JP3219294B2 - Fluidized bed boiler - Google Patents

Fluidized bed boiler

Info

Publication number
JP3219294B2
JP3219294B2 JP4708492A JP4708492A JP3219294B2 JP 3219294 B2 JP3219294 B2 JP 3219294B2 JP 4708492 A JP4708492 A JP 4708492A JP 4708492 A JP4708492 A JP 4708492A JP 3219294 B2 JP3219294 B2 JP 3219294B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
furnace
gas flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4708492A
Other languages
Japanese (ja)
Other versions
JPH05248259A (en
Inventor
義則 大谷
進 吉岡
昭雄 植田
一紀 正路
謙示 東川
太郎 坂田
公大 野中
昭雄 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4708492A priority Critical patent/JP3219294B2/en
Publication of JPH05248259A publication Critical patent/JPH05248259A/en
Application granted granted Critical
Publication of JP3219294B2 publication Critical patent/JP3219294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はガスタービン、スチーム
タービンを駆動して複合発電を行う石炭の加圧流動層燃
焼炉に関し、特にボイラの起動、停止時に対応するため
の炉内ガス流速を制御する装置を備えた加圧流動層ボイ
ラに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized-bed combustion furnace for coal, which drives a gas turbine and a steam turbine to perform combined power generation, and in particular, controls the gas flow rate in the furnace to cope with starting and stopping of a boiler. The present invention relates to a pressurized fluidized-bed boiler provided with a device for performing the above.

【0002】[0002]

【従来の技術】加圧流動層ボイラの特徴は、ボイラのコ
ンパクト化と複合サイクル発電による発電効率の向上に
ある。加圧状態で石炭等の燃料を燃焼すれば、ほぼ同一
の炉内ガス流速を維持したままで燃焼負荷(炉床負荷)
を常圧流動層ボイラの20倍近くまで増加させることが
できる。石炭は水との混合物(石炭水スラリー:CW
P)にして、燃焼炉内にポンプで加圧供給する。燃焼炉
内ではCWPは燃焼用空気によつて流動しながら燃焼
し、その排ガスは燃焼炉から脱塵器、ガスタービンへと
導かれる。
2. Description of the Related Art A feature of a pressurized fluidized bed boiler lies in the downsizing of the boiler and the improvement of power generation efficiency by combined cycle power generation. If fuel such as coal is burned in a pressurized state, the combustion load (hearth load) while maintaining almost the same gas flow velocity in the furnace
Can be increased to nearly 20 times that of a normal pressure fluidized bed boiler. Coal is a mixture with water (coal water slurry: CW
P), and pressurized and supplied into the combustion furnace by a pump. In the combustion furnace, the CWP burns while flowing by the combustion air, and the exhaust gas is guided from the combustion furnace to a dust remover and a gas turbine.

【0003】図4に従来技術の一例を示す。加圧流動層
ボイラは、圧力容器7、燃焼炉1、脱塵器11、ガスタ
ービン12、スチームタービン18などで構成される。
FIG. 4 shows an example of the prior art. The pressurized fluidized-bed boiler includes a pressure vessel 7, a combustion furnace 1, a dust remover 11, a gas turbine 12, a steam turbine 18, and the like.

【0004】燃焼炉1は圧力容器7内に収納されてお
り、その底部に空気分散板6が設けられ、その上に流動
媒体粒子2が充填されている。加圧空気8は圧力容器7
内に供給された後、空気分散板6下部の風箱24を経由
して燃焼用空気として燃焼炉1内に供給され、媒体粒子
2を流動化して流動層10を形成する。風箱24には、
空気流量を調整するダンパ23が設置されている。また
圧力容器7の外部には、風箱24と連結した起動バーナ
25が設けられる。
[0004] The combustion furnace 1 is housed in a pressure vessel 7, and an air dispersion plate 6 is provided at the bottom thereof, and the fluid medium particles 2 are filled thereon. Pressurized air 8 is in pressure vessel 7
After being supplied to the inside, the air is supplied into the combustion furnace 1 as combustion air via a wind box 24 below the air dispersion plate 6, and the medium particles 2 are fluidized to form a fluidized bed 10. In the wind box 24,
A damper 23 for adjusting the air flow rate is provided. Further, outside the pressure vessel 7, a starting burner 25 connected to the wind box 24 is provided.

【0005】燃焼炉1にはスラリー導管17を通してC
WPポンプ9から石炭・水スラリー26が圧送され、ス
ラリー噴霧ノズル16から流動層10内に供給されて燃
焼される。
The combustion furnace 1 is supplied with C through a slurry conduit 17.
The coal / water slurry 26 is pumped from the WP pump 9 and supplied from the slurry spray nozzle 16 into the fluidized bed 10 for combustion.

