the gas turbine burner 140 is supplied with coal gas, which is a primary fuel, or a mixed gas in which primary and secondary fuels are mixed. The primary and secondary supply pipes 132 and 142 are provided with flow control valves 134 and 144 for controlling the amounts of primary and secondary fuels and thermometer measuring instruments 136 and 146 for measuring the temperature of the primary and secondary fuels. On the other hand, a separate raw material temperature measuring instrument 138 is installed in the primary supply pipe 132 on the inlet side of the gas turbine burner 140.

한편, 상기 산소(112)는 공기에서 질소와 산소를 분리하는 공기분리기(100)에서 생성되게 된다. 상기 공기분리기(100)는 공기(101)가 공기압축기(102)에 의해 압축된 상태로 공급되어 산소와 질소가 분리되게 된다. 여기서, 공기분리기(100)에서 분리된 산소는 산소압축기(104)에 의해 압축되어 상기 가스화기(110)로 산소(112)가 공급되게 된다. 공기분리기(100)에서 분리된 질소는 질소압축기(106)에 의해 압축된 후 열교환기(108)을 거쳐서 상기 가스터빈(150)으로 공급되도록 되어 있다.On the other hand, the oxygen 112 is generated in the air separator 100 for separating nitrogen and oxygen from the air. The air separator 100 is supplied with air 101 compressed by the air compressor 102 to separate oxygen and nitrogen. Here, the oxygen separated in the air separator 100 is compressed by the oxygen compressor 104 so that the oxygen 112 is supplied to the gasifier 110. The nitrogen separated from the air separator 100 is compressed by the nitrogen compressor 106 and then supplied to the gas turbine 150 via the heat exchanger 108.

상기 증기발전부는 상기 가스화기(110)에서 생성되는 증기(113)가 배열회수보일러(170)를 거쳐 증기터빈(180)에 공급되고, 이로 인하여 증기터빈(180)과 발전기(190)가 차례로 구동되어 발전된다.In the steam generator, steam 113 generated by the gasifier 110 is supplied to the steam turbine 180 through the heat recovery boiler 170, whereby the steam turbine 180 and the generator 190 are sequentially driven. And develop.

삭제delete

상기 연료제어부(200)는 상기 가스터빈연소기(140)에 장착된 동압센서(202)와, 이 동압센서(202)로부터 취득한 연소진동 측정데이터의 신호를 전송하는 전송케이블(204)과, 이 전송케이블(204)을 통해 전송된 연소진동 측정데이터의 신호를 디지털화하여 취득하는 신호취득부(206) 및, 상기 신호취득부(206)의 연소진동 측정데이터 신호를 분석, 표시, 제어하는 제어용 컴퓨터(208)를 포함한다.The fuel control unit 200 includes a dynamic pressure sensor 202 mounted on the gas turbine burner 140, a transmission cable 204 for transmitting signals of combustion vibration measurement data obtained from the dynamic pressure sensor 202, and the transmission cable 204. A signal acquisition unit 206 for digitizing and acquiring the combustion vibration measurement data signal transmitted through the cable 204, and a control computer for analyzing, displaying, and controlling the combustion vibration measurement data signal of the signal acquisition unit 206 ( 208).

상기 연료제어부(200)는 상기 연소진동 측정데이터와 연소 후 배기가스의 조성을 실시간으로 모니터링하여 1차원료와 2차연료가 혼합된 혼합가스의 유량, 조성 및 온도를 제어하도록 되어 있다. 또한, 연료제어부(200)는 상기 혼합가스의 유량, 조성 및 온도를 제어하면서, 상기 가스터빈(150)에 주입되는 질소(103)의 양을 제어하도록 되어 있다. 이러한 연료제어부(200)에 의해, IGCC 플랜트에서 원료의 양을 최적상태로 조절하게 되고, 연소진동과 Nox 등 배기가스를 최소화할 수 있게 된다.The fuel control unit 200 is configured to control the flow rate, the composition and the temperature of the mixed gas mixed with the one-dimensional material and the secondary fuel by monitoring the combustion vibration measurement data and the composition of the exhaust gas after combustion in real time. In addition, the fuel controller 200 controls the amount of nitrogen 103 injected into the gas turbine 150 while controlling the flow rate, composition, and temperature of the mixed gas. By the fuel control unit 200, it is possible to adjust the amount of raw materials in the IGCC plant to the optimum state, and to minimize the combustion vibration and the exhaust gas such as Nox.

한편, 상기 연료제어부(200)는 상기 가스터빈연소기(140)로 주입하는 전체의 연료주입량을 산정할 때, 2차연료 투입전 총입열량과 2차연료 투입후 총입열량이 동일하게 한다.On the other hand, when the fuel control unit 200 calculates the total fuel injection amount injected into the gas turbine combustor 140, the total heat input amount before the secondary fuel input and the total heat input amount after the secondary fuel input are the same.

