JP2000120403A - Integrated gas combined power generating system - Google Patents

Integrated gas combined power generating system

Info

Publication number
JP2000120403A
JP2000120403A JP10294357A JP29435798A JP2000120403A JP 2000120403 A JP2000120403 A JP 2000120403A JP 10294357 A JP10294357 A JP 10294357A JP 29435798 A JP29435798 A JP 29435798A JP 2000120403 A JP2000120403 A JP 2000120403A
Authority
JP
Japan
Prior art keywords
steam
pressure
gasification
gas
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10294357A
Other languages
Japanese (ja)
Inventor
Kazue Nagata
一衛 永田
Shiro Hino
史郎 日野
Masakazu Shirakawa
昌和 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10294357A priority Critical patent/JP2000120403A/en
Publication of JP2000120403A publication Critical patent/JP2000120403A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integrated gas combined power generating system capable of appropriately supplying steam to high-pressure gasifying furnace for power generation. SOLUTION: In gasifying processes, coarse gas obtained by gasifying carbonaceous fuel is supplied as fuel gas to a gas turbine 13 in a combined power generating process 48, and exhaust gas from the gas turbine 13 is recovered by waste heat recovery boiler 46 to generate steam, thereby driving a steam turbine 20. A comprehensive load controller 31 controls the fuel gas supplied from a gasifying process 47 to the combined power generating process 48. A steam turbine controller 25 controls steam supplied from the waste heat recovery boiler 46 to the steam turbine 20. High-pressure steam required in a gasifying furnace 5 of the gasifying process 47 is obtained from a high-pressure steam header of the waste heat recovery boiler 46.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素質燃料をガス
化して燃料ガスを得るガス化プロセスと、ガスタービン
と蒸気タービンとを有した複合発電プロセスとを備えた
ガス化複合発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification combined cycle system including a gasification process for gasifying carbonaceous fuel to obtain a fuel gas, and a combined cycle process including a gas turbine and a steam turbine.

【0002】[0002]

【従来の技術】エネルギー資源の有効利用や多様化、高
効率化の要求を背景に、石炭あるいは石油残渣油等の炭
素質燃料を用いて発電するガス化複合発電システム(I
GCC:Integurated Gasifcation Combind Cycle)が
注目されている。このガス化複合発電システムは、ガス
化プラントと複合発電プラントとを組み合わせたもので
あり、その高い発電効率、環境適合性、経済性が注目さ
れている。
2. Description of the Related Art With the demand for effective use, diversification, and higher efficiency of energy resources, a combined gasification combined cycle system (I) that generates electricity using a carbonaceous fuel such as coal or petroleum residual oil.
GCC (Integrated Gasifcation Combind Cycle) is attracting attention. This gasification combined cycle system is a combination of a gasification plant and a combined cycle plant, and its high power generation efficiency, environmental suitability, and economy are attracting attention.

【0003】ガス化複合発電システムの特徴は、その環
境適合性と広範囲の炭種、または多様な燃料への適合性
であるが、ガスタービンの高温化による発電効率の向上
により、さらに現実性を帯びてきており、将来の火力発
電の最も有望な発電システムとして期待されている。ガ
ス化複合発電システムは、ガス化炉、ガス精製設備とガ
スタービン、排熱回収ボイラ(HRSG)、蒸気タービ
ンから成る複合発電システムから構成される大規模かつ
複雑なシステムである。
The characteristics of an integrated gasification combined cycle system are its environmental compatibility and compatibility with a wide range of coal types and various fuels. It has been developed and is expected as the most promising power generation system for thermal power generation in the future. The gasification combined cycle system is a large-scale and complex system including a combined gasification furnace, gas purification equipment and a gas turbine, a heat recovery steam generator (HRSG), and a steam turbine.

【0004】ガス化複合発電システムの構成設備の内
で、ガス化炉は比較的古くから、石炭ガスの熱利用、合
成ガスの製造などに使われてきている。1940年代に
は都市ガス製造用として石炭のガス化技術が開発され実
用化された。固定床炉型のルルギ炉、流動床型のウイン
クラ炉、噴流床型のコッバーズトゼック炉などである。
これらは第一世代ので常圧炉(大気圧炉)であり、石炭
処理量も10トン/日程度の小規模のものであった。そ
の後、昭和40年代の石油ショックによって石炭資源が
再び見直され、大容量の徴粉炭火力とともにコンバイン
ドサイクルプラントと結合した石炭ガス化発電プラント
の開発が始まった。
[0004] Among the constituent equipment of the integrated gasification combined cycle system, the gasification furnace has been used for heat utilization of coal gas, production of synthesis gas, and the like since a relatively long time. In the 1940's, coal gasification technology was developed and commercialized for city gas production. There are a fixed-bed furnace type Rurugi furnace, a fluidized bed type winkle furnace, and a spouted bed type Kobbers Tozek furnace.
These were first-generation atmospheric pressure furnaces (atmospheric pressure furnaces), and had a small coal throughput of about 10 tons / day. After that, coal resources were reviewed again due to the oil crisis in the 1970s, and the development of a coal gasification power generation plant combined with a combined cycle plant together with a large-capacity coal-fired power plant began.

【0005】そして、ガス化炉のガス圧力は従来の常圧
でなく30Kから40Kの高圧のものが求められてい
る。これは、ガス化炉プロセスで得られた燃料ガスをガ
スタービンの燃料としてその燃焼器で燃焼させるためで
ある。ガス化炉型式は、応答性が良く、完全なガス化が
可能な噴流床型が主流となっている。
[0005] The gas pressure of the gasification furnace is required to be 30 K to 40 K instead of the conventional normal pressure. This is because the fuel gas obtained in the gasifier process is burned in the combustor as fuel for the gas turbine. As a gasifier type, a spouted bed type which has a good response and is capable of complete gasification is mainly used.

【0006】石炭のガス化には、酸素、水または空気を
使用する部分酸化が適用される。その主な反応は、石炭
がチャー(C)、水素(H)、炭化水素(CmHm)に
分解する乾留反応、チャーのガス化反応(下記(1)〜
(3))、燃焼反応(下記(4)、(5))とから成
る。
[0006] For the gasification of coal, partial oxidation using oxygen, water or air is applied. The main reactions are a dry distillation reaction in which coal decomposes into char (C), hydrogen (H), and hydrocarbon (CmHm), and a gasification reaction of char (see (1) to (1) below).
(3)) and a combustion reaction ((4) and (5) below).

【0007】 C+H2O→CO+H2−A kcal …(1)(水性ガス
化反応) C+CO2→2CO−B kcal …(2) C+2H2→CH4+C kcal …(3) C+O2→CO2+D kcal …(4) 2C+O2→2CO2+E kcal …(5)
C + H 2 O → CO + H 2 −A kcal (1) (water gasification reaction) C + CO 2 → 2CO−B kcal (2) C + 2H 2 → CH 4 + C kcal (3) C + O 2 → CO 2 + D kcal… (4) 2C + O 2 → 2CO 2 + E kcal… (5)

【0008】この中でガス化反応の中心は水性ガス化反
応である。ここで生成されるCO、H2がガスタービン
で燃焼する石炭ガスの高い発熱量を形成する。ガス化複
合発電システムは、使用されるガス化炉の形式、脱塵装
置と脱硫装置から成るガス精製システムの方式により、
様々なシステムが考えられるが、以下、石炭スラリでの
ガス化燃料供給方式を取り上げ、ガス化剤としては酸素
を使用した中カロリーガス化を行うガス化炉のものにつ
いて説明する。
The center of the gasification reaction is a water gasification reaction. CO generated here, H 2 to form a high calorific value coal gas burning in a gas turbine. The integrated gasification combined cycle system is based on the type of gasification furnace used and the type of gas purification system consisting of a dust removal device and a desulfurization device.
Although various systems are conceivable, a gasification fuel supply method using coal slurry will be described below, and a gasification furnace that performs medium-calorie gasification using oxygen as a gasifying agent will be described.

【0009】図4は、そのようなガス化複合発電システ
ムの構成図である。ガス化複合発電システムは、炭素質
燃料をガス化した粗ガスを燃料ガスとして供給するガス
化プロセス47と、そのガス化プロセス47からの燃料
ガスを燃焼してガスタービン13を駆動しその排ガスを
排熱回収ボイラ46で回収し蒸気を発生して蒸気タービ
ン20を駆動する複合発電プロセス48と、ガス化プロ
セス47から複合発電プロセス48に供給する燃料ガス
を制御する統括負荷制御部31と、排熱回収ボイラ46
から蒸気タービン20に供給される蒸気を制御する蒸気
タービン制御装置25とから構成される。
FIG. 4 is a configuration diagram of such an integrated gasification combined cycle system. The integrated gasification combined cycle system includes a gasification process 47 for supplying a crude gas obtained by gasifying a carbonaceous fuel as a fuel gas, and burning the fuel gas from the gasification process 47 to drive the gas turbine 13 to reduce the exhaust gas. A combined power generation process 48 for recovering the waste heat from the exhaust heat recovery boiler 46 to generate steam to drive the steam turbine 20; a general load control unit 31 for controlling fuel gas supplied from the gasification process 47 to the combined power generation process 48; Heat recovery boiler 46
And a steam turbine control device 25 for controlling steam supplied to the steam turbine 20 from the steam turbine.

【0010】ガス化プロセス47のガス化炉5は石炭ス
ラリが供給され酸素吹きのシステムであり、水性ガス化
反応のための水は石炭の徴粉と水を混合した石炭・水ス
ラリの形でガス化炉5に供給される。ガス化炉5は、石
炭ガス(精製ガスに対して粗ガスと呼ばれる)を発生す
る設備である。
The gasification furnace 5 of the gasification process 47 is an oxygen-blown system supplied with coal slurry, and the water for the water-based gasification reaction is in the form of a coal-water slurry in which coal dust and water are mixed. It is supplied to the gasification furnace 5. The gasification furnace 5 is a facility that generates coal gas (referred to as crude gas with respect to refined gas).