【0006】流動燃焼炉1から排出される石炭灰を含む
燃焼排ガスは流動燃焼炉1上部から排ガスライン13を
通つて排出され、サイクロン5で排ガス中に含まれるダ
ストが除去される。さらに排ガスは圧力容器7の外部に
設けた脱塵器11で燃焼排ガスに含まれる燃焼灰等が除
去され、クリーンな排ガスのみがガスタービン12に導
入される。
The flue gas containing coal ash discharged from the fluidized-bed combustion furnace 1 is discharged from the upper part of the fluidized-bed combustion furnace 1 through an exhaust gas line 13, and dust contained in the flue gas is removed by the cyclone 5. Further, the exhaust gas removes combustion ash and the like contained in the combustion exhaust gas by a dust remover 11 provided outside the pressure vessel 7, and only the clean exhaust gas is introduced into the gas turbine 12.

【0007】ガスタービン12では排ガスのエネルギー
を回収し発電機14による発電を行うとともに、燃焼用
空気源であるコンプレツサー15を駆動する。ガスター
ビン12から排出された排ガスは、後続の熱交換器21
に導入され煙突22から排出される。
The gas turbine 12 collects the energy of the exhaust gas to generate electric power by a generator 14, and drives a compressor 15 as a combustion air source. The exhaust gas discharged from the gas turbine 12 is supplied to a subsequent heat exchanger 21.
And discharged from the chimney 22.

【0008】なお、図4において、3は伝熱管、4はB
Mタンク、19は発電機、20は冷却器(復水器)であ
る。
In FIG. 4, 3 is a heat transfer tube, 4 is B
M tank, 19 is a generator, 20 is a cooler (condenser).

【0009】加圧流動層ボイラの起動方法は、空気分散
板6下部の風箱24に起動バーナ25を設けて、流動媒
体粒子2を助燃する方法が用いられる。起動バーナ25
と燃焼用空気により、流動層10内の流動媒体2が所定
の温度に達すると、燃料である石炭(または石炭水スラ
リー:CWP)をスラリー導管17から流動層10内に
供給する。流動層10内では、石炭(または石炭水スラ
リー:CWP)の供給とほぼ同時に石炭の着火燃焼が開
始される。この時、流動層10内の流動媒体粒子が安定
な流動を維持することが重要である。
As a method for starting the pressurized fluidized-bed boiler, a method is used in which a starter burner 25 is provided in a wind box 24 below the air distribution plate 6 to assist the fluidized medium particles 2 in combustion. Start-up burner 25
When the temperature of the fluid medium 2 in the fluidized bed 10 reaches a predetermined temperature due to the combustion air and the fuel, coal (or coal water slurry: CWP) as a fuel is supplied into the fluidized bed 10 from the slurry conduit 17. In the fluidized bed 10, ignition and combustion of coal are started almost simultaneously with the supply of coal (or coal water slurry: CWP). At this time, it is important that the fluid medium particles in the fluidized bed 10 maintain a stable fluidity.

【0010】[0010]

【発明が解決しようとする課題】従来のシステムでは、
流動層内のガス流速を一定に保つことが困難である。流
動層内のガス流速は、流動層内のガス流量、温度、圧力
で決定されるが、ガスタービンの抵抗が一定のため流動
層内の圧力を任意にコントロールすることができない。
特に起動時には流動層内の温度が不安定になること、お
よび燃焼ガスも任意に調整できないため流動層内のガス
流速を所定の値に調節することは困難である。
In the conventional system,
It is difficult to keep the gas flow rate in the fluidized bed constant. The gas flow velocity in the fluidized bed is determined by the gas flow rate, temperature, and pressure in the fluidized bed, but the pressure in the fluidized bed cannot be arbitrarily controlled because the resistance of the gas turbine is constant.
In particular, it is difficult to adjust the gas flow rate in the fluidized bed to a predetermined value because the temperature in the fluidized bed becomes unstable and the combustion gas cannot be arbitrarily adjusted at startup.

【0011】ガス流速が所定の値に対して小さくなると
燃焼炉内の媒体粒子が固定層の状態になり、流動媒体粒
子等のクリンカ発生の原因となる。
[0011] When the gas flow rate becomes smaller than a predetermined value, the medium particles in the combustion furnace become a fixed bed, which causes clinkers such as flowing medium particles.

【0012】一方、炉内のガス流速が高くなると流動層
内の流動媒体が燃焼炉系外に飛散して流動層内の媒体粒
子がなくなり、流動層高が維持できなくなる。そのため
再び媒体粒子を燃焼炉内に供給しなければならない問題
が発生する。このような現象は流動層ボイラの停止時に
も同様の問題が発生する。
On the other hand, when the gas flow velocity in the furnace becomes high, the fluidized medium in the fluidized bed scatters outside the combustion furnace system, media particles in the fluidized bed disappear, and the fluidized bed height cannot be maintained. Therefore, there arises a problem that the medium particles must be supplied again into the combustion furnace. Such a phenomenon causes a similar problem when the fluidized-bed boiler is stopped.

【0013】本発明は上記の従来法の欠点を解消し、加
圧流動層ボイラの起動および停止時に流動層内の媒体粒
子のクリンカトラブル、流動媒体粒子の欠損トラブルま
たは除塵器の閉塞トラブルを発生することなく、ボイラ
の起動および停止を円滑に行う制御装置を設けた加圧流
動層燃焼炉を提案することを目的とする。
The present invention solves the above-mentioned drawbacks of the conventional method, and causes clinker trouble of media particles in a fluidized bed, loss of fluid medium particles, or blockage trouble of a dust remover when starting and stopping a pressurized fluidized bed boiler. It is an object of the present invention to propose a pressurized fluidized bed combustion furnace provided with a control device for smoothly starting and stopping a boiler without performing.

【0014】[0014]

【課題を解決するための手段】上記の課題は、ガスター
ビンの入口とガスタービン出口の間に、ガスタービンを
バイパスするバイパス配管とバイパス弁を設け、さらに
火炉圧力と火炉温度と燃焼用空気量を同時に計測して火
炉内のガス流速を演算し、火炉圧力が常に所定の値にな
るようにバイパス弁の開度を調整することにより解決で
きる。
The object of the present invention is to provide a bypass pipe and a bypass valve for bypassing a gas turbine between an inlet of the gas turbine and an outlet of the gas turbine, and further provide a furnace pressure, a furnace temperature, and a combustion air amount. Can be solved by calculating the gas flow rate in the furnace by simultaneously measuring the flow rate of the furnace and adjusting the opening of the bypass valve so that the furnace pressure always becomes a predetermined value.

【0015】[0015]

【作用】本発明は、火炉の流速をバイパス弁の開度を調
整して行うようにしたものである。即ち、流動層内のガ
ス流速を所定の値より高くなつた場合にバイパス弁を閉
じて流動層内を加圧し、逆にガス流速が所定の値より低
くなつた場合にバイパス弁を開けて流動層内の圧力を低
下することによつて、ガス流速を所定の範囲に調整する
ようにしたものである。
According to the present invention, the flow rate of the furnace is adjusted by adjusting the opening of the bypass valve. That is, when the gas flow rate in the fluidized bed becomes higher than a predetermined value, the bypass valve is closed to pressurize the inside of the fluidized bed. Conversely, when the gas flow rate becomes lower than the predetermined value, the bypass valve is opened to flow the gas. By reducing the pressure in the layer, the gas flow rate is adjusted to a predetermined range.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施例に係わる加圧流動層
ボイラの概略構成図、図2は他の実施例を示す加圧流動
層ボイラの概略制御系統図である。
FIG. 1 is a schematic configuration diagram of a pressurized fluidized bed boiler according to an embodiment of the present invention, and FIG. 2 is a schematic control system diagram of a pressurized fluidized bed boiler showing another embodiment.

【0018】図1において加圧流動層ボイラは、圧力容
器7、燃焼炉1、脱塵器11、ガスタービン12、スチ
ームタービン18などで構成される。
In FIG. 1, the pressurized fluidized-bed boiler includes a pressure vessel 7, a combustion furnace 1, a dust remover 11, a gas turbine 12, a steam turbine 18, and the like.

【0019】燃焼炉1は圧力容器7内に収納されてお
り、その底部に空気分散板6が設けられ、その上に流動
媒体2が充填されている。加圧空気8は圧力容器7内に
供給された後、空気分散板6下部の風箱24を経由して
燃焼用空気として燃焼炉1内に供給され、媒体粒子2を
流動化して流動層10を形成する。風箱24には空気流
量を調整するダンパ23が設置されている。また圧力容
器7の外部には風箱24と連結した起動バーナ25が設
けられる。
The combustion furnace 1 is housed in a pressure vessel 7, and an air distribution plate 6 is provided at the bottom thereof, and the fluid medium 2 is filled thereon. After the pressurized air 8 is supplied into the pressure vessel 7, it is supplied into the combustion furnace 1 as combustion air via a wind box 24 below the air distribution plate 6, and fluidizes the medium particles 2 to form a fluidized bed 10. To form The wind box 24 is provided with a damper 23 for adjusting an air flow rate. Further, a start-up burner 25 connected to the wind box 24 is provided outside the pressure vessel 7.

