JP4514684B2 - Stop control method for pressurized fluidized bed plant - Google Patents

Stop control method for pressurized fluidized bed plant Download PDF

Info

Publication number
JP4514684B2
JP4514684B2 JP2005293088A JP2005293088A JP4514684B2 JP 4514684 B2 JP4514684 B2 JP 4514684B2 JP 2005293088 A JP2005293088 A JP 2005293088A JP 2005293088 A JP2005293088 A JP 2005293088A JP 4514684 B2 JP4514684 B2 JP 4514684B2
Authority
JP
Japan
Prior art keywords
fluidized bed
boiler
pressurized fluidized
plant
stop control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005293088A
Other languages
Japanese (ja)
Other versions
JP2007100621A (en
Inventor
光一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2005293088A priority Critical patent/JP4514684B2/en
Publication of JP2007100621A publication Critical patent/JP2007100621A/en
Application granted granted Critical
Publication of JP4514684B2 publication Critical patent/JP4514684B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、加圧流動床ボイラを備えた発電プラントを停止させる際の停止制御方法に関し、特に、ボイラ設備に負担をかけることなく早期にボイラを停止することが可能な加圧流動床プラントの停止制御方法に関するものである。   The present invention relates to a stop control method for stopping a power plant equipped with a pressurized fluidized bed boiler. The present invention relates to a stop control method.

従来、加圧流動床ボイラを備えた発電プラントでは、プラントを停止してもボイラ内部に燃料が残留しているため、諸設備を冷却する必要がある。また、急速な冷却を行うと冷却管等に負担がかかり、冷却管等が破損するおそれがある。   Conventionally, in a power plant equipped with a pressurized fluidized bed boiler, it is necessary to cool various facilities because fuel remains in the boiler even when the plant is stopped. In addition, when cooling is performed rapidly, a burden is placed on the cooling pipe and the cooling pipe or the like may be damaged.

したがって、設備点検等のためにボイラを停止するには、ボイラ設備に負担をかけないように徐々に冷却を行わなければならず、ボイラ停止処理に長時間を要していた。さらに、冷却工程においては冷却水を循環させるために動力が必要であり、ボイラ停止処理に長時間を要すれば、それだけ動力費が嵩んでしまう。   Therefore, in order to stop the boiler for equipment inspection or the like, it is necessary to gradually cool so as not to put a burden on the boiler equipment, and it takes a long time to stop the boiler. Furthermore, in the cooling process, power is required to circulate the cooling water. If a long time is required for the boiler stop process, the power cost increases accordingly.

そこで、従来より、加圧流動床ボイラを備えた発電プラントを停止させる際の停止制御方法が種々提案されている。
例えば、特開2000−213306号公報「加圧流動床複合発電プラント」(特許文献1)に、加圧流動床複合発電プラントの停止時に、低温排熱回収熱交換器、高温排熱回収熱交換器出口の復水、および給水のスチーミングを防止して、プラントの信頼性を向上するとともに、停止時の所内動力を低減するための技術が提案されている。
Therefore, various stop control methods for stopping a power plant equipped with a pressurized fluidized bed boiler have been proposed.
For example, in Japanese Patent Application Laid-Open No. 2000-213306, “Pressurized Fluidized Bed Combined Power Plant” (Patent Document 1), when the pressurized fluidized bed combined power plant is stopped, a low temperature exhaust heat recovery heat exchanger, a high temperature exhaust heat recovery heat exchange There has been proposed a technique for preventing steam condensate at the outlet of the vessel and steaming of the feed water to improve the reliability of the plant and reduce the power in the station at the time of stoppage.

この特許文献1に記載された「加圧流動床複合発電プラント」は、空気圧縮機と、加圧流動床ボイラと、加圧流動床ボイラの高温ガスにより駆動されるガスタービンと、加圧流動床ボイラの蒸気により駆動される複数の蒸気タービンと、復水器から加圧流動床ボイラに給水を供給する復水ポンプおよび給水ポンプと、給水を加熱する給水加熱器および高温・低温排熱回収熱交換器と、脱気器とからなる加圧流動床複合発電プラントにおいて、プラント通常停止時/緊急停止時に空気圧縮機の出口からガスタービン入口弁までの空気および高温ガスをガスタービン出口配管に排出する高温ガス排出配管と、高温ガス排出弁とを設けたものである。   The “pressurized fluidized bed combined power plant” described in Patent Document 1 includes an air compressor, a pressurized fluidized bed boiler, a gas turbine driven by the high temperature gas of the pressurized fluidized bed boiler, and a pressurized fluidized bed. Multiple steam turbines driven by floor boiler steam, condensate pumps and feed pumps that supply feedwater from the condenser to the pressurized fluidized bed boiler, feedwater heaters that heat the feedwater, and high / low temperature waste heat recovery In a pressurized fluidized bed combined power plant consisting of a heat exchanger and a deaerator, air and hot gas from the outlet of the air compressor to the gas turbine inlet valve are supplied to the gas turbine outlet piping during normal or emergency shutdown of the plant. A high-temperature gas discharge pipe for discharging and a high-temperature gas discharge valve are provided.

また、特開平11−159305号公報「加圧流動床複合発電プラント」(特許文献2)に、プラントの起動停止時および緊急停止時に排ガス熱交換器廻りで発生するフラッシュを充分防止し、安定運転を確保するとともに、機器保護および信頼性の向上を図ることができる技術が提案されている。   Further, Japanese Patent Application Laid-Open No. 11-159305 “Pressurized Fluidized Bed Combined Cycle Power Plant” (Patent Document 2) sufficiently prevents flash generated around the exhaust gas heat exchanger when the plant is started and stopped and during an emergency stop. In addition, a technology has been proposed that can ensure the protection of the device and improve the reliability.