【0011】このガス化炉5には、スラリ製造装置1で
作られる石炭・水スラリをガス化燃料としてスラリポン
プ2で供給し、ガス化燃料調節弁3(可変速の燃料チャ
ージポンプの場合もあるが説明の簡略化のために調節弁
として以下記載している)で調節されてガス化炉5に供
給される。
To the gasification furnace 5, coal / water slurry produced by the slurry production apparatus 1 is supplied as a gasification fuel by a slurry pump 2, and a gasification fuel control valve 3 (a variable speed fuel charge pump is also used). However, for the sake of simplicity, the pressure is adjusted by a control valve (described below) and supplied to the gasification furnace 5.

【0012】また、酸素流量調節弁4を経てガス化剤で
ある酸素ガスがガス化炉5へ投入され、ガス化炉5内で
の水性ガス化反応により、可燃性ガスであるCO、H2
を含む高温の粗ガス(約1000℃)が生成される。ガ
ス化炉5で作り出された粗ガスは、スクラバ一等で構成
される脱塵装置6に入り、ここでガス中に含まれる灰等
の微粒子が取り除かれる。ここで、ガス化燃料調節弁3
および酸素流量調節弁4は、後述の統括負荷制御部31
で制御される。
An oxygen gas as a gasifying agent is supplied to a gasification furnace 5 through an oxygen flow control valve 4, and a water gasification reaction in the gasification furnace 5 causes CO and H 2 as flammable gases.
A high temperature crude gas (about 1000 ° C.) containing The crude gas produced in the gasification furnace 5 enters a dust removing device 6 composed of a scrubber or the like, where fine particles such as ash contained in the gas are removed. Here, the gasification fuel control valve 3
And the oxygen flow control valve 4 are provided with an overall load control unit 31 described later.
Is controlled by

【0013】次に、ガスクーラ7により脱硫装置8の入
口許容温度まで冷却され、脱硫装置8に送り込まれる。
ガス化燃料には、多いもので約数%(重量%)の硫黄が
含まれ、この粗ガス中の硫黄分は脱硫装置8で脱硫され
る。この脱硫後のガス化ガスは、きれいな精製されたガ
ス(精製ガス)として、燃料流量制御弁10で制御され
て複合発電プロセス48のガスタービン13に送られ
る。この脱硫装置8を通って得られた燃料ガスの圧力
は、ガス圧力検出器9で検出され統括負荷制御部31の
統括圧力コントローラ34に入力される。そして、統括
負荷制御部31によるガス化燃料調節弁3および酸素流
量調節弁4の制御に使用される。また、燃料流量制御弁
10も統括負荷制御部31で制御される。
Next, the gas is cooled to the allowable temperature at the inlet of the desulfurizer 8 by the gas cooler 7 and is sent to the desulfurizer 8.
The gasified fuel contains at most about several% (% by weight) of sulfur, and the sulfur content in the crude gas is desulfurized by the desulfurization device 8. The gasified gas after desulfurization is sent to the gas turbine 13 of the combined power generation process 48 under the control of the fuel flow control valve 10 as a clean and refined gas (refined gas). The pressure of the fuel gas obtained through the desulfurization device 8 is detected by the gas pressure detector 9 and input to the general pressure controller 34 of the general load control unit 31. And it is used for control of the gasification fuel control valve 3 and the oxygen flow rate control valve 4 by the centralized load control unit 31. The fuel flow control valve 10 is also controlled by the overall load control unit 31.

【0014】燃料流量制御弁10を経た燃料ガスは、複
合発電プラント48のガスタービン13の燃焼器11へ
送られ、ここでガスタービン13の圧縮機12で大気か
ら昇圧された空気により燃焼する。この燃焼ガスはガス
タービン13に送り込まれ、ガスタービン13の駆動に
よりガスタービン13の発電機21aで発電する。この
発電機21aの出力は出力検出器29aで検出され統括
負荷制御部31の統括負荷コントローラ32に入力され
る。
The fuel gas that has passed through the fuel flow control valve 10 is sent to the combustor 11 of the gas turbine 13 of the combined cycle power plant 48, where it is burned by the compressor 12 of the gas turbine 13 with air pressurized from the atmosphere. This combustion gas is sent to the gas turbine 13, and is driven by the gas turbine 13 to generate power using the generator 21 a of the gas turbine 13. The output of the generator 21a is detected by the output detector 29a and input to the general load controller 32 of the general load control unit 31.

【0015】ガスタービン13を駆動後の燃焼ガスは、
高温(約600℃)であるため、排熱回収ボイラ(HR
SG)46に送り出され、ここで蒸気へ熱回収され煙突
17から低温の排ガス(約100℃)として大気に放出
される。排熱回収ボイラ46は、排ガスの流れに従っ
て、スーパヒータ14、エバポレータ15、エコノマイ
ザ16と呼ばれる水または蒸気の熱交換器が順次配置さ
れ、ガスタービン13の排ガスエネルギの熱回収がなさ
れる。
The combustion gas after driving the gas turbine 13 is:
Because of the high temperature (about 600 ° C), the exhaust heat recovery boiler (HR
SG) 46, where the heat is recovered to steam and discharged from the chimney 17 to the atmosphere as low-temperature exhaust gas (about 100 ° C.). In the exhaust heat recovery boiler 46, a water or steam heat exchanger called a superheater 14, an evaporator 15, and an economizer 16 are sequentially arranged in accordance with the flow of the exhaust gas, and heat of the exhaust gas energy of the gas turbine 13 is recovered.

【0016】エバポレータ15の熱回収により発生した
蒸気は、蒸気ドラム18からスーパヒータ14を介し
て、過熱蒸気(乾き蒸気の状態で)となって、蒸気ター
ビン20に送られる。この乾き蒸気は、蒸気タービンの
制御弁19を介して蒸気タービン20に入り、蒸気ター
ビンを駆動し蒸気タービン20の発電機21bで発電が
行われる。発電機21bの出力は出力検出器29bで検
出され統括負荷制御部31の統括負荷コントローラ32
に入力される。また、蒸気タービンの回転数は回転数検
出器30で検出され蒸気タービン制御装置25に入力さ
れる。
The steam generated by the heat recovery of the evaporator 15 is turned into superheated steam (in a dry steam state) from the steam drum 18 via the superheater 14 and sent to the steam turbine 20. The dry steam enters the steam turbine 20 via the control valve 19 of the steam turbine, drives the steam turbine, and generates power using the generator 21 b of the steam turbine 20. The output of the generator 21b is detected by an output detector 29b and is controlled by a general load controller 32 of the general load controller 31.
Is input to The rotation speed of the steam turbine is detected by the rotation speed detector 30 and input to the steam turbine control device 25.

【0017】一方、蒸気タービン20で仕事をした低圧
の湿り蒸気は、復水器22で水となり、復水ポンプ23
により脱気器24を介して上述のエコノマイザ16に送
られ、再度、蒸気となるサイクルを繰り返す。
On the other hand, the low-pressure wet steam that has worked in the steam turbine 20 becomes water in the condenser 22,
Is sent to the above-described economizer 16 via the deaerator 24, and the cycle of turning into steam again is repeated.

【0018】以上の様なガス化複合発電システムにおい
て、発電はガスタービン13の発電機21aと蒸気ター
ビン20の発電機21bによってなされ、この発電出力
の調整は、ガスタービン13の燃料流量制御弁10およ
び蒸気タービン20の蒸気タービンの制御弁19でなさ
れる。一方、ガス圧力の方は、ガス化炉のガス化燃料調
節弁3(および酸素流量調節弁4)の調節によってガス
発生量を調節して、ガス圧力を制御する。
In the integrated gasification combined cycle system as described above, power is generated by the generator 21a of the gas turbine 13 and the generator 21b of the steam turbine 20, and the power generation output is adjusted by the fuel flow control valve 10 of the gas turbine 13. And the control valve 19 of the steam turbine of the steam turbine 20. On the other hand, the gas pressure is controlled by adjusting the gas generation amount by adjusting the gasification fuel control valve 3 (and the oxygen flow rate control valve 4) of the gasification furnace.

【0019】発電出力の制御のための2つの操作端のう
ち、蒸気タービン20の蒸気タービンの制御弁19は、
全開にした変圧運用とした方が熱効率も良いことから蒸
気タービン制御弁19を関度一定とした運用が行われ
る。
Of the two operating terminals for controlling the power generation output, the steam turbine control valve 19 of the steam turbine 20
Since the thermal efficiency is better when the variable pressure operation is fully opened, the operation is performed with the steam turbine control valve 19 kept constant.

【0020】全体の負荷制御は、ガスタービン13の燃
料流量調節弁10とガス化炉のガス化燃料調節弁3の2
つが主たる操作端として行われる。なお、酸素流量調節
弁4は、ガス化燃料調節弁3への指令に対応して自動制
御される。
The overall load control is performed by the fuel flow control valve 10 of the gas turbine 13 and the gasification fuel control valve 3 of the gasifier.
One is performed as a main operation terminal. The oxygen flow control valve 4 is automatically controlled in response to a command to the gasification fuel control valve 3.

【0021】一般に、プラント全体としての負荷運用の
良否は、負荷応答をいかに高速に、かつ安定に、さら
に、大きな負荷変化中でも安定に負荷追従ができるかど
うかである。この負荷変化の過程で、機器の制限にかか
らない様にプラントのパラメータを適正範囲内に収めな
がら負荷変化を行うことが重要である。
Generally, the quality of the load operation of the whole plant depends on how fast and stable the load response is and whether the load can be stably followed even during a large load change. In the course of this load change, it is important to change the load while keeping the plant parameters within an appropriate range so as not to limit the equipment.

