JP3010910B2 - How to protect pressurized fluidized bed boilers - Google Patents

How to protect pressurized fluidized bed boilers

Info

Publication number
JP3010910B2
JP3010910B2 JP4165029A JP16502992A JP3010910B2 JP 3010910 B2 JP3010910 B2 JP 3010910B2 JP 4165029 A JP4165029 A JP 4165029A JP 16502992 A JP16502992 A JP 16502992A JP 3010910 B2 JP3010910 B2 JP 3010910B2
Authority
JP
Japan
Prior art keywords
fluidized
bed
boiler
pressure
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4165029A
Other languages
Japanese (ja)
Other versions
JPH062801A (en
Inventor
忍 中村
衞 藤井
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP4165029A priority Critical patent/JP3010910B2/en
Publication of JPH062801A publication Critical patent/JPH062801A/en
Application granted granted Critical
Publication of JP3010910B2 publication Critical patent/JP3010910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧力容器内に流動層ボイ
ラを格納した加圧流動層ボイラーの燃焼空気供給方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for supplying combustion air to a pressurized fluidized-bed boiler having a fluidized-bed boiler housed in a pressure vessel.

【0002】[0002]

【従来の技術】図2は従来の加圧流動層ボイラーを用い
た複合発電システムの原理を示したものである。図示す
るように、この加圧流動層ボイラ複合発電システムは圧
力容器a内に、サイクロンbを備えた流動層ボイラcを
格納し、この流動層ボイラc内部で石炭などの燃料と石
灰石などの脱硫剤を流動媒体(ベッド材)と共に流動さ
せて効率良く燃焼させ、発生した蒸気によって発電機d
を駆動するものである。すなわち、燃焼効率を向上させ
るためには高圧の燃焼空気が必要となってくるが、この
流動層ボイラcは高圧に弱い構造をしているため、これ
を圧力容器a内に格納することでボイラ躯体内外の差圧
を小さくしたものである。
2. Description of the Related Art FIG. 2 shows the principle of a conventional combined power generation system using a pressurized fluidized bed boiler. As shown in the figure, this pressurized fluidized bed boiler combined cycle system stores a fluidized bed boiler c provided with a cyclone b in a pressure vessel a, and a fuel such as coal and desulfurization of limestone and the like inside the fluidized bed boiler c. The agent is made to flow with a fluid medium (bed material) and burned efficiently, and the generated steam causes the generator d
Is to be driven. That is, in order to improve the combustion efficiency, high-pressure combustion air is required. However, since the fluidized-bed boiler c has a structure that is weak against high pressure, it is stored in the pressure vessel a so that the boiler The differential pressure inside and outside the building was reduced.

【0003】この加圧流動層ボイラ複合発電システムを
簡単に説明すると、石炭は6mm以下に粉砕されて脱硫
剤とともに流動層ボイラc内へ供給され、石炭、脱硫
剤、灰等の混合物であるベット材により、コンプレッサ
ーeからの高圧空気で高層高(約4m)の流動層fが形
成される。石炭は流動層fの中で空気と攪拌され、1.
2〜1.6MPa(12〜16kgf/cm2 )程度の
加圧下で効率良く燃焼する。また、燃焼時に発生するS
2 は層f内で脱硫材により吸収され、燃焼温度が低い
ことからNOxの発生を抑えることができる。層f内で
発生した熱は高い伝熱特性を持つ流動層内伝熱管gによ
り蒸気として回収され、蒸気タービンhを駆動する。そ
の後、燃焼排気ガスはボイラcから約860〜870
℃,1.1〜1.5MPa(11〜15kgf/c
2 )で排出され、サイクロンbで脱じんされた後、ガ
スタービンiを駆動する。このガスタービンiは燃焼用
空気コンプレッサーeを駆動すると共に、余剰動力で発
電機jを駆動し、ガスタービンiをでた排気ガスは必要
に応じて煤塵が排出規制以下に低減され、熱交換器kで
熱回収された後煙突lから排出されることになる。ま
た、ボイラcの負荷調整は圧力内に供給する空気量と、
ベッド材貯蔵容器mとボイラ間でベッド材の出し入れす
ることにより流動層fの高さを変化させて行うことにな
る。例えば、負荷を減少する場合には燃焼空気の圧力を
高めると共に、バルブnを開いてベッド材貯蔵容器m内
の圧力を外部へ逃がし、吸引管oを通してベット材をボ
イラcから吸い込んで層高を低くし、反対に、負荷を高
める場合には燃焼空気を減少させる共に、供給管のLバ
ルブpの空気量を調整してベッド材貯蔵容器mからボイ
ラcへベッド材を送り込み、層高を高くすることで達成
される。
[0003] The pressurized fluidized-bed boiler combined power generation system will be briefly described. Coal is pulverized to 6 mm or less, supplied to a fluidized-bed boiler c together with a desulfurizing agent, and is a bed made of a mixture of coal, a desulfurizing agent, and ash. Due to the material, a fluidized bed f having a high bed height (about 4 m) is formed by the high-pressure air from the compressor e. The coal is agitated with air in the fluidized bed f.
It burns efficiently under a pressure of about 2 to 1.6 MPa (12 to 16 kgf / cm 2 ). In addition, S generated during combustion
O 2 is absorbed by the desulfurizing material in the layer f, and generation of NOx can be suppressed because the combustion temperature is low. The heat generated in the layer f is recovered as steam by the heat transfer tube g in the fluidized bed having high heat transfer characteristics, and drives the steam turbine h. Thereafter, the combustion exhaust gas is supplied from the boiler c to about 860 to 870.
° C, 1.1 to 1.5 MPa (11 to 15 kgf / c
After being exhausted at m 2 ) and dedusted by the cyclone b, the gas turbine i is driven. The gas turbine i drives the combustion air compressor e and also drives the generator j with surplus power, so that the exhaust gas from the gas turbine i is reduced as required to reduce soot and dust below the emission regulation. After the heat is recovered at k, it is discharged from the chimney l. Also, the load adjustment of the boiler c depends on the amount of air supplied within the pressure,
By moving the bed material in and out between the bed material storage container m and the boiler, the height of the fluidized bed f is changed. For example, when the load is reduced, the pressure of the combustion air is increased, the valve n is opened to release the pressure in the bed material storage container m to the outside, and the bed material is sucked from the boiler c through the suction pipe o to reduce the bed height. Conversely, when the load is increased, the combustion air is reduced, and the amount of air in the L valve p of the supply pipe is adjusted to feed the bed material from the bed material storage container m to the boiler c, thereby increasing the bed height. It is achieved by doing.

【0004】[0004]

【発明が解決しようとする課題】ところで、高圧空気を
供給するためのコンプレッサーeを駆動するガスタービ
ンiが故障等の原因で急停止すると、ボイラcへの高圧
空気の供給も停止することになるが、ボリュームチャン
バー効果によって、暫くの間、圧力容器a内の空気がボ
イラc内に流れ、流動層fが流動しない状態で未燃分が
燃焼するといった、おき火燃焼が発生して流動層f内に
再起動時に不都合なクリンカが発生し、急速な再起動が
困難であった。そのため、ガスタービンiが急停止した
場合には、圧力容器a内の空気がボイラc内に流れない
ように、外部へ抜き出して圧力を低下させることになる
が、これと同時にボイラc内外の差圧をなくすためにボ
イラc内のガスも外部へ抜き出すことも考えられるが、
その抜出し作業は、ボイラc内外の差圧が大きくならな
いように慎重に行う必要があり、その作業は困難なもの
であった。
If the gas turbine i that drives the compressor e for supplying high-pressure air suddenly stops due to a failure or the like, the supply of high-pressure air to the boiler c also stops. However, due to the volume chamber effect, ignitable combustion occurs such that air in the pressure vessel a flows into the boiler c for a while, and unburned components burn in a state in which the fluidized bed f does not flow. An undesired clinker was generated at the time of restart, and rapid restart was difficult. Therefore, when the gas turbine i is suddenly stopped, the pressure in the pressure vessel a is extracted to the outside so as to prevent the air from flowing into the boiler c and the pressure is reduced. It is conceivable to extract the gas inside the boiler c to the outside in order to eliminate the pressure,
The withdrawal work must be performed carefully so that the pressure difference between the inside and outside of the boiler c does not increase, and the work is difficult.

【0005】そこで、本発明は上述した問題点を有効に
解決するために案出されたものであり、その主な目的は
ガスタービンが急停止した場合に、ボイラ内外の差圧を
なくして、再起動を容易にすると共に、ボイラの損傷等
を未然に防止することができる加圧流動層ボイラの保護
方法を提供するものである。
Accordingly, the present invention has been devised to effectively solve the above-mentioned problems, and its main purpose is to eliminate the differential pressure between the inside and outside of the boiler when the gas turbine is suddenly stopped. It is an object of the present invention to provide a method for protecting a pressurized fluidized-bed boiler, which can facilitate restarting and prevent a boiler from being damaged.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明は、高圧の燃焼空気が供給される圧力容器内
に、その圧力容器内に供給された燃焼空気を下部から導
入して流動層を形成しつつ燃焼させる流動層ボイラを格
納し、該流動層ボイラからの燃焼排ガスによってガスタ
ービン及びコンプレッサーを駆動すると共に、該コンプ
レッサーからの高圧燃焼空気を上記圧力容器内に供給す
る加圧流動層ボイラにおいて、上記圧力容器内部と流動
層ボイラの流動層上部とをバイパス管によって連通する
と共に、該バイパス管に燃焼空気の流れを遮断するため
の遮断弁を設け、上記ガスタービンが急停止した時に、
上記遮断弁を開いて上記圧力容器内部の燃焼空気を流動
層ボイラの流動層上部に供給して上記流動層の上下の圧
力をバランスさせるものである。
According to the present invention, there is provided a pressure vessel to which high-pressure combustion air is supplied, wherein the combustion air supplied to the pressure vessel is introduced from below. A fluidized-bed boiler for burning while forming a fluidized bed is housed, and a gas turbine and a compressor are driven by combustion exhaust gas from the fluidized-bed boiler, and pressurized air for supplying high-pressure combustion air from the compressor into the pressure vessel. In the fluidized-bed boiler, the inside of the pressure vessel and the upper part of the fluidized-bed of the fluidized-bed boiler are communicated by a bypass pipe, and a shutoff valve for shutting off the flow of combustion air is provided in the bypass pipe, so that the gas turbine stops suddenly. When you do
The shut-off valve is opened to supply the combustion air inside the pressure vessel to the upper part of the fluidized bed of the fluidized bed boiler to balance the upper and lower pressures of the fluidized bed.

【0007】[0007]

【作用】本発明は上述したように、コンプレッサーを駆
動するガスタービンが急停止した時に、上記遮断弁を開
いて上記圧力容器内部の燃焼空気を流動層ボイラの流動
層上部に流すようにしたため、流動層の上下で差圧が少
なくなり、ボリュームチャンバー効果により圧力容器内
の燃焼空気が流動層ボイラの下部から流動層に流れるこ
とがなくなり、クリンカの発生を未然に防止することが
可能となると共に再起動が容易に行える。
DETAILED DESCRIPTION OF THE INVENTION The present invention as described above, when the gas turbine for driving the compressor is stopped abruptly, the flow of the fluidized bed boiler combustion air inside the pressure vessel by opening the shut-off valve
Since the gas flows in the upper part of the bed, the pressure difference between the upper and lower parts of the fluidized bed is reduced, and the combustion air in the pressure vessel does not flow from the lower part of the fluidized bed boiler to the fluidized bed due to the volume chamber effect. This can be prevented, and restart can be easily performed.

【0008】[0008]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0009】図1は、本発明に係る加圧流動層ボイラ発
電システムの一実施例を示したものである。図示するよ
うに、この加圧流動層ボイラは圧力容器1内に、流動層
ボイラ2が格納されており、高圧の燃焼空気によって効
率の良い燃焼を行うようになっている。
FIG. 1 shows an embodiment of a pressurized fluidized-bed boiler power generation system according to the present invention. As shown in the figure, the pressurized fluidized-bed boiler has a fluidized-bed boiler 2 housed in a pressure vessel 1 and performs efficient combustion with high-pressure combustion air.

【0010】この流動層ボイラ2は竪型のボイラー躯体
3に、サイクロン4とベッド材貯蔵容器5を備えたもの
であり、ボイラー躯体3底部にはベッド材貯蔵容器5か
ら供給されるベッド材に石炭などの燃料や石灰石等の脱
硫材を混合した流動層6が形成され、ボイラー躯体3の
下部の燃焼空気入口8から供給される高圧の燃焼空気に
よって流動層6を流動させて燃焼を行うようになってい
る。また、発生した燃焼排気ガス中は灰塵をサイクロン
4で荒取りされた後、ガスタービン18に送られ、これ
を回して流動層ボイラ2に高圧の燃焼空気を供給するコ
ンプレッサー13を駆動した後、脱硝処理19などによ
ってクリーンガス化され、排出されることになる。
The fluidized-bed boiler 2 is provided with a vertical boiler frame 3 and a cyclone 4 and a bed material storage container 5. The bed material supplied from the bed material storage container 5 is provided at the bottom of the boiler frame 3. A fluidized bed 6 in which a fuel such as coal or a desulfurizing material such as limestone is mixed is formed, and the fluidized bed 6 is caused to flow by high-pressure combustion air supplied from a combustion air inlet 8 below the boiler body 3 to perform combustion. It has become. In the generated combustion exhaust gas, ash dust is roughly removed by a cyclone 4 and then sent to a gas turbine 18, which is turned to drive a compressor 13 that supplies high-pressure combustion air to the fluidized-bed boiler 2. It is converted into clean gas by the denitration process 19 and discharged.

【0011】このベッド材貯蔵容器5はLバルブを備え
た吸引管7を介してボイラー躯体3の底部に連結されて
おり、負荷変動に応じてベッド材を吸引または供給して
流動層6の層高を自在に調整することができるようにな
っている。
The bed material storage container 5 is connected to the bottom of the boiler body 3 via a suction pipe 7 having an L valve, and sucks or supplies the bed material according to a load change to form a bed of the fluidized bed 6. The height can be adjusted freely.

【0012】また、ボイラー躯体3の側壁には冷却水が
流通する伝熱管9が設けられており、ボイラー躯体3内
の燃焼で発生した熱によって蒸気を発生し、タービン1
0を回し、発電機11を駆動するようになっている。
Further, a heat transfer pipe 9 through which cooling water flows is provided on a side wall of the boiler body 3, and steam generated by heat generated by combustion in the boiler body 3 is generated.
By turning 0, the generator 11 is driven.

【0013】また、図示するように、上記圧力容器1内
部とボイラ躯体3内部とはバイパス管12によって連通
されており、圧力容器1内部の高圧燃焼空気がボイラ躯
体3内の流動層上部14に直接流れるようになってい
る。また、このバイパス管12には燃焼空気の流れを遮
断するための遮断弁15が設けられており、通常運転時
には閉じて空気の流れを遮断し、上記ガスタービン18
が急停止した時には、開いて圧力容器1内部の燃焼空気
をボイラ躯体3の流動層上部14に流すようになってい
る。
As shown in the figure, the inside of the pressure vessel 1 and the inside of the boiler frame 3 are communicated by a bypass pipe 12, and the high-pressure combustion air inside the pressure vessel 1 flows to the upper part 14 of the fluidized bed in the boiler frame 3. It flows directly. The bypass pipe 12 is provided with a shutoff valve 15 for shutting off the flow of combustion air, and is closed during normal operation to shut off the flow of air.
Is opened, the combustion air inside the pressure vessel 1 is opened to flow to the upper part 14 of the fluidized bed of the boiler frame 3.

【0014】また、圧力容器1の側壁には空気放出弁1
6を備えた空気放出管17が接続されており、圧力容器
1の高圧燃焼空気を圧力容器1外に逃がすことができる
ようになっている。
An air discharge valve 1 is provided on a side wall of the pressure vessel 1.
An air discharge pipe 17 provided with the pressure vessel 6 is connected to the pressure vessel 1 so that the high-pressure combustion air in the pressure vessel 1 can escape to the outside of the pressure vessel 1.

【0015】次に、本発明の作用を説明する。Next, the operation of the present invention will be described.

【0016】通常運転時において、燃焼空気の流れは、
先ずコンプレッサー13から圧力容器1内に流れ、滞留
した後、ボイラー躯体3の空気導入口8からボイラー躯
体3内に流れ流動層6を流動させつつ燃焼空気として利
用される。この時、バイパス管12の遮断弁15は閉じ
た状態となっており、圧力容器1内の空気がバイパス管
12からボイラー躯体3内に流れることはない。そし
て、ボイラー躯体3の流動層上部14で発生した燃焼ガ
スはサイクロン4を通過した後、ガスタービン18に送
られ、これを駆動した後、脱硝処理19などを通過して
排出される。
During normal operation, the flow of combustion air is
First, after flowing from the compressor 13 into the pressure vessel 1 and staying there, it flows from the air inlet 8 of the boiler frame 3 into the boiler frame 3 and is used as combustion air while flowing through the fluidized bed 6. At this time, the shutoff valve 15 of the bypass pipe 12 is in a closed state, and the air in the pressure vessel 1 does not flow from the bypass pipe 12 into the boiler frame 3. Then, the combustion gas generated in the upper portion 14 of the fluidized bed of the boiler frame 3 is sent to the gas turbine 18 after passing through the cyclone 4, and after being driven, is discharged through the denitration treatment 19 and the like.

【0017】次に、この状態において、ガスタービン1
8が故障して急停止すると、これによって駆動されてい
るコンプレッサー13も同時に停止し、圧力容器1内へ
の燃焼空気の供給が停止するため、これと同時にバイパ
ス管12の遮断弁15を開いて圧力容器1内の燃焼空気
の一部をボイラ躯体3の流動層上部14側に流すことに
よって、流動層6の上下で圧力がバランスすることにな
る。従ってボリュームチャンバ効果によって流動層6の
下部から燃焼空気が流れることはなく、未燃分のおき火
燃焼によるクリンカの発生が未然に防止される。また
動層上部14の圧力が圧力容器1内の圧力と同じにでき
るため再起動時に、圧力容器1内の圧力が高圧になるま
で遮断弁15を開いたままにして起動することで、流動
層上部14の圧力を高めることができるため再起動が容
易にできることになる。
Next, in this state, the gas turbine 1
When the compressor 8 stops due to a failure, the compressor 13 driven thereby also stops at the same time, and the supply of the combustion air into the pressure vessel 1 stops. At the same time, the shut-off valve 15 of the bypass pipe 12 is opened and By flowing a part of the combustion air in the pressure vessel 1 to the fluidized bed upper portion 14 side of the boiler frame 3, the pressure is balanced above and below the fluidized bed 6. Therefore, the combustion air does not flow from the lower part of the fluidized bed 6 due to the volume chamber effect, and the occurrence of clinker due to the unburned ignited combustion is prevented. The flow
To restart the pressure of Doso top 14 can be the same as the pressure in the pressure vessel 1, that the pressure in the pressure container 1 is activated to remain open the shut-off valve 15 to a high pressure, flow
Since the pressure in the layer upper portion 14 can be increased, restart can be easily performed.

【0018】そして、圧力容器1内圧とボイラー躯体3
が同じになってバイパス管12の燃焼空気の流れが停止
したならば、場合によっては空気放出弁16を開いて、
圧力容器1内の燃焼空気を空気放出管17より外部に放
出して圧力容器1内およびボイラー躯体3内の圧力を低
下させることになる。また、この時、ボイラー躯体3内
の燃焼ガスはバイパス管12を通過して圧力容器1内に
流れることになるため、ボイラー躯体3内外に大きな差
圧が発生することはない。
Then, the internal pressure of the pressure vessel 1 and the boiler frame 3
When the flow of combustion air in the bypass pipe 12 stops due to the same condition, the air release valve 16 may be opened in some cases,
The combustion air in the pressure vessel 1 is discharged to the outside from the air discharge pipe 17 to reduce the pressure in the pressure vessel 1 and the boiler frame 3. Further, at this time, the combustion gas in the boiler body 3 flows into the pressure vessel 1 through the bypass pipe 12, so that a large pressure difference does not occur inside and outside the boiler body 3.

【0019】すなわち、上述したように、従来の加圧流
動層ボイラーでは、ガスタービン18が停止して、燃焼
空気の供給が停止した場合、ボリュームチャンバー効果
により、ボイラー躯体3側より圧力容器1内側が高圧と
なっているため、暫くの間圧力容器1内の少量の燃焼空
気が空気導入口8の通過して流動層6内に流れ、流動層
6内において燃焼空気不足によるクリンカが発生してい
たが、本発明ではボイラー躯体3と圧力容器1間にバイ
パス管12を設けたことにより、ボイラー躯体3と圧力
容器1の差圧を迅速に少なくすることが可能となり、流
動層6内でのクリンカの発生および差圧によるボイラー
躯体3の損傷等を未然に防止することが可能となる。
That is, as described above, in the conventional pressurized fluidized bed boiler, when the gas turbine 18 is stopped and the supply of the combustion air is stopped, the inside of the pressure vessel 1 is moved from the boiler frame 3 side by the volume chamber effect. Is a high pressure, a small amount of combustion air in the pressure vessel 1 passes through the air inlet 8 and flows into the fluidized bed 6 for a while, and clinker is generated in the fluidized bed 6 due to insufficient combustion air. However, in the present invention, the provision of the bypass pipe 12 between the boiler body 3 and the pressure vessel 1 makes it possible to quickly reduce the differential pressure between the boiler body 3 and the pressure vessel 1, and It is possible to prevent the occurrence of clinker and damage to the boiler frame 3 due to the differential pressure.

【0020】[0020]

【発明の効果】以上要するに本発明によれば、ガスター
ビンが故障などによって急停止した時に、上記遮断弁を
開いて上記圧力容器内部の燃焼空気を流動層ボイラの
動層上部に流すようにしたため、流動層の上下で差圧が
少なくなり、ボリュームチャンバー効果により圧力容器
内の燃焼空気が流動層ボイラの下部から流動層に流れる
ことがなくなり、クリンカの発生を未然に防止すること
が可能となると共に再起動が容易に行える。
According to the above summary the present invention, when the gas turbine is abruptly stopped by malfunction, the flow of the fluidized bed boiler combustion air inside the pressure vessel by opening the shut-off valve
Because the fluid flows to the upper part of the fluidized bed, the pressure difference between the upper and lower parts of the fluidized bed is reduced, and the combustion air in the pressure vessel does not flow from the lower part of the fluidized-bed boiler to the fluidized bed due to the volume chamber effect. And restart can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【図2】加圧流動層ボイラ複合発電システムの従来例を
示す説明図である。
FIG. 2 is an explanatory diagram showing a conventional example of a pressurized fluidized-bed boiler combined cycle system.

【符号の説明】[Explanation of symbols]

1 圧力容器 2 流動層ボイラ 12 バイパス管 13 コンプレッサ 15 遮断弁 18 ガスタービン DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Fluidized-bed boiler 12 Bypass pipe 13 Compressor 15 Shut-off valve 18 Gas turbine

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F22B 1/02 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) F22B 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧の燃焼空気が供給される圧力容器内
に、その圧力容器内に供給された燃焼空気を下部から導
入して流動層を形成しつつ燃焼させる流動層ボイラを格
納し、該流動層ボイラからの燃焼排ガスによってガスタ
ービン及びコンプレッサーを駆動すると共に、該コンプ
レッサーからの高圧燃焼空気を上記圧力容器内に供給す
る加圧流動層ボイラにおいて、上記圧力容器内部と流動
層ボイラの流動層上部とをバイパス管によって連通する
と共に、該バイパス管に燃焼空気の流れを遮断するため
の遮断弁を設け、上記ガスタービンが急停止した時に、
上記遮断弁を開いて上記圧力容器内部の燃焼空気を流動
層ボイラの流動層上部に供給して上記流動層の上下の圧
力をバランスさせることを特徴とする加圧流動層ボイラ
の保護方法。
1. A fluidized-bed boiler for storing combustion air supplied into the pressure vessel from below into a pressure vessel to which high-pressure combustion air is supplied and burning the fluidized bed while forming a fluidized bed. In a pressurized fluidized-bed boiler that drives a gas turbine and a compressor by combustion exhaust gas from a fluidized-bed boiler and supplies high-pressure combustion air from the compressor into the pressure vessel, the fluidized bed of the fluidized-bed boiler and the inside of the fluidized-bed boiler The upper part is communicated with a bypass pipe, and a shutoff valve for shutting off the flow of combustion air is provided in the bypass pipe, and when the gas turbine is suddenly stopped,
A method for protecting a pressurized fluidized-bed boiler, comprising opening the shut-off valve and supplying combustion air in the pressure vessel to an upper portion of the fluidized-bed of the fluidized-bed boiler to balance pressures above and below the fluidized-bed.
JP4165029A 1992-06-23 1992-06-23 How to protect pressurized fluidized bed boilers Expired - Fee Related JP3010910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4165029A JP3010910B2 (en) 1992-06-23 1992-06-23 How to protect pressurized fluidized bed boilers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165029A JP3010910B2 (en) 1992-06-23 1992-06-23 How to protect pressurized fluidized bed boilers

Publications (2)

Publication Number Publication Date
JPH062801A JPH062801A (en) 1994-01-11
JP3010910B2 true JP3010910B2 (en) 2000-02-21

Family

ID=15804494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165029A Expired - Fee Related JP3010910B2 (en) 1992-06-23 1992-06-23 How to protect pressurized fluidized bed boilers

Country Status (1)

Country Link
JP (1) JP3010910B2 (en)

Also Published As

Publication number Publication date
JPH062801A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
JP3213321B2 (en) Combined cycle thermal power plant combined with atmospheric circulating fluidized bed boiler and gasifier
US6101983A (en) Modified gas turbine system with advanced pressurized fluidized bed combustor cycle
US4584949A (en) Method of igniting a combustion chamber with a fluidized bed and a power plant for utilizing the method
JP2008534862A (en) Low CO2 thermal power plant
JP2008025965A (en) Pressure incinerator equipment and its operation method
JPS63195333A (en) Gas turbine output device burning hydrous fuel and heat-energy recovery method of hydrous fuel in said gas turbine output device
JP2810791B2 (en) Combined cycle pressurized fluidized bed power plant with gas and steam and method of operating the same
JP3010910B2 (en) How to protect pressurized fluidized bed boilers
JPH0650509A (en) Emergency operating method of pressurized fluidized bed boiler
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
GB2095762A (en) A combined cycle power plant
US20100089058A1 (en) Combustion Powered Hydroelectric Sequential Turbines
JP4514684B2 (en) Stop control method for pressurized fluidized bed plant
JP2995998B2 (en) Cooling method of pressurized fluidized bed boiler
JP2960981B2 (en) Gas turbine plant
JP3006625B2 (en) Pressurized fluidized bed boiler
JPH05231613A (en) Pressurized fluidized bed boiler
JPS6331651B2 (en)
JP3219294B2 (en) Fluidized bed boiler
JPH11108320A (en) Waste combustion treatment method
JPH062815A (en) Combustion ash cooling device in pressure fluidized bed boiler
JPH07151307A (en) Ash conveyor for fluidized bed combustion device
JPH062814A (en) Method for supplying combustion air for pressure fluidized bed boiler
JPH0326274Y2 (en)
JPH1082507A (en) Heater of bed material in pressurized fluidized bed boiler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees