JP2023151255A - Method of reducing emission of n2o in exhaust gas, and control device - Google Patents

Method of reducing emission of n2o in exhaust gas, and control device Download PDF

Info

Publication number
JP2023151255A
JP2023151255A JP2022060766A JP2022060766A JP2023151255A JP 2023151255 A JP2023151255 A JP 2023151255A JP 2022060766 A JP2022060766 A JP 2022060766A JP 2022060766 A JP2022060766 A JP 2022060766A JP 2023151255 A JP2023151255 A JP 2023151255A
Authority
JP
Japan
Prior art keywords
exhaust gas
amount
superficial velocity
fluidized
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022060766A
Other languages
Japanese (ja)
Inventor
全信 杉原
Harunobu Sugihara
均 廣瀬
Hitoshi Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2022060766A priority Critical patent/JP2023151255A/en
Publication of JP2023151255A publication Critical patent/JP2023151255A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Abstract

To provide an operation method in a fluidized incinerator, capable of securing N2O emission without increasing costs by improving heat resistance and the like of incineration facilities, in keeping an incineration temperature necessary for N2O decomposition, and a device therefor.SOLUTION: A method of reducing a discharge amount of N2O in an exhaust gas is provided to control a fluidized incinerator 2 for incinerating an incineration object which is mainly sludge. In the method of reducing the discharge amount of N2O in the exhaust gas, an amount of exhaust gas discharged from the fluidized incinerator is calculated or the amount of exhaust gas is directly measured on the basis of the gas generating in the fluidized incinerator, a superficial velocity of the fluidized incinerator is calculated on the basis of the calculated or measured amount of exhaust gas, and the superficial velocity is controlled by adjusting a pressure of a compression gas supplied from a supercharger 50. A control device 90 is operated on the basis of a control program for executing the reduction of the discharge amount of N2O.SELECTED DRAWING: Figure 1

Description

本発明は、汚泥等の焼却炉内で流動する流動媒体の流動状態を制御する流動焼却炉の制御に係り、特に、流動焼却炉内の燃焼ガス滞留時間調整における温室効果ガスであるNO排出量低減方法およびその装置に関する。 The present invention relates to the control of a fluidized incinerator that controls the flow state of a fluidized medium such as sludge flowing in the incinerator, and in particular, the present invention relates to the control of a fluidized incinerator that controls the flow state of a fluidized medium such as sludge, and in particular, N 2 O, which is a greenhouse gas, in adjusting the residence time of combustion gas in the fluidized incinerator. This invention relates to a method and device for reducing emissions.

流動焼却炉は、炉に入れた砂等の流動媒体を炉の下部から送り込まれる空気により流動させて流動層(流動床)を生成し、熱せられた流動層内に投入された下水汚泥または都市ゴミ等の焼却対象物を流動媒体とともに撹拌させて焼却する焼却炉である。流動焼却炉内の流動状態は、炉に供給する空気(単に供給空気、燃焼空気、流動空気あるいは予熱空気とも称す。)、焼却対象物や補助燃料等の量、および炉内の温度、圧力に依存して変化し、流動状態を安定させて燃焼状態を最適にすることは、焼却対象物の燃焼効率を上げるために重要である。
また、焼却対象物に含まれる有機成分を焼却する際の排ガスから生じる温室効果ガスの1つであるNO(亜酸化窒素)の排出を、地球温暖化防止のために低減していく必要がある。
A fluidized incinerator generates a fluidized bed by fluidizing a fluidized medium such as sand placed in the furnace using air sent from the bottom of the furnace. This is an incinerator that stirs and incinerates materials to be incinerated, such as garbage, together with a fluid medium. The fluidization state in a fluidized bed incinerator depends on the air supplied to the furnace (also simply referred to as supply air, combustion air, fluidized air, or preheated air), the amount of materials to be incinerated, auxiliary fuel, etc., and the temperature and pressure inside the furnace. It is important to stabilize the flow state and optimize the combustion state in order to increase the combustion efficiency of the material to be incinerated.
Additionally, in order to prevent global warming, it is necessary to reduce the emissions of N 2 O (nitrous oxide), which is one of the greenhouse gases generated from the exhaust gas when incinerating organic components contained in materials to be incinerated. There is.

例えば、流動焼却炉において、炉内の明るさ、焼却対象物の供給量、温度、酸素濃度または炉内の圧力に応じて流動媒体を流動させるために炉内に供給する空気量を調節する手法が提案されている(特許文献1参照)。
また、流動焼却炉において、排ガスの酸素濃度と炉内上部の水分濃度とに基づいて下水汚泥のケーキの含水率の増減を推定し、推定結果に基づいて炉に供給する空気の量、炉内温度、炉に供給する焼却対象物の量等を調節することで、燃焼の安定化を計る手法が提案されている(特許文献2参照)。
排ガス、特に、NO(以下、NOと記す)やNOxの排出量の低減に関しては、アンモニア系の還元剤と多孔性流動媒体のスラリー状混合物を炉内に噴射する方法が知られている(特許文献3参照)。
For example, in a fluidized fluidized incinerator, a method of adjusting the amount of air supplied into the furnace to make the fluidized medium flow according to the brightness inside the furnace, the amount of supplied material to be incinerated, the temperature, the oxygen concentration, or the pressure inside the furnace. has been proposed (see Patent Document 1).
In addition, in a fluidized bed incinerator, the increase or decrease in the moisture content of the sewage sludge cake is estimated based on the oxygen concentration of the exhaust gas and the moisture concentration in the upper part of the furnace, and based on the estimation results, the amount of air supplied to the furnace, A method has been proposed for stabilizing combustion by adjusting the temperature, the amount of materials to be incinerated supplied to the furnace, etc. (see Patent Document 2).
Regarding the reduction of exhaust gas, particularly N 2 O (hereinafter referred to as N 2 O) and NOx emissions, a method is known in which a slurry mixture of an ammonia-based reducing agent and a porous fluid medium is injected into the furnace. (See Patent Document 3).

特許第3108742号公報Patent No. 3108742 特開2004-125332号公報Japanese Patent Application Publication No. 2004-125332 特許第5640120号公報Patent No. 5640120 特開2020-159655号公報JP2020-159655A

下水汚泥の排出量は年々増加しており、その内の約70%は、焼却処理されている。汚泥は、それを燃焼させた際手他の燃料と比べて窒素含有量が非常に高く、焼却処理によってNOが排出されることが懸念されている。
過給式流動焼却炉システムは圧力下の燃焼による高温域の形成で、燃焼排ガスに含まれるNOを低減できる。
過給式流動焼却炉においては、流動床で燃焼させる燃焼(汚泥等)を炉頂、炉出口にかけ、例えば870~880℃の温度で燃焼し温室効果ガスである一酸化二窒素(NO)を分解させる。なお、NOの温室効果はCO換算量で298倍である)。
焼却炉の温度調節は、脱水汚泥性状に応じて炉内温度を維持するために、補助燃料供給による燃焼(助燃状態)、または、脱水汚泥の水分が少なく燃えやすい場合、補助燃料を供給せず、炉内温度が高まるときに炉内注水によって冷却する状態の燃焼(自燃状態)による温度調整を行っている。
The amount of sewage sludge discharged is increasing year by year, and about 70% of it is incinerated. When sludge is combusted, it has a very high nitrogen content compared to other fuels, and there are concerns that N 2 O will be emitted during the incineration process.
A supercharged fluidized fluid incinerator system can reduce N 2 O contained in combustion exhaust gas by creating a high-temperature region through combustion under pressure.
In a supercharged fluidized incinerator, combustion (sludge, etc.) is combusted in a fluidized bed at a temperature of 870 to 880°C, for example, at a temperature of 870 to 880°C. ) is decomposed. Note that the greenhouse effect of N 2 O is 298 times the amount of CO 2 equivalent).
The temperature of the incinerator is adjusted depending on the properties of the dehydrated sludge to maintain the temperature inside the furnace, either by supplying auxiliary fuel for combustion (assisted combustion state), or by not supplying auxiliary fuel if the dehydrated sludge has low water content and is easily combustible. The temperature is controlled by combustion (self-combustion state), which cools down the furnace by injecting water when the temperature inside the furnace rises.

この種の流動焼却炉では、焼却炉内の流動状態を示す指標の1つに空塔速度がある。例えば、流動焼却炉を設計する際には、所定の焼却負荷での運転時に適した空塔速度が設定され、設定された空塔速度で焼却対象物が焼却されるように焼却炉の大きさや流動媒体の粒子径等が決められる。炉内の流動状態は炉内の空塔速度と相関があるため、設計値ではない運転中の空塔速度を求めることができれば流動状態を間接的に確認することが可能である。
例えば、空塔速度が適正範囲を下回り、流動媒体の流動不足が発生すると、燃焼効率が低下し、さらに、燃焼により発生した灰が炉から排出されにくくなることにより炉内の流動砂に灰分を含めた流動媒体が増加してしまう。
In this type of fluidized incinerator, superficial velocity is one of the indicators indicating the fluid state within the incinerator. For example, when designing a fluidized fluidized incinerator, a superficial velocity suitable for operation at a predetermined incineration load is set, and the size of the incinerator is adjusted so that the material to be incinerated is incinerated at the set superficial velocity. The particle size etc. of the fluidizing medium are determined. Since the flow state within the furnace is correlated with the superficial velocity within the furnace, it is possible to indirectly confirm the flow state if the superficial velocity during operation, which is not the design value, can be determined.
For example, if the superficial velocity falls below the appropriate range and insufficient flow of the fluidized medium occurs, the combustion efficiency will decrease, and the ash generated by combustion will be difficult to discharge from the furnace, causing ash content to be added to the fluidized sand in the furnace. The fluid medium involved will increase.

一方、空塔速度が適正範囲を上回り、流動媒体が過剰に流動すると、良好に排出される灰に加えさらに流動砂である流動媒体が炉外に飛散し、炉内の流動媒体が減少してしまう。増加した流動媒体の炉からの引き抜き、および減少した流動媒体の炉への補充は、流動焼却炉の運転コストを上昇させる。したがって、空塔速度が適正範囲に収まるように流動焼却炉を運転することが望ましい。 On the other hand, when the superficial velocity exceeds the appropriate range and the fluidized medium flows excessively, in addition to the ash that is well discharged, the fluidized medium, which is fluidized sand, is scattered outside the furnace, reducing the amount of fluidized medium inside the furnace. Put it away. Withdrawing increased fluidized media from the furnace and replenishing the furnace with decreased fluidized media increases the operating costs of fluidized incinerators. Therefore, it is desirable to operate the fluidized incinerator so that the superficial velocity falls within an appropriate range.

しかしながら、焼却炉内の空塔速度は、炉に供給される空気の量だけでなく、焼却対象物、補助燃料の燃焼や炉内注水により発生するガスの量に依存して変化する。このため、例えば、空気の供給量だけを用いて求めた空塔速度では、炉内の流動状態を正確に表すことは困難である。 However, the superficial velocity in the incinerator varies depending not only on the amount of air supplied to the incinerator, but also on the amount of gas generated by combustion of the object to be incinerated, auxiliary fuel, and water injection into the incinerator. For this reason, for example, it is difficult to accurately represent the flow state in the furnace using the superficial velocity determined using only the air supply amount.

特許文献1では、設計時に各要素制御の結果により制御可能な空塔速度範囲を設定しているが、上述のように実際の空塔速度の計測が難しく実施されていない。 In Patent Document 1, a controllable superficial velocity range is set based on the results of each element control at the time of design, but as mentioned above, actual superficial velocity measurement is difficult and has not been implemented.

また、排出ガスのうち、特に、NO排出量を低減するためには、高温でNOを分解することが行われる。後述の実施の形態では、NOの排出量低減を例として説明する。 Furthermore, in order to reduce the amount of N 2 O discharged from exhaust gases, N 2 O is decomposed at high temperatures. In the embodiments described below, reduction in the amount of N 2 O emissions will be explained as an example.

図3は炉内最高温度とNO排出係数の相関例を説明する図で、横軸に炉内最高温度[℃]を、縦軸に脱水ケーキ乾燥重量あたりのNO排出係数[kg-N2O/t-DS]を取って相関式を近似したものである。NOの分解は、図3に示されるように、炉内温度と相関関係にある。 Figure 3 is a diagram illustrating an example of the correlation between the maximum temperature inside the furnace and the N 2 O emission coefficient. -N 2 O/t-DS] to approximate the correlation formula. As shown in FIG. 3, the decomposition of N 2 O is correlated with the furnace temperature.

しかし、更なるNOの分解をするために温度を上げると、図3の近似曲線から明らかなように、NOの減少量が低下する。そのため、NOの排出量低減の要求に対して炉内温度の高温化のみでの対応は難しくなってくる。 However, when the temperature is increased to further decompose N 2 O, the amount of N 2 O reduction decreases, as is clear from the approximate curve in FIG. 3 . Therefore, it becomes difficult to meet the demand for reducing the amount of N 2 O emissions by simply increasing the temperature inside the furnace.

炉内温度を更に上昇させることでNOの分解促進が可能であるとしても、より局所的に高温場の発生による弊害、空気予熱器流入排ガス温度の高温化や炉出口温度の上昇による飛灰の溶融付着による弊害を生じる可能性が高くなってしまい、焼却設備の耐熱性向上や飛灰の溶融付着対策のためのコストが増大し、NO分解のために運転管理対策を別途施す必要がある。 Even if it is possible to accelerate the decomposition of N 2 O by further increasing the temperature inside the furnace, there will be adverse effects due to the generation of a higher temperature field locally, and there will be problems caused by the increase in the temperature of the exhaust gas flowing into the air preheater and the temperature at the furnace outlet. There is a high possibility that harmful effects will occur due to the melting and adhesion of ash, increasing the cost of improving the heat resistance of incineration equipment and taking measures to prevent the melting and adhesion of fly ash.Operating management measures must also be taken separately for N2O decomposition. There is a need.

本発明の目的は、NO分解に必要な焼却温度を維持するにあたり、焼却設備の耐熱性等を向上させることでコストを増大させることなく、NOの排出量を確実にする流動焼却炉における運転方法およびその装置、より詳しくは流動焼却炉内ガス滞留時間調整についての運転指標を実現するNO排出量低減制御方法および制御装置を提供することにある。 The purpose of the present invention is to maintain the incineration temperature necessary for N 2 O decomposition by improving the heat resistance of incineration equipment, thereby achieving fluidized incineration that ensures the amount of N 2 O discharged without increasing costs. The object of the present invention is to provide an operating method and apparatus for a furnace, and more specifically, a method and apparatus for reducing N2O emissions that realize operating indicators for adjusting gas residence time in a fluidized fluidized incinerator.

さらに、低含水率の汚泥を焼却する過給式流動焼却において、自然状態の場合、炉内温度が高まって注水量が増加し、炉内の排ガスの滞留時間が短くなってNOが増加するので、過給機で圧力を増加させて炉内空塔速度(以降、スペースレートと称す。)を抑え、炉内で生じる排ガスの滞留時間を増やすことでNO排出量を抑制することを目的とする。 Furthermore, in supercharged fluidized incineration that incinerates sludge with low moisture content, under natural conditions, the temperature inside the furnace increases and the amount of water injected increases, which shortens the residence time of exhaust gas inside the furnace and increases N 2 O. Therefore, by increasing the pressure with a supercharger to suppress the superficial velocity in the furnace (hereinafter referred to as space rate), and increasing the residence time of the exhaust gas generated in the furnace, the amount of N 2 O emissions can be suppressed. With the goal.

上記目的を達成するための本発明に係るNO低減技術は、温度条件以外に炉内で発生するガスの炉内滞留時間に着目し、炉内滞留時間もNO低減の指標としたことを特徴とする。 In order to achieve the above object, the N 2 O reduction technology according to the present invention focuses on the residence time of gas generated in the furnace in addition to temperature conditions, and uses the residence time in the furnace as an index for N 2 O reduction. It is characterized by

上記したように、NOの排出量抑制には、炉内の排出ガス最高温度に相関があると考えられていたが、本発明者等の研究により、炉内ガス滞留時間にも相関があることが判明した。すなわち、後述するように、炉内ガス滞留時間の増加に伴いNOの排出量が抑制されるという反比例関係を明らかにしている。なお、これは特許文献3の図3にも上述の相関性を示唆するデータが認められる。 As mentioned above, it was thought that the suppression of N 2 O emissions was correlated with the maximum temperature of the exhaust gas in the furnace, but research by the present inventors revealed that there is also a correlation with the residence time of the gas in the furnace. It turns out that there is something. That is, as will be described later, an inversely proportional relationship is revealed in which the amount of N 2 O emissions is suppressed as the gas residence time in the furnace increases. Note that data suggesting the above-mentioned correlation is also found in FIG. 3 of Patent Document 3.

上記の炉内ガス滞留時間を長くするためには、(1)炉を大きくする、(2)炉内の排ガススペースレートを小さくする、といった二つの方法がある。スペースレートは、図1で示す汚泥供給装置10からの汚泥等の焼却対象物〔供給汚泥量計測器82(F3のプロセス値)〕、炉内注水を行う水供給装置15の水〔供給水量計測器83(F4のプロセス値)〕、燃料供給装置20の重油などの燃料〔供給燃料量計測器84(F5のプロセス値)〕、及び、流動焼却炉2への燃焼空気〔空気予熱器空気量計測器27(F2のプロセス値)〕の各供給量に基づき、流動焼却炉内からのガス発生量を算出して求める。流動焼却炉2からの排ガス発生量は直接測定してもよいし、排ガス中の灰の影響で測定が困難な場合には、集塵機40出口以降の下流の排ガス経路(供給路41等)で排ガス量を測定するようにしてもよい。 There are two methods for increasing the residence time of the gas in the furnace: (1) increasing the size of the furnace; and (2) decreasing the exhaust gas space rate in the furnace. The space rate is determined by the amount of incinerated material such as sludge from the sludge supply device 10 shown in FIG. 83 (process value of F4)], fuel such as heavy oil in the fuel supply device 20 [supplied fuel amount measuring device 84 (process value of F5)], and combustion air to the fluidized incinerator 2 [air preheater air amount Based on each supply amount of the measuring device 27 (process value of F2)], the amount of gas generated from inside the fluidized bed incinerator is calculated and determined. The amount of exhaust gas generated from the fluidized incinerator 2 may be measured directly, or if measurement is difficult due to the influence of ash in the exhaust gas, the amount of exhaust gas generated from the fluidized incinerator 2 may be measured by measuring the amount of exhaust gas generated in the downstream exhaust gas path (supply path 41, etc.) after the exit of the dust collector 40. The amount may also be measured.

各計測器で指示する各供給量からスペースレートを求める場合、先ず各供給量から質量流量を算出しておき、容積流量に換算してガス発生量を求めスペースレートを算出する。焼却対象物のガス発生量の算出については、例えば、測定装置や分析作業による含水率、有機成分率および元素組成に基づいて前記焼却対象物を焼却した場合の前記ガス発生量を算出する。リアルタイムでの測定値でなく、日常的に測定装置や分析作業での値を統計的に整理した値を使用して、焼却対象物のガス発生量を算出することでよい。 When determining the space rate from each supply amount indicated by each measuring device, first calculate the mass flow rate from each supply amount, convert it to a volumetric flow rate, obtain the gas generation amount, and calculate the space rate. Regarding the calculation of the amount of gas generated from the object to be incinerated, for example, the amount of gas generated when the object to be incinerated is incinerated is calculated based on the moisture content, organic component rate, and elemental composition determined by a measuring device and analysis work. It is sufficient to calculate the amount of gas generated from the incineration target using not the real-time measured values but the statistically arranged values obtained by measuring devices and analytical work on a daily basis.

前記(1)は設備コストの増大につながることから、通常前記(2)で対応する。炉内の排ガスのスペースレートを小さくするためには、質量流量が一定であるならば、炉内圧力を大きくすることが有効である。すなわち炉内で生じる排ガスの滞留時間を長くすることで、NOを分解抑制するためのスペースレートを保持させるのである。 Since (1) above leads to an increase in equipment costs, (2) above is usually used. In order to reduce the space rate of exhaust gas in the furnace, it is effective to increase the pressure in the furnace if the mass flow rate is constant. That is, by increasing the residence time of the exhaust gas generated in the furnace, the space rate for suppressing the decomposition of N 2 O is maintained.

このように、NOの分解は、前記で説明した図3に示される温度相関以外に、高温度場でのガス滞留時間に比例した分解が行われる。本発明では、炉内で生ずるガスが炉内を通過する速度(スペースレート)を指標に炉内滞留時間を十分に確保する運転手法を採用することでNOの低減を図った。 In this way, N 2 O is decomposed in proportion to the gas residence time in a high temperature field, in addition to the temperature correlation shown in FIG. 3 described above. In the present invention, N 2 O is reduced by employing an operating method that ensures sufficient residence time in the furnace using the speed at which gas generated in the furnace passes through the furnace (space rate) as an index.

同種の手法として、特許文献4があるが、本発明は、NOの分解における高温場炉内ガス滞留時間を目的としたスペースレート管理・調整を、上述の「運転圧力による調整」の技術を応用し、NOの低減を図る構成および方法とした点に特徴を有する。 A similar method is disclosed in Patent Document 4, but the present invention uses the above-mentioned "adjustment using operating pressure" technology to manage and adjust the space rate for the purpose of gas residence time in the high-temperature field furnace during N 2 O decomposition. The present invention is characterized by a structure and method for reducing N 2 O by applying the above.

本発明では、(a):例えば、低含水率の汚泥を焼却する過給式流動炉において、自燃状態の場合、炉内温度が高まって注水量が増加し、炉内高温場の滞留時間が短くなってNOが増加するので、過給機で圧力を増加させて炉内スペースレートを抑えることで滞留時間を増やしてNO排出量を低減するようにした。 In the present invention, (a): For example, in a supercharged fluidized bed furnace that incinerates sludge with a low moisture content, in a self-combustion state, the temperature inside the furnace increases and the amount of water injection increases, and the residence time in the high temperature field inside the furnace increases. As the length becomes shorter, N 2 O increases, so we increased the pressure with a supercharger to suppress the space rate in the furnace, increasing the residence time and reducing the amount of N 2 O emissions.

また、(b):増加した圧力を保つために、流動空気の一部を余剰空気逃し経路中にある図1で示す調節弁49で排出するようにした。余剰空気を逃さないと流動焼却炉内の流動床3で流動不良となって焼却対象物の不完全燃焼につながるほどにスペースレートが小さくなりすぎてしまうので、適切なスペースレートにするために余剰空気を逃して増加した圧力を保つのである。 Moreover, (b): In order to maintain the increased pressure, a part of the flowing air is discharged by the control valve 49 shown in FIG. 1 located in the surplus air release path. If the surplus air is not released, the space rate will become too small to the extent that fluidization will be poor in the fluidized bed 3 in the fluidized incinerator, leading to incomplete combustion of the material to be incinerated. It allows air to escape and maintains the increased pressure.

本発明に係るNO排出量低減制御手段の代表的な特徴を列挙すれば、以下のとおりである。なお、ここでは、発明の理解を容易にするため、各構成に後述する実施の形態で説明する図面で使用される符号を併記するが、本発明はこの符号で示される具体的な構成要素に限定されるものではない。 Typical features of the N 2 O emission reduction control means according to the present invention are listed below. Here, in order to facilitate understanding of the invention, the reference numerals used in the drawings described in the embodiments described later are also written for each structure. It is not limited.

汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉における排ガス中のN2O排出量低減方法ついては以下の〔1〕~〔3〕のとおりである。
〔1〕汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のNO排出量を低減する方法であって、前記流動焼却炉内で発生するガスに基づいて、前記流動焼却炉から排出される排ガス量を算出し、あるいは排ガス量を直接測定し、算出あるいは測定された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、過給機から供給される圧縮空気の圧力を調節して、前記空塔速度を制御することを特徴とする排ガス中のNO排出量低減方法。
〔2〕前記空塔速度を設定された最小値と比較し、空塔速度が最小値を下回ったならば過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させるとともに余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、前記空塔速度を設定された最大値と比較し、空塔速度が最大値を上回ったならば過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させるとともに余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする〔1〕に記載の排ガス中のNO排出量低減方法。
〔3〕前記空塔速度と、相関式算出NOとNO測定値の乖離との関係において、乖離が0以下となる空塔速度に制御することを特徴とする〔1〕または〔2〕に記載の排ガス中のNO排出量低減方法。
Methods for reducing N 2 O emissions in exhaust gas in a fluidized fluidized incinerator that incinerates sludge as the main incineration target are as follows [1] to [3].
[1] A method for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main material to be incinerated, the method comprising: Based on the above, calculate the amount of exhaust gas discharged from the fluidized incinerator, or directly measure the amount of exhaust gas, calculate the superficial velocity of the fluidized incinerator based on the calculated or measured amount of exhaust gas, and perform supercharging. A method for reducing N 2 O emissions in exhaust gas, the method comprising controlling the superficial velocity by adjusting the pressure of compressed air supplied from a machine.
[2] Compare the superficial velocity with the set minimum value, and if the superficial velocity is below the minimum value, increase the opening of the control valve in the exhaust gas bypass path of the turbocharger, and The amount of exhaust gas to be sent is reduced to lower the rotational speed of the supercharger, and the opening degree of the surplus air control valve is reduced to maintain the pressure after the supply path, and the superficial velocity is set to a set maximum value. If the superficial velocity exceeds the maximum value, reduce the opening of the control valve in the exhaust gas bypass path of the turbocharger, increase the amount of exhaust gas sent to the turbocharger, and increase the rotation speed of the turbocharger. The method for reducing the amount of N 2 O emissions in exhaust gas according to [1], characterized in that the pressure after the supply path is maintained by increasing the amount of air and increasing the opening degree of the surplus air control valve.
[3] In the relationship between the superficial velocity and the discrepancy between the correlation formula calculated N 2 O and the measured N 2 O value, the superficial velocity is controlled to such a value that the discrepancy is 0 or less [1] or [ 2], the method for reducing the amount of N 2 O emissions in exhaust gas.

汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉における排ガス中のNO排出量低減装置ついては以下の〔4〕~〔6〕のとおりである。
〔4〕汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のNO排出量を低減する方法であって、前記流動焼却炉内で発生するガスに基づいて、前記流動焼却炉から排出される排ガス量を算出し、あるいは排ガス量を直接測定し、算出あるいは測定された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、過給機から供給される圧縮空気の圧力を調節して、前記空塔速度を制御することを特徴とする排ガス中のNO排出量低減を実行する制御プログラムに基づいて動作する制御装置。
〔5〕前記空塔速度を設定された最小値と比較し、空塔速度が最小値を下回ったならば過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させるとともに余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、前記空塔速度を設定された最大値と比較し、空塔速度が最大値を上回ったならば過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させるとともに余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする〔4〕に記載の制御装置。
〔6〕前記空塔速度と、相関式算出NOとNO測定値の乖離との関係において、乖離が0以下となる空塔速度に制御することを特徴とする〔4〕または〔5〕に記載の制御装置。
The following [4] to [6] describe devices for reducing N 2 O emissions in exhaust gas in a fluidized fluidized incinerator that incinerates sludge as the main incineration target.
[4] A method for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main material to be incinerated, the method comprising: Based on the above, calculate the amount of exhaust gas discharged from the fluidized incinerator, or directly measure the amount of exhaust gas, calculate the superficial velocity of the fluidized incinerator based on the calculated or measured amount of exhaust gas, and perform supercharging. A control device that operates based on a control program for reducing the amount of N 2 O emissions in exhaust gas, characterized in that the pressure of compressed air supplied from the machine is adjusted to control the superficial velocity.
[5] Compare the superficial velocity with the set minimum value, and if the superficial velocity is below the minimum value, increase the opening of the control valve in the exhaust gas bypass path of the turbocharger, and The amount of exhaust gas to be sent is reduced to lower the rotational speed of the supercharger, and the opening degree of the surplus air control valve is reduced to maintain the pressure after the supply path, and the superficial velocity is set to a set maximum value. If the superficial velocity exceeds the maximum value, reduce the opening of the control valve in the exhaust gas bypass path of the turbocharger, increase the amount of exhaust gas sent to the turbocharger, and increase the rotation speed of the turbocharger. The control device according to [4], characterized in that the pressure after the supply path is maintained by increasing the amount of air and increasing the opening degree of the surplus air control valve.
[6] In the relationship between the superficial velocity and the discrepancy between the correlation formula calculated N 2 O and the measured N 2 O value, the superficial velocity is controlled to be such that the discrepancy is 0 or less [4] or [4] 5]. The control device according to item 5.

本発明によれば、NO分解に必要な焼却温度を維持するにあたり、流動焼却設備の耐熱性等を向上させることでコストを増大させることなく、NOの排出量を確実にすることができると共に、下記の効果を得ることができる。 According to the present invention, in maintaining the incineration temperature necessary for N 2 O decomposition, it is possible to ensure the amount of N 2 O discharged without increasing costs by improving the heat resistance etc. of the fluidized incineration equipment. At the same time, the following effects can be obtained.

低含水で固形物の量が多い脱水汚泥(ケーキ)を焼却するとき、NO発生量は固形物量に相関する。低含水で固形物量が多い脱水汚泥は発熱量が高いため、自燃状態となりやすい。自燃時には炉内温度が上昇しやすいことから炉内注水量が増加する。炉内注水により炉内温度が抑えられるが、排ガス量が増加するので、炉内スペースレートが速くなり、炉内高温場のガス滞留時間が短くなる。そして後述するようにNOの分解が減じてしまう。そこで、運転圧力を上昇させ、スペースレートを遅くして排ガス滞留時間を増やすことで、NOの分解反応が保持されNO排出量を増加させない。 When dehydrated sludge (cake) with a low water content and a large amount of solids is incinerated, the amount of N 2 O generated correlates with the amount of solids. Dehydrated sludge with low moisture content and high solid content has a high calorific value, so it tends to become self-combustible. During self-combustion, the temperature inside the furnace tends to rise, so the amount of water injected into the furnace increases. Although the temperature inside the furnace is suppressed by injecting water into the furnace, the amount of exhaust gas increases, so the space rate inside the furnace becomes faster and the gas residence time in the high temperature field inside the furnace becomes shorter. As will be described later, the decomposition of N 2 O is reduced. Therefore, by increasing the operating pressure and slowing down the space rate to increase the residence time of the exhaust gas, the decomposition reaction of N 2 O is maintained and the amount of N 2 O emissions does not increase.

第1の実施形態における流動焼却炉の制御装置を含む焼却システムの一例を示す概要図である。It is a schematic diagram showing an example of the incineration system including the control device of the fluidized incinerator in a 1st embodiment. 空気予熱器の構造の一例を示す断面図である。It is a sectional view showing an example of the structure of an air preheater. 炉内最高温度とNO排出係数の相関例を説明する図である。It is a figure explaining the correlation example of the maximum temperature in a furnace, and a N2O emission coefficient. 炉内スペ-スレート[m/sec]に対する図3における相関式から求めた算出N2Oと分析装置で測定した排ガスのNO測定値の乖離[%]を説明する図である。FIG. 4 is a diagram illustrating the deviation [%] between the calculated N 2 O obtained from the correlation equation in FIG. 3 and the N 2 O measurement value of the exhaust gas measured by the analyzer with respect to the in-furnace space rate [m/sec]. 制御装置が実行する演算の流れを示す説明図である。FIG. 3 is an explanatory diagram showing the flow of calculations executed by the control device.

以下、本実施形態について図面を参照して説明する。
図は第1の実施形態における流動焼却炉の制御装置を含む焼却システムの一例を示す概要図、図2は空気予熱器の構造の一例を示す断面図である。
以下、本実施形態について図面を参照して説明する。
図1は、第1の実施形態における流動焼却炉の制御装置を含む焼却システムの一例を示す。
This embodiment will be described below with reference to the drawings.
The figure is a schematic diagram showing an example of an incineration system including a control device for a fluidized bed incinerator according to the first embodiment, and FIG. 2 is a sectional view showing an example of the structure of an air preheater.
This embodiment will be described below with reference to the drawings.
FIG. 1 shows an example of an incineration system including a control device for a fluidized bed incinerator according to a first embodiment.

図1に示す焼却システム1は、流動焼却炉2、汚泥(ケーキ)供給装置10、水供給装置15、燃料供給装置20、空気予熱器30、集塵機40、過給機50、起動用ブロワ60、白煙防止ファン70、制御装置90からなる。
なお白煙防止ファン70は取り込んだ空気を下流にある白煙防止器75に送り込み、白煙防止器75は、白煙防止ファン70から送り込まれる空気と、供給路42を介して供給される過給機50から排出される排ガスと熱交換して昇温させる。昇温された空気は下流にある排煙処理塔80に向けて送られる。
また、焼却システム1は、温度計23、24、圧力計25、空気予熱器空気量計測器26、27、過給機回転数計測機器28を有している。
図1における空気予熱器空気量計測器27に記載されているF2は、過給機50から空気予熱器30へ供給する圧縮空気量を表す。
The incineration system 1 shown in FIG. 1 includes a fluidized incinerator 2, a sludge (cake) supply device 10, a water supply device 15, a fuel supply device 20, an air preheater 30, a dust collector 40, a supercharger 50, a startup blower 60, It consists of a white smoke prevention fan 70 and a control device 90.
Note that the white smoke prevention fan 70 sends the air taken in to the white smoke preventer 75 located downstream, and the white smoke preventer 75 combines the air sent from the white smoke prevention fan 70 with the excess air supplied via the supply path 42. The temperature is increased by exchanging heat with the exhaust gas discharged from the feeder 50. The heated air is sent toward the flue gas treatment tower 80 located downstream.
The incineration system 1 also includes thermometers 23 and 24, a pressure gauge 25, air preheater air amount measuring devices 26 and 27, and a supercharger rotation speed measuring device 28.
F2 written on the air preheater air amount measuring device 27 in FIG. 1 represents the amount of compressed air supplied from the supercharger 50 to the air preheater 30.

例えば、本発明の実施態様において流動焼却炉2は、過給式の流動焼却炉である。流動焼却炉2は、昇温された圧縮空気を焼却炉2に供給し、高温・高圧の状態で焼却炉2内の焼却対象物を燃焼することで、燃焼速度を高くすることができ、NOの有害物質の排出量を減らすことができる。
なお、以下の説明では、流動焼却炉2は、単に焼却炉2とも称される。
For example, in the embodiment of the present invention, the fluidized incinerator 2 is a supercharged fluidized incinerator. The fluidized fluid incinerator 2 can increase the combustion rate by supplying heated compressed air to the incinerator 2 and burning the objects to be incinerated in the incinerator 2 at high temperature and high pressure. 2 O emissions of harmful substances can be reduced.
In addition, in the following description, the fluidized incinerator 2 is also simply called the incinerator 2.

矢印の付いた太い実線は、汚泥(ケーキ)、補助燃料、空気、水又は排ガスの供給路(供給管)を示し、矢印の付いた破線は、バイパス路を示す。
矢印の付いた細い実線(例えば、〈1〉圧力計25から調節弁48(CV4)に接続されている線、〈2〉調節弁48(CV4)から過給機回転数計測機器28に、〈3〉過給機回転数計測機器28から空気予熱器空気量計測器27に、〈4〉空気予熱器空気量計測器27から調節弁49(CV5)に接続されている線、〈5〉温度計23から調節弁17(CV2)、調節弁22(CV1)に接続されている線、〈6〉調節弁17(CV2)から温度計24に接続されている線、〈7〉温度計24から調節弁47(CV3)に接続されている線、〈8〉空気予熱器空気量計測器26から調節弁47(CV3)に接続されている線等)は、制御装置からこれらの調節弁に制御信号を送る信号線を示す。
例えば、制御装置90は、圧力計25からの圧力値を受け、該圧力値に基づいて開度指令信号を調節弁48(CV4)に送り、前記調節弁48の開度を調節する。
A thick solid line with an arrow indicates a supply path (supply pipe) for sludge (cake), auxiliary fuel, air, water, or exhaust gas, and a broken line with an arrow indicates a bypass path.
A thin solid line with an arrow (for example, <1> a line connected from the pressure gauge 25 to the control valve 48 (CV4), <2> a line connected from the control valve 48 (CV4) to the supercharger rotation speed measuring device 28, 3> Wires connected from the supercharger rotation speed measuring device 28 to the air preheater air amount measuring device 27, <4> Wires connected from the air preheating air amount measuring device 27 to the control valve 49 (CV5), <5> Temperature A line connected from total 23 to control valve 17 (CV2) and control valve 22 (CV1), <6> A line connected from control valve 17 (CV2) to thermometer 24, <7> From thermometer 24 The lines connected to the control valve 47 (CV3), the lines connected from the air preheater air amount measuring device 26 to the control valve 47 (CV3), etc.) are connected to these control valves from the control device. Shows the signal line that sends the signal.
For example, the control device 90 receives a pressure value from the pressure gauge 25, sends an opening command signal to the control valve 48 (CV4) based on the pressure value, and adjusts the opening of the control valve 48.

流動焼却炉2は、炉内に流動床3、予熱空気取入口4、始動用バーナ5を備えている。また、汚泥(ケーキ)供給装置10に接続された供給路(汚泥供給管)11から供給される汚泥を取り込む汚泥込み口(図示しない)、水供給装置15に接続された供給路(水供給管)16から供給される水(注水)を取り込む水(注水)取込口(図示しない)、燃料供給装置20に接続された供給路(燃料供給管)21から供給される補助燃料を取り込む燃料取込口(図示しない)が設けられている。
汚泥(ケーキ)供給装置10は、下水処理設備から送られてホッパ(図示しない)に貯められた下水汚泥のケーキを供給管11から焼却炉2に順次供給する。
The fluidized incinerator 2 includes a fluidized bed 3, a preheating air intake 4, and a starting burner 5 inside the furnace. Additionally, a sludge inlet (not shown) that takes in sludge supplied from a supply path (sludge supply pipe) 11 connected to the sludge (cake) supply device 10, and a supply path (water supply pipe) connected to the water supply device 15 are also provided. ) 16, a water (water injection) inlet (not shown) that takes in water (water injection) supplied from An entrance (not shown) is provided.
A sludge (cake) supply device 10 sequentially supplies cakes of sewage sludge sent from sewage treatment equipment and stored in a hopper (not shown) to the incinerator 2 through a supply pipe 11.

水供給装置15は、接続された供給管16から水(注水)を焼却炉2内へ送り込むことで焼却炉2内の燃焼温度を調整し、燃料供給装置20は、接続された供給管21から補助燃料を焼却炉2内へ送り込むことで焼却炉2内の燃焼温度を調整する。
水供給管16には、調節弁17(CV2)が、燃料供給管21には、調節弁22(CV1)が設けられている。
調節弁17(CV2)及び調節弁22(CV1)は、制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
The water supply device 15 adjusts the combustion temperature in the incinerator 2 by feeding water (water injection) into the incinerator 2 from the connected supply pipe 16, and the fuel supply device 20 feeds water (water injection) into the incinerator 2 from the connected supply pipe 21. The combustion temperature in the incinerator 2 is adjusted by sending the auxiliary fuel into the incinerator 2.
The water supply pipe 16 is provided with a control valve 17 (CV2), and the fuel supply pipe 21 is provided with a control valve 22 (CV1).
The control valve 17 (CV2) and the control valve 22 (CV1) are connected to a control device 90, and the opening degrees are adjusted according to a control signal output from the control device 90.

温度計23は、流動焼却炉2内に備えている流動床3の温度を計測する。温度計23は、制御装置90に接続されていて計測された温度値を該制御装置90に出力する。
温度計24は、空気予熱器30から流動焼却炉2内に供給される余熱空気の温度を計測する。温度計24は、制御装置90に接続されていて計測された温度値を該制御装置90に出力する。
The thermometer 23 measures the temperature of the fluidized bed 3 provided in the fluidized incinerator 2 . The thermometer 23 is connected to the control device 90 and outputs the measured temperature value to the control device 90.
The thermometer 24 measures the temperature of residual heated air supplied into the fluidized incinerator 2 from the air preheater 30. The thermometer 24 is connected to the control device 90 and outputs the measured temperature value to the control device 90.

圧力計25は、流動焼却炉2内の排ガスの圧力を計測する。圧力計25は、制御装置90に接続されていて計測された圧力値を該制御装置90に出力する。
空気予熱器空気量計測器26は、過給機50から空気予熱器30に供給される圧縮空気量を計測する。空気予熱器空気量計測器26は、制御装置90に接続されていて計測された圧縮空気量値を該制御装置90に出力する。
The pressure gauge 25 measures the pressure of the exhaust gas inside the fluidized incinerator 2 . The pressure gauge 25 is connected to the control device 90 and outputs the measured pressure value to the control device 90.
The air preheater air amount measuring device 26 measures the amount of compressed air supplied from the supercharger 50 to the air preheater 30. The air preheater air amount measuring device 26 is connected to the control device 90 and outputs the measured compressed air amount value to the control device 90.

空気予熱器空気量計測器27は、過給機50から供給される圧縮空気量を計測する。空気予熱器空気量計測器27は、制御装置90に接続されていて計測された圧縮空気量値を該制御装置90に出力する。
回転数計測器28は、過給機50の回転数を計測する。回転数計測器28は、制御装置90に接続されていて計測された回転数値を該制御装置90に出力する。
The air preheater air amount measuring device 27 measures the amount of compressed air supplied from the supercharger 50. The air preheater air amount measuring device 27 is connected to the control device 90 and outputs the measured compressed air amount value to the control device 90.
The rotation speed measuring device 28 measures the rotation speed of the supercharger 50. The rotation speed measuring device 28 is connected to the control device 90 and outputs the measured rotation value to the control device 90.

図2は、空気予熱器の構造の一例を示す断面図である。
前記空気予熱器30は、円筒の筐体30aからなり、該筐体30aの内部を仕切り板30cで仕切り上部の並流式の熱交換室30dと下部の向流式の熱交室30eを設けて構成される。
30fは高温側管板、30gは低温側管板、30hは伝熱管、30iはバッフルプレート、30jは排ガス排出室、30kは上部の並流式の熱交換室30dに圧縮空気を送る圧縮空気導入ヘッダー、30mは下部の向流式の熱交換室30eに圧縮空気を送る圧縮空気導入ヘッダー、30nは熱流体排出ヘッダー、F1は高温排ガス、F2は低温排ガスである。
流動焼却炉2から供給路58を介して空気予熱器30に供給される高温排ガスF1と上部の熱交換室30dとは高温側管板30fにより隔てられると共に、上記排ガス排出室30jと上部熱交換室30d及び下部の向流式の熱交換室30eは上記低温側管板30gにより隔てられる。
熱交換室(熱交換室30d及び熱交換室30e)内には多数本の伝熱管30hが配管され、その上下端は、上記高温側管板30fおよび上記低温側管板30gにそれぞれ接続されている。伝熱管30hを通じて上記熱交換室(熱交換室30d及び熱交換室30e)内に流入する高温排ガスF1は、流動焼却炉2から供給路58を介して送り込まれる。
また、上記熱交換室の中間部には、仕切り板30cが取り付けられていて、該熱交換室を、上部熱交換室30dと下部熱交換室30eに二分する。これら上部熱交換室30dと下部熱交換室30e内には、数枚のバッフルプレート(邪魔板)30iが配設されている。
FIG. 2 is a sectional view showing an example of the structure of the air preheater.
The air preheater 30 consists of a cylindrical housing 30a, and the interior of the housing 30a is partitioned by a partition plate 30c, and an upper parallel flow type heat exchange chamber 30d and a lower countercurrent type heat exchange chamber 30e are provided. It consists of
30f is a high temperature side tube plate, 30g is a low temperature side tube plate, 30h is a heat exchanger tube, 30i is a baffle plate, 30j is an exhaust gas discharge chamber, 30k is a compressed air introduction that sends compressed air to the upper parallel flow type heat exchange chamber 30d. The header 30m is a compressed air introduction header that sends compressed air to the lower countercurrent heat exchange chamber 30e, 30n is a hot fluid discharge header, F1 is a high temperature exhaust gas, and F2 is a low temperature exhaust gas.
The high temperature exhaust gas F1 supplied from the fluidized incinerator 2 to the air preheater 30 via the supply path 58 and the upper heat exchange chamber 30d are separated by a high temperature side tube plate 30f, and the upper heat exchanger is separated from the exhaust gas discharge chamber 30j. The chamber 30d and the lower countercurrent heat exchange chamber 30e are separated by the low temperature side tube plate 30g.
A large number of heat transfer tubes 30h are installed in the heat exchange chambers (heat exchange chamber 30d and heat exchange chamber 30e), and the upper and lower ends thereof are connected to the high temperature side tube plate 30f and the low temperature side tube plate 30g, respectively. There is. The high-temperature exhaust gas F1 flowing into the heat exchange chambers (heat exchange chambers 30d and 30e) through the heat exchanger tubes 30h is sent from the fluidized bed incinerator 2 via the supply path 58.
Furthermore, a partition plate 30c is attached to the middle part of the heat exchange chamber, dividing the heat exchange chamber into two parts: an upper heat exchange chamber 30d and a lower heat exchange chamber 30e. Several baffle plates (baffle plates) 30i are arranged in the upper heat exchange chamber 30d and the lower heat exchange chamber 30e.

上部の並流式の熱交換室30dは、空気と排ガスの流れが同じ方向になり、熱交換量が少ないので空気予熱器から排出される空気が暖まり難く、一方下部の向流式熱交換室30eは、空気と排ガスの流れが逆になり、熱交換量が多いので出てくる空気が暖まり易い。
そして前記供給路29が接続される位置の熱流体排出ヘッダー30nにおいて、上部の並流式の熱交換室から流れてくる予熱空気と下部の向流式熱交換室から流れてくる予熱空気とが混合され、混合された予熱空気が焼却炉へ供給される。
In the upper parallel flow type heat exchange chamber 30d, air and exhaust gas flow in the same direction, and the amount of heat exchange is small, so the air discharged from the air preheater is difficult to warm. In 30e, the flow of air and exhaust gas are reversed, and the amount of heat exchanged is large, so the air coming out is easily warmed.
In the thermal fluid discharge header 30n at the position where the supply path 29 is connected, the preheated air flowing from the upper parallel flow type heat exchange chamber and the preheated air flowing from the lower counter flow type heat exchange chamber are connected. The mixed preheated air is supplied to the incinerator.

本発明の実施態様である空気予熱器30は、流動焼却炉2から供給路58を介して送り込まれた排ガスと、過給機50から供給路56、分岐供給路56a、分岐供給路56bを介して送り込まれた圧縮空気とが熱交換される。
そして熱交換された空気は、予熱流体排出ヘッダー30nから供給路29を介して予熱空気取入口4から焼却炉2内へ供給される。
The air preheater 30, which is an embodiment of the present invention, collects exhaust gas sent from the fluidized incinerator 2 through the supply path 58, and from the supercharger 50 through the supply path 56, branch supply path 56a, and branch supply path 56b. Heat is exchanged with the compressed air sent in.
The heat-exchanged air is then supplied into the incinerator 2 from the preheated air intake port 4 from the preheated fluid discharge header 30n via the supply path 29.

集塵機40は、供給路31から送り込まれた空気予熱器30から排出される排ガスから、該排ガスに含まれる灰等の固形成分を分離して回収し、灰等の固形成分が取り除かれた排ガスを、供給路41を介して過給機50へ送り込み、該送られた排ガスは過給機50から供給路42を介して白煙防止器75に送り込まれる。 The dust collector 40 separates and collects solid components such as ash contained in the exhaust gas from the exhaust gas discharged from the air preheater 30 sent from the supply path 31, and collects the exhaust gas from which the solid components such as ash have been removed. , the exhaust gas is sent to the supercharger 50 via the supply path 41, and the sent exhaust gas is sent from the supercharger 50 to the white smoke preventer 75 via the supply path 42.

過給機50は、共通の回転軸51に接続されたタービン52およびコンプレッサ53を有する。タービン52は、集塵機40から供給路41を介して過給機50に送られる排ガスを受けて高速回転することで、コンプレッサ53を高速回転させる。
コンプレッサ53は、過給機50に取り込まれた空気を圧縮し、圧縮した空気を供給路56、分岐供給路56a、分岐供給路56bを介して空気予熱器30に送り込む。空気予熱器30では、排ガスと圧縮空気とが熱交換され、昇温された圧縮空気が供給路29を介して焼却炉2の予熱空気取入口4に送られる。
The supercharger 50 has a turbine 52 and a compressor 53 connected to a common rotating shaft 51. The turbine 52 receives exhaust gas sent from the dust collector 40 to the supercharger 50 via the supply path 41 and rotates at a high speed, thereby causing the compressor 53 to rotate at a high speed.
The compressor 53 compresses the air taken into the supercharger 50, and sends the compressed air to the air preheater 30 via the supply path 56, branch supply path 56a, and branch supply path 56b. In the air preheater 30, exhaust gas and compressed air exchange heat, and the heated compressed air is sent to the preheated air intake port 4 of the incinerator 2 via the supply path 29.

供給路56には、分岐供給路56aと分岐供給路56bの間に前記空気予熱器30の上部加熱室30dと下部加熱室30eに供給する圧縮空気量を調節する調節弁47(CV3)が設けられている。調節弁47(CV3)は制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
この開度の調節により空気予熱器30の上側に供給する分岐供給路56aと空気予熱器30の下側に供給する分岐供給路56bに供給する圧縮空気量が調整される。
The supply path 56 is provided with a control valve 47 (CV3) between the branch supply path 56a and the branch supply path 56b for adjusting the amount of compressed air supplied to the upper heating chamber 30d and the lower heating chamber 30e of the air preheater 30. It is being The control valve 47 (CV3) is connected to a control device 90, and its opening degree is adjusted in accordance with a control signal output from the control device 90.
By adjusting the opening degree, the amount of compressed air supplied to the branch supply passage 56a supplied to the upper side of the air preheater 30 and the branch supply passage 56b supplied to the lower side of the air preheater 30 is adjusted.

起動用ブロワ60は、焼却システム1の起動時に取り込んだ空気を供給路61から前記空気供給路56に、供給路62から前記過給機50に供給する。63は前記供給路62に設けられた逆止弁である。
起動後に流動焼却炉2からの排ガスで過給機50のコンプレッサ53からの流動空気を確保できる段階になったときには、起動用ブロワ60からの大気(空気)供給を停止し、大気を供給路65から前記過給機50に供給するよう切り替える。66は、前記供給路65に設けられた調節弁であり制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
The startup blower 60 supplies air taken in when the incineration system 1 is started from a supply path 61 to the air supply path 56 and from a supply path 62 to the supercharger 50. 63 is a check valve provided in the supply path 62.
After startup, when fluidized air from the compressor 53 of the supercharger 50 can be secured using exhaust gas from the fluidized incinerator 2, the supply of atmosphere (air) from the startup blower 60 is stopped and the atmosphere is transferred to the supply path 65. The fuel is then switched to be supplied to the supercharger 50 from there. Reference numeral 66 denotes a control valve provided in the supply path 65, which is connected to a control device 90 and whose opening degree is adjusted in accordance with a control signal output from the control device 90.

白煙防止ファン70は、取り込んだ空気を、供給路71を介して白煙防止器75に送り込む。
白煙防止器75は、大気を取り込む白煙防止ファン70から送り込まれる空気と、供給路42を介して供給される過給機50から排出される排ガスと熱交換して昇温させる。昇温された空気は排煙処理塔80に向けて送られる。
排煙処理塔80では、排ガスに含まれる硫黄酸化物および煤塵などの大気汚染物質を排ガスから除去する。
The white smoke prevention fan 70 sends the air taken in to the white smoke prevention device 75 via the supply path 71.
The white smoke preventer 75 exchanges heat with the air sent from the white smoke preventive fan 70 that takes in atmospheric air and the exhaust gas discharged from the supercharger 50 that is supplied via the supply path 42 to raise the temperature. The heated air is sent toward the flue gas treatment tower 80.
The flue gas treatment tower 80 removes air pollutants such as sulfur oxides and soot contained in the flue gas from the flue gas.

前記供給路41と供給路42との間に設けられたバイパス路43には、過給機から供給される排ガス量を調節する調節弁48(CV4)が設けられている。
調節弁48(CV4)は、制御装置90に接続されていて該制御装置90から出力される制御信号に応じて開度が調節される。
この開度の調節により供給路41から過給機50に送られる排ガス量が調整される。例えば、調節弁48(CV4)の開度を大きくすると集塵機40から過給機に排ガスを供給する供給路41から過給機50に送られる排ガスの一部が過給機50から白煙防止器75へ排ガスを供給する供給路42へ流れるため、供給路41から過給機50に送られる排ガス量が減少される。そして供給路41から過給機50に送られる排ガス量に応じて、コンプレッサ53下流の圧縮空気の供給路、空気予熱器30及び焼却炉2内の圧力が調整される。
例えば、空気予熱器30での供給空気の圧力を上昇させたいときは、調節弁48(CV4)を閉じて過給機50の回転数を上昇させる。逆に供給空気の圧力を減少させたいときは、調節弁48(CV4)の開度を大きくして過給機の回転数を減少させる。
A bypass passage 43 provided between the supply passage 41 and the supply passage 42 is provided with a control valve 48 (CV4) that regulates the amount of exhaust gas supplied from the supercharger.
The control valve 48 (CV4) is connected to a control device 90, and its opening degree is adjusted according to a control signal output from the control device 90.
By adjusting the opening degree, the amount of exhaust gas sent from the supply path 41 to the supercharger 50 is adjusted. For example, when the opening degree of the control valve 48 (CV4) is increased, part of the exhaust gas sent to the turbocharger 50 from the supply path 41 that supplies exhaust gas from the dust collector 40 to the turbocharger is transferred from the turbocharger 50 to the white smoke preventer. 75, the amount of exhaust gas sent from the supply path 41 to the supercharger 50 is reduced. Then, the pressure in the compressed air supply path downstream of the compressor 53, the air preheater 30, and the incinerator 2 is adjusted according to the amount of exhaust gas sent from the supply path 41 to the supercharger 50.
For example, when it is desired to increase the pressure of the supply air in the air preheater 30, the control valve 48 (CV4) is closed and the rotation speed of the supercharger 50 is increased. Conversely, when it is desired to reduce the pressure of the supplied air, the opening degree of the control valve 48 (CV4) is increased to reduce the rotation speed of the supercharger.

また、空気供給路56と供給路71との間に設けられたバイパス路53には、余剰空気量を調整する調節弁49(CV5)が設けられている。
余剰空気調節弁49(CV5)は、制御装置90に接続されていて該制御装置90から出力される開度指令の制御信号に応じて開度が調節される。
供給空気の圧力調節の際には、この開度の調節により過給機50から供給路56へ送られる圧縮空気の圧力が調整されて圧縮空気量が調整される。
Further, the bypass passage 53 provided between the air supply passage 56 and the supply passage 71 is provided with a control valve 49 (CV5) that adjusts the amount of surplus air.
The surplus air control valve 49 (CV5) is connected to a control device 90, and its opening degree is adjusted according to a control signal of an opening degree command output from the control device 90.
When adjusting the pressure of the supply air, the pressure of the compressed air sent from the supercharger 50 to the supply path 56 is adjusted by adjusting the opening degree, and the amount of compressed air is adjusted.

例えば、圧縮空気の質量流量が一定の場合においては、圧力が大きいときは容積流量が少なくなるので、余剰空気調節弁49(CV5)の開度を大きくしてバイパス路53から供給路71へ余剰空気を逃して圧力を開放することで、供給路56から空気予熱器30に送られる圧縮空気の容積流量を増加させるのに対して、圧力が小さいときは容積流量が多くなるので、余剰空気調節弁49(CV5)の開度を小さくしてバイパス路53から供給路71へ余剰空気を逃さず圧力を保持することで、供給路56から空気予熱器30に送られる圧縮空気の容積流量を減少させる。
つまり、流動空気の圧力変化に伴う容積流量の変化により流動空気量が影響を受けるので、余剰空気調節弁49(CV5)の開度調節をすることで、流動空気量を一定範囲にし、流動焼却炉での流動床の流動状態を安定化させ、燃焼状態を適切にすることができるのである。
For example, when the mass flow rate of compressed air is constant, the volumetric flow rate decreases when the pressure is high, so the opening degree of the surplus air control valve 49 (CV5) is increased and the surplus air is transferred from the bypass path 53 to the supply path 71. By releasing the air and releasing the pressure, the volumetric flow rate of the compressed air sent from the supply path 56 to the air preheater 30 is increased, whereas when the pressure is low, the volumetric flow rate increases, so surplus air adjustment is performed. By reducing the opening degree of the valve 49 (CV5) and maintaining the pressure without letting excess air escape from the bypass path 53 to the supply path 71, the volumetric flow rate of compressed air sent from the supply path 56 to the air preheater 30 is reduced. let
In other words, since the amount of flowing air is affected by changes in the volumetric flow rate due to changes in the pressure of the flowing air, by adjusting the opening degree of the surplus air control valve 49 (CV5), the amount of flowing air can be kept within a certain range and the fluidized air incineration can be carried out. It is possible to stabilize the fluidized state of the fluidized bed in the furnace and to optimize the combustion state.

制御装置90は、例えば、PLC(Programmable Logic Controller)を含み、PLCが実行する制御プログラムに基づいて動作する。
そして、制御装置90は、各種センサ(温度計、圧力計、空気予熱器空気量計測器、過給機回転数計測機器等)からの信号を受け取り、内蔵する制御プログラムにより、前記受け取った信号に対応した制御信号を各種機器(調節弁)に送り各種機器を制御する。
The control device 90 includes, for example, a PLC (Programmable Logic Controller), and operates based on a control program executed by the PLC.
The control device 90 receives signals from various sensors (thermometer, pressure gauge, air preheater air amount measuring device, supercharger rotation speed measuring device, etc.), and uses the built-in control program to adjust the received signals to Sends corresponding control signals to various devices (control valves) to control various devices.

第1演算部91は流動焼却炉2に供給される供給物である前記焼却対象物の供給装置10、水供給装置15、燃料供給装置20および過給機50等の空気供給元の、これら複数種の供給物の供給量に基づいて、前記流動焼却炉から排出される排ガス量を算出する。第2演算部92は算出された前記排ガス量に基づいて前記流動焼却炉のスペースレートを算出する。 The first calculation unit 91 operates on a plurality of air supply sources such as the supply device 10 for the incineration object, the water supply device 15, the fuel supply device 20, and the supercharger 50, which are the supplies to be supplied to the fluidized incinerator 2. The amount of exhaust gas discharged from the fluidized bed incinerator is calculated based on the amount of seed feed. The second calculation unit 92 calculates the space rate of the fluidized incinerator based on the calculated amount of exhaust gas.

図4は炉内スペ-スレート[m/sec]に対する図3における相関式から求めた算出NOと分析装置で測定した排ガスのNO測定値の乖離[%]を説明する図である。図4に示すように、炉内スペ-スレート[m/sec]の増減に対する相関式算出NOとNO測定値の乖離[%]は、略一次直線で近似できる。炉内スペースレート0.73m/sec付近で乖離がなくなり、相関式からの算出NOとNO測定値が一致する。これより大きい範囲では乖離がプラス方向に大きくなって、算出NOよりもNO測定値が大きくなり、スペースレートが大きい範囲では炉内ガス滞留時間が小さくなることで実際の排出NO量が増加してしまうことを意味する。一方、炉内スペースレート0.73m/sec付近より小さい範囲では乖離がマイナス方向に大きくなって、算出NOよりもNO測定値が小さくなり、スペースレートが小さい範囲では炉内ガス滞留時間が大きくなることで実際の排出NO量が減少していることを意味する。このことから、炉内スペ-スレート[m/sec]を可能な範囲で小さくすることで、NO排出量を抑制することができる。 FIG. 4 is a diagram illustrating the deviation [%] between the calculated N 2 O obtained from the correlation equation in FIG. 3 and the N 2 O measurement value of the exhaust gas measured by the analyzer with respect to the in-furnace space rate [m/sec]. . As shown in FIG. 4, the deviation [%] between the correlation formula calculated N 2 O and the measured N 2 O value with respect to the increase or decrease in the in-furnace space rate [m/sec] can be approximated by a substantially linear straight line. There is no deviation near the in-furnace space rate of 0.73 m/sec, and the N 2 O calculated from the correlation equation and the measured N 2 O value match. In a range larger than this, the deviation increases in the positive direction, and the measured N 2 O value becomes larger than the calculated N 2 O. In a range where the space rate is large, the residence time of the gas in the furnace decreases, so the actual discharged N 2 This means that the amount of O will increase. On the other hand, in a range where the space rate in the furnace is smaller than around 0.73 m/sec, the deviation increases in the negative direction, and the measured N 2 O value becomes smaller than the calculated N 2 O. As the time increases, it means that the actual amount of discharged N 2 O decreases. From this, by reducing the in-furnace space rate [m/sec] as much as possible, the amount of N 2 O emissions can be suppressed.

図5は、図1に示す制御装置90の排出NO抑制の一例を説明するフローチャートである。制御装置90は、この処理を所定の周期で繰り返し実行する所定の周期の一般例としては数秒毎である。 FIG. 5 is a flowchart illustrating an example of suppressing exhaust N 2 O by the control device 90 shown in FIG. 1. The control device 90 repeatedly executes this process at a predetermined period, typically every few seconds.

焼却炉が稼働し、上記所定の周期の開始時間になると、この制御がスタートする(START)。スタートすると先ず、排ガス質量流量を測定又は算出する(ステップ1、以下S1のように記す)。 When the incinerator starts operating and the start time of the predetermined cycle has arrived, this control starts (START). When starting, first, the exhaust gas mass flow rate is measured or calculated (step 1, hereinafter referred to as S1).

次に、炉内温度T3、炉内圧力P1から排ガス容積流量を算出し(S2)、続いて炉内スペースレートS1を算出する(S3)。 Next, the exhaust gas volumetric flow rate is calculated from the furnace temperature T3 and the furnace pressure P1 (S2), and then the furnace space rate S1 is calculated (S3).

炉内スペースレートS1を設定された最小値S1minと比較し(S4)、S1<S1minならばP1を低下させる操作を実行する(S5)。P1を低下させる操作とは、バイパス路43途中の調節弁48の開度を大きくし、過給機50へ送る排ガス量を少なくして過給機50の回転数を低下させるが、炉内スペースレートがN2Oを分解する適切な範囲よりも大きくなりすぎてしまうおそれがあるので、さらに供給路56で空気予熱器30へ送る圧縮空気を、余剰空気調節弁49の開度を小さくして、供給路56以降の圧力を保つようにする例がある。 The in-furnace space rate S1 is compared with the set minimum value S1min (S4), and if S1<S1min, an operation to lower P1 is executed (S5). The operation to lower P1 is to increase the opening degree of the control valve 48 in the middle of the bypass passage 43, reduce the amount of exhaust gas sent to the supercharger 50, and lower the rotation speed of the supercharger 50. Since there is a risk that the rate may become too large than the appropriate range for decomposing N 2 O, the compressed air sent to the air preheater 30 via the supply path 56 is further reduced by reducing the opening degree of the surplus air control valve 49. There is an example in which the pressure after the supply path 56 is maintained.

(S4)でS1<S1minでないときは(S1≧S1min)、S1max<S1であるか否かを判断する(S6)。S1max<S1である場合はP1を上昇させる操作を実施する(S7)。P1を上昇させる操作とは、バイパス路43途中の調節弁48の開度を小さくし、過給機50へ送る排ガス量を多くして過給機50の回転数を増加させるが、炉内スペースレートがN2Oを分解するに十分に低い一方で、流動焼却炉内の流動床3が十分に流動できずに焼却対象物の不完全燃焼につながってしまうおそれがあるので、さらに供給路56で空気予熱器30へ送る圧縮空気を、余剰空気調節弁49の開度を大きくして、供給路56以降の圧力を保つようにする例がある。S1max<S1でない場合はそのまま処理を終了する(END)。
以上のステップを周期的に行うことで、過給式流動焼却炉を用いた焼却システム1における系内の圧力を調整し、炉内スぺースレートを制御して、NOの発生を抑制する炉内ガス発生に伴うガスの滞留時間に保持させることができる。
If S1<S1min does not hold in (S4) (S1≧S1min), it is determined whether S1max<S1 (S6). If S1max<S1, an operation is performed to increase P1 (S7). The operation of increasing P1 is to reduce the opening degree of the control valve 48 in the middle of the bypass passage 43, increase the amount of exhaust gas sent to the supercharger 50, and increase the rotation speed of the supercharger 50, but this reduces the space inside the furnace. While the rate is low enough to decompose N 2 O, the fluidized bed 3 in the fluidized incinerator may not be able to flow sufficiently, leading to incomplete combustion of the material to be incinerated. There is an example in which the pressure of the compressed air sent to the air preheater 30 is maintained at the pressure after the supply path 56 by increasing the opening degree of the surplus air control valve 49. If S1max<S1, the process ends (END).
By periodically performing the above steps, the system pressure in the incineration system 1 using a supercharged fluidized fluid incinerator is adjusted, the space rate in the furnace is controlled, and the generation of N 2 O is suppressed. It can be maintained during the residence time of the gas accompanying gas generation in the furnace.

1:焼却システム
2:流動焼却炉
10:汚泥供給装置
15:水供給装置
17:調節弁(CV2)
20:燃料供給装置
22:調節弁(CV1)
23:温度計
24:温度計
25:圧力計
26:空気予熱機空気量計測器
27:空気予熱機空気量計測器
28:過給機回転数計測器
30:空気予熱機
40:集塵機
47:調節弁(CV3)
48:調節弁(CV4)
49:調節弁(CV5)
50:過給機
60:起動用ブロワ
70:白煙防止ファン
75:白煙防止器
80:排煙処理塔
90:制御装置
1: Incineration system 2: Fluidized incinerator 10: Sludge supply device 15: Water supply device 17: Control valve (CV2)
20: Fuel supply device 22: Control valve (CV1)
23: Thermometer 24: Thermometer 25: Pressure gauge 26: Air preheater air amount measuring device 27: Air preheating air amount measuring device 28: Supercharger rotation speed measuring device 30: Air preheating device 40: Dust collector 47: Adjustment Valve (CV3)
48: Control valve (CV4)
49: Control valve (CV5)
50: Supercharger 60: Start-up blower 70: White smoke prevention fan 75: White smoke preventer 80: Flue gas treatment tower 90: Control device

Claims (6)

汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のNO排出量を低減する方法であって、
前記流動焼却炉内で発生するガスに基づいて、前記流動焼却炉から排出される排ガス量を算出し、あるいは排ガス量を直接測定し、
算出あるいは測定された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、
過給機から供給される圧縮空気の圧力を調節して、前記空塔速度を制御することを特徴とする排ガス中のNO排出量低減方法。
A method for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main incineration target, the method comprising:
Calculating the amount of exhaust gas discharged from the fluidized incinerator based on the gas generated in the fluidized incinerator, or directly measuring the amount of exhaust gas,
Calculating the superficial velocity of the fluidized incinerator based on the calculated or measured amount of exhaust gas,
A method for reducing N 2 O emissions in exhaust gas, the method comprising controlling the superficial velocity by adjusting the pressure of compressed air supplied from a supercharger.
前記空塔速度を設定された最小値と比較し、空塔速度が最小値を下回ったならば過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させるとともに余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、
前記空塔速度を設定された最大値と比較し、空塔速度が最大値を上回ったならば過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させるとともに余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする請求項1に記載の排ガス中のN2O排出量低減方法。
The superficial velocity is compared with the set minimum value, and if the superficial velocity is below the minimum value, the opening degree of the control valve in the exhaust gas bypass path of the turbocharger is increased to reduce the amount of exhaust gas sent to the turbocharger. to reduce the rotational speed of the supercharger and reduce the opening degree of the surplus air control valve to maintain the pressure after the supply path,
The superficial velocity is compared with the set maximum value, and if the superficial velocity exceeds the maximum value, the opening degree of the control valve in the exhaust gas bypass path of the turbocharger is reduced to reduce the amount of exhaust gas sent to the turbocharger. in the exhaust gas according to claim 1, characterized in that the rotation speed of the supercharger is increased by increasing the opening degree of the surplus air control valve, and the pressure after the supply path is maintained. A method for reducing N 2 O emissions.
前記空塔速度と、相関式算出NOとNO測定値の乖離との関係において、乖離が0以下となる空塔速度に制御することを特徴とする請求項1または請求項2に記載の排ガス中のNO排出量低減方法。 Claim 1 or Claim 2, characterized in that the superficial velocity is controlled to such a value that the discrepancy is 0 or less in the relationship between the superficial velocity and the discrepancy between the correlation formula calculated N 2 O and the measured N 2 O value. The method for reducing N 2 O emissions in exhaust gas described above. 汚泥を主たる焼却対象とする焼却対象物を焼却する流動焼却炉を制御するための排ガス中のNO排出量を低減する方法であって、
前記流動焼却炉内で発生するガスに基づいて、前記流動焼却炉から排出される排ガス量を算出し、あるいは排ガス量を直接測定し、
算出あるいは測定された前記排ガス量に基づいて前記流動焼却炉の空塔速度を算出し、
過給機から供給される圧縮空気の圧力を調節して、前記空塔速度を制御することを特徴とする排ガス中のNO排出量低減を実行する制御プログラムに基づいて動作する制御装置。
A method for reducing N 2 O emissions in exhaust gas for controlling a fluidized fluidized incinerator that incinerates sludge as the main incineration target, the method comprising:
Calculating the amount of exhaust gas discharged from the fluidized incinerator based on the gas generated in the fluidized incinerator, or directly measuring the amount of exhaust gas,
Calculating the superficial velocity of the fluidized incinerator based on the calculated or measured amount of exhaust gas,
A control device that operates based on a control program for reducing the amount of N 2 O emissions in exhaust gas, characterized in that the pressure of compressed air supplied from a supercharger is adjusted to control the superficial velocity.
前記空塔速度を設定された最小値と比較し、空塔速度が最小値を下回ったならば過給機の排ガスバイパス路途中の調節弁の開度を大きくし、過給機へ送る排ガス量を少なくして過給機の回転数を低下させるとともに余剰空気調節弁の開度を小さくして、前記供給路以降の圧力を保つようにし、
前記空塔速度を設定された最大値と比較し、空塔速度が最大値を上回ったならば過給機の排ガスバイパス路途中の調節弁の開度を小さくし、過給機へ送る排ガス量を多くして過給機の回転数を増加させるとともに余剰空気調節弁の開度を大きくして、前記供給路以降の圧力を保つようにすることを特徴とする請求項4に記載の制御装置。
The superficial velocity is compared with the set minimum value, and if the superficial velocity is below the minimum value, the opening degree of the control valve in the exhaust gas bypass path of the turbocharger is increased to reduce the amount of exhaust gas sent to the turbocharger. to reduce the rotational speed of the supercharger and reduce the opening degree of the surplus air control valve to maintain the pressure after the supply path,
The superficial velocity is compared with the set maximum value, and if the superficial velocity exceeds the maximum value, the opening degree of the control valve in the exhaust gas bypass path of the turbocharger is reduced to reduce the amount of exhaust gas sent to the turbocharger. 5. The control device according to claim 4, wherein the control device increases the rotational speed of the supercharger by increasing the number of revolutions of the supercharger, and also increases the opening degree of the surplus air control valve to maintain the pressure after the supply path. .
前記空塔速度と、相関式算出NOとNO測定値の乖離との関係において、乖離が0以下となる空塔速度に制御することを特徴とする請求項4または請求項5に記載の制御装置。

Claim 4 or Claim 5, characterized in that the superficial velocity is controlled to such a value that the discrepancy is 0 or less in the relationship between the superficial velocity and the discrepancy between the correlation formula calculated N 2 O and the measured N 2 O value. Control device as described.

JP2022060766A 2022-03-31 2022-03-31 Method of reducing emission of n2o in exhaust gas, and control device Pending JP2023151255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022060766A JP2023151255A (en) 2022-03-31 2022-03-31 Method of reducing emission of n2o in exhaust gas, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022060766A JP2023151255A (en) 2022-03-31 2022-03-31 Method of reducing emission of n2o in exhaust gas, and control device

Publications (1)

Publication Number Publication Date
JP2023151255A true JP2023151255A (en) 2023-10-16

Family

ID=88326883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022060766A Pending JP2023151255A (en) 2022-03-31 2022-03-31 Method of reducing emission of n2o in exhaust gas, and control device

Country Status (1)

Country Link
JP (1) JP2023151255A (en)

Similar Documents

Publication Publication Date Title
JP2009257751A (en) Oxygen combustion coal fired boiler and method of transition between air and oxygen combustion
JP2015227748A (en) Waste treatment system and waste treatment method
JP6779255B2 (en) Waste incinerator
CN102084184A (en) Method of controlling combustion in oxygen combustion boiler and apparatus therefor
JP2023151255A (en) Method of reducing emission of n2o in exhaust gas, and control device
JP2000510228A (en) Control of heat exchanger efficiency by differential temperature
CN103814253B (en) Heating power secondary combustion apparatus and the method run for it
JP5438146B2 (en) Pressurized flow furnace system
JP5508022B2 (en) Batch waste gasification process
JP2023168095A (en) Method of reducing discharge amount of n2o in exhaust gas and control device
JP2023151263A (en) Method and device for reducing discharge amount of n2o in exhaust gas
JP2023151252A (en) In-furnace temperature control method and control device of supercharged fluidized incinerator
JP2023163723A (en) Control method and control device for flow combustion furnace
CN109737435A (en) Thermal accumulating incinerator overtemperature treatment process and device
KR102086185B1 (en) Operating method for pressurized fluidized furnace system
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
CN113482775A (en) Gas turbine for burning solid fuel
JP5711795B2 (en) Pressurized fluidized incinerator equipment and control method of pressurized fluidized incinerator equipment
JP2013200087A5 (en)
JP7313171B2 (en) Fluidized bed incinerator control device and fluidized bed incinerator control method
JP2013200086A5 (en)
JP2013200086A (en) Start-up method of pressure fluidized bed furnace system
JP5832944B2 (en) Emergency stop method for pressurized flow furnace system
JPS59122812A (en) Combustion controller of multi-stage incinerator