【0022】すなわち、プラント全体の負荷変化は、ガ
スタービン13の燃料流量制御弁10とガス化炉5のガ
ス化燃料調節弁3を操作端として制御を行なう。制御目
標は発電電力とガス圧力である。ガス圧力の安定とは、
ガス化炉からの発生ガス量とガスタービン設備での消費
ガス量とがアンバランスとなった際に生ずる圧力の上昇
または下降を制限内に抑えること、すなわちガス圧力を
一定に制御することである。この様にガス化複合発電シ
ステムの制御においては負荷指令に基づきガスタービン
13の燃料流量、またはガス化炉5のガス発生量、すな
わち、ガス圧力(ガス圧力検出器9での検出圧力)の変
動を許容範囲内に抑えながら制御することが重要とな
る。
That is, the load change of the whole plant is controlled by using the fuel flow control valve 10 of the gas turbine 13 and the gasification fuel control valve 3 of the gasification furnace 5 as operating terminals. The control targets are generated power and gas pressure. Gas pressure stability means
It is to suppress the increase or decrease in pressure that occurs when the amount of gas generated from the gasifier and the amount of gas consumed in the gas turbine equipment become unbalanced, that is, to control the gas pressure to be constant. . As described above, in the control of the integrated gasification combined cycle system, the fuel flow rate of the gas turbine 13 or the gas generation amount of the gasification furnace 5, that is, the gas pressure (the pressure detected by the gas pressure detector 9) is changed based on the load command. It is important to control while keeping the value within an allowable range.

【0023】一般の火力発電所の場合には、発電電力と
蒸気圧力とが主要な被制御量として制御されており、蒸
気タービン20の制御弁19およびボイラへの燃料投入
量へのフィードバックの掛け方で、タービンフォロー、
タービンリードの方式がある。ガス化複合発電システム
の場合にも、被制御量である発電出力とガス圧力を操作
量であるガス化炉5へのガス化燃料流量(ガス化燃料に
伴い酸素流量が制御される)とガスタービン13への燃
料流量へどの様にフィードバックするかにより、同様の
基本的な制御方式が提案されている。
In the case of a general thermal power plant, the generated power and the steam pressure are controlled as main controlled variables, and feedback control is applied to the control valve 19 of the steam turbine 20 and the fuel input to the boiler. The turbine follow,
There is a turbine lead system. Also in the case of the integrated gasification combined cycle system, the power generation output and the gas pressure, which are the controlled variables, are controlled by the gasification fuel flow rate to the gasification furnace 5 (the oxygen flow rate is controlled along with the gasification fuel), A similar basic control method has been proposed depending on how to feed back the fuel flow to the turbine 13.

【0024】この中で、通常の負荷制御方式として一般
的に考えられているのはガスタービンリード方式に先行
制御を加えた協調制御方式と呼ばれるものである。この
協調制御方式は、一般の火力用の蒸気タービンリード方
式に対応したガスタービンリード方式(発電出力の制御
によりガスタービンの燃料消費量をガスタービンの燃料
流量制御弁10で調節し、ガス圧力の制御はガス化炉5
へのガス化燃料流量の供給量指令値の調節で行う方法)
にガス化炉5の応答性改善である先行制御要素を付加し
たものである。
Among them, what is generally considered as a normal load control system is a so-called cooperative control system in which advanced control is added to the gas turbine reed system. This cooperative control system is a gas turbine reed system corresponding to a general steam turbine reed system for thermal power (the fuel consumption of the gas turbine is adjusted by controlling the power generation output by the fuel flow control valve 10 of the gas turbine, and the gas pressure is controlled. Control is gasifier 5
Method by adjusting the supply command value of the gasification fuel flow rate to the fuel)
In this embodiment, a preceding control element for improving the response of the gasification furnace 5 is added.

【0025】図5に、この協調制御方式の仕組みを示
す。この協調制御方式は、ガスタービンリード方式に加
えて、ガス化炉制御へ負荷目標値を基にして作成した先
行指令信号を与えて、ガス化炉5の応答を早めることに
より、ガスタービンリード方式の欠点である、圧力の応
答性の悪さを改善したものである。
FIG. 5 shows the mechanism of the cooperative control system. In this cooperative control system, in addition to the gas turbine reed system, a preceding command signal created based on the load target value is given to the gasifier control to speed up the response of the gasification furnace 5, thereby achieving the gas turbine reed system. This is an improvement in the poor pressure responsiveness which is a disadvantage of the above.

【0026】この方式は、電気学会論文(五嶋、永田他
著:石炭ガス化複合発電プラントの負荷追従性の検討電
気論B、110巻10号、平成2年)にも紹介されてい
る。この協調制御方式は、現在最も優れたガス化複合発
電システムの負荷制御方式として、今後のガス化複合発
電システムでの通常運転時の制御方式として使われてゆ
くものと思われる。
This method is also introduced in a paper written by the Institute of Electrical Engineers of Japan (Goshima, Nagata et al .: Examination of Load Followability of Integrated Coal Gasification Combined Cycle Power Plant B, Vol. 110, No. 10, 1990). This cooperative control method is expected to be used as the most excellent load control method of the combined gasification power generation system at present, and as the control method during normal operation in the future combined gasification power generation system.

【0027】図4の統括負荷制御部31において、プラ
ントとして与えられる負荷目標値であるMW指令に対し
て、統括負荷制御部31は複合発電システムの出力(ガ
ス圧力を設定値に保ちながら)を制御する。ガスタービ
ン13の発電機21aの発電出力と蒸気タービン20の
発電機21bの発電出力を、それぞれ、出力検出器29
a、29bで検出し、統括負荷制御部31の統括負荷コ
ントローラ32にフィードバックする{図中の(1)、
(2)}。
In response to the MW command, which is a load target value given as a plant, in the overall load control unit 31 of FIG. 4, the overall load control unit 31 controls the output of the combined power generation system (while maintaining the gas pressure at a set value). Control. The power output of the generator 21a of the gas turbine 13 and the power output of the generator 21b of the steam turbine 20 are respectively detected by an output detector 29.
a, 29b, and feeds back to the overall load controller 32 of the overall load controller 31 {(1) in the figure,
(2)}.

【0028】統括負荷コントローラ32は、負荷目標値
(MW指令)と発電機出力との偏差を求め、その偏差が
なくなるように動作する。つまり、その偏差がなくなる
ようにガスタービン13の燃料流量調節弁10への指令
値が演算され、その指令によりガスタービン13の燃料
流量制御弁10が関度調節され、ガスタービン13の出
力が調節される。ガスタービン13の出力に応じて蒸気
タービン20の出力も変化し、ガスタービン13と蒸気
タービン20の出力がMW指令に合致するまでこの制御
動作は行われる。蒸気タービン20の出力制御の方法に
ついては後で説明する。
The overall load controller 32 calculates a deviation between the load target value (MW command) and the generator output, and operates so as to eliminate the deviation. That is, a command value to the fuel flow control valve 10 of the gas turbine 13 is calculated so that the deviation is eliminated, and the fuel flow control valve 10 of the gas turbine 13 is adjusted by the command to adjust the output of the gas turbine 13. Is done. The output of the steam turbine 20 also changes according to the output of the gas turbine 13, and this control operation is performed until the outputs of the gas turbine 13 and the steam turbine 20 match the MW command. A method of controlling the output of the steam turbine 20 will be described later.

【0029】統括負荷制御部31では、MW指令(負荷
目標値)とともにガス圧力も同時に制御されている。先
行指令関数手段33では、ガス圧力制御の応答性改善の
ための先行指令がMW指令により作られ、圧力制御側に
先行的に与えられる。プラントのガス圧力は脱硫装置8
の出口に設置したガス圧力検出器9の信号がフィードバ
ックされ、圧力設定との偏差を解消するべく統括圧力コ
ントローラ34により演算され、その出力はMW指令か
ら先行指令関数手段33によって作られた圧力制御の先
行指令値に加えられる。
The general load controller 31 controls the gas pressure together with the MW command (load target value). In the preceding command function means 33, a preceding command for improving the response of the gas pressure control is created by the MW command, and is given to the pressure control side in advance. The gas pressure of the plant is the desulfurizer 8
The signal of the gas pressure detector 9 installed at the outlet of the controller is fed back and calculated by the general pressure controller 34 so as to eliminate the deviation from the pressure setting. Is added to the preceding command value.

【0030】この加算後の信号は、ガス化炉5への要求
指令としてガス化炉の操作端であるガス化燃料調節弁3
と酸素流量調節弁4に、それぞれ、ガス化炉燃料コント
ローラ36と酸素流量コントローラ35とから与えられ
る。これにより、石炭・水スラリとなったガス化燃料と
ガス化剤である酸素ガスがガス化炉5へ投入され、ガス
化炉5内での水性ガス化反応により、可燃性ガスである
CO、H2を含む高温の粗ガス(約1000℃)が生成
され、ガス発生の調節が行われる。
The signal after this addition is sent to the gasification furnace 5 as a request command to the gasification furnace 5, which is an operation terminal of the gasification furnace.
And the oxygen flow control valve 4 are supplied from a gasifier fuel controller 36 and an oxygen flow controller 35, respectively. As a result, the gasified fuel that has become the coal / water slurry and the oxygen gas that is the gasifying agent are introduced into the gasification furnace 5, and the water gasification reaction in the gasification furnace 5 causes CO, which is a combustible gas, to be discharged. A high temperature crude gas (about 1000 ° C.) containing H 2 is generated to regulate gas generation.

【0031】一方、蒸気タービン制御装置25では、出
力制御には、効率向上のため変圧制御が採用されてい
る。蒸気タービン制御装置25へは、回転数検出器30
からの回転数信号と速度設定値26(50Hzまたは6
0Hz)との偏差で動作する比例制御器27(一般にガ
バナ制御器と呼ばれる)へフィードバックされて、周波
数変化時、オーバスピード時の制御に対応しているが、
通常時は、周波数は系統周波数に同期しているため安定
しており、比例制御器27の出力はほとんど変化しな
い。従って、全開指令値28の信号で蒸気タービンの制
御弁19は、全開で排熱回収ボイラ46から発生する蒸
気をロス無く、蒸気タービン20に供給して効率の良い
蒸気タービン20の運転ができるように配慮されてい
る。
On the other hand, in the steam turbine control device 25, the pressure control is employed for the output control in order to improve the efficiency. A rotation speed detector 30 is provided to the steam turbine controller 25.
Speed signal and speed setting value 26 (50 Hz or 6
0 Hz), which is fed back to a proportional controller 27 (generally called a governor controller) which operates with a deviation from the frequency, and corresponds to control at the time of frequency change and at the time of overspeed.
Normally, the frequency is stable because it is synchronized with the system frequency, and the output of the proportional controller 27 hardly changes. Therefore, the control valve 19 of the steam turbine by the signal of the fully open command value 28 supplies the steam generated from the exhaust heat recovery boiler 46 when fully opened to the steam turbine 20 without any loss so that the steam turbine 20 can be operated efficiently. Is considered.

【0032】[0032]

【発明が解決しようとする課題】このような従来のガス
化複合発電システムでは、ガス化反応の中心である水性
ガス化反応のための水(H2O)は、水スラリの形でガ
ス化炉5に投入されているが、近年の微粉炭を直接に炉
に投入するガス化炉や重質油または、原油から重油等を
抽出した残渣油などのように水分を含まない燃料をガス
化炉でガス化し、発電用として使用するが多くなってい
る。この場合には、高圧の水蒸気をガス化炉5に供給す
る必要がある。
In such a conventional integrated gasification combined cycle system, water (H 2 O) for the water gasification reaction, which is the center of the gasification reaction, is gasified in the form of a water slurry. Gasification furnaces that have been introduced into the furnace 5, but have recently been pulverized coal directly into the furnace, and gasification of fuel that does not contain moisture such as heavy oil or residual oil obtained by extracting heavy oil from crude oil. It is gasified in furnaces and is increasingly used for power generation. In this case, it is necessary to supply high-pressure steam to the gasification furnace 5.

【0033】ガス化炉5の圧力は常圧のものから合成ガ
ス製造用として10数K程度に上がり、発電用になって
からはガスタービン燃焼器11の圧力に打ち勝って燃焼
器11に石炭精製ガスを導入するために、30K〜40
Kの圧力に上昇している。現在のガス化炉5の圧力はこ
の程度であり、ガス化炉5は、今後高圧化の方向にあ
る。すなわち、コンパクト化、反応速度向上が大容量で
かつ運用性に優れた発電用ガス化複合発電システムのガ
ス化炉5に適しているからである。
The pressure of the gasification furnace 5 rises from a normal pressure to about several tens of K for syngas production, and after power generation, overcomes the pressure of the gas turbine combustor 11 and refines the coal in the combustor 11. 30K-40 to introduce gas
The pressure has risen to K. The current pressure of the gasifier 5 is at this level, and the pressure of the gasifier 5 will be increased in the future. That is, it is suitable for the gasification furnace 5 of the gasification combined cycle power generation system for power generation which has a large capacity and excellent operability with a compact size and improved reaction speed.

【0034】ガス化炉5の運転圧力も、従来の2倍程度
の80Kのものが考えられており、この場合は同じ量の
ガスを取り扱うにしても圧力が2倍のために体積は半分
となりガス化系の各種容器の体積も半分と設備のコンパ
クト化が図れる。
The operating pressure of the gasification furnace 5 is considered to be about 80K, which is about twice that of the conventional case. In this case, even if the same amount of gas is handled, the pressure becomes twice and the volume becomes half. The volume of various gasification containers is also reduced to half, making the equipment compact.

【0035】さらに、経済性の観点から費用のかさむガ
ス化炉5のシンガスクーラを省略したクエンチ型のガス
化炉も最近使われるようになり、この場合はガス化炉発
生の粗ガスは、ガス化炉5の下部のクエンチを、一旦、
くぐってからカーボンスクラバに入るようになってい
る。この場合、ガス圧力が高い方がクエンチ水の温度が
高く、従って、ガス温度も高くなり、蒸気でのガスとの
熱交換によるエネルギー回収には好都合である。
Further, a quench-type gasifier, which does not include a syngas cooler of the gasifier 5 which is costly from the viewpoint of economy, has recently been used. In this case, the crude gas generated by the gasifier is gaseous. Once the quench at the bottom of
After passing through, it enters the carbon scrubber. In this case, the higher the gas pressure, the higher the temperature of the quench water, and thus the higher the gas temperature, which is advantageous for energy recovery by heat exchange with the gas using steam.

【0036】従来の30K〜40Kのガス化炉5への蒸
気供給は、中圧の蒸気へッダーから蒸気を供給すること
で問題ないが、80Kも蒸気をガス化炉へ供給すること
となると、排熱回収ボイラ46で発生する蒸気の最大圧
力に近い高圧の蒸気を安定に、かつ、応答良く供給する
必要ある。すなわち、ガス化炉5の運転圧力の上昇によ
って高圧蒸気のガス化炉5への効果的な供給方法が必要
になってきている。さらに、排熱回収ボイラ46の発生
蒸気圧力が下がる低負荷帯においても、高圧の蒸気をガ
ス化炉5の要求する高い圧力(80K以上)の蒸気を安
定して供給することが必要である。
The conventional steam supply to the gasification furnace 5 at 30K to 40K is not problematic if the steam is supplied from a medium-pressure steam header, but if steam is supplied to the gasification furnace at 80K as well, It is necessary to supply high-pressure steam, which is close to the maximum pressure of the steam generated in the exhaust heat recovery boiler 46, stably and responsively. That is, an effective method for supplying high-pressure steam to the gasification furnace 5 is required due to an increase in the operating pressure of the gasification furnace 5. Further, even in a low load zone in which the generated steam pressure of the exhaust heat recovery boiler 46 is reduced, it is necessary to stably supply high-pressure steam at a high pressure (80 K or more) required by the gasification furnace 5.

【0037】ガス化炉5への燃料投入は最適量の蒸気が
同時に供給されることが必要条件であり、蒸気の供給に
支障が出ると、ガス化炉5へのガス化燃料の供給自身に
障害が発生し、負荷制御応答への阻害要因となるので蒸
気の供給は負荷制御と連携した高速の制御応答が必要で
ある。
The fuel supply to the gasification furnace 5 is a necessary condition that an optimum amount of steam is supplied at the same time, and when the supply of the steam is hindered, the supply of the gasification fuel to the gasification furnace 5 is limited. Since a failure occurs and becomes a hindrance to the load control response, the supply of steam requires a high-speed control response in cooperation with the load control.

【0038】本発明の目的は、発電用の高圧のガス化炉
への蒸気供給を適正に行うことができるガス化複合発電
システムを提供することである。
An object of the present invention is to provide a combined gasification power generation system that can appropriately supply steam to a high-pressure gasification furnace for power generation.

【0039】[0039]

【課題を解決するための手段】請求項1の発明に係わる
ガス化複合発電システムは、炭素質燃料をガス化した粗
ガスを燃料ガスとして供給するガス化プロセスと、前記
ガス化プロセスからの燃料ガスを燃焼してガスタービン
を駆動しその排ガスを排熱回収ボイラで回収し蒸気を発
生して蒸気タービンを駆動する複合発電プロセスと、前
記ガス化プロセスから前記複合発電プロセスに供給する
燃料ガスを制御する統括負荷制御部と、前記排熱回収ボ
イラから前記蒸気タービンに供給される蒸気を制御する
蒸気タービン制御装置と、前記ガス化プロセスのガス化
炉で必要な高圧蒸気を前記排熱回収ボイラの高圧蒸気へ
ッダーから得るようにしたことを特徴とする。
According to the first aspect of the present invention, there is provided an integrated gasification combined cycle system comprising: a gasification process for supplying a crude gas obtained by gasifying carbonaceous fuel as a fuel gas; and a fuel from the gasification process. A combined power generation process that drives the gas turbine by burning the gas, collects the exhaust gas from the exhaust heat recovery boiler and generates steam to drive the steam turbine, and a fuel gas supplied from the gasification process to the combined power generation process. An overall load control unit for controlling the steam turbine control device for controlling steam supplied from the exhaust heat recovery boiler to the steam turbine; and a high pressure steam required for a gasification furnace in the gasification process. Characterized by being obtained from a high-pressure steam header.

【0040】請求項1の発明に係わるガス化複合発電シ
ステムでは、ガス化プロセスのガス化炉で必要な高圧蒸
気は、排熱回収ボイラの高圧蒸気へッダーから供給され
る。
In the integrated gasification combined cycle system according to the first aspect of the present invention, the high-pressure steam required in the gasification furnace in the gasification process is supplied from the high-pressure steam header of the exhaust heat recovery boiler.

【0041】請求項2の発明に係わるガス化複合発電シ
ステムは、請求項1の発明において、前記高圧蒸気へッ
ダーは、前記排熱回収ボイラのスーパヒータ入口と前記
蒸気タービンの制御弁との間の高圧蒸気ラインであるこ
とを特徴とする。
According to a second aspect of the present invention, in the integrated gasification combined cycle system according to the first aspect, the high-pressure steam header is provided between a superheater inlet of the exhaust heat recovery boiler and a control valve of the steam turbine. It is a high-pressure steam line.

【0042】請求項2の発明に係わるガス化複合発電シ
ステムでは、請求項1の発明の作用に加え、ガス化プロ
セスのガス化炉で必要な高圧蒸気は、排熱回収ボイラの
スーパヒータ入口と蒸気タービンの制御弁との間の高圧
蒸気ラインから供給される。
In the integrated gasification combined cycle system according to the second aspect of the present invention, in addition to the function of the first aspect, the high-pressure steam required in the gasification furnace of the gasification process is supplied to the superheater inlet of the exhaust heat recovery boiler and the steam. It is supplied from a high pressure steam line between the turbine and a control valve.

【0043】請求項3の発明に係わるガス化複合発電シ
ステムは、請求項2の発明において、前記高圧蒸気へッ
ダーの圧力を検出する蒸気圧力検出器を設け、前記蒸気
タービン制御装置は、前記蒸気圧力検出器で検出された
圧力信号に基づいて蒸気圧力制御を行うことを特徴とす
る請求項2に記載のガス化複合発電システム。
In the combined gasification combined cycle system according to a third aspect of the present invention, in the second aspect of the present invention, a steam pressure detector for detecting a pressure of the high-pressure steam header is provided, and the steam turbine control device includes the steam turbine controller. The combined gasification combined cycle system according to claim 2, wherein steam pressure control is performed based on a pressure signal detected by the pressure detector.

【0044】請求項3の発明に係わるガス化複合発電シ
ステムでは、請求項2の発明の作用に加え、蒸気タービ
ン制御装置は、高圧蒸気へッダーの圧力信号に基づいて
蒸気圧力制御を行う。
In the integrated gasification combined cycle system according to the third aspect of the present invention, in addition to the operation of the second aspect, the steam turbine control device performs steam pressure control based on a pressure signal of a high-pressure steam header.

【0045】請求項4の発明に係わるガス化複合発電シ
ステムは、請求項3の発明において、前記蒸気タービン
制御装置は、前記蒸気タービンの速度調整手段と、前記
蒸気圧力検出器で検出された圧力信号による圧力制御手
段とを有することを特徴とする。
According to a fourth aspect of the present invention, in the gasification combined cycle system according to the third aspect of the present invention, the steam turbine controller includes a steam turbine speed adjusting means and a pressure detected by the steam pressure detector. Pressure control means based on a signal.

【0046】請求項4の発明に係わるガス化複合発電シ
ステムでは、請求項3の発明の作用に加え、蒸気タービ
ン制御装置は、速度調整手段でガバナ機能を達成し、圧
力制御手段で蒸気圧力制御を達成する。
In the integrated gasification combined cycle system according to the fourth aspect of the present invention, in addition to the operation of the third aspect of the present invention, the steam turbine control device achieves a governor function by the speed adjusting means and controls the steam pressure by the pressure control means. To achieve.

【0047】請求項5の発明に係わるガス化複合発電シ
ステムは、請求項4の発明において、前記蒸気タービン
制御装置の圧力制御手段は、蒸気圧力設定値と蒸気圧力
信号との圧力偏差を演算する比較器と、前記圧力偏差に
基づいて圧力制御信号を演算する蒸気圧力コントローラ
と、前記蒸気タービンの制御弁の全開指令値に優先して
前記圧力制御信号で蒸気タービンの制御弁を絞り込み操
作をするための低値優先器とを備えたことを特徴とす
る。
According to a fifth aspect of the present invention, in the gasification combined cycle system according to the fourth aspect, the pressure control means of the steam turbine control device calculates a pressure deviation between a steam pressure set value and a steam pressure signal. A comparator, a steam pressure controller that calculates a pressure control signal based on the pressure deviation, and a throttle operation of the steam turbine control valve with the pressure control signal prior to the fully open command value of the steam turbine control valve. And a low value priority unit for

【0048】請求項5の発明に係わるガス化複合発電シ
ステムでは、請求項4の発明の作用に加え、蒸気圧力設
定値と蒸気圧力信号との圧力偏差を比較器で求め、その
圧力偏差に基づいて圧力制御信号を蒸気圧力コントロー
ラで演算し、低値優先器で蒸気タービンの制御弁の全開
指令値に優先して圧力制御信号で蒸気タービンの制御弁
を絞り込み操作をする。
In the combined gasification combined cycle system according to the fifth aspect of the invention, in addition to the effect of the fourth aspect, the pressure deviation between the steam pressure set value and the steam pressure signal is obtained by a comparator, and based on the pressure deviation. Then, the pressure control signal is calculated by the steam pressure controller, and the control valve of the steam turbine is throttled by the pressure control signal prior to the fully open command value of the control valve of the steam turbine by the low value priority unit.

【0049】請求項6の発明に係わるガス化複合発電シ
ステムは、請求項5の発明において、前記圧力制御手段
の前記低値優先器の後段に高値優先器を設け、前記低値
優先器の出力信号と最小蒸気流量指令値とのうち大きい
方を選択して前記蒸気タービンの制御弁を操作するよう
にしたことを特徴とする。
According to a sixth aspect of the present invention, in the integrated gasification combined cycle system according to the fifth aspect of the present invention, a high value priority device is provided after the low value priority device of the pressure control means, and an output of the low value priority device is provided. A larger one of the signal and the minimum steam flow command value is selected to operate the control valve of the steam turbine.

【0050】請求項6の発明に係わるガス化複合発電シ
ステムでは、請求項5の発明の作用に加え、高値優先器
は、最低でも最小蒸気流量指令値を選択できるように
し、圧力維持のために長時間に亘って蒸気タービン制御
弁が全閉となり蒸気タービンの最小蒸気流量が確保でき
なくなるのを防止する。
In the integrated gasification combined cycle system according to the invention of claim 6, in addition to the effect of the invention of claim 5, the high-priority unit allows the minimum steam flow command value to be selected at least, and maintains the pressure in order to maintain the pressure. It is possible to prevent the steam turbine control valve from being fully closed for a long time, so that the minimum steam flow rate of the steam turbine cannot be secured.

【0051】請求項7の発明に係わるガス化複合発電シ
ステムは、請求項3の発明において、前記高圧蒸気へッ
ダーの圧力を検出する蒸気圧力検出器に代えて、前記ガ
ス化路に供給する蒸気を調節するための蒸気流量調節弁
の近傍に供給蒸気圧力検出器を設け、前記供給蒸気圧力
検出器で検出された圧力信号に基づいて蒸気圧力制御を
行うことを特徴とする。
A gasification combined cycle system according to a seventh aspect of the present invention is the gasification combined cycle system according to the third aspect of the present invention, wherein the steam supplied to the gasification passage is replaced with a steam pressure detector for detecting the pressure of the high-pressure steam header. A steam pressure control device is provided in the vicinity of a steam flow control valve for adjusting pressure, and steam pressure control is performed based on a pressure signal detected by the steam pressure sensor.

【0052】請求項7の発明に係わるガス化複合発電シ
ステムでは、請求項3の発明の作用に代えて、蒸気ター
ビン制御装置は、ガス化路に供給する蒸気を調節するた
めの蒸気流量調節弁の近傍に設けた供給蒸気圧力検出器
で検出された圧力信号に基づいて蒸気圧力制御を行う。
In the combined gasification combined cycle system according to a seventh aspect of the present invention, instead of the operation of the third aspect of the present invention, the steam turbine control device comprises a steam flow control valve for adjusting the steam supplied to the gasification path. The steam pressure is controlled based on the pressure signal detected by the supply steam pressure detector provided in the vicinity of.

【0053】請求項8の発明に係わるガス化複合発電シ
ステムは、請求項5の発明において、前記蒸気タービン
制御装置は、負荷目標値を先行制御指令として取り入
れ、この負荷目標値を不完全微分器で処理して負荷変化
時の負荷変化信号として前記蒸気圧力設定値に加えるよ
うにしたことを特徴とする。
According to an eighth aspect of the present invention, in the integrated gasification combined cycle system according to the fifth aspect of the present invention, the steam turbine control device incorporates a load target value as a preceding control command, and uses the load target value as an incomplete differentiator. And is added to the steam pressure set value as a load change signal at the time of load change.

【0054】請求項8の発明に係わるガス化複合発電シ
ステムでは、請求項5の発明の作用に加え、負荷目標値
の変化を負荷変化時の負荷変化信号として前記蒸気圧力
設定値に加え、負荷変化時の蒸気圧力応答性を向上させ
る。
In the combined gasification combined cycle system according to the eighth aspect of the present invention, in addition to the operation of the fifth aspect, a change in the load target value is added to the steam pressure set value as a load change signal at the time of load change. Improve the steam pressure responsiveness when changing.

【0055】[0055]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の形態に係わるガス化複合発
電システムの構成図である。この実施の形態は、図4に
示す従来例に対し、ガス化プロセスのガス化炉で必要な
高圧蒸気を排熱回収ボイラの高圧蒸気へッダーから得る
ための蒸気ライン49を設けると共に、高圧蒸気へッダ
ーの圧力を検出する蒸気圧力検出器39を設け、また、
ガス化路5に供給する蒸気を調節するための蒸気流量調
節弁38の近傍に供給蒸気圧力検出器40を設け、蒸気
圧力検出器39や供給蒸気圧力検出器40で検出した蒸
気圧力、さらには負荷目標値(MW設定)を蒸気タービ
ン制御装置25に入力し制御弁19の制御に用いるよう
にしたものである。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an integrated gasification combined cycle system according to an embodiment of the present invention. This embodiment is different from the conventional example shown in FIG. 4 in that a steam line 49 for obtaining high-pressure steam required in a gasification furnace of a gasification process from a high-pressure steam header of an exhaust heat recovery boiler is provided. A steam pressure detector 39 for detecting the pressure of the header is provided,
A supply steam pressure detector 40 is provided near a steam flow control valve 38 for adjusting the steam supplied to the gasification passage 5, and the steam pressure detected by the steam pressure detector 39 or the supply steam pressure detector 40, and further, The load target value (MW setting) is input to the steam turbine control device 25 and used for controlling the control valve 19.

【0056】また、統括負荷制御部31には、ガス化路
5に供給する蒸気を調節する蒸気流量調節弁38を制御
するためのガス化炉蒸気コントローラ37が追加して設
けられている。その他の構成は、図4に示した従来例と
同一であるので、同一要素には同一符号を付し重複した
説明は省略する。
Further, the general load control unit 31 is additionally provided with a gasification furnace steam controller 37 for controlling a steam flow control valve 38 for controlling steam supplied to the gasification passage 5. The other configuration is the same as that of the conventional example shown in FIG. 4, and therefore, the same elements are denoted by the same reference numerals, and overlapping description will be omitted.

【0057】図1において、ガス化プロセスのガス化炉
で必要な高圧蒸気は、排熱回収ボイラ46のスーパヒー
タ14入口と蒸気タービン20の制御弁19との間の高
圧蒸気ラインから供給されるように構成されている。
In FIG. 1, the high pressure steam required in the gasification furnace of the gasification process is supplied from a high pressure steam line between the inlet of the superheater 14 of the exhaust heat recovery boiler 46 and the control valve 19 of the steam turbine 20. Is configured.

【0058】一方、蒸気タービン制御弁19の前段の圧
力は、蒸気圧力検出器39で検出され、蒸気タービン制
御装置25にフィードバックされている。これにより、
蒸気タービン制御装置25は、蒸気タービン制御弁19
の前段の圧力をガス化炉5側の蒸気圧力要求に合うよう
に制御する。
On the other hand, the pressure at the preceding stage of the steam turbine control valve 19 is detected by the steam pressure detector 39 and fed back to the steam turbine control device 25. This allows
The steam turbine control device 25 includes a steam turbine control valve 19.
Is controlled to meet the steam pressure requirement on the gasification furnace 5 side.

【0059】また、ガス化炉5の蒸気流量調節弁38の
入り口圧力は、ガス化炉供給蒸気圧力検出器40で検出
され、蒸気タービン制御装置25にフィードバックされ
ている。これにより、蒸気圧力の低下を早期に検出し蒸
気圧力の応答を速めるようにしていおり、ガス化炉5へ
は、ガス化炉指令値に対してガス化燃料流量に即した最
適な酸素流量と蒸気流量が遅れなく投入されることにな
る。
The inlet pressure of the steam flow control valve 38 of the gasification furnace 5 is detected by a gasification furnace supply steam pressure detector 40 and fed back to the steam turbine controller 25. As a result, a decrease in steam pressure is detected at an early stage so that the response of the steam pressure is accelerated, and the gasifier 5 is supplied with an optimal oxygen flow rate corresponding to the gasification fuel flow rate with respect to the gasifier command value. The steam flow will be injected without delay.

【0060】図2は、本発明の実施の形態に係わる蒸気
タービン制御装置25構成図である。蒸気タービン制御
装置25には、回転数検出器30からの回転数信号と速
度設定値26(50Hzまたは60Hz)とが加算器5
0aに入力され、加算器50aで得られた速度偏差は比
例制御器27(ガバナ制御器)に入力される。比例制御
器27は、周波数変化時、オーバスピード時の制御に対
応しており、通常時は、周波数は系統周波数に同期して
いるため安定しているので、比例制御器27の出力はほ
とんど変化しない。従って、加算器50bの出力信号
は、高値優先器41からの制御信号となり、蒸気タービ
ン20の制御弁19は高値優先器41からの制御信号で
制御されることになる。
FIG. 2 is a configuration diagram of the steam turbine control device 25 according to the embodiment of the present invention. The rotation speed signal from the rotation speed detector 30 and the speed setting value 26 (50 Hz or 60 Hz) are added to the adder 5 by the steam turbine controller 25.
0a, and the speed deviation obtained by the adder 50a is input to the proportional controller 27 (governor controller). The proportional controller 27 corresponds to the control at the time of frequency change and overspeed, and the output of the proportional controller 27 hardly changes at normal times because the frequency is stable because it is synchronized with the system frequency. do not do. Therefore, the output signal of the adder 50b becomes a control signal from the high-priority unit 41, and the control valve 19 of the steam turbine 20 is controlled by the control signal from the high-priority unit 41.

【0061】一方、MW指令(負荷目標値)が不完全微
分器45を介して加算器50cに入力され、蒸気圧力設
定値P0に加算することで、蒸気圧力の応答を速めるよ
うにしている。これにより、負荷増加の時は、見かけ
上、蒸気圧力設定値を一時的に(微分的に)上げて、瞬
間的に蒸気タービン制御弁19を閉して、蒸気タービン
制御弁19の前段圧力を上げて、ガス化炉5への蒸気供
給を迅速に行う。
On the other hand, the MW command (load target value) is input to the adder 50c via the imperfect differentiator 45, and is added to the steam pressure set value P0 so as to speed up the response of the steam pressure. Thereby, when the load increases, the steam pressure set value is apparently increased temporarily (differentially), the steam turbine control valve 19 is closed momentarily, and the pre-stage pressure of the steam turbine control valve 19 is reduced. To quickly supply steam to the gasification furnace 5.

【0062】蒸気圧力検出器39で検出された蒸気ター
ビン制御弁19の前段の圧力、およびガス化炉供給蒸気
圧力検出器40で検出されたガス化炉5の蒸気流量調節
弁38の入り口圧力は、切替器51を介して加算器50
cに入力される。図2では切替器51により、蒸気圧力
検出器39で検出された蒸気タービン制御弁19の前段
の圧力が選択され、加算器50cに入力される場合を示
している。
The pressure at the preceding stage of the steam turbine control valve 19 detected by the steam pressure detector 39 and the inlet pressure of the steam flow control valve 38 of the gasification furnace 5 detected by the gasification furnace supply steam pressure detector 40 are: , The adder 50 via the switch 51
c. FIG. 2 shows a case in which the switch 51 selects the pressure at the preceding stage of the steam turbine control valve 19 detected by the steam pressure detector 39 and inputs the selected pressure to the adder 50c.

【0063】加算器50cでは、蒸気圧力検出器39で
検出された蒸気タービン制御弁19の前段の圧力と蒸気
圧力設定値P0との圧力偏差が演算され、さらにその圧
力偏差に不完全微分器45からの負荷変化が加味され
る。
In the adder 50c, a pressure deviation between the pressure of the previous stage of the steam turbine control valve 19 detected by the steam pressure detector 39 and the steam pressure set value P0 is calculated. The load change from is taken into account.

【0064】加算器50cの出力信号は、蒸気圧力コン
トローラ44に入力され、蒸気タービン制御弁19の前
段の圧力がガス化炉5側の蒸気圧力要求に合うような制
御信号を出力する。蒸気圧力コントローラ44からの制
御信号は、低値優先器(LVG)43に入力され、全開
指令値28とのうちの低値が選択される。低値優先器
(LVG)43の出力信号は、さらに高値優先器(HV
G)41に入力され、最小蒸気流量指令値42とのうち
の大きい方が選択されて加算器50bに入力される。こ
れにより、蒸気タービン20の最小流量を確保する。
The output signal of the adder 50c is input to the steam pressure controller 44, and outputs a control signal such that the pressure at the preceding stage of the steam turbine control valve 19 matches the steam pressure requirement on the gasification furnace 5 side. The control signal from the steam pressure controller 44 is input to a low value priority unit (LVG) 43, and a low value of the fully open command value 28 is selected. The output signal of the low value priority device (LVG) 43 is further output to the high value priority device (HV).
G) 41, and the larger one of the minimum steam flow rate command value 42 is selected and input to the adder 50b. Thereby, the minimum flow rate of the steam turbine 20 is secured.

【0065】図1を用いて本発明の実施の形態の作用を
説明する。MW指令(負荷目標値)からのガス化炉5へ
の先行指令は、先行指令関数手段33で演算され、統括
圧力コントローラ34の制御信号と加算器50で加算さ
れる。すなわち、統括圧力コントローラ34の制御信号
に、MW指令(負荷目標値)からのガス化炉5への先行
指令が加味され、酸素流量コントローラ35で酸素流量
調節弁4への指令信号、ガス化炉燃料コントローラ36
でガス化燃料調節弁3への指令信号、ガス化炉蒸気コン
トローラ37でガス化炉の蒸気流量調節弁38への指令
信号がそれぞれ作られる。
The operation of the embodiment of the present invention will be described with reference to FIG. The preceding command from the MW command (load target value) to the gasifier 5 is calculated by the preceding command function means 33 and added to the control signal of the general pressure controller 34 by the adder 50. That is, the advance signal from the MW command (load target value) to the gasification furnace 5 is added to the control signal of the general pressure controller 34, and the oxygen flow controller 35 issues a command signal to the oxygen flow control valve 4, the gasification furnace Fuel controller 36
Then, a command signal to the gasification fuel control valve 3 and a command signal to the gasification furnace steam flow control valve 38 by the gasification furnace steam controller 37 are generated.

【0066】蒸気流量指令については、ガス化炉蒸気コ
ントローラ37から蒸気流量調節弁38に与えられ開度
調節が行われる。この蒸気は、蒸気タービン制御弁19
とスーパヒータ14との間の高圧蒸気へッダーからガス
化炉5の蒸気流量調節弁38へ与えられる。
The steam flow command is given from the gasification furnace steam controller 37 to the steam flow control valve 38 to adjust the opening degree. This steam is supplied to the steam turbine control valve 19.
From the high-pressure steam header between the steam generator and the super heater 14 to the steam flow control valve 38 of the gasification furnace 5.

【0067】ガスタービン13の燃料流量が多い運転領
域、すなわち、複合発電プロセス48として高い負荷帯
での運転の場合は、排熱回収ボイラ46の高圧蒸気圧力
は比較的高いが、部分負荷となると、この圧力は徐々に
低下する。蒸気タービン制御弁19を、従来の様に全開
で運転していると、図3の特性曲線Bの如く蒸気圧力が
低下してしまい、ガス化炉5への高圧蒸気供給に支障を
来してしまう。
In the operation region where the fuel flow rate of the gas turbine 13 is large, that is, when the combined power generation process 48 is operated in a high load zone, the high-pressure steam pressure of the exhaust heat recovery boiler 46 is relatively high, but when the partial load is reached. , This pressure gradually decreases. If the steam turbine control valve 19 is operated with the valve fully open as in the conventional case, the steam pressure decreases as shown by the characteristic curve B in FIG. 3, which hinders the supply of high-pressure steam to the gasification furnace 5. I will.

【0068】そこで、この実施の形態における蒸気ター
ビン制御装置25では、ガス化炉5が要求する最小の蒸
気供給圧力の設定値Cが目標値として設置されており、
この指令値と排熱回収ボイラ46の出口、すなわち蒸気
タービン制御弁19の前段の圧力(蒸気圧力検出器39
からの信号)が比較演算され、蒸気圧力コントローラ4
4で蒸気タービン制御弁19の関度指令が演算出力され
る。この信号は全開指令値28との低値を選択する低値
優先器(LVG)43で比較され、低負荷帯での蒸気圧
力を所定の蒸気圧力設定となるように蒸気タービン制御
弁19へ指令値を与える。
Therefore, in the steam turbine control device 25 of this embodiment, the minimum set value C of the steam supply pressure required by the gasifier 5 is set as a target value.
This command value and the pressure of the outlet of the exhaust heat recovery boiler 46, that is, the pressure in front of the steam turbine control valve 19 (steam pressure detector 39
From the steam pressure controller 4
In step 4, a relevance command for the steam turbine control valve 19 is calculated and output. This signal is compared with a fully open command value 28 by a low value priority unit (LVG) 43 for selecting a low value, and a command is issued to the steam turbine control valve 19 so that the steam pressure in the low load zone becomes a predetermined steam pressure setting. Give a value.

【0069】この様子を図3の特性曲線Aで示す。な
お、低値優先器(LVG)43の出力は高値優先器(H
VG)41で最小蒸気流量指令値42と比較演算され
て、どちらかの高値が出力されるが、これは、蒸気圧力
制御のために蒸気タービン制御弁19が全閉近くになっ
てしまって、蒸気タービン20への最小流量が確保でき
なくなるのを防止するための最小蒸気流量確保のためで
ある。
This situation is shown by a characteristic curve A in FIG. The output of the low-priority unit (LVG) 43 is output from the high-priority unit (H
VG) 41 is compared with the minimum steam flow rate command value 42 to output one of the high values. This is because the steam turbine control valve 19 is almost fully closed due to the steam pressure control. This is for ensuring the minimum steam flow rate for preventing the minimum flow rate to the steam turbine 20 from being unable to be ensured.

【0070】ここで、徴粉炭を直接に炉に投入するガス
化炉5や重質油または、原油から重油等を抽出した残渣
油などのように、水分を含まない燃料をガス化炉5でガ
ス化し発電用として使用する場合は、高圧の水蒸気をガ
ス化炉に供給する必要がある。ガス化炉5は今後高圧化
の方向にあり、ガス化炉運転圧力の上昇によって高圧蒸
気のガス化炉への効果的に供給することが必要になって
きている。
Here, a fuel containing no moisture, such as a gasification furnace 5 for directly charging collected coal into a furnace or heavy oil or a residual oil obtained by extracting heavy oil or the like from crude oil, is used in the gasification furnace 5. When gasification is used for power generation, high-pressure steam must be supplied to the gasification furnace. The gasifier 5 is in the direction of higher pressure in the future, and it is necessary to effectively supply high-pressure steam to the gasifier by increasing the operating pressure of the gasifier.

【0071】さらに、排熱回収ボイラ46の発生蒸気圧
力が下がる低負荷帯においても、高圧の蒸気をガス化炉
5の要求する高い圧力(80K以上)の蒸気を安定して
供給することが求められている。
Further, even in a low load zone where the generated steam pressure of the exhaust heat recovery boiler 46 is reduced, it is necessary to stably supply high pressure steam at a high pressure (80 K or more) required by the gasification furnace 5. Have been.

【0072】本発明の実施の形態では、発電用の高圧の
ガス化炉5への蒸気供給を排熱回収ボイラ46のスーパ
ヒータ14の出口から行うようにし、ガス化炉5への燃
料投入量にマッチした最適量の蒸気が同時に供給され
る。従って、円滑なガス化炉5へのガス化燃料の供給を
達成し、ガス化複合発電システム全体の安定した負荷制
御応答を実現することができる。
In the embodiment of the present invention, steam is supplied to the high-pressure gasification furnace 5 for power generation from the outlet of the superheater 14 of the exhaust heat recovery boiler 46, and the amount of fuel supplied to the gasification furnace 5 is reduced. A matched optimal amount of steam is supplied simultaneously. Therefore, it is possible to achieve a smooth supply of gasified fuel to the gasification furnace 5 and to realize a stable load control response of the entire integrated gasification combined cycle system.

【0073】また、本発明の実施の形態では、負荷制御
と連携した蒸気圧力の制御応答性を得るようにしてい
る。すなわち、ガス化炉5へは、ガス化炉指令値に対し
てガス化燃料流量に即した最適な酸素流量と蒸気流量が
遅れなく投入される必要があるので、その場合には、蒸
気圧力の応答を速めるために、ガス化炉5の蒸気流量調
節弁38の入り口圧力をガス化炉供給蒸気圧力検出器4
0で検知し、この信号を蒸気タービン制御装置25へ圧
力制御のフィードバック信号としてフィードバックす
る。これにより、圧力低下を早期に検出でき圧力の制御
応答性が向上する。
Further, in the embodiment of the present invention, the control response of the steam pressure in cooperation with the load control is obtained. In other words, it is necessary to supply the gasifier 5 with the optimum oxygen flow rate and the steam flow rate corresponding to the gasification fuel flow rate without delay with respect to the gasification furnace command value. In order to speed up the response, the inlet pressure of the steam flow control valve 38 of the gasifier 5 is changed to the gasifier supply steam pressure detector 4.
0, and this signal is fed back to the steam turbine controller 25 as a feedback signal for pressure control. Thereby, the pressure drop can be detected at an early stage, and the control response of the pressure is improved.

【0074】また、MW指令(負荷目標値)を不完全微
分器45で蒸気圧力設定値P0に加算することで、負荷
増加の時は、見かけ上、蒸気圧力設定値P0を一時的に
(微分的に)上げて、瞬間的に蒸気タービン制御弁19
を閉して、蒸気タービン制御弁19の前段圧力を上げ
て、ガス化炉5への蒸気供給を迅速に行うことができ
る。
Further, by adding the MW command (load target value) to the steam pressure set value P0 by the incomplete differentiator 45, when the load is increased, the steam pressure set value P0 is temporarily changed (differentiated). ) To instantaneously raise the steam turbine control valve 19.
Is closed, and the pre-stage pressure of the steam turbine control valve 19 is increased, so that the steam can be quickly supplied to the gasification furnace 5.

【0075】[0075]

【発明の効果】以上述べたように、本発明によれば、ガ
ス化炉に安定した高圧蒸気の供給のために、蒸気タービ
ンの高圧蒸気へッダからガス化炉の蒸気流量調節弁への
蒸気供給ルートを設置し、蒸気タービン制御弁の前段の
圧力をガス化炉側の蒸気圧力要求に合う様に制御する。
従って、高圧蒸気のガス化炉への供給が安定して行え
る。
As described above, according to the present invention, in order to stably supply high-pressure steam to the gasifier, the high-pressure steam from the steam turbine is supplied to the steam flow control valve of the gasifier. A steam supply route will be installed to control the pressure in front of the steam turbine control valve to meet the steam pressure requirements of the gasifier.
Therefore, the supply of the high-pressure steam to the gasification furnace can be stably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係わるガス化複合発電シ
ステムの構成図。
FIG. 1 is a configuration diagram of an integrated gasification combined cycle system according to an embodiment of the present invention.

【図2】本発明の実施の形態における蒸気タービン制御
装置の構成図。
FIG. 2 is a configuration diagram of a steam turbine control device according to the embodiment of the present invention.

【図3】本発明の実施の形態における蒸気タービン制御
装置の圧力制御機能の特性図。
FIG. 3 is a characteristic diagram of a pressure control function of the steam turbine control device according to the embodiment of the present invention.

【図4】従来のガス化複合発電システムの構成図。FIG. 4 is a configuration diagram of a conventional integrated gasification combined cycle system.

【図5】従来のガス化複合発電システムの統括負荷制御
部における協調制御方式の説明図。
FIG. 5 is an explanatory diagram of a cooperative control method in a generalized load control unit of a conventional integrated gasification combined cycle system.

【符号の説明】[Explanation of symbols]

3 ガス化燃料調節弁 4 酸素流量調節弁 5 ガス化炉 9 ガス圧力検出器 10 燃料流量制御弁 13 ガスタービン 19 蒸気タービン制御弁 20 蒸気タービン 25 蒸気タービン制御装置 31 統括負荷制御部 38 蒸気流量調節弁 39 蒸気圧力検出器 40 供給蒸気圧力検出器 46 排熱回収ボイラ 47 ガス化プロセス 48 複合発電プラント 49 蒸気ライン 3 Gasification Fuel Control Valve 4 Oxygen Flow Control Valve 5 Gasification Furnace 9 Gas Pressure Detector 10 Fuel Flow Control Valve 13 Gas Turbine 19 Steam Turbine Control Valve 20 Steam Turbine 25 Steam Turbine Controller 31 General Load Control Unit 38 Steam Flow Control Valve 39 Steam pressure detector 40 Supply steam pressure detector 46 Waste heat recovery boiler 47 Gasification process 48 Combined cycle power plant 49 Steam line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 6/18 F02C 6/18 A F22B 1/18 F22B 1/18 C (72)発明者 白川 昌和 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 3G081 BA02 BA13 BB00 BC07 BD00 DA04 DA22 3L021 AA08 BA03 CA10 DA04 EA04 FA12 FA28 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 6/18 F02C 6/18 A F22B 1/18 F22B 1/18 C (72) Inventor Masakazu Shirakawa Kanagawa 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi F-term in Toshiba Keihin Works Co., Ltd. 3G081 BA02 BA13 BB00 BC07 BD00 DA04 DA22 3L021 AA08 BA03 CA10 DA04 EA04 FA12 FA28

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 炭素質燃料をガス化した粗ガスを燃料ガ
スとして供給するガス化プロセスと、前記ガス化プロセ
スからの燃料ガスを燃焼してガスタービンを駆動しその
排ガスを排熱回収ボイラで回収し蒸気を発生して蒸気タ
ービンを駆動する複合発電プロセスと、前記ガス化プロ
セスから前記複合発電プロセスに供給する燃料ガスを制
御する統括負荷制御部と、前記排熱回収ボイラから前記
蒸気タービンに供給される蒸気を制御する蒸気タービン
制御装置と、前記ガス化プロセスのガス化炉で必要な高
圧蒸気を前記排熱回収ボイラの高圧蒸気へッダーから得
るようにしたことを特徴とするガス化複合発電システ
ム。
1. A gasification process in which a crude gas obtained by gasifying carbonaceous fuel is supplied as a fuel gas, a fuel gas from the gasification process is burned to drive a gas turbine, and the exhaust gas is discharged by a waste heat recovery boiler. A combined power generation process for recovering and generating steam to drive the steam turbine, a general load control unit for controlling fuel gas supplied from the gasification process to the combined power generation process, and the steam turbine from the exhaust heat recovery boiler. A steam turbine control device for controlling the supplied steam, and a gasification combined, wherein high pressure steam required in a gasification furnace of the gasification process is obtained from a high pressure steam header of the exhaust heat recovery boiler. Power generation system.
【請求項2】 前記高圧蒸気へッダーは、前記排熱回収
ボイラのスーパヒータ入口と前記蒸気タービンの制御弁
との間の高圧蒸気ラインであることを特徴とする請求項
1に記載のガス化複合発電システム。
2. The gasification complex according to claim 1, wherein the high-pressure steam header is a high-pressure steam line between a superheater inlet of the heat recovery steam generator and a control valve of the steam turbine. Power generation system.
【請求項3】 前記高圧蒸気へッダーの圧力を検出する
蒸気圧力検出器を設け、前記蒸気タービン制御装置は、
前記蒸気圧力検出器で検出された圧力信号に基づいて蒸
気圧力制御を行うことを特徴とする請求項2に記載のガ
ス化複合発電システム。
3. A steam pressure detector for detecting a pressure of the high-pressure steam header, wherein the steam turbine control device comprises:
The combined gasification combined cycle system according to claim 2, wherein steam pressure control is performed based on a pressure signal detected by the steam pressure detector.
【請求項4】 前記蒸気タービン制御装置は、前記蒸気
タービンの速度調整手段と、前記蒸気圧力検出器で検出
された圧力信号による圧力制御手段とを有することを特
徴とする請求項3に記載のガス化複合発電システム。
4. The steam turbine control device according to claim 3, wherein the steam turbine control device has a speed adjusting means for the steam turbine and a pressure control means based on a pressure signal detected by the steam pressure detector. Gasification combined cycle system.
【請求項5】 前記蒸気タービン制御装置の圧力制御手
段は、蒸気圧力設定値と蒸気圧力信号との圧力偏差を演
算する比較器と、前記圧力偏差に基づいて圧力制御信号
を演算する蒸気圧力コントローラと、前記蒸気タービン
の制御弁の全開指令値に優先して前記圧力制御信号で蒸
気タービンの制御弁を絞り込み操作をするための低値優
先器とを備えたことを特徴とする請求項4に記載のガス
化複合発電システム。
5. A pressure control means of the steam turbine control device, comprising: a comparator for calculating a pressure deviation between a steam pressure set value and a steam pressure signal; and a steam pressure controller for calculating a pressure control signal based on the pressure deviation. And a low-priority device for narrowing down the control valve of the steam turbine with the pressure control signal in preference to the fully open command value of the control valve of the steam turbine. An integrated gasification combined cycle system as described in the above.
【請求項6】 前記圧力制御手段の前記低値優先器の後
段に高値優先器を設け、前記低値優先器の出力信号と最
小蒸気流量指令値とのうち大きい方を選択して前記蒸気
タービンの制御弁を操作するようにしたことを特徴とす
る請求項5に記載のガス化複合発電システム。
6. A high-priority unit provided downstream of the low-priority unit of the pressure control means, and a larger one of an output signal of the low-priority unit and a minimum steam flow command value is selected to select the larger one. The combined gasification combined cycle system according to claim 5, wherein the control valve is operated.
【請求項7】 前記高圧蒸気へッダーの圧力を検出する
蒸気圧力検出器に代えて、前記ガス化路に供給する蒸気
を調節するための蒸気流量調節弁の近傍に供給蒸気圧力
検出器を設け、前記供給蒸気圧力検出器で検出された圧
力信号に基づいて蒸気圧力制御を行うことを特徴とする
請求項3に記載のガス化複合発電システム。
7. A supply steam pressure detector is provided in the vicinity of a steam flow control valve for controlling steam supplied to the gasification passage, instead of the steam pressure detector for detecting the pressure of the high-pressure steam header. The combined gasification power generation system according to claim 3, wherein steam pressure control is performed based on a pressure signal detected by the supply steam pressure detector.
【請求項8】 前記蒸気タービン制御装置は、負荷目標
値を先行制御指令として取り入れ、この負荷目標値を不
完全微分器で処理して負荷変化時の負荷変化信号として
前記蒸気圧力設定値に加えるようにしたことを特徴とす
る請求項5に記載のガス化複合発電システム。
8. The steam turbine control device takes in a load target value as a preceding control command, processes the load target value by an incomplete differentiator, and adds the load target value to the steam pressure set value as a load change signal at the time of load change. The integrated gasification combined cycle system according to claim 5, wherein
JP10294357A 1998-10-16 1998-10-16 Integrated gas combined power generating system Pending JP2000120403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10294357A JP2000120403A (en) 1998-10-16 1998-10-16 Integrated gas combined power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294357A JP2000120403A (en) 1998-10-16 1998-10-16 Integrated gas combined power generating system

Publications (1)

Publication Number Publication Date
JP2000120403A true JP2000120403A (en) 2000-04-25

Family

ID=17806673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294357A Pending JP2000120403A (en) 1998-10-16 1998-10-16 Integrated gas combined power generating system

Country Status (1)

Country Link
JP (1) JP2000120403A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321601A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Gas combined-cycle power generation system and method utilizing gas hydrate
JP2011202520A (en) * 2010-03-24 2011-10-13 Mitsubishi Heavy Ind Ltd Coal gasification compound power plant
CN103980943A (en) * 2013-12-09 2014-08-13 陈涛 Power plant coal-based boiler carbon molecule gasification combustion method
WO2014175404A1 (en) * 2013-04-26 2014-10-30 三菱日立パワーシステムズ株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method
CN104152181A (en) * 2014-08-15 2014-11-19 陈涛 Carbon-molecule gasification combustion boiler (kiln) method
WO2015085653A1 (en) * 2013-12-09 2015-06-18 陈涛 Power generating method of carbon-molecule gasification combustion boiler
CN113316682A (en) * 2018-11-07 2021-08-27 南非大学 Waste plastic power generation process and system
CN113606003A (en) * 2021-08-05 2021-11-05 国网天津市电力公司电力科学研究院 Method for quickly starting F-grade gas-steam combined cycle unit to rated load

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321601A (en) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The Gas combined-cycle power generation system and method utilizing gas hydrate
JP2011202520A (en) * 2010-03-24 2011-10-13 Mitsubishi Heavy Ind Ltd Coal gasification compound power plant
WO2014175404A1 (en) * 2013-04-26 2014-10-30 三菱日立パワーシステムズ株式会社 Gasification power plant control device, gasification power plant, and gasification power plant control method
JP2014214705A (en) * 2013-04-26 2014-11-17 三菱重工業株式会社 Gasification power generating plant controlling device, gasification power generating plant, and gasification power generating plant controlling method
US10113124B2 (en) 2013-04-26 2018-10-30 Mitsubishi Hitachi Power Systems, Ltd. Control unit for gasification power generation plant, gasification power generation plant, and control method for gasification power generation plant
CN103980943A (en) * 2013-12-09 2014-08-13 陈涛 Power plant coal-based boiler carbon molecule gasification combustion method
WO2015085653A1 (en) * 2013-12-09 2015-06-18 陈涛 Power generating method of carbon-molecule gasification combustion boiler
CN103980943B (en) * 2013-12-09 2016-08-17 陈涛 Power plant's coal base boiler carbon molecule gasification combustion method
CN104152181A (en) * 2014-08-15 2014-11-19 陈涛 Carbon-molecule gasification combustion boiler (kiln) method
CN113316682A (en) * 2018-11-07 2021-08-27 南非大学 Waste plastic power generation process and system
CN113316682B (en) * 2018-11-07 2024-05-14 南非大学 Waste plastic power generation process and system
CN113606003A (en) * 2021-08-05 2021-11-05 国网天津市电力公司电力科学研究院 Method for quickly starting F-grade gas-steam combined cycle unit to rated load

Similar Documents

Publication Publication Date Title
CA1235580A (en) Medium-load power-generating plant with integrated coal gasification plant
US4631915A (en) Gas turbine and steam power-generating plant with integrated coal gasification plant
JP5721317B2 (en) Coal gasification furnace facility, control method and program thereof, and coal gasification combined power generation apparatus provided with the same
JP2008121450A (en) Coal gasification composite power generating system, and its running control method
GB2075124A (en) Integrated gasification-methanol synthesis-combined cycle plant
US4569680A (en) Gasifier with economizer gas exit temperature control
JP2000120403A (en) Integrated gas combined power generating system
JPH0518265A (en) Coal gasifying power plant
US10233835B2 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JPH05248260A (en) Coal gasified compound power generating plant
KR101735989B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP2002129910A (en) Control equipment of integrated coal gasification combined cycle power generation plant
JP2000120445A (en) Coal gasification composite power generation system
JPH10251669A (en) Gasification/generation system
JP3433968B2 (en) Operation control method of integrated coal gasification combined cycle system
GB2331128A (en) Gas-fuelled gas turbine power generation apparatus
JPS5949410B2 (en) Control method for gasification power plant
JP2000303077A (en) Combined gasifier/power plant
JPH11311129A (en) Load controller of gasification compound power plant
JP2000303855A (en) Control device for gasification combined power generation plant
JPH11210412A (en) Control device for coal gasification power system
JP6978277B2 (en) Coal gasification power generation equipment
JPS63254192A (en) Operation of coal gasifying furnace of jet flow layer
JPH05280373A (en) Coal gas compound power generating device
JPS61145322A (en) Control device in combined cycle plant for producing coal gas

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050317

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050324