【0020】燃焼炉1にはスラリー導管17を通してC
WPポンプ9から石炭・水スラリー26が圧送され、ス
ラリー噴霧ノズル16から流動層10内に供給されて燃
焼される。燃焼炉1には流動層10内の温度、圧力を計
測する温度計30および圧力計31a〜cが設置され
る。
The combustion furnace 1 has a slurry conduit 17 through which C
The coal / water slurry 26 is pumped from the WP pump 9 and supplied from the slurry spray nozzle 16 into the fluidized bed 10 for combustion. The combustion furnace 1 is provided with a thermometer 30 for measuring the temperature and pressure in the fluidized bed 10 and pressure gauges 31a to 31c.

【0021】燃焼炉1内で燃焼した石炭・水スラリー2
6はダストを含む燃焼ガスとなつて燃焼炉1上部から排
ガスライン13を通つて排出される。排ガス中に含まれ
るダストはサイクロン5で除去され、さらに圧力容器7
の外部に設けた脱塵器11で除去され、ガスタービン1
2に導入される。
Coal / water slurry 2 burned in combustion furnace 1
The exhaust gas 6 is discharged from the upper part of the combustion furnace 1 through an exhaust gas line 13 as a combustion gas containing dust. Dust contained in the exhaust gas is removed by the cyclone 5, and furthermore, the pressure vessel 7
The gas turbine 1 is removed by a dust remover 11 provided outside the gas turbine 1.
2 is introduced.

【0022】ガスタービン12では排ガスのエネルギー
を回収し発電を行うとともに、燃焼用空気源であるコン
プレツサー15を駆動する。ガスタービン12から排出
された排ガスは、後続の熱交換器21に導入され煙突2
2から排出される。
The gas turbine 12 recovers the energy of the exhaust gas to generate power, and drives the compressor 15 which is a combustion air source. The exhaust gas discharged from the gas turbine 12 is introduced into the subsequent heat exchanger 21 and
Exhausted from 2.

【0023】排ガスライン13には図1に示すようにガ
スタービン12の入口から出口にガスタービン12をバ
イパスするバイパス配管35およびバイパス弁32が設
置される。このバイパス配管35のバイパス弁32は、
流動層10内のガス流速を一定に保つために設けたもの
である。
As shown in FIG. 1, the exhaust gas line 13 is provided with a bypass pipe 35 and a bypass valve 32 for bypassing the gas turbine 12 from the inlet to the outlet of the gas turbine 12. The bypass valve 32 of the bypass pipe 35
This is provided to keep the gas flow rate in the fluidized bed 10 constant.

【0024】以下、流動層10内のガス流速について説
明する。
Hereinafter, the gas flow velocity in the fluidized bed 10 will be described.

【0025】流動層内のガス流速V0 (m/s)は火炉
の断面積A(m2 )が一定であることから、火炉圧力P
(kg/cm2 .g.)と火炉温度T(℃)および燃焼
用空気量Q(m3 /s)から図3に示す数式で容易に計
算することができる。
Since the cross-sectional area A (m 2 ) of the furnace is constant, the gas flow velocity V 0 (m / s) in the fluidized bed is equal to the furnace pressure P
(Kg / cm 2 .g.), The furnace temperature T (° C.) and the combustion air amount Q (m 3 / s) can be easily calculated by the mathematical formula shown in FIG.

【0026】特に起動時には、燃焼用空気量Qが一定で
も火炉内の媒体温度が著しく変化する。そのため図3の
式から明らかなようにガス流速V0 は著しく変化する。
即ち、媒体粒子2の温度は常温から除々に高くなるた
め、ガス流速V0 は増加することになる。ガス流速V0
を調整するために燃焼用空気量Qを変化する方法も考え
られるが、起動時には燃料に比例した燃焼用空気量Qが
要求されること、および燃焼排ガスを正常な値に保持す
ることが重要であり得策ではない。以上のことから、起
動時に火炉内のガス流速V0 を所定の値に保持するため
には、火炉圧力を変化する方法が最も効果的である。
In particular, at the time of start-up, the medium temperature in the furnace significantly changes even if the combustion air amount Q is constant. Therefore, as is clear from the equation in FIG. 3, the gas flow velocity V 0 changes significantly.
That is, since the temperature of the medium particles 2 gradually increases from the normal temperature, the gas flow velocity V 0 increases. Gas flow velocity V 0
It is also conceivable to change the combustion air amount Q in order to adjust the fuel consumption. However, it is important that the combustion air amount Q is proportional to the fuel at the time of starting, and that the combustion exhaust gas be maintained at a normal value. Not possible. From the above, the method of changing the furnace pressure is most effective in maintaining the gas flow rate V 0 in the furnace at a predetermined value at the time of startup.

【0027】このように図1に示す実施例においては、
ガス流速V0 を所定の値に保持するために、バイパス配
管35およびバイパス弁32を設け、ガス流速V0 が所
定の値よりも高くなるとバイパス弁32を閉じて流動層
10を加圧し、ガス流速V0が所定の値よりも低くなる
とバイパス弁32を開いて流動層10の圧力を低下し、
ガス流速V0 を所定の値に調整する。
As described above, in the embodiment shown in FIG.
A bypass pipe 35 and a bypass valve 32 are provided in order to maintain the gas flow velocity V 0 at a predetermined value. When the gas flow velocity V 0 becomes higher than the predetermined value, the bypass valve 32 is closed to pressurize the fluidized bed 10, When the flow velocity V 0 becomes lower than the predetermined value, the bypass valve 32 is opened to lower the pressure of the fluidized bed 10,
Adjusting the gas flow velocity V 0 to a predetermined value.

【0028】ここで本実施例では、風箱24内に圧力計
31aを、流動層10内に圧力計31bを、火炉1の空
塔部に圧力計31cを配置し、これらの各圧力検出値
(差圧)とボイラ負荷とに基づいてガス流速V0 を演算
し、そのガス流速V0 とボイラ負荷に応じて予め設定さ
れた基準値とを比較する。
In this embodiment, a pressure gauge 31a is arranged in the wind box 24, a pressure gauge 31b is arranged in the fluidized bed 10, and a pressure gauge 31c is arranged in the empty tower of the furnace 1, and these pressure detection values are measured. calculates the gas flow velocity V 0 based on the (differential pressure) and the boiler load, and compares the preset reference value in response to the gas flow velocity V 0 and the boiler load.

【0029】以下にガス流速の設定根拠について説明す
る。
The basis for setting the gas flow velocity will be described below.

【0030】流動層装置では、媒体粒子が安定に流動す
る条件が確保されなければならず、そのためには媒体粒
子の流動化開始速度以上のガス流速が必要となる。さら
に流動層内からの媒体粒子の飛散を防止し、伝熱管によ
る高い熱吸収量を得るためには流動化開始速度の5倍以
下のガス流速で運転することが重要となる。
In the fluidized bed apparatus, conditions for stably flowing the medium particles must be ensured, and for that purpose, a gas flow rate that is higher than the fluidization start speed of the medium particles is required. Further, in order to prevent scattering of the medium particles from the inside of the fluidized bed and obtain a high heat absorption amount by the heat transfer tube, it is important to operate the gas at a gas flow rate of 5 times or less of the fluidization start speed.

【0031】もちろん、流動化開始速度は粒子の性状
(密度、粒子径等)やガス性状によつて異なる。例え
ば、媒体粒子の平均粒子径が0.50mmの場合は流動
層化開始速度は0.15m/sとなり、1.0mmの場
合は流動層化開始速度は0.4m/sとなり、2 .0m
mの場合は流動層化開始速度は1.1m/sとなる。こ
のように媒体粒子の平均粒子径の増加に伴い流動化開始
速度は高くなるが、いずれの場合にも、流動層内で媒体
粒子の安定な流動を得るためには前述したように、ガス
流速は流動化開始速度の1.5〜5倍にすることが望ま
しい。
Of course, the fluidization start speed differs depending on the properties of the particles (density, particle diameter, etc.) and the properties of the gas. For example, when the average particle diameter of the medium particles is 0.50 mm, the fluidized bed formation speed is 0.15 m / s, and when the average particle diameter is 1.0 mm, the fluidized bed formation speed is 0.4 m / s. 0m
In the case of m, the fluidized bed start speed is 1.1 m / s. As described above, the fluidization start speed increases with an increase in the average particle size of the medium particles, but in any case, as described above, in order to obtain a stable flow of the medium particles in the fluidized bed, the gas flow velocity is increased. Is preferably 1.5 to 5 times the fluidization start speed.

【0032】一般に加圧流動層では、ガス流速は0.6
〜2.0m/sの範囲で運用される。これはガス流速を
2m/s以上にすると流動層内に設けた伝熱管の磨耗が
増加する問題がある。一方、ガス流速を0.5m/s以
下にすると流動層火炉断面積が増加し、装置全体が大き
くなる欠点がある。以上のようなことから加圧流動層ボ
イラでは一般に、運用ガス流速の範囲は前記したように
0.6〜2.0m/sが最適となる。従つて、カス流速
は粒子性状から求めた流動化開始速度を考慮して決定さ
れ、その範囲を流動化開始速度の1.5〜5倍に設定す
る方法が採用される。
Generally, in a pressurized fluidized bed, the gas flow rate is 0.6
It is operated in a range of up to 2.0 m / s. This has a problem that when the gas flow rate is set to 2 m / s or more, wear of the heat transfer tube provided in the fluidized bed increases. On the other hand, when the gas flow rate is set to 0.5 m / s or less, there is a disadvantage that the cross-sectional area of the fluidized bed furnace increases and the entire apparatus becomes large. As described above, in the pressurized fluidized bed boiler, generally, the range of the operating gas flow velocity is optimally 0.6 to 2.0 m / s as described above. Therefore, the gas flow rate is determined in consideration of the fluidization start speed obtained from the particle properties, and a method of setting the range to 1.5 to 5 times the fluidization start speed is adopted.

【0033】図2は他の実施例を示すものである。図1
のものと異なる点は、図1のものにおいてはバイパス配
管35とバイパス弁32を設けて流動層10のガス流速
0を調整したが、図2のものにおいては流動層10に
温度計30、圧力計31および空気流量計34、演算器
33を設け、温度計30からの温度検出信号36、圧力
計31からの圧力検出信号37、空気流量計34からの
空気流量検出信号38を演算器33に入力して、演算器
33で図3の式の流動層10内のガス流速V0を演算す
る。そしてガス流速検出信号とガス流速設定信号39を
演算器33で比較し、ガス流速検出信号がガス流速設定
信号39よりも大きい場合にはバイパス弁32を閉じ
る。他方、ガス流速検出信号がガス流速設定信号39よ
りも小さい場合には、バイパス弁32を開くように制御
するようにしたものである。
FIG. 2 shows another embodiment. FIG.
1 is that the gas flow rate V 0 of the fluidized bed 10 is adjusted by providing a bypass pipe 35 and a bypass valve 32 in the apparatus of FIG. A pressure gauge 31, an air flow meter 34, and a calculator 33 are provided, and a temperature detection signal 36 from the thermometer 30, a pressure detection signal 37 from the pressure gauge 31, and an air flow detection signal 38 from the air flow meter 34 are calculated by the calculator 33. And the calculator 33 calculates the gas flow velocity V 0 in the fluidized bed 10 in the equation of FIG. Then, the gas flow rate detection signal and the gas flow rate setting signal 39 are compared by the computing unit 33, and when the gas flow rate detection signal is larger than the gas flow rate setting signal 39, the bypass valve 32 is closed. On the other hand, when the gas flow rate detection signal is smaller than the gas flow rate setting signal 39, the control is performed so that the bypass valve 32 is opened.

【0034】つまり、燃焼炉1に設けた温度計30およ
び圧力計31からの検出信号36,37を演算処理する
演算器33と連動している。演算器33では流動燃焼炉
1に設けた温度計30、圧力計31および空気流量計3
4からの検出信号36,37,38を基に流動層10内
のガス流速V0 をリアルタイムで演算するとともに、バ
イパス弁32に弁開度を調整する制御信号40を送る。
That is, it is interlocked with the calculator 33 for calculating the detection signals 36 and 37 from the thermometer 30 and the pressure gauge 31 provided in the combustion furnace 1. The calculator 33 includes a thermometer 30, a pressure gauge 31, and an air flow meter 3 provided in the fluidized-bed combustion furnace 1.
Based on the detection signals 36, 37, 38 from 4, the gas flow rate V 0 in the fluidized bed 10 is calculated in real time, and a control signal 40 for adjusting the valve opening is sent to the bypass valve 32.

【0035】燃焼炉1内のガス流速検出信号は燃焼炉1
内のガス流量、温度、圧力で図3の式により計算できる
が、特に起動時には所定の空気量で流動層10内を除々
に昇温するため、層内温度が刻々と変化するので流動層
10内のガス流速V0 は任意には調整できない。従つて
燃焼炉1の圧力を制御することで流動層内のガス流速V
0 を容易にコントロールできる。
The gas flow rate detection signal in the combustion furnace 1 is
The gas flow rate, temperature, and pressure inside the fluidized bed can be calculated by the equations shown in FIG. 3. Particularly, at the time of startup, since the temperature inside the fluidized bed 10 gradually increases with a predetermined amount of air, the temperature inside the fluidized bed changes every moment. The gas flow velocity V 0 in the inside cannot be arbitrarily adjusted. Accordingly, by controlling the pressure of the combustion furnace 1, the gas flow rate V in the fluidized bed is controlled.
0 can be easily controlled.

【0036】このように、加圧流動層ボイラの起動時、
停止時であつてもガス流速V0 をほぼ一定に保つことが
でき、媒体粒子2のクリンカトラブル、媒体粒子2の飛
散を防止することができる。
Thus, when the pressurized fluidized bed boiler is started,
Even at the time of stop, the gas flow velocity V 0 can be kept substantially constant, and clinker trouble of the medium particles 2 and scattering of the medium particles 2 can be prevented.

【0037】[0037]

【発明の効果】本発明の実施により、ボイラ起動および
停止時に流動層内の媒体のクリンカトラブル、流動媒体
粒子の欠損トラブル、または除塵器の閉塞トラブルを発
生することなく、ボイラの起動および停止を円滑に行う
ことが可能となり、信頼性の高い加圧流動層ボイラを提
供できる。
According to the present invention, the start and stop of the boiler can be performed without causing a clinker trouble of the medium in the fluidized bed, a trouble of missing the fluid medium particles, or a trouble of closing the dust remover when the boiler is started and stopped. The pressurized fluidized-bed boiler can be performed smoothly and can be provided with high reliability.

【0038】また本発明の実施により、緊急時には流動
層内の圧力を調整する緊急放出弁として使用できる。さ
らに放出した燃焼排ガスは後続の排ガス処理装置(脱硝
など)で窒素酸化物などの公害物質を除去することが可
能であり、緊急時にも安全でかつ無公害な信頼性の高い
加圧流動層ボイラを提供できる。
Further, the present invention can be used as an emergency discharge valve for adjusting the pressure in the fluidized bed in an emergency. In addition, the released flue gas can remove pollutants such as nitrogen oxides in a subsequent flue gas treatment device (such as denitration), and it is safe, non-polluting and highly reliable in pressurized fluidized bed boilers even in an emergency. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係わる加圧流動層ボイラの概
略構成図である。
FIG. 1 is a schematic configuration diagram of a pressurized fluidized-bed boiler according to an embodiment of the present invention.

【図2】他の実施例を示す加圧流動層ボイラの概略制御
系統図である。
FIG. 2 is a schematic control system diagram of a pressurized fluidized-bed boiler showing another embodiment.

【図3】数式を示す図である。FIG. 3 is a diagram showing a mathematical expression.

【図4】従来例に係る加圧流動層ボイラの概略構成図で
ある。
FIG. 4 is a schematic configuration diagram of a pressurized fluidized bed boiler according to a conventional example.

【符号の説明】[Explanation of symbols]

1 燃焼炉 2 媒体粒子 3 伝熱管 5 サイクロン 6 空気分散板 7 圧力容器 8 加圧空気 9 CWPポンプ 10 流動層 12 ガスタービン 14 発電機 17 スラリー導管 21 熱交換器 22 煙突 24 風箱 26 石炭・水スラリー DESCRIPTION OF SYMBOLS 1 Combustion furnace 2 Medium particle 3 Heat transfer tube 5 Cyclone 6 Air dispersion plate 7 Pressure vessel 8 Pressurized air 9 CWP pump 10 Fluidized bed 12 Gas turbine 14 Generator 17 Slurry conduit 21 Heat exchanger 22 Chimney 24 Wind box 26 Coal / water slurry

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正路 一紀 広島県呉市宝町3番36号 バブコツク日 立株式会社 呉研究所内 (72)発明者 東川 謙示 広島県呉市宝町3番36号 バブコツク日 立株式会社 呉工場内 (72)発明者 坂田 太郎 広島県呉市宝町3番36号 バブコツク日 立株式会社 呉工場内 (72)発明者 野中 公大 広島県呉市宝町3番36号 バブコツク日 立株式会社 呉工場内 (72)発明者 西山 昭雄 広島県呉市宝町3番36号 バブコツク日 立株式会社 呉工場内 (56)参考文献 特開 平5−26057(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02C 3/26 F02C 9/18 F23C 11/02 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuki Masaji 3-36 Takara-cho, Kure City, Hiroshima Prefecture Inside the Kure Research Institute, Inc. (72) Inventor Kenji Higashikawa 3-36 Takara-cho Kure City, Hiroshima Prefecture Babkotsuk Day (72) Inventor Taro Sakata, 3-36 Takara-cho, Kure-shi, Hiroshima Prefecture Babkotsuk Day Inside Kure Factory, Ltd. (72) Inventor Kodai Nonaka 3-36, Takara-cho, Kure-shi, Hiroshima Prefecture Babkotsuk Day Kure Factory Co., Ltd. (72) Inventor Akio Nishiyama 3-36 Takaracho, Kure City, Hiroshima Pref. Bab Kokitsu Co., Ltd. Kure Factory Co., Ltd. (56) References JP-A-5-26057 (JP, A) (58) Field (Int.Cl. 7 , DB name) F02C 3/26 F02C 9/18 F23C 11/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流動層を有する火炉と、その火炉からの
燃焼ガスを供給して回転駆動するガスタービンと、前記
火炉とガスタービンを連結する排ガスラインと、火炉内
のガス流速を検出するガス流速検出手段と、前記排ガス
ラインのガスタービン上流側に設けられたガス分岐管
と、そのガス分岐管の途中に設けられた流量調整弁とを
備え、 前記火炉内のガス流速が予め設定されたガス流速よりも
下がると、前記流量調整弁を作動させて、ガス分岐管よ
り火炉内の燃焼ガスを分岐するように構成されているこ
とを特徴とする流動層ボイラ。
1. A furnace having a fluidized bed, a gas turbine that supplies and rotates a combustion gas from the furnace, an exhaust gas line connecting the furnace and the gas turbine, and a gas that detects a gas flow rate in the furnace. A gas flow detecting means, a gas branch pipe provided on the gas turbine upstream side of the exhaust gas line, and a flow regulating valve provided in the middle of the gas branch pipe, wherein a gas flow rate in the furnace is preset. The fluidized-bed boiler is configured to operate the flow control valve when the gas flow rate falls below the gas flow rate to branch the combustion gas in the furnace from the gas branch pipe.
JP4708492A 1992-03-04 1992-03-04 Fluidized bed boiler Expired - Lifetime JP3219294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4708492A JP3219294B2 (en) 1992-03-04 1992-03-04 Fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4708492A JP3219294B2 (en) 1992-03-04 1992-03-04 Fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH05248259A JPH05248259A (en) 1993-09-24
JP3219294B2 true JP3219294B2 (en) 2001-10-15

Family

ID=12765314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4708492A Expired - Lifetime JP3219294B2 (en) 1992-03-04 1992-03-04 Fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP3219294B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401302B2 (en) * 2009-12-28 2014-01-29 三機工業株式会社 Operating method of pressurized fluidized incinerator and pressurized fluidized incinerator equipment

Also Published As

Publication number Publication date
JPH05248259A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
JP6266440B2 (en) Waste treatment facility and waste treatment method
JP5482792B2 (en) Organic waste treatment system and method
EP2980476B1 (en) Pressurized fluidized furnace equipment
JPH10251671A (en) Composite generation system
JP3219294B2 (en) Fluidized bed boiler
JPH0674752B2 (en) Method for controlling a pressurized fluidized bed combustion plant when an operating disturbance of a gas turbine unit occurs and a plant equipped with such a controller
EP0722535B1 (en) A combined gas and steam cycle pressurized fluidized bed boiler power plant and a method of establishing and operating the same
CN108350369B (en) Gasification device, control device, gasification combined power generation facility, and control method
JP4287940B2 (en) Pressurized fluidized bed boiler apparatus and control method thereof
JPH0216040Y2 (en)
JP5956210B2 (en) Start-up method of pressurized flow furnace system
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JP2659499B2 (en) Pressurized fluidized bed boiler power plant
CN216111017U (en) Gas turbine for burning solid fuel
JP2995693B2 (en) Safety device for pressurized fluidized bed boiler
JP2015049012A (en) Pressurized fluidized bed incinerator facilities and pressurized fluidized bed incinerator facilities control method
JPH0617650B2 (en) Gas turbine exhaust gas treatment method
JPH11508344A (en) Method and apparatus for generating additional energy in a power plant
JPS633205B2 (en)
JPH04350401A (en) Fluidized bed boiler and its operating method
CN113482775A (en) Gas turbine for burning solid fuel
JP2023151255A (en) Method of reducing emission of n2o in exhaust gas, and control device
JPS6364688B2 (en)
JP3010910B2 (en) How to protect pressurized fluidized bed boilers

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100810

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11