この特許文献2に記載された「加圧流動床複合発電プラント」は、蒸気を発生させる加圧流動床ボイラと、この加圧流動床ボイラで発生した蒸気により駆動される蒸気タービンと、加圧流動床ボイラからの排ガスにより駆動されるガスタービンと、蒸気タービンの復水器から加圧流動床ボイラへ給水する給水系統を備え、給水系統に、給水を加熱する排ガス熱交換器、給水加熱器および脱気器が設けられている加圧流動床複合発電プラントにおいて、給水系統に、脱気器で生じた排ガス熱交換器の置換水を、排ガス熱交換器へ供給するための置換水供給系統を設けるとともに、この置換水供給系統にポンプおよび流量を調整するための調整弁を設けたものである。   The “pressurized fluidized bed combined power plant” described in Patent Document 2 includes a pressurized fluidized bed boiler for generating steam, a steam turbine driven by the steam generated in the pressurized fluidized bed boiler, A gas turbine driven by exhaust gas from a fluidized bed boiler and a water supply system for supplying water from a steam turbine condenser to a pressurized fluidized bed boiler are provided, and the exhaust gas heat exchanger and water heater for heating the water supply are provided in the water supply system. In a pressurized fluidized bed combined power plant provided with a deaerator, a replacement water supply system for supplying the exhaust water of the exhaust gas heat exchanger generated in the deaerator to the exhaust water heat exchanger in the feed water system The replacement water supply system is provided with a pump and an adjustment valve for adjusting the flow rate.

特開2000−213306号公報JP 2000-213306 A 特開平11−159305号公報JP 11-159305 A

しかしながら、上述したように、ボイラ停止時に急速な冷却を行うと、ボイラ設備に負担をかけ、最悪の場合にはボイラ設備を破損させてしまうおそれがある。このため、上記特許文献1および特許文献2に記載された技術を含めて、従来の加圧流動床プラントの停止制御方法では、ボイラの停止処理に長時間を要することが前提となっていた。
この点、設備点検等のためにボイラを停止する際に、ボイラの停止処理に要する時間を短縮することができれば、ボイラの運転再開を早めることができるとともに、ボイラの停止処理に関連した動力費を低減することができる。
However, as described above, if rapid cooling is performed when the boiler is stopped, the boiler equipment is burdened, and in the worst case, the boiler equipment may be damaged. For this reason, in the conventional stop control method for a pressurized fluidized bed plant including the techniques described in Patent Document 1 and Patent Document 2, it is assumed that it takes a long time to stop the boiler.
In this regard, when stopping the boiler for equipment inspection, etc., if the time required for the boiler stop process can be shortened, the restart of the boiler can be accelerated, and the power cost related to the boiler stop process Can be reduced.

本発明は、上述した事情に鑑み提案されたもので、加圧流動床プラントを停止する際の作業時間を短縮するとともに、動力費を低減することが可能な加圧流動床プラントの停止制御方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and is capable of reducing the working time when stopping the pressurized fluidized bed plant and reducing the power cost. The purpose is to provide.

本発明の加圧流動床プラントの停止制御方法は、上述した目的を達成するため、以下の特徴点を備えている。
すなわち、本発明の加圧流動床プラントの停止制御方法は、加圧流動床ボイラを備えた発電プラントを停止させるための方法であって、ボイラ消火冷却工程におけるガスタービン運転中に、ガスタービンから送風される空気により、ボイラ内のベッドマテリアルを流動させて、ベッドマテリアルタンクとボイラとの間でベッドマテリアルを循環させることにより、ベッドマテリアルの循環冷却を行うことを特徴とするものである。
The pressurization fluidized bed plant stop control method of the present invention has the following features in order to achieve the above-described object.
That is, the stop control method for a pressurized fluidized bed plant according to the present invention is a method for stopping a power plant equipped with a pressurized fluidized bed boiler, from the gas turbine during the gas turbine operation in the boiler fire extinguishing and cooling process. The bed material is cooled by circulating the bed material between the bed material tank and the boiler by causing the bed material in the boiler to flow by the air blown .

また、前記加圧流動床プラントの停止制御方法において、発電機の負荷が通常運転時の約50%まで減少したら、非常用温水タンクヒータを停止させることが好ましい。
また、前記加圧流動床プラントの停止制御方法において、ガスタービン解列工程後に、タービン軸受冷却水の温度を前記ガスタービン解列工程よりも低温に設定することが好ましい。
Moreover, in the stop control method for the pressurized fluidized bed plant, it is preferable to stop the emergency hot water tank heater when the load on the generator is reduced to about 50% of the normal operation .
Moreover, in the stop control method for the pressurized fluidized bed plant, it is preferable that the temperature of the turbine bearing cooling water is set lower than that in the gas turbine disconnection process after the gas turbine disconnection process.

また、前記加圧流動床プラントの停止制御方法において、給水系統の給水温度がボイラ温度まで降下したら、給水ポンプを停止させることが好ましい。この際、給水ポンプの停止は、ボイラ温度と給水温度とが一致した時点で行うことが好ましい。 Moreover, in the stop control method for the pressurized fluidized bed plant, it is preferable to stop the feed water pump when the feed water temperature of the feed water system drops to the boiler temperature . At this time, it is preferable to stop the feed water pump when the boiler temperature and the feed water temperature coincide.

本発明の加圧流動床プラントの停止制御方法によれば、ボイラ設備に負担をかけることなく、加圧流動床プラントを停止する際の作業時間を短縮することができる。また、ボイラの停止処理が短縮されるため、冷却水を循環させるための動力費を低減することができる。   According to the stop control method for a pressurized fluidized bed plant of the present invention, the working time for stopping the pressurized fluidized bed plant can be shortened without imposing a burden on the boiler equipment. Moreover, since the boiler stop process is shortened, the power cost for circulating the coolant can be reduced.

以下、図面を参照して、本発明に係る加圧流動床プラントの停止制御方法の実施形態を説明する。
図1〜図3は、本発明の実施形態に係る加圧流動床プラントの停止制御方法の手順を示すタイムテーブル、図4は、本発明の実施形態に係る加圧流動床プラントの停止制御方法において給水ポンプの停止タイミングを示す説明図、図5は、本発明の実施形態に係る加圧流動床プラントの停止制御方法を適用する発電プラントの概略構成を示す説明図である。
Hereinafter, an embodiment of a stop control method for a pressurized fluidized bed plant according to the present invention will be described with reference to the drawings.
1 to 3 are time tables showing the procedure of a stop control method for a pressurized fluidized bed plant according to an embodiment of the present invention, and FIG. 4 is a stop control method for a pressurized fluidized bed plant according to an embodiment of the present invention. FIG. 5 is an explanatory view showing a schematic configuration of a power plant to which the stop control method for a pressurized fluidized bed plant according to an embodiment of the present invention is applied.

<発電プラント>
本発明の実施形態に係る加圧流動床プラントの停止制御方法を適用する発電プラントは、加圧流動床複合発電方式(PFBC:Pressurized Fluidized Bed Combustion Combined Cyde)を採用した発電プラントであり、圧力容器内に収納した流動床ボイラから発生する蒸気で蒸気タービンを駆動し、さらにボイラの排ガスでガスタービンを駆動するようになっている。
<Power plant>
A power generation plant to which a pressurized fluidized bed plant stop control method according to an embodiment of the present invention is applied is a power plant that employs a pressurized fluidized bed combined power generation system (PFBC), and a pressure vessel A steam turbine is driven by steam generated from a fluidized bed boiler housed therein, and a gas turbine is driven by exhaust gas from the boiler.

この発電プラントは、コンプレッサからの燃焼空気でボイラ内を加圧状態に保ちながら、石灰石を流動媒体(BM:ベッドマテリアル)とする流動層内にCWP(Coal Water Paste:石炭と石灰石と水とを混ぜた燃料)を投入することにより、CWPを効率よく燃焼させることができる。また、流動媒体に石灰石を採用することにより火炉内で脱硫することができるので、硫黄酸化物(SOx)の発生を低く抑えることができる。さらに、流動層燃焼は、燃焼温度が低く抑えられる(約860℃)ため、窒素酸化物(NOx)の発生を低く抑えることができる。   In this power plant, CWP (Coal Water Paste: coal, limestone, and water) is placed in a fluidized bed using limestone as a fluid medium (BM: bed material) while the boiler is kept pressurized with combustion air from the compressor. CWP can be burned efficiently by introducing the mixed fuel). Moreover, since it can desulfurize in a furnace by employ | adopting limestone as a fluid medium, generation | occurrence | production of sulfur oxide (SOx) can be suppressed low. Furthermore, in fluidized bed combustion, the combustion temperature can be kept low (about 860 ° C.), so that the generation of nitrogen oxides (NOx) can be kept low.

以下、本実施形態を適用する発電プラントを具体的に説明する。
本実施形態を適用する発電プラントは、図5に示すように、2つのボイラ10,20を備えており、ボイラ10,20の火炉11,21内にCWPを投入して燃焼させ、熱交換により発生した蒸気を高圧タービン31、中圧タービン32、および低圧タービン33に導いて各タービンを回転させることにより、発電機41を駆動して電力を発生させる。低圧タービン33を回転させた後の蒸気は、復水器50により復水され、再びボイラ10,20内へ導かれる。
Hereinafter, the power plant to which this embodiment is applied will be described in detail.
As shown in FIG. 5, the power plant to which the present embodiment is applied includes two boilers 10, 20. CWP is introduced into the furnaces 11, 21 of the boilers 10, 20 and burned, and heat exchange is performed. The generated steam is guided to the high-pressure turbine 31, the intermediate-pressure turbine 32, and the low-pressure turbine 33 to rotate each turbine, thereby driving the generator 41 to generate electric power. The steam after rotating the low-pressure turbine 33 is condensed by the condenser 50 and guided again into the boilers 10 and 20.

また、ボイラ10,20内で発生した高圧ガスをガスタービン34に導いてガスタービン34を回転させることにより、発電機42を駆動して電力を発生させる。さらに、高圧ガスは、ガスタービン34に同軸に連結されたコンプレッサ35を駆動して、燃焼空気をボイラ10,20へ供給するようになっている。   The high pressure gas generated in the boilers 10 and 20 is guided to the gas turbine 34 to rotate the gas turbine 34, thereby driving the generator 42 to generate electric power. Further, the high pressure gas drives a compressor 35 connected coaxially to the gas turbine 34 to supply combustion air to the boilers 10 and 20.

ボイラ10,20へ燃料を供給する燃料供給系統は、石炭を供給する石炭ホッパ61と、石炭ホッパ61から供給される石炭を粗粉砕する粗粉砕機62と、粗粉砕機62で粉砕された石炭粉を分級する分級機63と、分級機63で分級された石炭粉を中継する中継ホッパ64と、粗粉砕機62で粉砕された石炭粉に水を混入しながらさらに粉砕する微粉砕機65と、石灰石を供給する石灰石ホッパ66と、水、粗粉砕機62で粉砕された石炭粉、微粉砕機65で水を混入しながら粉砕された石炭ペースト、および石灰石を混練する混練機67と、混練機67で混練されたCWPを一時貯留する燃料タンク68と、燃料タンク68から火炉11,21内へCWPを送出する燃料ポンプ69とを備えている。   The fuel supply system that supplies fuel to the boilers 10 and 20 includes a coal hopper 61 that supplies coal, a coarse pulverizer 62 that roughly pulverizes the coal supplied from the coal hopper 61, and coal pulverized by the coarse pulverizer 62. A classifier 63 for classifying the powder, a relay hopper 64 for relaying the coal powder classified by the classifier 63, and a fine pulverizer 65 for further pulverizing the coal powder pulverized by the coarse pulverizer 62 while mixing water. A limestone hopper 66 for supplying limestone, a kneader 67 for kneading water, coal powder pulverized by the coarse pulverizer 62, coal paste pulverized while mixing water by the fine pulverizer 65, and limestone; A fuel tank 68 for temporarily storing the CWP kneaded by the machine 67 and a fuel pump 69 for sending the CWP from the fuel tank 68 into the furnaces 11 and 21 are provided.

2機のボイラ10,20は、それぞれ圧力容器12,22と、圧力容器12,22内に収容された火炉11,21とを備えており、火炉11,21内には水・蒸気配管71が挿通されている。水・蒸気配管71は、まずB火炉21内に導かれて熱交換が行われ、続いてA火炉11、汽水分離器72、A火炉11、B火炉21、A火炉11の順で引き回された後、高圧タービン31へ導かれる。   The two boilers 10 and 20 include pressure vessels 12 and 22 and furnaces 11 and 21 accommodated in the pressure vessels 12 and 22, respectively, and water and steam pipes 71 are provided in the furnaces 11 and 21, respectively. It is inserted. The water / steam pipe 71 is first guided into the B furnace 21 to perform heat exchange, and then routed in the order of the A furnace 11, the brackish water separator 72, the A furnace 11, the B furnace 21, and the A furnace 11. Then, it is guided to the high pressure turbine 31.

高圧タービン31は、水・蒸気配管71から供給される蒸気により回転する。高圧タービン31を回転させた後の蒸気は、再びB火炉21に導かれて再熱され、中圧タービン32に導かれて中圧タービン32を回転させ、さらに低圧タービン33に導かれて低圧タービン33を回転させる。高圧タービン31、中圧タービン32、および低圧タービン33には、同軸に発電機41が接続されており、各タービン31,32,33が回転することにより発電機41が駆動されて発電が行われる。   The high-pressure turbine 31 is rotated by the steam supplied from the water / steam pipe 71. The steam after rotating the high-pressure turbine 31 is guided again to the B furnace 21 and reheated, guided to the intermediate-pressure turbine 32 to rotate the intermediate-pressure turbine 32, and further guided to the low-pressure turbine 33 to be low-pressure turbine. 33 is rotated. A generator 41 is coaxially connected to the high-pressure turbine 31, the intermediate-pressure turbine 32, and the low-pressure turbine 33, and the generator 41 is driven by the rotation of the turbines 31, 32, and 33 to generate power. .

低圧タービン33を回転させた蒸気は、復水器50に導かれて復水される。復水器50内には、冷却水配管51が配設されている。この冷却水配管51には、深層取水した海水が導かれ、この海水は復水器50内で熱交換を行った後に、再び海中に放流される。   The steam that has rotated the low-pressure turbine 33 is led to the condenser 50 to be condensed. A cooling water pipe 51 is disposed in the condenser 50. The cooling water pipe 51 is guided by deep-sea water, and the sea water is subjected to heat exchange in the condenser 50 and then discharged again into the sea.

復水器50の下流側には、復水ポンプ73、第1給水加熱器74a、第2給水加熱器74b、第3給水加熱器74c、脱気器75、給水ポンプ76、第5給水加熱器74d、第6給水加熱器74eが配設されており、復水の加熱および脱気を行うようになっている。また、復水器50とボイラ10,20との間の復水配管77は、後に詳述する排ガス系統に設けられた2つの排熱回収交換器91,93を通過し、排ガスとの間で熱交換を行うようになっている。   On the downstream side of the condenser 50, a condensate pump 73, a first feed water heater 74a, a second feed water heater 74b, a third feed water heater 74c, a deaerator 75, a feed pump 76, and a fifth feed water heater. 74d and the 6th feed water heater 74e are arrange | positioned, and the condensate is heated and deaerated. A condensate pipe 77 between the condenser 50 and the boilers 10 and 20 passes through two exhaust heat recovery exchangers 91 and 93 provided in an exhaust gas system, which will be described in detail later. Heat exchange is performed.

A火炉11およびB火炉21の上部には排ガス配管81が連通接続されており、各火炉11,21内で発生した高圧ガスをガスタービン34へ供給するようになっている。また、各火炉11,21とガスタービン34との間には、脱硝を行うための無触媒脱硝装置82a,82b、煤塵を除去するための1次サイクロン83および2次サイクロン84が配設されている。なお、1次サイクロン83および2次サイクロン84で収集した煤塵は、灰ホッパ85,86を経て灰処理装置へ送出される。   An exhaust gas pipe 81 is connected to the upper portions of the A furnace 11 and the B furnace 21 so that high-pressure gas generated in the furnaces 11 and 21 is supplied to the gas turbine 34. Further, between each of the furnaces 11 and 21 and the gas turbine 34, non-catalytic denitration devices 82a and 82b for performing denitration, and a primary cyclone 83 and a secondary cyclone 84 for removing dust are disposed. Yes. Note that the dust collected by the primary cyclone 83 and the secondary cyclone 84 is sent to the ash treatment apparatus via the ash hoppers 85 and 86.

ガスタービン34には、発電機42およびコンプレッサ35が同軸に接続されており、ガスタービン34が回転することにより、発電機42を駆動して発電を行うとともに、コンプレッサ35を駆動して燃焼空気をボイラ10,20内へ送り込むようになっている。
また、ガスタービン34およびコンプレッサ35の起動用として起動用モータ43が取り付けられている。
A generator 42 and a compressor 35 are coaxially connected to the gas turbine 34. When the gas turbine 34 rotates, the generator 42 is driven to generate power, and the compressor 35 is driven to generate combustion air. It feeds into the boilers 10 and 20.
An activation motor 43 is attached to activate the gas turbine 34 and the compressor 35.

ガスタービン34を回転させた後の排ガスは、第1の排熱回収交換器91、脱硝を行うための脱硝装置92、第2の排熱回収交換器93、バグフィルタ94を経て、煙突95より大気中へ放散される。   The exhaust gas after rotating the gas turbine 34 passes through a first exhaust heat recovery exchanger 91, a denitration device 92 for performing denitration, a second exhaust heat recovery exchanger 93, and a bag filter 94, and from a chimney 95. Dissipated into the atmosphere.

A火炉11およびB火炉21には、BMを回収するためのBMタンク13,23が連通接続されている。なお、図5に示す例では、BMタンク13,23を各ボイラ10,20毎に1機ずつ設けているが、BMタンク13,23を各ボイラ10,20毎に2機ずつ設けてもよい。また、各ボイラ10,20の上部には非常用温水タンク14が配設されている。この非常用温水タンク14は、ボイラ給水系統が停止した際に、ボイラ10,20内の残燃料が燃焼することにより水壁管等が損傷することを防止するための装置で、水頭圧によりボイラ10,20へ給水するようになっている。   BM tanks 13 and 23 for collecting BM are connected to the A furnace 11 and the B furnace 21 in communication. In the example shown in FIG. 5, one BM tank 13, 23 is provided for each boiler 10, 20. However, two BM tanks 13, 23 may be provided for each boiler 10, 20. . Further, an emergency hot water tank 14 is disposed above each of the boilers 10 and 20. This emergency hot water tank 14 is a device for preventing water wall pipes and the like from being damaged by combustion of residual fuel in the boilers 10 and 20 when the boiler water supply system is stopped. Water is supplied to 10 and 20.

A火炉11およびB火炉21の下部には、各火炉11,21内に析出した塵芥を回収するための塵芥回収管101が接続されており、回収された塵芥は灰ホッパ102,103を経て灰処理装置へ送出される。また、A火炉11およびB火炉21には、ボイラ10,20の起動時に各火炉11,21内を加熱するための軽油が供給されるようになっている。   A dust collection pipe 101 for collecting the dust deposited in each of the furnaces 11 and 21 is connected to the lower part of the A furnace 11 and the B furnace 21, and the collected dust is ashed through the ash hoppers 102 and 103. It is sent to the processing device. The A furnace 11 and the B furnace 21 are supplied with light oil for heating the furnaces 11 and 21 when the boilers 10 and 20 are started.

<加圧流動床プラントの停止制御手順>
図1〜図4を参照して、本発明の実施形態に係る加圧流動床プラントの停止制御方法の手順を説明する。
加圧流動床プラントでは、定期的にボイラ10,20の内部点検、ガスタービン34の内部点検、1次サイクロン83および2次サイクロン84の内部点検等が行われる。これらの点検作業を行うには、煙道に通じるマンホールを開放し、作業員が設備内部に立ち入らなければならないため、ボイラ10,20、ガスタービン34、1次サイクロン83、2次サイクロン84等が冷却されている必要がある。
<Procedure for stopping control of pressurized fluidized bed plant>
With reference to FIGS. 1-4, the procedure of the stop control method of the pressurized fluidized-bed plant which concerns on embodiment of this invention is demonstrated.
In the pressurized fluidized bed plant, the internal inspection of the boilers 10 and 20, the internal inspection of the gas turbine 34, the internal inspection of the primary cyclone 83 and the secondary cyclone 84 are periodically performed. In order to carry out these inspections, the manhole leading to the flue must be opened and workers must enter the facility, so the boilers 10, 20, the gas turbine 34, the primary cyclone 83, the secondary cyclone 84, etc. It needs to be cooled.

加圧流動床プラントを停止するには、図1〜図3に示すように、第1の減負荷工程、第2の減負荷工程、ボイラ消火冷却工程、ガスタービン(GT)解列工程、強制冷却/保管薬注操作工程、補機停止工程が、この順に実施される。   In order to stop the pressurized fluidized bed plant, as shown in FIG. 1 to FIG. 3, the first load reduction process, the second load reduction process, the boiler fire extinguishing and cooling process, the gas turbine (GT) disconnection process, the forced The cooling / storage chemical injection operation process and the auxiliary machine stopping process are performed in this order.

本発明の実施形態に係る加圧流動床プラントの停止制御方法では、発電機41,42の負荷が所定値まで減少したら、非常用温水タンク14のヒータを停止させ、ボイラ消火冷却工程におけるガスタービン34の運転中にベッドマテリアル循環冷却(BM循環冷却)を行い、ガスタービン34の解列工程後にタービン軸受冷却水の温度をガスタービン34の解列工程よりも低温に設定し、給水系統の給水温度が所定温度まで降下したら給水ポンプ76を停止させることにより、プラントの停止時間を短縮している。   In the stop control method of the pressurized fluidized bed plant according to the embodiment of the present invention, when the load of the generators 41 and 42 is reduced to a predetermined value, the heater of the emergency hot water tank 14 is stopped and the gas turbine in the boiler fire extinguishing and cooling process. The bed material circulation cooling (BM circulation cooling) is performed during the operation of the gas turbine 34, and the temperature of the turbine bearing cooling water is set lower than that of the gas turbine 34 disconnection process after the gas turbine 34 disconnection process. When the temperature drops to a predetermined temperature, the stop time of the plant is shortened by stopping the feed water pump 76.

以下、これらの停止制御手順を具体的に説明する。
<BM循環冷却の開始時期>
プラント停止中は、BMタンク13,23内にBMが存在し、保有熱により例えば700〜800℃程度まで温度上昇することがある。また、BMの供給ラインおよび抜出ラインには遮断弁が存在しない。
Hereinafter, these stop control procedures will be specifically described.
<Start time of BM circulation cooling>
While the plant is stopped, BM exists in the BM tanks 13 and 23, and the temperature may rise to, for example, about 700 to 800 ° C. due to retained heat. Further, there is no shut-off valve in the BM supply line and the extraction line.

したがって、BMタンク13,23の保有熱が煙風道へ流れ出し、冷却に時間がかかる。さらに、BM温度が400℃以上である場合には、CO等の有害ガスが発生するおそれがあり、炉内作業環境を適正なものとするため早期に冷却を行う必要がある。   Therefore, the heat retained in the BM tanks 13 and 23 flows out to the flue and takes time for cooling. Furthermore, when the BM temperature is 400 ° C. or higher, harmful gases such as CO may be generated, and it is necessary to cool early in order to make the working environment in the furnace appropriate.

この点、従来のプラント停止制御手順では、ガスタービン34の停止後のN2循環冷却時にBM循環冷却を行っていたが、このタイミングにおける空気源は窒素ガス循環ファンであるため空気量が少なく、冷却に時間がかかる要因となっていた。 In this regard, in the conventional plant stop control procedure, BM circulation cooling was performed at the time of N 2 circulation cooling after the gas turbine 34 was stopped. However, since the air source at this timing is a nitrogen gas circulation fan, the amount of air is small. It was a factor that took time to cool down.

そこで、本実施形態では、ボイラ消火冷却工程におけるガスタービン34の運転中にBM循環冷却を行うことにより、コンプレッサ35からの豊富な風量により、BMの冷却時間を短縮している。具体的には、火炉層高が最低必要レベルである約0.6mに達した時点で、ガスタービン34の運転を続行しながら、コンプレッサ35から送風される空気によりボイラ10,20内でBMを流動させて、BMタンク13,23とボイラ10,20との間でBMを循環させることにより、BMの循環冷却を行う。なお、BM循環冷却工程では、GTサージング防止のため、火炉層高が約0.6m以下にならないような制御を行うことが必要である。   Therefore, in the present embodiment, the BM cooling time is shortened by the abundant air volume from the compressor 35 by performing the BM circulation cooling during the operation of the gas turbine 34 in the boiler fire extinguishing cooling process. Specifically, when the furnace bed height reaches the minimum required level of about 0.6 m, the BM is moved in the boilers 10 and 20 by the air blown from the compressor 35 while continuing the operation of the gas turbine 34. By circulating the BM between the BM tanks 13 and 23 and the boilers 10 and 20, the BM is circulated and cooled. In the BM circulation cooling process, it is necessary to perform control so that the furnace layer height does not become about 0.6 m or less in order to prevent GT surging.

なお、BM循環冷却を開始する火炉層高は、上述した基準に限定されるものではなく、ボイラ10,20を含むプラントの規模等に応じて適宜変更して実施することができる。
このような手順でBM循環冷却を行うことにより、BMタンク13,23の温度を早期に300℃以下にまで下げることができた。
The furnace bed height at which the BM circulation cooling is started is not limited to the above-mentioned standard, and can be appropriately changed according to the scale of the plant including the boilers 10 and 20 and the like.
By performing BM circulation cooling in such a procedure, the temperature of the BM tanks 13 and 23 could be lowered to 300 ° C. or less at an early stage.

<非常用温水タンクのヒータ電源オフ>
ボイラ建屋屋上には非常用温水タンク14が設置されている。この非常用温水タンク14は、ボイラ屋上からの水頭圧によりボイラ10,20へ給水する冷却水を貯蔵するためのタンクである。すなわち、ボイラ給水系統が停止した場合に、ボイラ10,20に供給される燃料は遮断されるが、ボイラ10,20内で残留燃料が燃焼し、水壁管等の焼損を防止するために、非常用温水タンク14から冷却水が供給されるようになっている。
<Emergency hot water tank heater power off>
An emergency hot water tank 14 is installed on the roof of the boiler building. The emergency hot water tank 14 is a tank for storing cooling water supplied to the boilers 10 and 20 by water head pressure from the boiler roof. That is, when the boiler water supply system is stopped, the fuel supplied to the boilers 10 and 20 is shut off, but the residual fuel burns in the boilers 10 and 20 to prevent burning of water wall pipes, etc. Cooling water is supplied from the emergency hot water tank 14.

通常運転時には、給水ポンプ76によりボイラ10,20への給水が行われているが、何らかの原因で給水系統が停止すると、ボイラ10,20内へ水が供給されずに過熱状態となってしまう。そこで、非常用温水タンク14から冷却水を供給してボイラ10,20の加熱を防止している。この非常用温水タンク14では、過冷却によるチューブ損傷を防止するため、ヒータ(図示せず)を用いて内部に貯蔵した冷却水を約300℃に加温している。   During normal operation, water is supplied to the boilers 10 and 20 by the water supply pump 76. However, if the water supply system is stopped for some reason, water is not supplied into the boilers 10 and 20 and an overheating state occurs. Therefore, the cooling water is supplied from the emergency hot water tank 14 to prevent the boilers 10 and 20 from being heated. In this emergency hot water tank 14, the cooling water stored inside is heated to about 300 ° C. using a heater (not shown) in order to prevent tube damage due to overcooling.

プラントが停止すると、非常用温水タンク14に貯蔵された冷却水がボイラ10,20内へ供給されるが、約300℃に加温された冷却水をボイラ10,20内へ供給したのでは、ボイラ冷却の妨げとなる。
そこで、本実施形態では、発電機負荷が通常運転時の約50%(例えば125MW出力)となった時点で、非常用温水タンク14のヒータ電源をオフとすることにより、ボイラ設備に過冷却等の影響が無い範囲で、冷却水温度を下げボイラ冷却を促進している。
When the plant is stopped, the cooling water stored in the emergency hot water tank 14 is supplied into the boilers 10 and 20, but the cooling water heated to about 300 ° C. is supplied into the boilers 10 and 20, This hinders boiler cooling.
Therefore, in this embodiment, when the generator load becomes about 50% of normal operation (for example, 125 MW output), the heater power supply of the emergency hot water tank 14 is turned off to supercool the boiler equipment. The cooling water temperature is lowered to promote boiler cooling within the range where there is no influence.

なお、非常用温水タンク14のヒータ電源をオフとするタイミングは、上述した基準に限定されるものではなく、ボイラ10,20を含むプラントの規模等に応じて適宜変更して実施することができる。
<給水ポンプの早期停止>
従来のプラント停止制御手順では、強制冷却/保管薬注操作工程が終了し、補機停止工程に入る際に給水ポンプ76を停止させていた。
In addition, the timing which turns off the heater power supply of the emergency hot water tank 14 is not limited to the above-mentioned standard, and can be appropriately changed according to the scale of the plant including the boilers 10 and 20. .
<Early stop of water supply pump>
In the conventional plant stop control procedure, the forced cooling / storage chemical injection operation process is completed, and the water supply pump 76 is stopped when entering the auxiliary machine stop process.

しかしながら、図4に示すように、ボイラ温度および給水温度は時間の経過とともに徐々に下降してゆくが、ボイラ温度が約70℃となった時点で給水温度も約70℃となり、それ以降はボイラ温度よりも給水温度の方が高い状態が続いている。すなわち、ボイラ温度が70℃に到達した以降は、給水によりボイラ10,20を加温していることになる。
そこで、本実施形態では、給水系統の給水温度が所定温度(例えば約70℃)まで降下したら給水ポンプ76を停止させることにより、冷却時間を短縮している。
However, as shown in FIG. 4, the boiler temperature and the feed water temperature gradually decrease with time, but when the boiler temperature reaches about 70 ° C., the feed water temperature also reaches about 70 ° C., and thereafter the boiler The water supply temperature continues to be higher than the temperature. That is, after the boiler temperature reaches 70 ° C., the boilers 10 and 20 are heated by water supply.
Therefore, in this embodiment, the cooling time is shortened by stopping the feed water pump 76 when the feed water temperature of the feed water system drops to a predetermined temperature (for example, about 70 ° C.).

なお、給水ポンプ76を停止するボイラ温度は、上述した基準に限定されるものではなく、ボイラ10,20を含むプラントの規模等に応じて適宜変更して実施することができる。   In addition, the boiler temperature which stops the feed water pump 76 is not limited to the reference | standard mentioned above, It can change suitably according to the scale etc. of the plant containing the boilers 10 and 20.

<軸受冷却水温度設定変更>
プラント停止中には、窒素ガス循環ファン(図示せず)を用いてボイラ冷却系統(1次サイクロン83、2次サイクロン84等)に空気を循環させて冷却を行っている。この窒素ガス循環ファンの上流側には窒素ガス循環クーラ(図示せず)が配設されており、窒素ガス循環ファンにより循環させられる空気と軸受冷却水との間で熱交換を行って冷却効果を高めている。
<Bearing coolant temperature setting change>
While the plant is stopped, cooling is performed by circulating air through a boiler cooling system (primary cyclone 83, secondary cyclone 84, etc.) using a nitrogen gas circulation fan (not shown). A nitrogen gas circulation cooler (not shown) is disposed on the upstream side of the nitrogen gas circulation fan, and a cooling effect is achieved by exchanging heat between the air circulated by the nitrogen gas circulation fan and the bearing cooling water. Is increasing.

そこで、本実施形態では、N2循環冷却工程において、通常運転時には約30℃に設定されている軸受冷却水の温度を適正な値(例えば27℃)に設定することにより、ボイラ10,20の冷却時間を短縮している。
なお、軸受冷却水の設定温度は、上述した基準に限定されるものではなく、ボイラ10,20を含むプラントの規模等に応じて適宜変更して実施することができる。
Therefore, in the present embodiment, in the N 2 circulation cooling step, the temperature of the bearing cooling water set to about 30 ° C. during normal operation is set to an appropriate value (for example, 27 ° C.), thereby Cooling time is shortened.
Note that the set temperature of the bearing cooling water is not limited to the above-described standard, and can be appropriately changed according to the scale of the plant including the boilers 10 and 20.

<停止操作時間>
従来の加圧流動床プラントの停止制御方法では、停止操作が終了するまでにST解列から約110時間かかっていた。
これに対して、本発明の実施形態に係る加圧流動床プラントの停止制御方法によれば、図1〜図3に示すように、停止操作が終了するまでにST解列から約56時間とすることができた。
<Stop operation time>
In the conventional stop control method of a pressurized fluidized bed plant, it took about 110 hours from the ST disconnection until the stop operation was completed.
On the other hand, according to the stop control method of the pressurized fluidized bed plant according to the embodiment of the present invention, as shown in FIGS. 1 to 3, about 56 hours from the ST disconnection until the stop operation is completed. We were able to.

すなわち、本発明の実施形態に係る加圧流動床プラントの停止制御方法を採用することにより、停止操作に要する時間を従来の約半分に短縮することができるため、点検作業の開始時期を早めることができる。また、ボイラ10,20の運転再開も早まり、ボイラ10,20の停止処理に関連した動力費を低減することができる。   That is, by adopting the stop control method of the pressurized fluidized bed plant according to the embodiment of the present invention, the time required for the stop operation can be shortened to about half of the conventional time, so that the start time of the inspection work is advanced. Can do. Moreover, the restart of operation of the boilers 10 and 20 is accelerated, and the power cost related to the stop processing of the boilers 10 and 20 can be reduced.

本発明は、主として、加圧流動床ボイラ10,20を備えた発電プラントを停止させる際の停止制御方法として使用することができるが、加圧流動床ボイラ10,20を備えたプラントであれば発電プラント以外のプラントにも適用することができる。   The present invention can mainly be used as a stop control method when stopping a power plant including the pressurized fluidized bed boilers 10 and 20, but any plant including the pressurized fluidized bed boilers 10 and 20 can be used. It can also be applied to plants other than power plants.

本発明の実施形態に係る加圧流動床プラントの停止制御方法の手順を示すタイムテーブルである。It is a timetable which shows the procedure of the stop control method of the pressurized fluidized bed plant which concerns on embodiment of this invention. 本発明の実施形態に係る加圧流動床プラントの停止制御方法の手順を示すタイムテーブルである。It is a timetable which shows the procedure of the stop control method of the pressurized fluidized bed plant which concerns on embodiment of this invention. 本発明の実施形態に係る加圧流動床プラントの停止制御方法の手順を示すタイムテーブルである。It is a timetable which shows the procedure of the stop control method of the pressurized fluidized bed plant which concerns on embodiment of this invention. 本発明の実施形態に係る加圧流動床プラントの停止制御方法において給水ポンプの停止タイミングを示す説明図である。It is explanatory drawing which shows the stop timing of a feed water pump in the stop control method of the pressurized fluidized bed plant which concerns on embodiment of this invention. 本発明の実施形態に係る加圧流動床プラントの停止制御方法を適用する発電プラントの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the power plant to which the stop control method of the pressurized fluidized bed plant which concerns on embodiment of this invention is applied.

符号の説明Explanation of symbols

10,20 ボイラ
11,21 火炉
12,22 圧力容器
13,23 BMタンク
14 非常用温水タンク
31 高圧タービン
32 中圧タービン
33 低圧タービン
34 ガスタービン
35 コンプレッサ
41,42 発電機
43 起動用モータ
50 復水器
51 冷却水配管
61 石炭ホッパ
62 粗粉砕機
63 分級機
64 中継ホッパ
65 微粉砕機
66 石灰石ホッパ
67 混練機
68 燃料タンク
69 燃料ポンプ
71 水・蒸気配管
72 汽水分離器
73 復水ポンプ
74a〜74e 給水加熱器
75 脱気器
76 給水ポンプ
77 復水配管
81 排ガス配管
82a,82b 無触媒脱硝装置
83 1次サイクロン
84 2次サイクロン
85,86 灰ホッパ
91,93 排熱回収交換器
92 脱硝装置
94 バグフィルタ
95 煙突
101 塵芥回収管
102,103 灰ホッパ
DESCRIPTION OF SYMBOLS 10,20 Boiler 11,21 Furnace 12,22 Pressure vessel 13,23 BM tank 14 Emergency hot water tank 31 High pressure turbine 32 Medium pressure turbine 33 Low pressure turbine 34 Gas turbine 35 Compressor 41, 42 Generator 43 Start motor 50 Condensate Equipment 51 Cooling water pipe 61 Coal hopper 62 Coarse pulverizer 63 Classifier 64 Relay hopper 65 Fine pulverizer 66 Limestone hopper 67 Kneading machine 68 Fuel tank 69 Fuel pump 71 Water / steam pipe 72 Braking water separator 73 Condensate pumps 74a-74e Feed water heater 75 Deaerator 76 Feed water pump 77 Condensate pipe 81 Exhaust gas pipe 82a, 82b Non-catalytic denitration device 83 Primary cyclone 84 Secondary cyclone 85, 86 Ash hopper 91, 93 Waste heat recovery exchanger 92 Denitration device 94 Bug Filter 95 Chimney 101 Dust collection Tube 102,103 Ash hopper

Claims (4)

加圧流動床ボイラを備えた発電プラントを停止させるための方法であって、
ボイラ消火冷却工程におけるガスタービン運転中に、ガスタービンから送風される空気により、ボイラ内のベッドマテリアルを流動させて、ベッドマテリアルタンクとボイラとの間でベッドマテリアルを循環させることにより、ベッドマテリアルの循環冷却を行うことを特徴とする加圧流動床プラントの停止制御方法。
A method for stopping a power plant equipped with a pressurized fluidized bed boiler,
During operation of the gas turbine in the boiler fire extinguishing and cooling process , the bed material is circulated between the bed material tank and the boiler by causing the bed material in the boiler to flow with the air blown from the gas turbine. A stop control method for a pressurized fluidized bed plant, characterized by performing circulation cooling .
発電機の負荷が通常運転時の約50%まで減少したら、非常用温水タンクヒータを停止させることを特徴とする請求項1に記載の加圧流動床プラントの停止制御方法。 The method for controlling stoppage of a pressurized fluidized bed plant according to claim 1, wherein the emergency hot water tank heater is stopped when the load on the generator is reduced to about 50% during normal operation . ガスタービン解列工程後に、タービン軸受冷却水の温度を前記ガスタービン解列工程よりも低温に設定することを特徴とする請求項1または2に記載の加圧流動床プラントの停止制御方法。   The method for controlling stoppage of a pressurized fluidized bed plant according to claim 1 or 2, wherein the temperature of the turbine bearing cooling water is set to be lower than that of the gas turbine disconnection process after the gas turbine disconnection process. 給水系統の給水温度がボイラ温度まで降下したら、給水ポンプを停止させることを特徴とする請求項1〜3のいずれか1項に記載の加圧流動床プラントの停止制御方法。 The stop control method for a pressurized fluidized bed plant according to any one of claims 1 to 3, wherein the feed water pump is stopped when the feed water temperature of the feed water system drops to the boiler temperature .
JP2005293088A 2005-10-06 2005-10-06 Stop control method for pressurized fluidized bed plant Expired - Fee Related JP4514684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005293088A JP4514684B2 (en) 2005-10-06 2005-10-06 Stop control method for pressurized fluidized bed plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293088A JP4514684B2 (en) 2005-10-06 2005-10-06 Stop control method for pressurized fluidized bed plant

Publications (2)

Publication Number Publication Date
JP2007100621A JP2007100621A (en) 2007-04-19
JP4514684B2 true JP4514684B2 (en) 2010-07-28

Family

ID=38027809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293088A Expired - Fee Related JP4514684B2 (en) 2005-10-06 2005-10-06 Stop control method for pressurized fluidized bed plant

Country Status (1)

Country Link
JP (1) JP4514684B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106761969B (en) * 2016-11-22 2018-03-02 广州广重企业集团有限公司 A kind of measures conversion method of steam turbine flow
CN111764973B (en) * 2020-05-18 2023-03-14 张选 Deep slip stopping method for steam turbine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211624A (en) * 1987-12-23 1989-08-24 Abb Stal Ab Method and device for cooling pfbc power plant after trip of gas turbine
JPH05332102A (en) * 1992-05-29 1993-12-14 Hitachi Ltd Pressure fluidized bed boiler power plant
JPH0771717A (en) * 1993-08-31 1995-03-17 Ishikawajima Harima Heavy Ind Co Ltd Method of removing bed after occurrence of boiler trip in pressurized fluidized bed type boiler
JPH07324705A (en) * 1994-06-02 1995-12-12 Hitachi Ltd Emergency stop method for pressure fluidized bed boiler
JPH0835611A (en) * 1994-07-27 1996-02-06 Hitachi Ltd Power plant with fluidized-bed boiler
JP2000213306A (en) * 1999-01-21 2000-08-02 Hitachi Ltd Pressure fluidized bed compound power plant
JP2000266306A (en) * 1999-03-15 2000-09-29 Babcock Hitachi Kk Pressurized fluidized-bed boiler

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211624A (en) * 1987-12-23 1989-08-24 Abb Stal Ab Method and device for cooling pfbc power plant after trip of gas turbine
JPH05332102A (en) * 1992-05-29 1993-12-14 Hitachi Ltd Pressure fluidized bed boiler power plant
JPH0771717A (en) * 1993-08-31 1995-03-17 Ishikawajima Harima Heavy Ind Co Ltd Method of removing bed after occurrence of boiler trip in pressurized fluidized bed type boiler
JPH07324705A (en) * 1994-06-02 1995-12-12 Hitachi Ltd Emergency stop method for pressure fluidized bed boiler
JPH0835611A (en) * 1994-07-27 1996-02-06 Hitachi Ltd Power plant with fluidized-bed boiler
JP2000213306A (en) * 1999-01-21 2000-08-02 Hitachi Ltd Pressure fluidized bed compound power plant
JP2000266306A (en) * 1999-03-15 2000-09-29 Babcock Hitachi Kk Pressurized fluidized-bed boiler

Also Published As

Publication number Publication date
JP2007100621A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
EP2431579B1 (en) Multipurpose thermal power plant system
JP6163994B2 (en) Oxygen combustion boiler exhaust gas cooler steam generation prevention device
JP2007162627A (en) Composite power generation system and method of operating composite power generation system
JP5092114B2 (en) In-furnace fluidity management method for fluidized media accompanying coal type switching in fluidized bed boiler
JP4771865B2 (en) Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler
JP4514684B2 (en) Stop control method for pressurized fluidized bed plant
CN108843414B (en) Working method for coupling and decoupling nuclear energy and conventional energy with reheating power generation system
JP4632901B2 (en) Boiler scale removal method
JP2009174745A (en) Draft system in steam power generation facility
JP5127220B2 (en) Slurry viscosity control method with coal type switching in fluidized bed boiler
JP4456979B2 (en) Stop charcoal combustion
JP2005194968A (en) Exhaust gas re-combustion plant and method for converting plant facility
JP5465747B2 (en) Start-up method of pressurized fluidized bed combined power plant
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP2011038667A (en) Oxygen combustion plant and its operation method
JP5094043B2 (en) Management method of fly ash ash quantity by changing coal type in fluidized bed boiler
JP3700075B2 (en) Pressurized fluidized bed combined power plant
JP2008014505A (en) Viscosity management method of cwp (coal water paste) accompanying change of kind of coal in fluidized bed boiler
JP5807903B2 (en) Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility
JP2014112017A (en) Method for forcedly cooling boiler after boiler extinction in power-generating facility
JP2004092426A (en) Cogeneration method and cogeneration system
TWI818615B (en) Methods of operating ammonia fuel supply units, power plants, and boilers
JP4456977B2 (en) Stop charcoal combustion
JP2008194572A (en) Method for treating clogging of cyclone
JP5213340B2 (en) Recycling method and equipment of fluidized material in pressurized fluidized bed combined power generation.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091031

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

R150 Certificate of patent or registration of utility model

Ref document number: 4514684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees