JP2000266306A - Pressurized fluidized-bed boiler - Google Patents

Pressurized fluidized-bed boiler

Info

Publication number
JP2000266306A
JP2000266306A JP11068299A JP6829999A JP2000266306A JP 2000266306 A JP2000266306 A JP 2000266306A JP 11068299 A JP11068299 A JP 11068299A JP 6829999 A JP6829999 A JP 6829999A JP 2000266306 A JP2000266306 A JP 2000266306A
Authority
JP
Japan
Prior art keywords
medium
fluidized
pipe
container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11068299A
Other languages
Japanese (ja)
Inventor
Ryuichi Sugita
隆一 杉田
Yasutsune Katsuta
康常 勝田
Yoshinori Otani
義則 大谷
Wakako Shimodaira
和佳子 下平
Manabu Yamamoto
学 山本
Shinichiro Nomura
伸一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11068299A priority Critical patent/JP2000266306A/en
Publication of JP2000266306A publication Critical patent/JP2000266306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily remove a mineral matter of rough particles stored in a flow medium of a pressurized fluidized-bed combustion furnace having low cost and simple facility, by providing a rough particle separator on the way of an air flow conveying tube or in a medium container, removing rough particles in the medium, and then storing the particles in the container. SOLUTION: A rough particle separator 26 is provided at an air flow transport tube 13 at a front flow of a medium container 14, and a cooler 50 is provided at the tube 13 at the front flow of the separator 26. A flow medium supplied via the tube 13 and a valve 28 is sorted out on a screen 27, and the medium passed through the screen 27 is stored as flow medium 20 in the container 14 via the valve 29. The medium of rough particles containing a shear which did not pass through the screen 27 is slid on the screen 27 and stored at a lower end of the screen 27, and introduced into a rough particle storage container 32 through a discharge tube 30 and a valve 31 connected to the lower end. The level of the particles in the container 32 is monitored with an inspection window 33 the valve 31 is closed, a valve 35 is opened, and the particles are discharged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は加圧流動層ボイラに
関し、さらに詳しくはガスタービン、スチームタービン
等を駆動して複合発電を行うのに好適な、流動層高を変
化させて負荷制御を行う加圧流動層ボイラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized-bed boiler, and more particularly, to load control by changing the height of a fluidized bed suitable for performing combined power generation by driving a gas turbine, a steam turbine or the like. The present invention relates to a pressurized fluidized-bed boiler.

【0002】[0002]

【従来の技術】加圧流動層ボイラでは、流動層燃焼炉内
の流動媒体を出し入れすることによって、流動層高を増
減させて負荷変化の制御を行っている。すなわち、負荷
を下げるときは、流動層燃焼炉内の流動媒体を炉内から
抜き出して別置の媒体容器に一時的に貯蔵し、逆に負荷
を増加させるときは、該媒体容器から流動媒体を流動層
燃焼炉内に供給することにより、炉内の伝熱管の流動媒
体への埋没高さを変化させて伝熱面積を増減させ、蒸気
の発生量を変化させて負荷変化の制御が行われる。
2. Description of the Related Art In a pressurized fluidized-bed boiler, a fluidized medium in a fluidized-bed combustion furnace is taken in and out to increase or decrease the height of a fluidized bed to control a load change. That is, when lowering the load, the fluidized medium in the fluidized bed combustion furnace is extracted from the furnace and temporarily stored in a separate medium container. Conversely, when the load is increased, the fluidized medium is removed from the medium container. By supplying the fluid into the fluidized bed combustion furnace, the height of the heat transfer tube in the furnace is immersed in the fluid medium to change the heat transfer area, and the amount of generated steam is changed to control the load change. .

【0003】図9は、従来技術の加圧流動層ボイラの説
明図である。図9において、加圧流動層ボイラは、加圧
装置1と媒体容器14とからなり、該加圧装置1は、流
動層燃焼炉2と、該流動層燃焼炉2から排出される排ガ
スに含まれる粉塵等を除去するサイクロン8と、該粉塵
等が除去された排ガスを系外に排出する排気管9とを備
える。また前記流動層燃焼炉2には、流動層5を形成す
る流動媒体4と、流動層5に石炭を供給する給炭管6
と、流動層5に供給された石炭を燃焼する燃焼用空気を
該流動層5に供給する空気分散板3と、流動層5内に埋
設された伝熱管7と、流動層5を形成する流動媒体4を
抜き出す流動層抜出し管11と、抜き出した流動媒体4
を前記媒体容器14に輸送する気流輸送管13と、媒体
容器14に貯留された流動媒体20を流動層燃焼炉2に
供給する供給管21とが設けられている。また前記流動
層抜出し管11は流動層燃焼炉2の側壁下部に開孔して
設けられ、その下端にはLバルブ12が設けられ、該L
バルブ12の末端部には気流輸送管13が連結されてお
り、該気流輸送管13の先端部に設置された媒体容器1
4の空塔部15には排気管16および減圧弁17が連結
され、系外へ通じている。
FIG. 9 is an explanatory view of a conventional pressurized fluidized bed boiler. 9, the pressurized fluidized-bed boiler includes a pressurizing device 1 and a medium container 14, and the pressurizing device 1 is included in the fluidized-bed combustion furnace 2 and the exhaust gas discharged from the fluidized-bed combustion furnace 2. A cyclone 8 for removing dust and the like to be removed, and an exhaust pipe 9 for discharging the exhaust gas from which the dust and the like have been removed to the outside of the system. The fluidized bed combustion furnace 2 includes a fluidized medium 4 for forming a fluidized bed 5 and a coal feed pipe 6 for supplying coal to the fluidized bed 5.
And an air distribution plate 3 for supplying combustion air for burning the coal supplied to the fluidized bed 5 to the fluidized bed 5, a heat transfer tube 7 embedded in the fluidized bed 5, and a fluid for forming the fluidized bed 5. A fluidized bed extraction pipe 11 for extracting the medium 4;
And a supply pipe 21 for supplying the fluidized medium 20 stored in the medium container 14 to the fluidized bed combustion furnace 2. The fluidized bed extraction pipe 11 is provided with an opening at the lower part of the side wall of the fluidized bed combustion furnace 2, and an L valve 12 is provided at the lower end thereof.
An air flow transport pipe 13 is connected to the end of the valve 12, and the medium container 1 installed at the tip of the air flow transport pipe 13
An exhaust pipe 16 and a pressure reducing valve 17 are connected to the empty tower section 15 of 4 and communicate with the outside of the system.

【0004】このような構成において、圧力容器1に収
納された流動層燃焼炉2は、空気分散板3を通って供給
された燃焼用空気によって流動層5を形成し、燃料石炭
が給炭管6から流動層5内に供給されて燃焼され、流動
層5内に配列された伝熱管7が燃焼熱を吸収して管内に
蒸気を発生する。流動層5内の石炭の燃焼によって生じ
た燃焼排ガスは、サイクロン8によって脱塵された後、
排気管9および減圧弁10を経由して系外へ排出され
る。
In such a configuration, a fluidized bed combustion furnace 2 housed in a pressure vessel 1 forms a fluidized bed 5 with combustion air supplied through an air distribution plate 3, and fuel coal is supplied to a coal feed pipe. The fluid is supplied into the fluidized bed 5 from the fuel tank 6 and burned, and the heat transfer tubes 7 arranged in the fluidized bed 5 absorb the heat of combustion and generate steam in the tube. The flue gas generated by the combustion of the coal in the fluidized bed 5 is dedusted by the cyclone 8,
It is discharged out of the system via the exhaust pipe 9 and the pressure reducing valve 10.

【0005】また負荷変化のための流動層高の変化は、
次のような手段で行われる。すなわち、流動層5の層高
を下げる際には、流動媒体4は、流動層抜出し管11、
Lバルブ12、気流輸送管13を通して媒体容器14に
導かれて一時的に流動媒体20として貯蔵される。気流
輸送管13による流動媒体4の輸送は、圧力容器1から
バルブ18を介して供給される輸送用ガスによって行わ
れ、当該ガスは媒体容器14下流の排気管16、減圧弁
17を経由して系外へ導かれる。流動媒体4の流量調整
は、圧力容器1からバルブ19を介してLバルブ12に
供給される搬送用ガスの量を調節することによって行わ
れる。
[0005] Fluctuation of fluidized bed height due to load change is as follows.
This is performed by the following means. That is, when lowering the bed height of the fluidized bed 5, the fluidized medium 4 is filled with the fluidized bed extraction pipe 11,
The liquid is guided to the medium container 14 through the L valve 12 and the air flow transport pipe 13 and is temporarily stored as the flowing medium 20. The transport of the fluid medium 4 by the airflow transport pipe 13 is performed by a transport gas supplied from the pressure vessel 1 via a valve 18, and the gas passes through an exhaust pipe 16 downstream of the medium vessel 14 and a pressure reducing valve 17. It is led out of the system. The flow rate of the fluid medium 4 is adjusted by adjusting the amount of carrier gas supplied from the pressure vessel 1 to the L valve 12 via the valve 19.

【0006】このようにして流動層高を低くすることに
より、炉内伝熱管7の流動媒体4への埋没が浅くなり、
伝熱面積が減少するため、負荷低下が実現される。負荷
を上げる場合は、媒体容器14内に貯蔵された流動媒体
20を、供給管21、Lバルブ22を経由し、圧力容器
1からバルブ23を介して供給される供給管用ガスによ
って流動層5へと供給し、流動層高を高くする。
[0006] By lowering the fluidized bed height in this way, the immersion of the in-furnace heat transfer tube 7 in the fluidized medium 4 becomes shallower,
Since the heat transfer area is reduced, the load is reduced. When the load is increased, the fluid medium 20 stored in the medium container 14 is supplied to the fluidized bed 5 through the supply pipe 21 and the L valve 22 by the supply pipe gas supplied from the pressure vessel 1 via the valve 23. To increase the height of the fluidized bed.

【0007】上述した従来の流動媒体の循環方法では、
負荷変化の際に流動層燃焼炉2から850℃前後という
高温のままの流動媒体4が媒体容器14へと引き抜かれ
る。このとき媒体の輸送に使用している圧力容器1のガ
スは、空気であるため、約21%の酸素を含んでいる。
さらに負荷変化を行わない時は、媒体容器14内に流動
媒体20が固定層の状態で長時間保管される。これらの
ことが原因となって、流動媒体20中に含まれる未燃石
炭粒子が、高温、高酸素濃度の媒体容器14内で断熱的
に燃焼し、過度に温度が上昇して灰や流動媒体が溶融す
ると、アグロメ24が発生する。このようなアグロメ2
4は、負荷を上げるために媒体容器14内の流動媒体2
0を流動層へと移送する際に、供給管21の閉塞を引き
起こす危険性があり、スムーズな負荷変化を行うことが
できないばかりか、最悪の場合は流動層燃焼炉2の運転
停止に至る。
In the above-described conventional method of circulating a fluid medium,
At the time of the load change, the fluidized medium 4 having a high temperature of about 850 ° C. is drawn out of the fluidized bed combustion furnace 2 into the medium container 14. At this time, since the gas in the pressure vessel 1 used for transporting the medium is air, it contains about 21% of oxygen.
When the load is not changed, the flowing medium 20 is stored in the medium container 14 in a fixed layer state for a long time. Due to these factors, the unburned coal particles contained in the fluidized medium 20 are adiabatically burned in the medium container 14 having a high temperature and a high oxygen concentration, and the temperature is excessively increased, and the ash and the fluidized medium are removed. When melted, agglomerates 24 are generated. Agglomeration 2 like this
4 is a flow medium 2 in the medium container 14 for increasing the load.
When transferring 0 to the fluidized bed, there is a risk that the supply pipe 21 may be blocked, so that not only a smooth load change cannot be performed, but in the worst case, the operation of the fluidized bed combustion furnace 2 is stopped.

【0008】こうした閉塞の原因となる媒体粒子の溶融
固化を回避するために、媒体容器内に窒素等の不活性ガ
スを供給する方法が採用される場合もあるが、不活性ガ
スを貯蔵、供給するための大がかりな設備が必要とな
り、かなりのコスト高となることから使用困難なのが現
状である。
A method of supplying an inert gas such as nitrogen into the medium container may be employed to avoid the solidification of the medium particles which cause such blockage. However, the inert gas is stored and supplied. At present, large-scale equipment is required, and the cost is considerably high.

【0009】一方、流動層5には、例えば6〜10mm以
下に粉砕された石炭と、脱硫剤である3mm以下に粉砕さ
れた石灰石および水が混合されてペースト状にしたCW
P(Coal Water Paste) が、給炭管6を介して供給され
る。CWPを使用するのは、乾炭を使用すると層内温度
分布が大きくなるためであり、粗粉砕の石炭を使用する
のはCWPの水分量をできるだけ少なくするためであ
る。石炭は粗粉砕で使用されるために、石炭中に含まれ
る最大径が6〜10mmの粗粒子の鉱物質も層内に投入さ
れることになる。微粒の鉱物質、石灰石とSO2 が反応
してできたCaSO4 や石灰石が脱炭酸したCaOは摩
滅してそのほとんどが燃焼炉外へ飛散するが、粗粒子の
鉱物質は、摩滅しにくく流動層5内に留まることにな
る。
On the other hand, in the fluidized bed 5, for example, coal pulverized to a size of 6 to 10 mm or less, limestone pulverized to a size of 3 mm or less as a desulfurizing agent, and water are mixed to form a CW paste.
P (Coal Water Paste) is supplied through a coal feed pipe 6. The reason why CWP is used is that if dry coal is used, the temperature distribution in the bed becomes large, and the use of coarsely pulverized coal is to make the water content of CWP as small as possible. Since the coal is used in the coarse pulverization, coarse particles of a mineral having a maximum diameter of 6 to 10 mm contained in the coal are also introduced into the bed. Fine minerals, CaSO 4 formed by the reaction of limestone and SO 2 , and CaO decalcified from limestone are abraded and most of them are scattered outside the combustion furnace, but coarse minerals are hard to wear and flow. It will stay in layer 5.

【0010】このような粗粒子の鉱物質はズリと呼ば
れ、加圧流動層ボイラの運転を長時間継続すると流動層
5内にズリが蓄積されることになる。ズリは一般的に硬
度が大であり、ズリが増加すると流動媒体4と同様に流
動して伝熱管7の摩耗が加速されることになる。またズ
リが増加すると流動媒体4の流動不良がおき、アグロメ
24が発生しやすくなったり、脱硫率低下等の問題も発
生する。従って、通常は炉底の流動層抜出し管11から
定期的に流動媒体4をサンプリングし、6メッシュ
(3.35mm)以上の流動媒体4が例えば5重量%以上
になると流動媒体4を流動層燃焼炉2の底から抜き出
し、ズリを除去するようにしている。しかし、この方法
ではズリのみではなく、脱硫に寄与する炉内の石灰石も
同時に廃棄することになり不経済であった。
[0010] Such coarse-grained mineral substances are called debris, and debris accumulates in the fluidized bed 5 when the operation of the pressurized fluidized-bed boiler is continued for a long time. Generally, the shear has a large hardness, and when the shear increases, it flows like the fluid medium 4 and accelerates the wear of the heat transfer tube 7. In addition, if the amount of shear increases, poor flow of the fluid medium 4 occurs, causing problems such as agglomeration 24 and a decrease in desulfurization rate. Therefore, usually, the fluidized medium 4 is periodically sampled from the fluidized bed extraction pipe 11 at the bottom of the furnace, and when the fluidized medium 4 of 6 mesh (3.35 mm) or more becomes, for example, 5% by weight or more, the fluidized medium 4 is subjected to fluidized bed combustion. It is pulled out from the bottom of the furnace 2 to remove the scrap. However, in this method, not only the waste but also the limestone in the furnace contributing to desulfurization is discarded at the same time, which is uneconomical.

【0011】[0011]

【発明が解決しようとする課題】本発明の課題は、上記
従来方法の問題点を解決し、低コストかつ簡単な設備
で、加圧流動層燃焼炉の流動媒体中に蓄積した粗粒子の
鉱物質を容易に除去することができ、また負荷制御のた
めの流動媒体の抜出しおよび供給をスムーズに行うこと
ができる加圧流動層ボイラを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional method, and to provide a low-cost and simple facility with the use of minerals of coarse particles accumulated in a fluidized medium of a pressurized fluidized bed combustion furnace. An object of the present invention is to provide a pressurized fluidized-bed boiler capable of easily removing quality and smoothly extracting and supplying a fluidized medium for load control.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
に鑑み鋭意研究した結果、(a) 層高制御用気流輸送管か
ら媒体容器までの間に流動媒体の粒子をサイズによって
分ける構造を設置し、流動媒体に含まれる粗粒を選択的
に排除する、(b) 流動媒体が通過できる目開きが例えば
3mm以上のスクリーンを設置する、(c) スクリーンを傾
斜させ、スクリーン上面の最下端と媒体容器内壁の接す
る部分に、粗粒を取り出すための排出管を接続する、
(d) スクリーンの目詰まりを清掃できるように、気流輸
送管および供給管の系統にバルブを設ける、(e) バルブ
の保護およびスクリーン清掃時の安全性を考慮して、流
動媒体の冷却装置を設ける、(f) 気流輸送管の下端部に
流動層を設置し、該気流輸送管の輸送用ガスの流速が、
分離する粗粒の終端速度となるようにする手段を設け
る、(g) 流動層燃焼炉と媒体容器の間の媒体輸送用のガ
スとして、空気よりも酸素濃度の低い、例えば流動層燃
焼炉の排ガスを使用する、(h) 流動層燃焼炉の排ガスに
該排ガスよりも酸素濃度の低いガスを混合して媒体輸送
用ガスとして用いることにより上記課題を解決できるこ
とを見いだし、本発明に到達したものである。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the above problems and found that (a) a structure in which particles of a flowing medium are divided according to size between a bed height control airflow transport pipe and a medium container. (B) Install a screen with an opening that allows the fluid medium to pass through, for example, 3 mm or more. (C) Incline the screen, A discharge pipe for removing coarse particles is connected to a portion where the lower end is in contact with the inner wall of the medium container,
(d) Provide a valve in the system of the air flow transport pipe and the supply pipe so that clogging of the screen can be cleaned. (e) Provide a cooling device for the flowing medium in consideration of protection of the valve and safety when cleaning the screen. (F) installing a fluidized bed at the lower end of the airflow transport pipe, the flow velocity of the transport gas in the airflow transport pipe,
(G) As a gas for transporting the medium between the fluidized bed combustion furnace and the medium container, a gas having a lower oxygen concentration than air, such as a fluidized bed combustion furnace, is provided. Using exhaust gas, (h) the inventors have found that it is possible to solve the above problem by mixing a gas having a lower oxygen concentration than the exhaust gas into the exhaust gas of a fluidized bed combustion furnace and using it as a medium transport gas, and reached the present invention. It is.

【0013】すなわち、本願で特許請求される発明は以
下のとおりである。 (1)流動媒体および該流動媒体の流動層内に設けられ
た伝熱管を有する加圧流動層燃焼炉と、該流動層燃焼炉
から排出される排ガスを系外に排出する排気管と、前記
流動層燃焼炉から流動媒体を抜き出す流動媒体抜出し管
と、前記流動層燃焼炉から抜き出された流動媒体を貯留
する媒体容器と、該抜き出された流動媒体を前記媒体容
器に輸送する気流輸送管と、前記媒体容器に貯留された
流動媒体を前記流動層燃焼炉に供給する供給管とを備え
た加圧流動層ボイラにおいて、前記気流輸送管の途中ま
たは媒体容器内に粗粒分離装置を設け、流動媒体中の粗
粒を除去した後、該媒体容器に貯留するようにしたこと
を特徴とする加圧流動層ボイラ。 (2)前記粗粒分離装置が、3mm以上の目開きスクリー
ンを備えていることを特徴とする(1)記載の加圧流動
層ボイラ。
That is, the invention claimed in the present application is as follows. (1) a pressurized fluidized bed combustion furnace having a fluidized medium and a heat transfer tube provided in a fluidized bed of the fluidized medium; an exhaust pipe for discharging exhaust gas discharged from the fluidized bed combustion furnace to outside the system; A fluidized medium extraction pipe for extracting a fluidized medium from a fluidized bed combustion furnace, a medium container for storing the fluidized medium extracted from the fluidized bed combustion furnace, and a pneumatic transport for transporting the extracted fluidized medium to the medium container In a pressurized fluidized-bed boiler provided with a pipe and a supply pipe for supplying a fluidized medium stored in the medium container to the fluidized-bed combustion furnace, a coarse particle separation device is provided in the middle of the airflow transport pipe or in the medium container. A pressurized fluidized-bed boiler, wherein coarse particles in a fluidized medium are removed and then stored in the medium container. (2) The pressurized fluidized-bed boiler according to (1), wherein the coarse particle separation device includes an aperture screen of 3 mm or more.

【0014】(3)前記粗粒分離装置前流および後流の
前記気流輸送管または前記供給管をバルブを介して大気
に連通し、該粗粒分離装置を大気圧下で運転できるよう
にしたことを特徴とする(1)または(2)記載の加圧
流動層ボイラ。 (4)前記粗粒分離装置前流の気流輸送管に冷却装置を
設けたことを特徴とする(1)〜(3)のいずれかに記
載の加圧流動層ボイラ。 (5)前記気流輸送管の下端部に流動層装置を設け、該
流動層装置に、前記気流輸送管の輸送用流体の流速が前
記流動層燃焼炉から抜き出した流動媒体から分離する粗
粒の終端速度となるように流体を供給する手段を設けた
ことを特徴とする(1)〜(4)のいずれかに記載の加
圧流動層ボイラ。 (6)前記排気管と気流輸送管とを連結する配管を設
け、前記媒体容器内の流動媒体中の未燃分の燃焼を生じ
る酸素含有量に達しない程度の不活性ガスを流動媒体の
輸送用ガスとして前記配管に供給する系統を設けたこと
を特徴とする(1)〜(5)のいずれかに記載の加圧流
動層ボイラ。 (7)前記配管にガス供給手段を設け、流動媒体の輸送
用ガスとして、排ガスと該排ガスよりも酸素濃度の低い
ガスとの混合ガスの供給系統を設けたことを特徴とする
(1)〜(6)のいずれかに記載の加圧流動層ボイラ。
(3) The coarse-grain separation device is connected to the atmosphere via a valve through the air flow transport pipe or the supply pipe upstream and downstream of the coarse-grain separation device, so that the coarse-grain separation device can be operated at atmospheric pressure. The pressurized fluidized-bed boiler according to (1) or (2), wherein (4) The pressurized fluidized-bed boiler according to any one of (1) to (3), wherein a cooling device is provided in an airflow transport pipe upstream of the coarse particle separation device. (5) A fluidized bed device is provided at the lower end of the gas flow transport pipe, and the fluidized bed apparatus has a flow rate of the transport fluid in the gas flow transport pipe of coarse particles separated from the fluid medium extracted from the fluidized bed combustion furnace. The pressurized fluidized-bed boiler according to any one of (1) to (4), further comprising means for supplying a fluid so as to have a terminal speed. (6) A pipe for connecting the exhaust pipe and the airflow transport pipe is provided, and an inert gas that does not reach an oxygen content that causes combustion of unburned components in the fluid medium in the medium container is transported to the fluid medium. The pressurized fluidized-bed boiler according to any one of (1) to (5), further comprising a system for supplying a supply gas to the pipe. (7) A gas supply means is provided in the pipe, and a supply system of a mixed gas of an exhaust gas and a gas having a lower oxygen concentration than the exhaust gas is provided as a gas for transporting the fluid medium (1) to (1). The pressurized fluidized-bed boiler according to any one of (6).

【0015】[0015]

【作用】図9において流動層燃焼炉2の負荷を下げる
際、流動層5内の流動媒体4は高温のまま抜き出され、
加圧容器1の空気によって輸送されて媒体容器14に供
給され、該媒体容器14内の流動媒体20は負荷変化を
行っていないときには固定層を形成している。この流動
媒体20には未燃石炭粒子が含まれており、雰囲気の酸
素濃度が高いため、断熱的に燃焼して局部的な温度上昇
を招き、灰や周囲の媒体を溶融させてアグロメ24の発
生に至る。すなわち、アグロメが生成するためには、未
燃石炭粒子を燃焼させるための「高温」および「高濃度
の酸素」という2つの条件が必要であり、いずれか1つ
の条件をなくすことにより、アグロメの生成を抑制する
ことが可能である。
When the load of the fluidized bed combustion furnace 2 is reduced in FIG. 9, the fluidized medium 4 in the fluidized bed 5 is withdrawn at a high temperature.
It is transported by the air of the pressurized container 1 and supplied to the medium container 14, and the flowing medium 20 in the medium container 14 forms a fixed layer when the load is not changed. The fluid medium 20 contains unburned coal particles, and has a high oxygen concentration in the atmosphere. Therefore, the fluid medium 20 burns adiabatically, causing a local temperature rise, melting the ash and the surrounding medium to form the agglomerates 24. Leads to outbreak. That is, in order for agglomerates to be generated, two conditions of “high temperature” and “high concentration of oxygen” for burning unburned coal particles are necessary. Generation can be suppressed.

【0016】本発明では、流動層から抜き出した流動媒
体からズリを含む粗粒を除去した後、これを媒体容器を
経由して流動層へ供給するため、流動層に供給される流
動媒体中にズリや粗粒が含まれず、伝熱管の摩耗、アグ
ロメの発生、脱硫率の低下等を防ぐことができる。ま
た、空気よりも酸素濃度の低いガス、例えば燃焼排ガス
を流動媒体の輸送に使用するため、媒体容器内における
未燃石炭粒子の燃焼を抑制し、アグロメの発生を防止
し、流動層へ流動媒体を供給する配管における閉塞を防
止することができる。
In the present invention, since coarse particles including debris are removed from the fluidized medium extracted from the fluidized bed and then supplied to the fluidized bed via the medium container, the fluidized medium supplied to the fluidized bed is supplied to the fluidized medium. Since it does not contain debris or coarse particles, it is possible to prevent abrasion of the heat transfer tube, generation of agglomeration, reduction in desulfurization rate, and the like. In addition, since a gas having an oxygen concentration lower than that of air, such as flue gas, is used for transporting the fluidized medium, combustion of unburned coal particles in the medium container is suppressed, agglomeration is prevented, and the fluidized medium is transported to the fluidized bed. Clogging in the piping for supplying water can be prevented.

【0017】[0017]

【発明の実施の形態】以下、本発明を図面により詳しく
説明する。図1は、本発明の一実施例を示す加圧流動層
ボイラに付設される媒体容器14周辺部の説明図であ
る。図1において、従来装置の図9と異なる点は、媒体
容器14前流の気流輸送管13に2個の粗粒分離器26
と、該粗粒分離器26前流の気流輸送管13に冷却装置
50を設置した点である。図1において、粗粒分離器2
6は、ホッパ型容器の内部を傾斜スクリーン27で断面
方向に仕切ったものである。このスクリーン27として
は粗粒が容易に通過しないように、例えば目開き3mm以
上のパンチングプレート状のものが好ましい。気流輸送
管13、バルブ28を介して供給された流動媒体4は、
スクリーン27上で分別され、該スクリーンを通過した
ものはバルブ29を介して媒体容器14に流動媒体20
として貯留される。気流輸送管13から、粗粒分離器2
6に入る流動媒体は、温度上昇に伴うバルブ28の損傷
を防ぐため、ジャケット式の冷却装置50により水冷さ
れる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram of a peripheral portion of a medium container 14 attached to a pressurized fluidized-bed boiler showing one embodiment of the present invention. 1 is different from FIG. 9 of the conventional apparatus in that two coarse particle separators 26 are provided in the air flow transport pipe 13 upstream of the medium container 14.
And a cooling device 50 is installed in the airflow transport pipe 13 upstream of the coarse particle separator 26. In FIG. 1, coarse separator 2
Reference numeral 6 denotes a hopper-type container in which the inside of the hopper is partitioned by an inclined screen 27 in a sectional direction. The screen 27 is preferably, for example, a punching plate having a mesh size of 3 mm or more so that coarse particles do not easily pass through. The fluid medium 4 supplied via the airflow transport pipe 13 and the valve 28 is
The liquid which has been separated on the screen 27 and passed through the screen is transferred to the medium container 14 via the valve 29 and the fluidized medium 20.
Is stored as From the air flow transport pipe 13, the coarse particle separator 2
The fluid medium entering 6 is water-cooled by a jacket-type cooling device 50 in order to prevent damage to the valve 28 due to a rise in temperature.

【0018】粗粒分離器26にはスクリーンの目詰まり
を監視するため、のぞき窓34が設置され、スクリーン
が目詰まりした場合には、ボールバルブ28、29を閉
め、粗粒保管容器32のボールバルブ35を開けて粗粒
を抜き出し、逆洗空気弁46を開けてスクリーン27を
清掃する。それでもスクリーンの目詰まりが解除できな
い場合は、ボールバルブ28、29を閉めて、ボールバ
ルブ35を開けて粗粒分離器内を常圧に戻すことによっ
てスクリーンを分解清掃することも可能である。粗粒分
離器26を複数個設置することにより、逆洗時、分解清
掃時でも他の粗粒分離器を用いて運転を継続するとがで
きる。一方、スクリーン27を通過しなかったズリを含
む粗粒の流動媒体4は、スクリーン上を滑ってスクリー
ン27の下端に貯まり、該下端に接続された排出管30
およびバルブ31を介して粗粒保管容器32に導入され
る。粗粒保管容器内の粗粒のレベルは、のぞき窓33で
監視され、所定レベルになったときにバルブ31を閉
じ、バルブ35を開けることにより粗粒が排出される。
The coarse particle separator 26 is provided with a viewing window 34 for monitoring the clogging of the screen. When the screen is clogged, the ball valves 28 and 29 are closed, and the ball of the coarse particle storage container 32 is closed. The valve 35 is opened to remove coarse particles, and the backwash air valve 46 is opened to clean the screen 27. If the clogging of the screen still cannot be cleared, it is possible to disassemble and clean the screen by closing the ball valves 28 and 29 and opening the ball valve 35 to return the inside of the coarse particle separator to normal pressure. By installing a plurality of coarse particle separators 26, the operation can be continued using another coarse particle separator even during backwashing and disassembly cleaning. On the other hand, the coarse-grained fluid medium 4 containing the debris that has not passed through the screen 27 slides on the screen and accumulates at the lower end of the screen 27, and the discharge pipe 30 connected to the lower end.
And into the coarse particle storage container 32 via the valve 31. The level of the coarse particles in the coarse particle storage container is monitored by a viewing window 33. When the level reaches a predetermined level, the valve 31 is closed and the valve 35 is opened to discharge the coarse particles.

【0019】図2は、本発明のさらに他の実施例を示す
加圧流動層ボイラの媒体容器周辺部の説明図である。図
2において、図1と異なる点は、媒体容器14の代わり
に上部媒体容器41および下部媒体容器44を上下に設
置し、これらの間に粗粒分離器26を設置した点であ
る。図2において、上部媒体容器41の減圧弁17を開
けて上部媒体容器41を減圧し、気流輸送管13、ボー
ルバルブ42を介して上部媒体容器41に流動媒体20
を貯留する。上部媒体容器41内には、媒体冷却コイル
43を設置して流動媒体20の温度を低下させる。
FIG. 2 is an explanatory view of a peripheral portion of a medium container of a pressurized fluidized-bed boiler showing still another embodiment of the present invention. 2 is different from FIG. 1 in that an upper medium container 41 and a lower medium container 44 are provided vertically instead of the medium container 14, and a coarse particle separator 26 is provided therebetween. In FIG. 2, the pressure reducing valve 17 of the upper medium container 41 is opened to reduce the pressure of the upper medium container 41, and the fluid medium 20 is transferred to the upper medium container 41 via the airflow transport pipe 13 and the ball valve 42.
To store. A medium cooling coil 43 is provided in the upper medium container 41 to lower the temperature of the flowing medium 20.

【0020】上部媒体容器41にある程度の流動媒体2
0が貯まった時点で、流動媒体4の上部媒体容器41へ
の輸送を停止し、減圧弁17、ボールバルブ42を閉め
る。上部媒体容器41に貯蔵された流動媒体20は、図
2と同様の方法で粗粒分離器26で粗粒が分離されて下
部媒体容器44に貯蔵される。下部媒体容器44の媒体
出口側のボールバルブ45を閉じた状態で、上部媒体容
器41と下部媒体容器44の減圧弁17を開け、粗粒分
離器26の上下のボールバルブ28、29を開けると、
系内を大気圧の状態にすることが可能であり、常圧、常
温で粗粒分離作業ができ、粗粒分離器26の内部が加圧
時よりも逆洗の効果が上がりスクリーンの目詰まりに対
しても対応しやすくなる。
The upper medium container 41 contains a certain amount of the fluid medium 2.
When 0 is accumulated, the transport of the flowing medium 4 to the upper medium container 41 is stopped, and the pressure reducing valve 17 and the ball valve 42 are closed. The coarse particles of the flowing medium 20 stored in the upper medium container 41 are separated by the coarse particle separator 26 in the same manner as in FIG. When the ball valve 45 on the medium outlet side of the lower medium container 44 is closed, the pressure reducing valves 17 of the upper medium container 41 and the lower medium container 44 are opened, and the upper and lower ball valves 28 and 29 of the coarse particle separator 26 are opened. ,
The system can be kept at atmospheric pressure, coarse particles can be separated at normal pressure and room temperature, and the inside of the coarse particle separator 26 is more effectively backwashed than when pressurized, and the screen is clogged. It is easy to respond to

【0021】図3は、本発明のさらに他の実施例を示す
加圧流動層ボイラの媒体容器周辺部の説明図である。図
3において、図9と異なる点は、媒体容器14の代わり
に、スクリーン27が内蔵された媒体容器44と気流輸
送管13を冷却するための冷却装置50を設置した点で
ある。図3において、ボールバルブ42および媒体容器
44の減圧弁17を開けて媒体容器44を減圧し、気流
輸送管13、ボールバルブ42を介して媒体容器44に
流動媒体20を貯蔵する。気流輸送管13は冷却装置5
0により水冷され、ボールバルブ42を焼き付けから保
護する。媒体容器44内に設置したスクリーン27の上
に流動媒体4を落下させることにより粗粒を分離する。
分離された粗粒は排出管30を通って粗粒保管容器32
に貯留する。スクリーン27が目詰まりした場合には、
逆洗空気弁46をあけて清掃する。本実施例の場合は、
ボールバルブ42、45を閉め、媒体容器44の減圧弁
17で大気まで減圧することにより、マンホール46を
開けてスクリーン27を清掃することができる。
FIG. 3 is an explanatory view showing a peripheral portion of a medium container of a pressurized fluidized-bed boiler showing still another embodiment of the present invention. 3 is different from FIG. 9 in that, instead of the medium container 14, a cooling device 50 for cooling the medium container 44 in which the screen 27 is built and the airflow transport pipe 13 is provided. In FIG. 3, the medium container 44 is depressurized by opening the ball valve 42 and the pressure reducing valve 17 of the medium container 44, and the flowing medium 20 is stored in the medium container 44 through the airflow transport pipe 13 and the ball valve 42. The air flow transport pipe 13 is provided with the cooling device 5.
Water cooling by 0 protects the ball valve 42 from burning. The coarse particles are separated by dropping the flowing medium 4 on the screen 27 installed in the medium container 44.
The separated coarse particles pass through the discharge pipe 30 and are stored in the coarse storage container 32.
To be stored. When the screen 27 is clogged,
Open the backwash air valve 46 for cleaning. In the case of this embodiment,
By closing the ball valves 42 and 45 and reducing the pressure to the atmosphere by the pressure reducing valve 17 of the medium container 44, the manhole 46 can be opened and the screen 27 can be cleaned.

【0022】図4は、本発明のさらに他の実施例を示す
加圧流動層ボイラの媒体容器周辺部の説明図である。図
4において、図3と異なる点は、媒体容器44内に傾斜
して設けられたスクリーン27の下端部に粗粒溜まり5
4を設置し、該粗粒溜まり54に溜まった粗粒を排出管
52を介して粗粒保管容器53に排出するようにしたこ
とである。図4の装置では、媒体容器44の内径が大き
くなると、スクリーン27の下端に排出管30を設けて
も粗粒が排出管30から排出されずに排出管入り口周辺
に溜まりやすくなっていたが、粗粒溜まり54を設ける
ことにより、このような問題点をなくすことができる。
粗粒溜まり54はスクリーン27と同等の材質で取り付
けるのが好ましい。粗粒の溜まり具合をのぞき窓47で
監視し、粗粒が溜まった時点で、減圧弁17、ボールバ
ルブ42を閉めてボールバルブ51を開けると、媒体容
器44が加圧の状態になっているため、粗粒溜まり54
に溜まった粗粒を排出管52を介して媒体容器内の空気
と共に粗粒保管容器53に排出することができる。
FIG. 4 is an explanatory view of a peripheral portion of a medium container of a pressurized fluidized-bed boiler showing still another embodiment of the present invention. 4 is different from FIG. 3 in that the coarse particle pool 5 is provided at the lower end of a screen 27 that is provided to be inclined in a medium container 44.
4 is provided so that the coarse particles accumulated in the coarse particle reservoir 54 are discharged to the coarse particle storage container 53 through the discharge pipe 52. In the apparatus of FIG. 4, when the inner diameter of the medium container 44 is increased, even if the discharge pipe 30 is provided at the lower end of the screen 27, coarse particles are not discharged from the discharge pipe 30 but tend to accumulate around the discharge pipe entrance. By providing the coarse particle pool 54, such a problem can be eliminated.
It is preferable that the coarse-grain reservoir 54 is attached with the same material as the screen 27. The state of accumulation of coarse particles is monitored through the viewing window 47. When the coarse particles accumulate, the pressure reducing valve 17, the ball valve 42 are closed and the ball valve 51 is opened, and the medium container 44 is in a pressurized state. Therefore, the coarse particle pool 54
The coarse particles accumulated in the medium can be discharged to the coarse particle storage container 53 through the discharge pipe 52 together with the air in the medium container.

【0023】図5は、本発明のさらに他の実施例を示す
加圧流動層ボイラの媒体容器周辺部の説明図である。図
5において、図2と異なる点は、上部媒体容器41と下
部媒体容器44の間に設置する粗粒分離器26を、該上
部媒体容器41と下部媒体容器44から切り離して(す
なわち、圧力容器系統から分離して)設置したことであ
る。図6において、上部媒体容器41の減圧弁17を開
けて上部媒体容器41を減圧し、気流輸送管13、ボー
ルバルブ42を介して上部媒体容器41に流動媒体20
を貯留する。上部媒体容器41内には、媒体冷却コイル
43を設置して流動媒体20の温度を下げる。次に下部
媒体容器44の供給管13のボールバルブ45を閉じて
下部媒体容器44の減圧弁17を開けて容器内の圧力を
大気圧まで低下させる。次いでボールバルブ28を開け
て上部媒体容器41内の流動媒体20を粗粒分離器26
のスクリーン27の上に落下させる。粗粒の流動媒体は
スクリーン27の上を転がって排出管30を通って粗粒
保管容器32に入る。本実施例では、粗粒分離器26が
圧力容器等から切り放されているため、バイブレーター
31を取付けて分離作業効率を上げることも容易にな
る。
FIG. 5 is an explanatory view of a peripheral portion of a medium container of a pressurized fluidized-bed boiler showing still another embodiment of the present invention. 5 differs from FIG. 2 in that the coarse particle separator 26 installed between the upper medium container 41 and the lower medium container 44 is separated from the upper medium container 41 and the lower medium container 44 (that is, the pressure container (Separated from the system). In FIG. 6, the pressure reducing valve 17 of the upper medium container 41 is opened to depressurize the upper medium container 41, and the fluid medium 20 is supplied to the upper medium container 41 via the airflow transport pipe 13 and the ball valve 42.
To store. A medium cooling coil 43 is installed in the upper medium container 41 to lower the temperature of the flowing medium 20. Next, the ball valve 45 of the supply pipe 13 of the lower medium container 44 is closed, and the pressure reducing valve 17 of the lower medium container 44 is opened to reduce the pressure in the container to the atmospheric pressure. Next, the ball valve 28 is opened and the flowing medium 20 in the upper medium container 41 is separated from the coarse particle separator 26.
On the screen 27. The coarse-grained fluid medium rolls on the screen 27 and enters the coarse-grain storage container 32 through the discharge pipe 30. In the present embodiment, since the coarse particle separator 26 is cut off from the pressure vessel or the like, it becomes easy to attach the vibrator 31 to increase the efficiency of the separation operation.

【0024】図6は、本発明の他の実施例を示す加圧流
動層ボイラの気流輸送管の下端部周辺の説明図である。
図6において、図9と異なる点は、気流輸送管13の下
端部に流動層装置61を設け、該流動層装置61に、気
流輸送管の輸送用ガスの流速が流動媒体から分離する粗
粒の終端速度となるように流体を供給する手段を設置し
たことである。図6において、気流輸送管13の下端部
に、流量計オリフィス62、流量調整弁63、散気管6
4および空気ノズル65を備えた流動層装置61が設け
られる。Lバルブ12から流動層装置61内に供給され
た流動媒体4は、流量計オリフィス62、流量調整弁6
3、散気管64および空気ノズル65を介して供給され
る流動化空気と混合され、流動化される。
FIG. 6 is an explanatory view of the vicinity of the lower end of the air flow transport pipe of the pressurized fluidized bed boiler showing another embodiment of the present invention.
6 is different from FIG. 9 in that a fluidized bed apparatus 61 is provided at the lower end of the airflow transport pipe 13 and the fluidized bed apparatus 61 is provided with coarse particles in which the flow rate of the transport gas in the airflow transport pipe is separated from the fluid medium. Means for supplying the fluid so as to achieve the terminal speed of In FIG. 6, a flow meter orifice 62, a flow control valve 63,
4 and a fluidized bed apparatus 61 having an air nozzle 65 are provided. The fluid medium 4 supplied into the fluidized bed apparatus 61 from the L valve 12 is supplied to the flow meter orifice 62 and the flow regulating valve 6.
3. It is mixed with fluidizing air supplied through the diffuser pipe 64 and the air nozzle 65 and fluidized.

【0025】このときの流動化空気量は、気流輸送管内
の流速が分離したい粒子サイズの終端速度になるように
設定される。終端速度は温度検出器として、熱電対66
で測定した温度、圧力検出器67で測定した圧力、除去
したい粒子のサイズ(例えば4mm以上であれば4mm)、
真比重から Wen-Yu 等の既知の計算式により求めること
ができる。図7には、この計算式により得られた流動媒
体の粒径と終端速度との関係を示した。4mmで分離した
い場合は、気流輸送管内の流速を10.2m/sに制御す
ることにより、4mm以下の粒子が輸送用ガスとともに気
流輸送管内を飛散してその上流に設けられた図示しない
媒体容器14に送られ、4mmを超える粗粒子は流動層装
置61内に偏析する。この粗粒子は排出管68、ボール
バルブ69を介して系外に排出することができる。この
本実施例では、高温である流動媒体の粗粒物を分離する
ための機械的な構成部品がないので、耐熱性を考慮しな
くてもよいというメリットが付加される。
At this time, the amount of fluidizing air is set so that the flow velocity in the pneumatic transport tube becomes the terminal velocity of the particle size to be separated. The terminal speed is measured by a thermocouple 66 as a temperature detector.
The temperature measured by the above, the pressure measured by the pressure detector 67, the size of the particle to be removed (for example, 4 mm if it is 4 mm or more),
It can be obtained from the true specific gravity using a known formula such as Wen-Yu. FIG. 7 shows the relationship between the particle diameter of the fluidized medium and the terminal speed obtained by this calculation formula. If it is desired to separate at 4 mm, by controlling the flow velocity in the air flow transport tube to 10.2 m / s, particles of 4 mm or less are scattered in the air flow transport tube together with the transport gas and a medium container (not shown) provided upstream thereof The coarse particles exceeding 4 mm are segregated in the fluidized bed apparatus 61. The coarse particles can be discharged out of the system via a discharge pipe 68 and a ball valve 69. In this embodiment, since there is no mechanical component for separating coarse particles of the fluid medium having a high temperature, an advantage that heat resistance does not need to be considered is added.

【0026】図8は、本発明の他の実施例を示す加圧流
動層ボイラの説明図である。図8において、従来装置の
図9と異なる点は、媒体容器14内の酸素濃度を低くす
ることを目的として、流動層燃焼炉の排ガスを、負荷変
化時の流動媒体の輸送用ガスとして使用した点である。
すなわち、排気管9を分岐し、流動層燃焼炉2からの排
ガスを配管101、その途中に設けられた三方弁103
により切替え可能に二列に配置した脱塵装置102、バ
ルブ18、およびLバルブ12を介して、気流輸送管1
3に連結したことである。この場合は、弁104を介し
て窒素などの不活性ガスを供給できるように配管101
が枝管として設けられている。脱塵装置102は、排ガ
ス中にはサイクロン8で捕集できなかった微細な飛灰が
含まれているため、これを除去するために設けられたも
ので、高性能のサイクロンおよび/または耐熱性のフィ
ルタ等が使用できる。
FIG. 8 is an explanatory view of a pressurized fluidized-bed boiler showing another embodiment of the present invention. FIG. 8 differs from FIG. 9 of the conventional apparatus in that the exhaust gas of the fluidized bed combustion furnace is used as a transport gas for the fluidized medium when the load changes, for the purpose of lowering the oxygen concentration in the medium container 14. Is a point.
That is, the exhaust pipe 9 is branched, and the exhaust gas from the fluidized-bed combustion furnace 2 is supplied to the pipe 101, and the three-way valve 103 provided in the middle thereof.
The pneumatic transport pipe 1 is connected via a dust remover 102, a valve 18, and an L valve 12 which are switchably arranged in two rows.
3 is connected. In this case, the pipe 101 is supplied so that an inert gas such as nitrogen can be supplied through the valve 104.
Are provided as branch pipes. The dust removal device 102 is provided to remove fine fly ash that cannot be collected by the cyclone 8 in the exhaust gas, and is provided to remove the fine fly ash. Can be used.

【0027】このような装置によれば、流動媒体の輸送
用ガスとして、例えば酸素濃度が通常3.5%とかなり
低い排ガスを使用するため、負荷変化時に流動媒体を抜
き出して媒体容器に貯蔵する際、媒体容器内での未燃石
炭粒子の燃焼を抑制することができる。また排ガスの流
路を三方弁103の切り替えることにより、一方の脱塵
装置102を使用しながら、他方の脱塵装置102をク
リーニングまたは交換することが可能となる。さらに排
ガス中の酸素濃度が高い場合や未燃石炭粒子が多い場合
には、弁104を介して不活性ガスを供給することによ
り輸送用ガスの酸素濃度を下げることが可能である。図
8に示す実施例は、図1〜7に示した実施例の装置と組
合させて用いられる外、一般の加圧流動層ボイラにも適
用することができる。
According to such an apparatus, since the exhaust gas having a considerably low oxygen concentration of, for example, 3.5% is used as the transport gas for the fluid medium, the fluid medium is extracted and stored in the medium container when the load changes. At this time, combustion of the unburned coal particles in the medium container can be suppressed. Further, by switching the flow path of the exhaust gas by the three-way valve 103, it is possible to use one dust removing device 102 and clean or replace the other dust removing device 102. Further, when the oxygen concentration in the exhaust gas is high or the unburned coal particles are large, the oxygen concentration of the transport gas can be reduced by supplying an inert gas through the valve 104. The embodiment shown in FIG. 8 can be applied to a general pressurized fluidized bed boiler in addition to being used in combination with the apparatus of the embodiment shown in FIGS.

【0028】[0028]

【発明の効果】本願の請求項1〜5に係る発明によれ
ば、アグロメを含む粗粒子が流動媒体から分離されて流
動層燃焼炉に供給されるため、伝熱管の摩耗を防止する
ことができ、流動不良の発生を防ぐことができ、流動層
燃焼炉への媒体供給管における閉塞を防止することがで
き、これによりスムーズな流動層の負荷制御が可能とな
る。本願の請求項6、7に係る発明によれば、媒体容器
内の酸素濃度を下げることにより、未燃石炭粒子の燃焼
を抑制し、媒体容器内におけるアグロメの発生が防止さ
れ、流動層燃焼炉への媒体供給管における閉塞を防止す
ることができる。これによりスムーズな流動層の負荷制
御が可能となる。また、従来アグロメ生成防止のために
使用してきた高価な窒素ガスが不要となり、または少な
い使用量でアグロメ生成防止効果が得られるため、コス
トを低く抑えることができる。
According to the first to fifth aspects of the present invention, since coarse particles including agglomerates are separated from the fluidized medium and supplied to the fluidized bed combustion furnace, wear of the heat transfer tube can be prevented. It is possible to prevent the occurrence of poor flow and to prevent the medium supply pipe to the fluidized bed combustion furnace from being clogged, thereby enabling smooth load control of the fluidized bed. According to the invention according to claims 6 and 7 of the present application, the combustion of unburned coal particles is suppressed by lowering the oxygen concentration in the medium container, and the occurrence of agglomeration in the medium container is prevented. Blockage in the medium supply pipe to the medium can be prevented. This enables smooth load control of the fluidized bed. In addition, expensive nitrogen gas which has been conventionally used to prevent agglomeration is not required, or the effect of preventing agglomeration can be obtained with a small amount of use, so that the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】、FIG.

【図2】、FIG.

【図3】、FIG.

【図4】、FIG.

【図5】本発明の実施例を示す加圧流動層ボイラの媒体
容器周辺部の説明図。
FIG. 5 is an explanatory view of a peripheral portion of a medium container of a pressurized fluidized-bed boiler showing an embodiment of the present invention.

【図6】本発明の他の実施例を示す加圧流動層ボイラの
気流輸送管の下端部周辺の説明図。
FIG. 6 is an explanatory view showing the vicinity of a lower end portion of an airflow transport pipe of a pressurized fluidized-bed boiler showing another embodiment of the present invention.

【図7】流動媒体の粒径と終端速度の関係を示す図。FIG. 7 is a diagram showing a relationship between a particle diameter of a fluid medium and a terminal speed.

【図8】本発明の一実施例を示す加圧流動層ボイラの説
明図。
FIG. 8 is an explanatory view of a pressurized fluidized-bed boiler showing one embodiment of the present invention.

【図9】従来技術による加圧流動層ボイラの説明図。FIG. 9 is an explanatory view of a pressurized fluidized-bed boiler according to the related art.

【符号の説明】[Explanation of symbols]

1…圧力容器、2…流動層燃焼炉、3…空気分散板、4
…流動媒体、5…流動層、6…給炭管、7…伝熱管、8
…サイクロン、9…排気管、11…流動媒体層抜出し
管、12…Lバルブ、13…気流輸送管、14…媒体容
器、16…排気管、20…流動媒体、21…供給管、2
4…アグロメ、26…粗粒分離器、27…スクリーン、
30…排出管、32…粗粒保管容器、33、34…のぞ
き窓、36…バイプレーター、41…上部媒体容器、4
3…媒体冷却コイル、44…下部媒体容器、46…逆洗
空気弁、47…ロート、50…冷却装置、53…粗粒保
管容器、54…粗粒溜まり、61…流動層装置、101
…配管、102…脱塵装置、103…三方弁、104…
弁。
DESCRIPTION OF SYMBOLS 1 ... Pressure vessel, 2 ... Fluidized bed combustion furnace, 3 ... Air dispersion plate, 4
... fluidized medium, 5 ... fluidized bed, 6 ... coal feed pipe, 7 ... heat transfer pipe, 8
... cyclone, 9 ... exhaust pipe, 11 ... fluid medium layer withdrawal pipe, 12 ... L valve, 13 ... air flow transport pipe, 14 ... medium container, 16 ... exhaust pipe, 20 ... fluid medium, 21 ... supply pipe, 2
4 ... Agglomerated, 26 ... Coarse particle separator, 27 ... Screen,
Reference numeral 30 denotes a discharge pipe, 32 denotes a coarse-grained storage container, 33 and 34 denotes a viewing window, 36 denotes a vibrator, 41 denotes an upper medium container, 4
DESCRIPTION OF SYMBOLS 3 ... Medium cooling coil, 44 ... Lower medium container, 46 ... Backwash air valve, 47 ... Funnel, 50 ... Cooling device, 53 ... Coarse particle storage container, 54 ... Coarse particle storage, 61 ... Fluidized bed apparatus, 101
... Piping, 102 ... Dust removal device, 103 ... Three-way valve, 104 ...
valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷 義則 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 下平 和佳子 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 山本 学 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 野村 伸一郎 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 3K064 AA08 AA15 AA18 AB01 BA07 BA11 BA14 BA19 BA24 BB05 BB07 BB09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshinori Otani 3-36 Takara-cho, Kure-shi, Hiroshima Pref. Inside the Kure Laboratory (72) Inventor Wakako Shimohira 3-36 Takara-cho, Kure-shi, Hiroshima Babcock-Hitachi, Ltd. Inside the Kure Research Laboratory (72) The inventor Manabu Yamamoto 3-36 Takara-cho, Kure City, Hiroshima Prefecture Inside the Kure Research Laboratory, Babcock Hitachi Co., Ltd. (72) The inventor Shinichiro Nomura 3-36 Takaracho, Kure City, Hiroshima Prefecture, Babcock Hitachi Kure Research Laboratory Terms (reference) 3K064 AA08 AA15 AA18 AB01 BA07 BA11 BA14 BA19 BA24 BB05 BB07 BB09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 流動媒体および該流動媒体の流動層内に
設けられた伝熱管を有する加圧流動層燃焼炉と、該流動
層燃焼炉から排出される排ガスを系外に排出する排気管
と、前記流動層燃焼炉から流動媒体を抜き出す流動媒体
抜出し管と、前記流動層燃焼炉から抜き出された流動媒
体を貯留する媒体容器と、該抜き出された流動媒体を前
記媒体容器に輸送する気流輸送管と、前記媒体容器に貯
留された流動媒体を前記流動層燃焼炉に供給する供給管
とを備えた加圧流動層ボイラにおいて、前記気流輸送管
の途中または媒体容器内に粗粒分離装置を設け、流動媒
体中の粗粒を除去した後、該媒体容器に貯留するように
したことを特徴とする加圧流動層ボイラ。
1. A pressurized fluidized bed combustion furnace having a fluidized medium and a heat transfer tube provided in the fluidized bed of the fluidized medium, and an exhaust pipe for discharging exhaust gas discharged from the fluidized bed combustion furnace to outside the system. A fluid medium extraction pipe for extracting a fluid medium from the fluidized bed combustion furnace, a medium container for storing the fluid medium extracted from the fluidized bed combustion furnace, and transporting the extracted fluid medium to the medium container In a pressurized fluidized-bed boiler provided with an airflow transport pipe and a supply pipe for supplying a fluidized medium stored in the medium container to the fluidized-bed combustion furnace, coarse particles are separated in the middle of the airflow transport pipe or in the medium container. A pressurized fluidized bed boiler provided with an apparatus, wherein coarse particles in a fluidized medium are removed and then stored in the medium container.
【請求項2】 前記粗粒分離装置が、3mm以上の目開き
スクリーンを備えていることを特徴とする請求項1に記
載の加圧流動層ボイラ。
2. The pressurized fluidized-bed boiler according to claim 1, wherein the coarse-grain separation device includes an aperture screen having a size of 3 mm or more.
【請求項3】 前記粗粒分離装置前流および後流の前記
気流輸送管または前記供給管をバルブを介して大気に連
通し、該粗粒分離装置を大気圧下で運転できるようにし
たことを特徴とする請求項1または2に記載の加圧流動
層ボイラ。
3. The method according to claim 1, wherein the air flow transport pipe or the supply pipe upstream and downstream of the coarse particle separation device is connected to the atmosphere via a valve so that the coarse particle separation device can be operated under atmospheric pressure. The pressurized fluidized-bed boiler according to claim 1 or 2, wherein:
【請求項4】 前記粗粒分離装置前流の気流輸送管に冷
却装置を設けたことを特徴とする請求項1〜3のいずれ
かに記載の加圧流動層ボイラ。
4. The pressurized fluidized-bed boiler according to claim 1, wherein a cooling device is provided in an air flow transport pipe upstream of the coarse particle separation device.
【請求項5】 前記気流輸送管の下端部に流動層装置を
設け、該流動層装置に、前記気流輸送管の輸送用流体の
流速が前記流動層燃焼炉から抜き出した流動媒体から分
離する粗粒の終端速度となるように流体を供給する手段
を設けたことを特徴とする請求項1〜4のいずれかに記
載の加圧流動層ボイラ。
5. A fluidized bed apparatus is provided at a lower end portion of the gas flow transport pipe, and the fluidized bed apparatus has a coarse fluid flow rate of a transport fluid in the gas flow transport pipe separated from a fluid medium extracted from the fluidized bed combustion furnace. The pressurized fluidized-bed boiler according to any one of claims 1 to 4, further comprising means for supplying a fluid so as to have a terminal velocity of the particles.
【請求項6】 前記排気管と気流輸送管とを連結する配
管を設け、前記媒体容器内の流動媒体中の未燃分の燃焼
を生じる酸素含有量に達しない程度の不活性ガスを流動
媒体の輸送用ガスとして前記配管に供給する系統を設け
たことを特徴とする請求項1〜5のいずれかに記載の加
圧流動層ボイラ。
6. A pipe connecting the exhaust pipe and the pneumatic transport pipe, wherein an inert gas of an extent not reaching an oxygen content that causes combustion of unburned components in the fluid medium in the medium container is supplied to the fluid medium. The pressurized fluidized-bed boiler according to any one of claims 1 to 5, further comprising a system that supplies the transport gas to the pipe.
【請求項7】 前記配管にガス供給手段を設け、流動媒
体の輸送用ガスとして、排ガスと該排ガスよりも酸素濃
度の低いガスとの混合ガスの供給系統を設けたことを特
徴とする請求項1〜6のいずれかに記載の加圧流動層ボ
イラ。
7. A gas supply means is provided in the pipe, and a supply system of a mixed gas of an exhaust gas and a gas having an oxygen concentration lower than the exhaust gas is provided as a gas for transporting a fluid medium. The pressurized fluidized-bed boiler according to any one of claims 1 to 6.
JP11068299A 1999-03-15 1999-03-15 Pressurized fluidized-bed boiler Pending JP2000266306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11068299A JP2000266306A (en) 1999-03-15 1999-03-15 Pressurized fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11068299A JP2000266306A (en) 1999-03-15 1999-03-15 Pressurized fluidized-bed boiler

Publications (1)

Publication Number Publication Date
JP2000266306A true JP2000266306A (en) 2000-09-29

Family

ID=13369778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11068299A Pending JP2000266306A (en) 1999-03-15 1999-03-15 Pressurized fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JP2000266306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078345A1 (en) * 2004-02-13 2005-08-25 Kawasaki Jukogyo Kabushiki Kaisha Method of fluidized bed combustion for biomass fuel burning and apparatus therefor
JP2007100621A (en) * 2005-10-06 2007-04-19 Chugoku Electric Power Co Inc:The Stop control method for pressurized fluidized bed plant
JP2008064411A (en) * 2006-09-11 2008-03-21 Chugoku Electric Power Co Inc:The In-furnace flowability control method for flowing medium accompanying coal type switching in fluidized bed boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078345A1 (en) * 2004-02-13 2005-08-25 Kawasaki Jukogyo Kabushiki Kaisha Method of fluidized bed combustion for biomass fuel burning and apparatus therefor
JP2007100621A (en) * 2005-10-06 2007-04-19 Chugoku Electric Power Co Inc:The Stop control method for pressurized fluidized bed plant
JP4514684B2 (en) * 2005-10-06 2010-07-28 中国電力株式会社 Stop control method for pressurized fluidized bed plant
JP2008064411A (en) * 2006-09-11 2008-03-21 Chugoku Electric Power Co Inc:The In-furnace flowability control method for flowing medium accompanying coal type switching in fluidized bed boiler

Similar Documents

Publication Publication Date Title
US6994497B1 (en) Method and apparatus for treating high pressure particulate material
CN108369004B (en) Ash discharge system
RU2070936C1 (en) Method and device for treatment of gases and solid particles in fluidized bed
JP2010216721A (en) Steel ball recovery device and steel ball recovery method for shot cleaning device
CN107019974B (en) Filter medium deashing device and hot gas filtration system
CN107019978B (en) Moving granular bed filter, hot gas filtration system and method
JP2000266306A (en) Pressurized fluidized-bed boiler
AU2009207850A1 (en) Method and plant for removing accumulating slag from a slag bath
EP0797475B1 (en) Separation of particulate from flue gas of fossil fuel combustion and gasification
JP4817447B2 (en) Circulating water treatment equipment for cooling clinker ash and coal-fired boiler holding equipment equipped with the same
JP4550690B2 (en) Char transporter with coarse grain separation function
JPH0417354B2 (en)
JP2017156073A (en) Treatment method and device of fluid medium in fluidized bed furnace
US7144447B2 (en) Method and device for treating particulate material
JP2001235134A (en) Device and method for treatment of ash of precise dedusting apparatus
JP5355939B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
KR20220025013A (en) Simplified chain conveyors for re-conversion of floors
JP2003185104A (en) Fluidized-bed boiler equipment
US20150246361A1 (en) Method and device for separating fine-grained fractions from the cinders of a waste incineration plant
WO2001032293A1 (en) Exhaust gas dust collecting device
JPH06170157A (en) Treatment of exhaust gas
US3623297A (en) Flue gas scrubber
JP2001129338A (en) Dust collector of exhaust gas
JP2869507B2 (en) Conveyor with coarse classifier
JPH1163420A (en) Pressurized fluidized bed boiler and its operation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20050614

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050622