즉 가스터빈연소기(140)에 투입되는 연료는 아래의 식1 내지 식3에 나타난 바와 같이, 부하별로 정해진 연료와 공기의 스케줄에서 총 투입량이 변화하지 않도록 설정되어 있다.That is, the fuel injected into the gas turbine burner 140 is set so that the total input amount does not change in the schedule of fuel and air determined for each load, as shown in Equations 1 to 3 below.

Figure 112008039158334-pat00001
Figure 112008039158334-pat00001

그리고 위의 조건에 맞게 이차연료를 제어하기 위한 순서도는 도 2에 도시되어 있다.And a flow chart for controlling the secondary fuel in accordance with the above conditions is shown in FIG.

IGCC 플랜트는 크게 1차연료와 2차연료를 혼합하여 가스화하는 가스화블록(100,101,103,104,106 111,112,113,110,120,130)과 가스화된 연료로 하여 전력을 생산하는 파워블록(140,150,160)으로 구분된다.The IGCC plant is divided into gasification blocks (100, 101, 103, 104, 106, 111, 112, 113, 110, 120, 130) for mixing and gasifying primary fuel and secondary fuel, and power blocks (140, 150, 160) for producing electric power using gasified fuel.

먼저, IGCC 플랜트의 가스화 블록에서 혼합가스가 생산된 후, 파워블럭을 기동한다(S10). 그 후 파워블록의 운전정지 명령을 판단(S30)하고, 운전정지 명령이 없으면 발전부하에 따라 혼합가스의 유량, 조성, 온도가 자동결정된다(S50).First, after the mixed gas is produced in the gasification block of the IGCC plant, the power block is started (S10). Thereafter, the operation stop command of the power block is determined (S30), and if there is no operation stop command, the flow rate, composition, and temperature of the mixed gas are automatically determined according to the power generation load (S50).

그런 다음, 가스터빈(150) 내부의 연소진동 및 Nox 발생량을 측정한다(S70). 그 후 연소진동이 규제치이상인지를 판단(S90)하고, 연소진동이 규제치이상이면, Nox 발생량이 규제치이상인가를 판단한다(S110). 이 때, Nox 발생량이 규제치이상이면 2차연료량을 감소시킨다(S130). 반면, Nox 발생량이 규제치이상이 아니면 희석질소를 감소시킨다(150). 여기서, 연소진동의 규제치는 100Hz~350Hz, 2psi이하로 설정되어 있다. Nox 발생량의 규제치는 산소농도 13%기준에서 50ppm 이하로 설정되어 있다. Then, the combustion vibration and the amount of Nox generation in the gas turbine 150 is measured (S70). Thereafter, it is determined whether the combustion vibration is greater than or equal to the regulated value (S90). If the combustion vibration is greater than or equal to the regulated value, it is determined whether the amount of Nox generation is greater than or equal to the regulated value (S110). At this time, if the amount of Nox generated is greater than the regulation value, the secondary fuel amount is reduced (S130). On the other hand, if the amount of NOx is not higher than the regulation value, dilute nitrogen is reduced (150). Here, the regulation value of the combustion vibration is set to 100 Hz to 350 Hz and 2 psi or less. The regulation value of Nox generation amount is set to 50 ppm or less in oxygen concentration 13% standard.

한편, 연소진동이 규제치이상인지를 판단(S90)하고, 연소진동이 규제치이상이 아니면, Nox 발생량이 규제치이상인지를 판단한다(S100). 이 때, Nox 발생량이 규제치이상이면 희석질소를 증가시킨다(S120). 반면, Nox 발생량이 규제치이상이 아니면 희석질소를 감소시킨다(S140).On the other hand, it is determined whether the combustion vibration is greater than or equal to the regulated value (S90), and if the combustion vibration is not greater than or equal to the regulated value, it is determined whether the amount of Nox generation is greater than or equal to the regulated value (S100). At this time, if the amount of Nox generation is more than the regulatory value dilute nitrogen is increased (S120). On the other hand, if the amount of NOx is not more than the regulation value dilute nitrogen is reduced (S140).

이러한 실시간 제어의 과정은 파워블럭 정지명령이 주어질 때까지 반복되고, 정지명령이 내려지면 IGCC 플랜트의 운전도 종료된다.This process of real time control is repeated until a power block stop command is given, and when the stop command is given, the operation of the IGCC plant is also terminated.

본 발명에 따른 석탄가스와 복합발전 플랜트는, 기존에 사용되는 방법으로 가스터빈에서 부하를 감소시키는 외에도 NOx 발생량을 모니터링하여 2차연료 및 희석질소의 양을 조절하여 연소진동을 제어하도록 되어 있다. 이로 인하여, 연료의 소모량을 줄이면서 최적 연소조건을 도출하여 NOx 등 오염물질을 저감할 수 있게 된다.Coal gas and combined cycle power plant according to the present invention is to control the combustion vibration by controlling the amount of secondary fuel and dilute nitrogen by monitoring the amount of NOx generated in addition to reducing the load in the gas turbine by the conventional method. As a result, it is possible to reduce the consumption of fuel while deriving an optimum combustion condition to reduce pollutants such as NOx.

이상에서 설명한 바와 같이, 본 발명에 따른 바람직한 실시예를 기초로 설명하였으나, 본 발명은 특정 실시예에 한정되는 것은 아니며, 해당분야 통상의 지식을 가진 자가 특허청구범위 내에서 기재된 범주내에서 변경할 수 있다. As described above, although described based on the preferred embodiment according to the present invention, the present invention is not limited to the specific embodiment, can be changed within the scope described in the claims by those of ordinary skill in the art have.

도 1은 본 발명에 따른 석탄가스화 복합발전 플랜트를 도시한 개략도,1 is a schematic view showing a coal gasification combined cycle plant according to the present invention,

도 2는 본 발명에 따른 석탄가스화 복합발전 플랜트에서 연료가 제어되는 순서도이다.2 is a flowchart in which fuel is controlled in a coal gasification combined cycle plant according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 공기분리기 102 : 공기압축기100: air separator 102: air compressor

104 : 산소압축기 106 : 질소압축기104: oxygen compressor 106: nitrogen compressor

110 : 가스화기 120 : 열교환기110: gasifier 120: heat exchanger

130 : 가스정제기 140 : 가스터빈연소기130 gas purifier 140 gas turbine burner

150 : 가스터빈 160 : 발전기150: gas turbine 160: generator

170 : 배열회수보일러 180 : 증기터빈170: heat recovery boiler 180: steam turbine

190 : 발전기 200 : 연료제어부190: generator 200: fuel control unit

202 : 동압센서 204 : 전송케이블202: dynamic pressure sensor 204: transmission cable

206 : 신호취득부 208 : 제어용 컴퓨터206: signal acquisition unit 208: control computer

Claims (6)

가스화기에서 생성되는 1차연료인 석탄가스가 열교환기와 가스정제기를 거쳐서 가스터빈연소기에 공급되고 연소되어, 가스터빈이 구동됨에 따라 발전되는 가스발전부와,Coal gas, which is the primary fuel generated in the gasifier, is supplied to the gas turbine combustor through a heat exchanger and a gas purifier and combusted to generate gas as the gas turbine is driven. 상기 가스화기에서 생성되는 증기가 배열회수보일러를 거쳐 증기터빈에 공급되어 발전되는 증기발전부 및,A steam generator, which is generated by supplying steam generated from the gasifier to a steam turbine through a heat recovery boiler; 상기 가스터빈연소기에 장착된 동압센서에서 감지한 연소진동 측정데이터를 분석하여 상기 석탄가스에 2차연료를 혼합하여 혼합가스의 유량, 조성 및 온도를 제어하는 연료제어부를 포함하는 석탄가스화 복합발전 플랜트.Coal gasification combined cycle power plant comprising a fuel control unit for controlling the flow rate, composition and temperature of the mixed gas by analyzing the combustion vibration measurement data detected by the dynamic pressure sensor mounted on the gas turbine combustor by mixing secondary fuel with the coal gas . 제 1 항에 있어서,The method of claim 1, 상기 열교환기에서 상기 가스터빈연소기로 1차연료인 석탄가스를 공급하는 1차공급관에, 2차연료인 천연가스 또는 액화석유가스를 공급하는 2차공급관이 연결되어, 상기 1차연료와 상기 2차연료가 혼합된 상기 혼합가스가 상기 가스터빈연소기로 선택적으로 공급되도록 한 것을 특징으로 하는 석탄가스화 복합발전 플랜트.A secondary supply pipe for supplying natural gas or liquefied petroleum gas as a secondary fuel is connected to a primary supply pipe for supplying coal gas as a primary fuel from the heat exchanger to the gas turbine combustor. A coal gasification combined cycle plant characterized in that the mixed gas mixed with the secondary fuel is selectively supplied to the gas turbine combustor. 제 1 항에 있어서,The method of claim 1, 상기 연료제어부는 상기 연소진동 측정데이터와 연소 후 배기가스의 조성을 실시간으로 모니터링하여 상기 혼합가스의 유량, 조성 및 온도를 제어하는 것을 특징으로 하는 석탄가스화 복합발전 플랜트.And the fuel control unit monitors the combustion vibration measurement data and the composition of the exhaust gas after combustion in real time to control the flow rate, composition and temperature of the mixed gas. 삭제delete 제 2 항에 있어서,The method of claim 2, 상기 연료제어부는 상기 가스터빈연소기로 주입하는 전체의 연료주입량을 산정할 때, 2차연료 투입전 총입열량과 2차연료 투입후 총입열량이 동일하게 한 것을 특징으로 하는 석탄가스화 복합발전 플랜트.And the fuel control unit calculates the total fuel injection amount injected into the gas turbine combustor, wherein the total heat input amount before the secondary fuel input and the total heat input amount after the secondary fuel input are the same. 제 3 항에 있어서,The method of claim 3, wherein 상기 연료제어부는 상기 혼합가스의 유량, 조성 및 온도를 제어하면서, 상기 가스터빈에 주입되는 희석질소의 양을 제어하는 것을 특징으로 하는 석탄가스화 복합발전 플랜트.The fuel control unit is a coal gasification combined cycle plant, characterized in that for controlling the amount of dilution nitrogen injected into the gas turbine, while controlling the flow rate, composition and temperature of the mixed gas.
KR20080051187A 2008-05-30 2008-05-30 Integrated gasification combined cycle power plant KR100990892B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20080051187A KR100990892B1 (en) 2008-05-30 2008-05-30 Integrated gasification combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080051187A KR100990892B1 (en) 2008-05-30 2008-05-30 Integrated gasification combined cycle power plant

Publications (2)

Publication Number Publication Date
KR20090124784A KR20090124784A (en) 2009-12-03
KR100990892B1 true KR100990892B1 (en) 2010-11-01

Family

ID=41686675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080051187A KR100990892B1 (en) 2008-05-30 2008-05-30 Integrated gasification combined cycle power plant

Country Status (1)

Country Link
KR (1) KR100990892B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101793686B1 (en) 2012-04-13 2017-11-03 한화테크윈 주식회사 Manufacturing method for substitute natural gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297610A (en) 1999-04-13 2000-10-24 Hitachi Ltd Integrated coal gasification combined cycle power plant and operation control method of the same
JP2006105022A (en) 2004-10-05 2006-04-20 Jgc Corp Integrated coal gasification combined cycle power generation facility and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297610A (en) 1999-04-13 2000-10-24 Hitachi Ltd Integrated coal gasification combined cycle power plant and operation control method of the same
JP2006105022A (en) 2004-10-05 2006-04-20 Jgc Corp Integrated coal gasification combined cycle power generation facility and its control method

Also Published As

Publication number Publication date
KR20090124784A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Fan et al. Biomass and coal co-feed power and SNG polygeneration with chemical looping combustion to reduce carbon footprint for sustainable energy development: Process simulation and thermodynamic assessment
Cormos Hydrogen and power co-generation based on coal and biomass/solid wastes co-gasification with carbon capture and storage
Chiesa et al. Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology. Part A: Performance and emissions
US9399950B2 (en) Systems and methods for exhaust gas extraction
EP2390481A2 (en) System for fuel and diluent control
Firmansyah et al. Power and methanol production from biomass combined with solar and wind energy: analysis and comparison
CN103459956A (en) System and method for controlling air separation unit
KR101402221B1 (en) Lng combined cycle power plant and power generating method utilizing a small-medium scale gasification system for improving generating efficiency
US8713907B2 (en) System for providing air flow to a sulfur recovery unit
US8191349B2 (en) System and method for low emissions combustion
Hashimoto et al. Development of IGCC commercial plant with air-blown gasifier
Prins et al. Technological developments in IGCC for carbon capture
KR100990892B1 (en) Integrated gasification combined cycle power plant
US20080173021A1 (en) Method for improved efficiency for IGCC
US9328631B2 (en) Self-generated power integration for gasification
JP2011122490A (en) Coal gasification compound power generation equipment
CN113623033A (en) IGCC system adopting air gasification and working method thereof
JP2009215608A (en) Hydrogen production plant
JP2000120403A (en) Integrated gas combined power generating system
JP6336257B2 (en) Gasified fuel cell combined power generation system and operation method thereof
CN104597754A (en) Overall efficiency optimization control method of IGCC (integrated coal gasification combined cycle) power station with hot end component as core
Lea‐Langton et al. Pre‐combustion Technologies
JP6301118B2 (en) Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system
Hawksworth et al. Safe operation of combined cycle gas turbine and gas engine systems using hydrogen rich fuels
Xu et al. Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141015

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151015

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161018

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 8